Skin image analysis for detection and quantitative assessment of dermatitis, vitiligo and alopecia areata lesions: a systematic literature review

Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 25; no. 1; pp. 10 - 17
Main Authors Kallipolitis, Athanasios, Moutselos, Konstantinos, Zafeiriou, Argyriοs, Andreadis, Stelios, Matonaki, Anastasia, Stavropoulos, Thanos G., Maglogiannis, Ilias
Format Journal Article
LanguageEnglish
Published London BioMed Central 08.01.2025
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-024-02843-2

Cover

Abstract Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review examines deep learning architectures and image processing algorithms for segmentation, feature extraction, and classification tasks employed for disease detection. It also focuses on practical applications, emphasizing quantitative disease assessment, and the performance of various computer vision approaches for each condition while highlighting their strengths and limitations. Finally, the review denotes the need for disease-specific datasets with curated annotations and suggests future directions toward unsupervised or self-supervised approaches. Additionally, the findings underscore the importance of developing accurate, automated tools for disease severity score calculation to improve ML-based monitoring and diagnosis in dermatology. Trial registration Not applicable.
AbstractList Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review examines deep learning architectures and image processing algorithms for segmentation, feature extraction, and classification tasks employed for disease detection. It also focuses on practical applications, emphasizing quantitative disease assessment, and the performance of various computer vision approaches for each condition while highlighting their strengths and limitations. Finally, the review denotes the need for disease-specific datasets with curated annotations and suggests future directions toward unsupervised or self-supervised approaches. Additionally, the findings underscore the importance of developing accurate, automated tools for disease severity score calculation to improve ML-based monitoring and diagnosis in dermatology.
Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review examines deep learning architectures and image processing algorithms for segmentation, feature extraction, and classification tasks employed for disease detection. It also focuses on practical applications, emphasizing quantitative disease assessment, and the performance of various computer vision approaches for each condition while highlighting their strengths and limitations. Finally, the review denotes the need for disease-specific datasets with curated annotations and suggests future directions toward unsupervised or self-supervised approaches. Additionally, the findings underscore the importance of developing accurate, automated tools for disease severity score calculation to improve ML-based monitoring and diagnosis in dermatology. TRIAL REGISTRATION: Not applicable.
Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review examines deep learning architectures and image processing algorithms for segmentation, feature extraction, and classification tasks employed for disease detection. It also focuses on practical applications, emphasizing quantitative disease assessment, and the performance of various computer vision approaches for each condition while highlighting their strengths and limitations. Finally, the review denotes the need for disease-specific datasets with curated annotations and suggests future directions toward unsupervised or self-supervised approaches. Additionally, the findings underscore the importance of developing accurate, automated tools for disease severity score calculation to improve ML-based monitoring and diagnosis in dermatology. Trial registration Not applicable.
Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review examines deep learning architectures and image processing algorithms for segmentation, feature extraction, and classification tasks employed for disease detection. It also focuses on practical applications, emphasizing quantitative disease assessment, and the performance of various computer vision approaches for each condition while highlighting their strengths and limitations. Finally, the review denotes the need for disease-specific datasets with curated annotations and suggests future directions toward unsupervised or self-supervised approaches. Additionally, the findings underscore the importance of developing accurate, automated tools for disease severity score calculation to improve ML-based monitoring and diagnosis in dermatology.Trial registrationNot applicable.
Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review examines deep learning architectures and image processing algorithms for segmentation, feature extraction, and classification tasks employed for disease detection. It also focuses on practical applications, emphasizing quantitative disease assessment, and the performance of various computer vision approaches for each condition while highlighting their strengths and limitations. Finally, the review denotes the need for disease-specific datasets with curated annotations and suggests future directions toward unsupervised or self-supervised approaches. Additionally, the findings underscore the importance of developing accurate, automated tools for disease severity score calculation to improve ML-based monitoring and diagnosis in dermatology. Trial registration Not applicable. Keywords: Skin image analysis, Benign skin lesions, Dermatitis, Alopecia Areata, Vitiligo, Machine learning
Abstract Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review examines deep learning architectures and image processing algorithms for segmentation, feature extraction, and classification tasks employed for disease detection. It also focuses on practical applications, emphasizing quantitative disease assessment, and the performance of various computer vision approaches for each condition while highlighting their strengths and limitations. Finally, the review denotes the need for disease-specific datasets with curated annotations and suggests future directions toward unsupervised or self-supervised approaches. Additionally, the findings underscore the importance of developing accurate, automated tools for disease severity score calculation to improve ML-based monitoring and diagnosis in dermatology. Trial registration Not applicable.
Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review examines deep learning architectures and image processing algorithms for segmentation, feature extraction, and classification tasks employed for disease detection. It also focuses on practical applications, emphasizing quantitative disease assessment, and the performance of various computer vision approaches for each condition while highlighting their strengths and limitations. Finally, the review denotes the need for disease-specific datasets with curated annotations and suggests future directions toward unsupervised or self-supervised approaches. Additionally, the findings underscore the importance of developing accurate, automated tools for disease severity score calculation to improve ML-based monitoring and diagnosis in dermatology. TRIAL REGISTRATION: Not applicable.Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review examines deep learning architectures and image processing algorithms for segmentation, feature extraction, and classification tasks employed for disease detection. It also focuses on practical applications, emphasizing quantitative disease assessment, and the performance of various computer vision approaches for each condition while highlighting their strengths and limitations. Finally, the review denotes the need for disease-specific datasets with curated annotations and suggests future directions toward unsupervised or self-supervised approaches. Additionally, the findings underscore the importance of developing accurate, automated tools for disease severity score calculation to improve ML-based monitoring and diagnosis in dermatology. TRIAL REGISTRATION: Not applicable.
ArticleNumber 10
Audience Academic
Author Moutselos, Konstantinos
Matonaki, Anastasia
Zafeiriou, Argyriοs
Maglogiannis, Ilias
Andreadis, Stelios
Kallipolitis, Athanasios
Stavropoulos, Thanos G.
Author_xml – sequence: 1
  givenname: Athanasios
  surname: Kallipolitis
  fullname: Kallipolitis, Athanasios
  email: nasskall@unipi.gr
  organization: Department of Digital Systems, University of Piraeus
– sequence: 2
  givenname: Konstantinos
  surname: Moutselos
  fullname: Moutselos, Konstantinos
  organization: Department of Digital Systems, University of Piraeus
– sequence: 3
  givenname: Argyriοs
  surname: Zafeiriou
  fullname: Zafeiriou, Argyriοs
  organization: Department of Digital Systems, University of Piraeus
– sequence: 4
  givenname: Stelios
  surname: Andreadis
  fullname: Andreadis, Stelios
  organization: Pfizer Center for Digital Innovation
– sequence: 5
  givenname: Anastasia
  surname: Matonaki
  fullname: Matonaki, Anastasia
  organization: Pfizer Center for Digital Innovation
– sequence: 6
  givenname: Thanos G.
  surname: Stavropoulos
  fullname: Stavropoulos, Thanos G.
  organization: Pfizer Center for Digital Innovation
– sequence: 7
  givenname: Ilias
  surname: Maglogiannis
  fullname: Maglogiannis, Ilias
  organization: Department of Digital Systems, University of Piraeus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39780145$$D View this record in MEDLINE/PubMed
BookMark eNqNUstuFDEQHKEg8oAf4IAsceHABnvsGdtcUBTxiBSJA3C2PDPtxcE73tiejfYz-GN6d0NeQhGyLFvtqnJ3Vx9We2McoapeMnrMmGrfZVZrxma0FriV4LP6SXXAhKxnrRZy7859vzrM-YJSJhVvnlX7XEtFmWgOqt_ffvmR-IWdA7GjDevsM3ExkQEK9MXHEcMDuZzsWHyxxa8QlzPkvICxkOgQmBYYLz6_JSs8gp_HLceGuITeW2IT2GJJgIxy-T2xJK9zgQ2rJ8EXSLZMCUiClYer59VTZ0OGF9fnUfXj08fvp19m518_n52enM_6lqoyGzrmdEM7AN0J0KCF0k4L3SqtuKXS1SA62fGG0a7r8LGFuu24HKgVTmvHj6qzne4Q7YVZJuxBWptovdkGYpobmzDDAMa2TkorHXc9iIY3iom-HVqUlpzWvEUtvtOaxqVdX9kQbgQZNRuzzM4sg2aZrVmmRtaHHWs5dQsYemxosuFeKvdfRv_TzOMKBSWVSmlUeHOtkOLlBLmYhc89hGBHiFM2nDVcKSb1JsXXD6AXcUro-BZVt0pIrW9Rc4t1-9FF_LjfiJoTVddKNVIIRB3_A4VrgIXvcUidx_g9wqu7ld6U-HcOEVDvAH2KOSdw_9c_9YDUb0c0brrlw-PUa8My_jPOId124xHWH-QbEpI
CitedBy_id crossref_primary_10_3389_fphot_2025_1535133
Cites_doi 10.11591/ijeecs.v20.i1.pp138-144
10.1016/j.jisp.2017.10.010
10.5826/dpc.1104a146
10.1109/ICAAIC56838.2023.10140778
10.1109/ICCV.2017.146
10.24507/icicelb.12.08.715
10.21608/ijicis.2023.184311.1242
10.33889/IJMEMS.2023.8.5.059
10.1109/ICAAIC53929.2022.9792650
10.1016/j.compbiomed.2022.105966
10.1007/978-981-19-7528-8_28
10.1145/2939672.2939785
10.48550/arXiv.1612.01105
10.1002/ima.22524
10.3390/computers8030062
10.1111/j.1600-0846.2011.00572.x
10.1016/j.xjidi.2022.100133
10.1007/978-3-030-32022-5_36
10.1038/s41598-021-85489-8
10.1145/3328833.3328862
10.1109/CVPR46437.2021.00294
10.1007/s13555-022-00752-8
10.1109/TSMC.1979.4310076
10.1109/CVPR.2016.319
10.1097/DER.0000000000000895
10.3389/fmed.2021.754202
10.5201/ipol.2016.163
10.1016/S0926-9959(98)95291-6
10.1016/j.jid.2015.12.040
10.1016/j.compbiomed.2004.03.003
10.1007/978-3-030-59861-7_23
10.1007/s12652-020-02357-5
10.21037/atm-22-1738
10.1016/j.bspc.2023.105855
10.1504/IJMEI.2015.068506
10.1007/978-3-031-16431-6_68
10.1001/jamadermatol.2022.5415
10.1145/1809939.1809949
10.17485/IJST/v16i18.29
10.1109/IPAS50080.2020.9334929
10.1016/j.compbiomed.2023.107320
10.1016/j.imavis.2018.02.001
10.3390/s23167295
10.1016/j.compbiomed.2020.104118
10.1109/ECBIOS54627.2022.9945053
10.1007/978-981-19-0976-4_38
10.1016/j.eswa.2020.113922
10.1109/CBMS49503.2020.00104
10.1038/s41746-024-01220-7
10.1007/978-981-19-9819-5_21
10.1016/j.cmpb.2014.12.001
10.1001/jamadermatol.2020.2188
10.1109/JBHI.2023.3342069
10.1109/ACCESS.2023.3340735
10.1109/BIBM47256.2019.8983145
10.1111/1346-8138.15743
10.1007/978-3-319-24574-4_28
10.1186/s12880-019-0307-7
10.3390/cancers15194694
10.1109/ICCV.2017.244
10.1111/j.1600-0846.2011.00610.x
10.1109/CTCEEC.2017.8455029
10.1159/000472711
10.1007/978-3-319-75626-4_13
10.1016/j.xjidi.2023.100213
10.1109/ICCV.2017.74
10.1016/j.compbiomed.2023.106624
10.1063/5.0109172
10.47750/pnr.2022.13.S01.02
10.3390/jimaging7010002
10.1007/978-3-030-24265-7_19
10.1016/j.bspc.2023.105187
10.1109/ICECCT56650.2023.10179804
10.1016/j.eswa.2019.112961
10.1016/j.compbiomed.2022.105807
10.1177/12034754231168839
10.1007/s10278-022-00765-x
10.3390/app14020632
10.1016/j.jaad.2015.04.035
10.1007/978-3-662-46742-8_30
10.1109/ICETST55735.2022.9922940
10.1111/pcmr.13056
10.1111/srt.12920
10.11591/ijece.v12i3.pp3072-3082
10.1016/j.jaad.2003.09.032
10.1007/s11277-023-10522-0
10.1155/2021/1102083
10.1111/bjd.17190
10.1016/S0140-6736(15)00149-X
10.48550/arXiv.1807.10165
10.24018/ejcompute.2023.3.1.85
10.1109/JBHI.2021.3055213
10.48084/etasr.5852
10.1007/s12016-021-08883-0
10.1111/srt.13440
10.1007/s40257-022-00753-5
10.17762/ijritcc.v11i11s.8071
10.1155/2011/750342
10.3923/jai.2013.245.256
10.1034/j.1600-0625.2001.100102.x
10.1111/j.1529-8019.2011.01415.x
10.1016/j.compbiomed.2021.104458
10.1109/JBHI.2022.3149288
10.1111/bjd.16563
10.1111/j.1600-0749.2006.00355.x
10.1109/EMBC.2016.7590961
10.1109/ITAB.2010.5687620
10.1109/ICEES51510.2021.9383682
10.1109/RBME.2020.3007816
10.4028/www.scientific.net/JBBBE.42.67
10.3233/JIFS-232172
10.1109/ISBI45749.2020.9098682
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12911-024-02843-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Proquest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 17
ExternalDocumentID oai_doaj_org_article_a6f77a7f3fce4535814c6d6510730236
10.1186/s12911-024-02843-2
PMC11707889
A822885744
39780145
10_1186_s12911_024_02843_2
Genre Systematic Review
Journal Article
GeographicLocations Greece
GeographicLocations_xml – name: Greece
GrantInformation_xml – fundername: Pfizer Center for Digital Innovation
– fundername: University of Piraeus Research Centre
  funderid: http://dx.doi.org/10.13039/501100021534
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c608t-db1f950bee9b4e9e9489f94968983a07f2e4b7b3510bbb4896e26b37d0a4f99f3
IEDL.DBID M48
ISSN 1472-6947
IngestDate Tue Oct 14 19:06:27 EDT 2025
Sun Oct 26 03:38:21 EDT 2025
Tue Sep 30 17:06:04 EDT 2025
Fri Sep 05 07:33:01 EDT 2025
Tue Oct 07 05:35:18 EDT 2025
Mon Oct 20 22:42:56 EDT 2025
Mon Oct 20 16:53:57 EDT 2025
Thu Apr 03 06:59:06 EDT 2025
Wed Oct 01 04:44:46 EDT 2025
Thu Apr 24 23:09:16 EDT 2025
Sat Sep 06 07:30:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Vitiligo
Alopecia Areata
Dermatitis
Skin image analysis
Benign skin lesions
Machine learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-db1f950bee9b4e9e9489f94968983a07f2e4b7b3510bbb4896e26b37d0a4f99f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-3
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02843-2
PMID 39780145
PQID 3152684799
PQPubID 42572
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_a6f77a7f3fce4535814c6d6510730236
unpaywall_primary_10_1186_s12911_024_02843_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11707889
proquest_miscellaneous_3153881796
proquest_journals_3152684799
gale_infotracmisc_A822885744
gale_infotracacademiconefile_A822885744
pubmed_primary_39780145
crossref_primary_10_1186_s12911_024_02843_2
crossref_citationtrail_10_1186_s12911_024_02843_2
springer_journals_10_1186_s12911_024_02843_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-08
PublicationDateYYYYMMDD 2025-01-08
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References M Hammad (2843_CR51) 2023; 23
A Rasheed (2843_CR52) 2022; 147
A Taïeb (2843_CR103) 2007; 20
2843_CR31
S Sharma (2843_CR67) 2023; 8
R Bakiyalakshmi (2843_CR39) 2019; 11
2843_CR119
C Sibbald (2843_CR29) 2023; 27
JJH Toh (2843_CR100) 2018; 179
K Panneerselvam (2843_CR56) 2023; 131
2843_CR116
ED Ubeyli (2843_CR42) 2005; 35
2843_CR115
2843_CR118
2843_CR117
EA Olsen (2843_CR28) 2004; 51
2843_CR111
2843_CR114
2843_CR113
N Van Geel (2843_CR104) 2016; 136
2843_CR110
J Zhou (2843_CR45) 2022; 149
VM Sheth (2843_CR101) 2015; 73
C Andrade (2843_CR106) 2020; 7
N Geel (2843_CR97) 2019; 180
2843_CR40
A Marka (2843_CR141) 2019; 19
T Kawakami (2843_CR99) 2011; 2011
G Hurault (2843_CR148) 2022; 2
2843_CR48
2843_CR47
Z Liu (2843_CR146) 2024; 14
2843_CR49
2843_CR43
MEB Menai (2843_CR41) 2015; 7
A Nadu (2843_CR20) 2023; 16
2843_CR127
C Bergqvist (2843_CR8) 2021; 48
2843_CR126
2843_CR129
2843_CR128
2843_CR123
EA Olsen (2843_CR30) 2011; 24
2843_CR122
2843_CR125
N Md Hossen (2843_CR34) 2023; 27
CH Bang (2843_CR64) 2021; 11
2843_CR124
MN Alam (2843_CR58) 2016; 2016
2843_CR121
2843_CR120
H Akbarialiabad (2843_CR1) 2024; 7
JM Hanifin (2843_CR62) 2001; 10
N van Geel (2843_CR10) 2022; 35
2843_CR95
2843_CR94
2843_CR96
K Pan (2843_CR60) 2020
2843_CR93
2843_CR92
2843_CR14
O Ronneberger (2843_CR25) 2015
2843_CR17
2843_CR16
2843_CR13
S Tofte (2843_CR61) 1998; 11
2843_CR12
CS Shakeel (2843_CR11) 2021; 2021
R Saifan (2843_CR36) 2022; 12
J Sun (2843_CR143) 2023
2843_CR18
A Bożek (2843_CR144) 2017; 233
JM Di Martino (2843_CR112) 2016; 6
AB Fortina (2843_CR147) 2012; 18
SE Sorour (2843_CR98) 2023; 11
2843_CR109
2843_CR108
2843_CR23
2843_CR105
S Ibrahim (2843_CR15) 2020; 20
JE Seol (2843_CR32) 2023; 29
UR Muhammad (2843_CR22) 2018; 71
E Bernardis (2843_CR26) 2018; 19
L Zhang (2843_CR78) 2021; 8
FE Shamout (2843_CR2) 2020; 14
2843_CR73
V Rajathi (2843_CR50) 2024; 90
2843_CR72
2843_CR75
2843_CR74
2843_CR71
2843_CR77
2843_CR76
D Wen (2843_CR145) 2024
MK Hasan (2843_CR4) 2023; 155
J Wang (2843_CR89) 2023; 165
S Lee (2843_CR24) 2020; 156
W Luo (2843_CR79) 2023; 14
JM Hanifin (2843_CR63) 2022; 33
2843_CR86
K Melbin (2843_CR33) 2021; 31
2843_CR85
2843_CR3
2843_CR80
T Khatibi (2843_CR83) 2021; 27
C Zhou (2843_CR9) 2021; 61
2843_CR82
C Saraswathi (2843_CR21) 2023; 45
NB Setiawan (2843_CR35) 2021
2843_CR88
2843_CR87
AM Alqudah (2843_CR70) 2019; 42
G Yosipovitch (2843_CR7) 2023; 24
RH Patel (2843_CR140) 2023; 15
S Liang (2843_CR81) 2023; 86
I Maglogiannis (2843_CR139) 2015; 118
C Gudobba (2843_CR27) 2023; 159
2843_CR53
ISA Abdelhalim (2843_CR107) 2021; 165
C Saraswathi (2843_CR19) 2023; 11
Y Li (2843_CR91) 2021; 25
H Nugroho (2843_CR84) 2013; 19
N Hameed (2843_CR37) 2019; 8
2843_CR55
R Attar (2843_CR59) 2023; 3
2843_CR54
H Kitchen (2843_CR102) 2022; 12
2843_CR138
2843_CR137
N Otsu (2843_CR57) 1979; 9
2843_CR134
L Guo (2843_CR90) 2022; 10
2843_CR133
2843_CR136
2843_CR135
2843_CR130
2843_CR132
2843_CR131
S Weidinger (2843_CR5) 2016; 387
E Goceri (2843_CR44) 2021; 134
A Raimondo (2843_CR6) 2021; 11
2843_CR69
2843_CR66
2843_CR65
2843_CR68
E Goceri (2843_CR46) 2021; 128
N Hameed (2843_CR38) 2020; 141
2843_CR142
References_xml – volume: 20
  start-page: 138
  issue: 1
  year: 2020
  ident: 2843_CR15
  publication-title: Indonesian J Electr Eng Comput Sci
  doi: 10.11591/ijeecs.v20.i1.pp138-144
– volume: 19
  start-page: S34
  issue: 1
  year: 2018
  ident: 2843_CR26
  publication-title: J Investig Dermatol Symp Proc
  doi: 10.1016/j.jisp.2017.10.010
– volume: 11
  start-page: e2021146
  issue: 4
  year: 2021
  ident: 2843_CR6
  publication-title: Dermatol Pract Concept
  doi: 10.5826/dpc.1104a146
– ident: 2843_CR13
  doi: 10.1109/ICAAIC56838.2023.10140778
– ident: 2843_CR110
  doi: 10.1109/ICCV.2017.146
– ident: 2843_CR40
– volume-title: From Data to Diagnosis: Skin Cancer Image Datasets for Artificial Intelligence
  year: 2024
  ident: 2843_CR145
– year: 2021
  ident: 2843_CR35
  publication-title: ICIC Int 学会
  doi: 10.24507/icicelb.12.08.715
– ident: 2843_CR127
– ident: 2843_CR133
– ident: 2843_CR49
  doi: 10.21608/ijicis.2023.184311.1242
– volume: 8
  start-page: 1024
  issue: 5
  year: 2023
  ident: 2843_CR67
  publication-title: Int J Math Eng Manag Sci
  doi: 10.33889/IJMEMS.2023.8.5.059
– ident: 2843_CR69
  doi: 10.1109/ICAAIC53929.2022.9792650
– ident: 2843_CR31
– volume: 149
  start-page: 105966
  year: 2022
  ident: 2843_CR45
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105966
– ident: 2843_CR48
  doi: 10.1007/978-981-19-7528-8_28
– ident: 2843_CR76
  doi: 10.1145/2939672.2939785
– ident: 2843_CR93
  doi: 10.48550/arXiv.1612.01105
– volume: 31
  start-page: 1317
  issue: 3
  year: 2021
  ident: 2843_CR33
  publication-title: Int J Imaging Syst Tech.
  doi: 10.1002/ima.22524
– volume: 8
  start-page: 62
  issue: 3
  year: 2019
  ident: 2843_CR37
  publication-title: Computers
  doi: 10.3390/computers8030062
– volume: 18
  start-page: 311
  issue: 3
  year: 2012
  ident: 2843_CR147
  publication-title: Skin Res Technol
  doi: 10.1111/j.1600-0846.2011.00572.x
– volume: 2
  start-page: 100133
  issue: 5
  year: 2022
  ident: 2843_CR148
  publication-title: JID Innovations
  doi: 10.1016/j.xjidi.2022.100133
– ident: 2843_CR65
  doi: 10.1007/978-3-030-32022-5_36
– volume: 11
  start-page: 6049
  issue: 1
  year: 2021
  ident: 2843_CR64
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-85489-8
– ident: 2843_CR66
  doi: 10.1145/3328833.3328862
– ident: 2843_CR108
  doi: 10.1109/CVPR46437.2021.00294
– volume: 12
  start-page: 1623
  issue: 7
  year: 2022
  ident: 2843_CR102
  publication-title: Dermatol Ther (Heidelb)
  doi: 10.1007/s13555-022-00752-8
– ident: 2843_CR124
– ident: 2843_CR130
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 2843_CR57
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1979.4310076
– volume: 11
  start-page: 656
  issue: 06–Special Issu
  year: 2019
  ident: 2843_CR39
  publication-title: J Adv Res Dynamic Control Syst
– ident: 2843_CR87
  doi: 10.1109/CVPR.2016.319
– volume: 33
  start-page: 187
  issue: 3
  year: 2022
  ident: 2843_CR63
  publication-title: Dermatitis
  doi: 10.1097/DER.0000000000000895
– volume-title: Machine Learning Methods in Skin Disease Recognition
  year: 2023
  ident: 2843_CR143
– volume: 8
  start-page: 754202
  year: 2021
  ident: 2843_CR78
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2021.754202
– volume: 6
  start-page: 300
  year: 2016
  ident: 2843_CR112
  publication-title: Image Process Line
  doi: 10.5201/ipol.2016.163
– ident: 2843_CR138
– volume: 11
  start-page: S
  year: 1998
  ident: 2843_CR61
  publication-title: J Eur Acad Dermatol Venereol
  doi: 10.1016/S0926-9959(98)95291-6
– volume: 136
  start-page: 978
  issue: 5
  year: 2016
  ident: 2843_CR104
  publication-title: J Invest Dermatology
  doi: 10.1016/j.jid.2015.12.040
– volume: 35
  start-page: 421
  issue: 5
  year: 2005
  ident: 2843_CR42
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2004.03.003
– ident: 2843_CR111
– start-page: 220
  volume-title: Machine learning in Medical Imaging
  year: 2020
  ident: 2843_CR60
  doi: 10.1007/978-3-030-59861-7_23
– volume: 14
  start-page: 5479
  issue: 5
  year: 2023
  ident: 2843_CR79
  publication-title: J Ambient Intell Hum Comput
  doi: 10.1007/s12652-020-02357-5
– volume: 10
  start-page: 590
  issue: 10
  year: 2022
  ident: 2843_CR90
  publication-title: Ann Transl Med
  doi: 10.21037/atm-22-1738
– ident: 2843_CR128
– volume: 90
  start-page: 105855
  year: 2024
  ident: 2843_CR50
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105855
– volume: 7
  start-page: 124
  issue: 2
  year: 2015
  ident: 2843_CR41
  publication-title: IJMEI
  doi: 10.1504/IJMEI.2015.068506
– ident: 2843_CR125
– ident: 2843_CR77
  doi: 10.1007/978-3-031-16431-6_68
– volume: 159
  start-page: 143
  issue: 2
  year: 2023
  ident: 2843_CR27
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2022.5415
– ident: 2843_CR113
  doi: 10.1145/1809939.1809949
– ident: 2843_CR131
– volume: 16
  start-page: 1365
  issue: 18
  year: 2023
  ident: 2843_CR20
  publication-title: IJST
  doi: 10.17485/IJST/v16i18.29
– ident: 2843_CR47
  doi: 10.1109/IPAS50080.2020.9334929
– volume: 165
  start-page: 107320
  year: 2023
  ident: 2843_CR89
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.107320
– ident: 2843_CR116
– volume: 71
  start-page: 25
  year: 2018
  ident: 2843_CR22
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2018.02.001
– volume: 23
  start-page: 7295
  issue: 16
  year: 2023
  ident: 2843_CR51
  publication-title: Sensors
  doi: 10.3390/s23167295
– volume: 128
  start-page: 104118
  year: 2021
  ident: 2843_CR46
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.104118
– ident: 2843_CR75
– ident: 2843_CR86
  doi: 10.1109/ECBIOS54627.2022.9945053
– ident: 2843_CR122
– ident: 2843_CR71
  doi: 10.1007/978-981-19-0976-4_38
– volume: 165
  start-page: 113922
  year: 2021
  ident: 2843_CR107
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113922
– ident: 2843_CR80
  doi: 10.1109/CBMS49503.2020.00104
– volume: 7
  start-page: 228
  year: 2024
  ident: 2843_CR1
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-024-01220-7
– ident: 2843_CR17
  doi: 10.1007/978-981-19-9819-5_21
– volume: 118
  start-page: 124
  issue: 2
  year: 2015
  ident: 2843_CR139
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2014.12.001
– volume: 156
  start-page: 1018
  issue: 9
  year: 2020
  ident: 2843_CR24
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2020.2188
– ident: 2843_CR119
– ident: 2843_CR92
  doi: 10.1109/JBHI.2023.3342069
– volume: 11
  start-page: 137769
  year: 2023
  ident: 2843_CR98
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3340735
– ident: 2843_CR136
– ident: 2843_CR85
  doi: 10.1109/BIBM47256.2019.8983145
– volume: 48
  start-page: 252
  year: 2021
  ident: 2843_CR8
  publication-title: J Dermatol
  doi: 10.1111/1346-8138.15743
– start-page: 234
  volume-title: Medical Image Computing and Computer-assisted intervention – MICCAI 2015
  year: 2015
  ident: 2843_CR25
  doi: 10.1007/978-3-319-24574-4_28
– volume: 19
  start-page: 21
  issue: 1
  year: 2019
  ident: 2843_CR141
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-019-0307-7
– volume: 15
  start-page: 4694
  issue: 19
  year: 2023
  ident: 2843_CR140
  publication-title: Cancers
  doi: 10.3390/cancers15194694
– ident: 2843_CR123
– ident: 2843_CR105
  doi: 10.1109/ICCV.2017.244
– volume: 19
  start-page: e72
  issue: 1
  year: 2013
  ident: 2843_CR84
  publication-title: Skin Res Technol.
  doi: 10.1111/j.1600-0846.2011.00610.x
– ident: 2843_CR96
  doi: 10.1109/CTCEEC.2017.8455029
– volume: 233
  start-page: 16
  year: 2017
  ident: 2843_CR144
  publication-title: Dermatology
  doi: 10.1159/000472711
– ident: 2843_CR54
  doi: 10.1007/978-3-319-75626-4_13
– volume: 3
  start-page: 100213
  issue: 5
  year: 2023
  ident: 2843_CR59
  publication-title: JID Innovations
  doi: 10.1016/j.xjidi.2023.100213
– ident: 2843_CR53
  doi: 10.1109/ICCV.2017.74
– volume: 155
  start-page: 106624
  year: 2023
  ident: 2843_CR4
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106624
– ident: 2843_CR74
  doi: 10.1063/5.0109172
– ident: 2843_CR12
  doi: 10.47750/pnr.2022.13.S01.02
– ident: 2843_CR137
– ident: 2843_CR114
– volume: 7
  start-page: 2
  issue: 1
  year: 2020
  ident: 2843_CR106
  publication-title: J Imaging
  doi: 10.3390/jimaging7010002
– ident: 2843_CR73
  doi: 10.1007/978-3-030-24265-7_19
– volume: 86
  start-page: 105187
  year: 2023
  ident: 2843_CR81
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105187
– ident: 2843_CR16
  doi: 10.1109/ICECCT56650.2023.10179804
– volume: 141
  start-page: 112961
  year: 2020
  ident: 2843_CR38
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112961
– ident: 2843_CR120
– volume: 147
  start-page: 105807
  year: 2022
  ident: 2843_CR52
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105807
– volume: 27
  start-page: 241
  issue: 3
  year: 2023
  ident: 2843_CR29
  publication-title: J Cutan Med Surg
  doi: 10.1177/12034754231168839
– ident: 2843_CR55
  doi: 10.1007/s10278-022-00765-x
– volume: 14
  start-page: 632
  issue: 2
  year: 2024
  ident: 2843_CR146
  publication-title: Appl Sci
  doi: 10.3390/app14020632
– volume: 73
  start-page: 342
  issue: 2
  year: 2015
  ident: 2843_CR101
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2015.04.035
– ident: 2843_CR82
  doi: 10.1007/978-3-662-46742-8_30
– ident: 2843_CR95
  doi: 10.1109/ICETST55735.2022.9922940
– ident: 2843_CR134
– ident: 2843_CR117
– volume: 35
  start-page: 480
  issue: 5
  year: 2022
  ident: 2843_CR10
  publication-title: Pigment Cell Melanoma Res
  doi: 10.1111/pcmr.13056
– volume: 27
  start-page: 126
  issue: 2
  year: 2021
  ident: 2843_CR83
  publication-title: Skin Res Technol
  doi: 10.1111/srt.12920
– volume: 12
  start-page: 3072
  issue: 3
  year: 2022
  ident: 2843_CR36
  publication-title: IJECE
  doi: 10.11591/ijece.v12i3.pp3072-3082
– volume: 51
  start-page: 440
  issue: 3
  year: 2004
  ident: 2843_CR28
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2003.09.032
– volume: 131
  start-page: 1817
  issue: 3
  year: 2023
  ident: 2843_CR56
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-023-10522-0
– volume: 2021
  start-page: 1
  year: 2021
  ident: 2843_CR11
  publication-title: Comput Math Methods Med
  doi: 10.1155/2021/1102083
– ident: 2843_CR115
– volume: 180
  start-page: 1198
  issue: 5
  year: 2019
  ident: 2843_CR97
  publication-title: Br J Dermatol
  doi: 10.1111/bjd.17190
– ident: 2843_CR121
– volume: 387
  start-page: 1109
  issue: 10023
  year: 2016
  ident: 2843_CR5
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)00149-X
– ident: 2843_CR109
– ident: 2843_CR94
  doi: 10.48550/arXiv.1807.10165
– ident: 2843_CR14
  doi: 10.24018/ejcompute.2023.3.1.85
– volume: 25
  start-page: 3082
  issue: 8
  year: 2021
  ident: 2843_CR91
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2021.3055213
– ident: 2843_CR18
  doi: 10.48084/etasr.5852
– volume: 61
  start-page: 403
  issue: 3
  year: 2021
  ident: 2843_CR9
  publication-title: Clin Rev Allergy Immunol
  doi: 10.1007/s12016-021-08883-0
– volume: 29
  start-page: e13440
  issue: 9
  year: 2023
  ident: 2843_CR32
  publication-title: Skin Res Technol
  doi: 10.1111/srt.13440
– volume: 24
  start-page: 2
  issue: 2
  year: 2023
  ident: 2843_CR7
  publication-title: Am J Clin Dermatol
  doi: 10.1007/s40257-022-00753-5
– volume: 11
  start-page: 63
  issue: 11
  year: 2023
  ident: 2843_CR19
  publication-title: Int J Recent Innov Trends Comput Commun
  doi: 10.17762/ijritcc.v11i11s.8071
– volume: 2011
  start-page: 750342
  year: 2011
  ident: 2843_CR99
  publication-title: Dermatol Res Pract
  doi: 10.1155/2011/750342
– ident: 2843_CR118
– ident: 2843_CR135
– ident: 2843_CR43
  doi: 10.3923/jai.2013.245.256
– volume: 10
  start-page: 11
  issue: 1
  year: 2001
  ident: 2843_CR62
  publication-title: Exp Dermatol
  doi: 10.1034/j.1600-0625.2001.100102.x
– ident: 2843_CR23
– volume: 24
  start-page: 311
  issue: 3
  year: 2011
  ident: 2843_CR30
  publication-title: Dermatol Ther
  doi: 10.1111/j.1529-8019.2011.01415.x
– ident: 2843_CR3
– volume: 134
  start-page: 104458
  year: 2021
  ident: 2843_CR44
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104458
– ident: 2843_CR129
– volume: 27
  start-page: 835
  issue: 2
  year: 2023
  ident: 2843_CR34
  publication-title: IEEE J Biomed Health Informa
  doi: 10.1109/JBHI.2022.3149288
– volume: 179
  start-page: 220
  issue: 1
  year: 2018
  ident: 2843_CR100
  publication-title: Br J Dermatol.
  doi: 10.1111/bjd.16563
– ident: 2843_CR126
– volume: 20
  start-page: 27
  issue: 1
  year: 2007
  ident: 2843_CR103
  publication-title: Pigment Cell Res
  doi: 10.1111/j.1600-0749.2006.00355.x
– volume: 2016
  start-page: 1365
  year: 2016
  ident: 2843_CR58
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
  doi: 10.1109/EMBC.2016.7590961
– ident: 2843_CR68
– ident: 2843_CR142
  doi: 10.1109/ITAB.2010.5687620
– ident: 2843_CR72
  doi: 10.1109/ICEES51510.2021.9383682
– volume: 14
  start-page: 116
  year: 2020
  ident: 2843_CR2
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2020.3007816
– volume: 42
  start-page: 67
  year: 2019
  ident: 2843_CR70
  publication-title: J Biomimetics Biomaterials Biomedical Eng
  doi: 10.4028/www.scientific.net/JBBBE.42.67
– volume: 45
  start-page: 11369
  issue: 6
  year: 2023
  ident: 2843_CR21
  publication-title: J Intel Fuzzy Syst
  doi: 10.3233/JIFS-232172
– ident: 2843_CR132
– ident: 2843_CR88
  doi: 10.1109/ISBI45749.2020.9098682
SSID ssj0017835
Score 2.3896153
SecondaryResourceType review_article
Snippet Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a...
Abstract Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10
SubjectTerms Algorithms
Alopecia
Alopecia Areata
Alopecia Areata - diagnostic imaging
Analysis
Annotations
Atopy
Automation
Baldness
Benign skin lesions
Classification
Computer vision
Datasets
Deep Learning
Dermatitis
Dermatitis - diagnostic imaging
Dermatology
Diagnosis
Diagnostic imaging
Disease detection
Health Informatics
Humans
Image analysis
Image processing
Image segmentation
Inflammation
Information Systems and Communication Service
Lesions
Literature reviews
Machine learning
Management of Computing and Information Systems
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Methods
Neural networks
Skin
Skin diseases
Skin image analysis
Systematic Review
Vitiligo
Vitiligo - diagnostic imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiDeBgoyExIGNuokdP7gVRFUhlROVerNsx4aVQlLYXRA_g3_MjPPoBqTCgUMUKR4rdr7JeDy2vyHkuXcFBhtt7pX0ObelzS2DyYr0NjJZIx8LhgZO3ovjU_7urDrbSfWFe8J6euD-wx1YEaW0MrLoA6-QrYt7UQtQJYn5bhLZ9lLpcTI1rB9gPGM8IqPEwRpGNQwFlhwuxVlezoahxNb_p03eGZR-3zA5rZreINe27bn98d02zc7AdHSL3Bw8SnrY9-Q2uRLaO-TqybBmfpf8xPxadPUZDAe1AwUJBVeV1mGT9mG18LimX7a2TQfOwPxRO_F10i6CYO_XrtYL-g1uzepjl-rYpkvp66lF19PSJmDsbf2KWnrBEE2bibmZ9gdl7pHTo7cf3hznQyKG3Iul2uS1K6Kuli4E7XjQQXOlo-ZaKK2YXcpYBu6kYwCKcw4KRSiFA6iXlketI7tP9tquDQ8JDbzw4EFWltdI7FNbrX0ZowAvpdSOqYwUIy7GDyzlmCyjMWm2ooTpsTSApUlYmjIjL6c65z1Hx6XSrxHuSRL5tdMD0DozaJ35m9Zl5AUqi0ErAM3zdjjMAJ1EPi1zCH6XUpXkPCP7M0n4e_28eFQ3M1iPtWFFIuGRWmfk2VSMNXFHXBu6bZJhSoE5hbY86LVz6hJDWqmCVxlRM72d9Xle0q4-JW5xTEQklYIXL0YVv2jXZR91Mf0G_4DBo_-BwWNyvcRkzBgPU_tkb_N1G56Ah7hxT5Mx-AWSyl9x
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rixMxEA9nD3x8EN-unhJB8INdrrubzSaCyJ3ccQhXRDy4byHJJmdh3e1dW8U_w__YmeyjV4Xih1LYTGim88jsJPMbQl5bk2CyUcdWFDZmOtWxzuBlpbDaZ0WJeCyYGjid8pMz9uk8P98h074WBq9V9j4xOOqysZgj38-SAExSSPlhfhlj1yg8Xe1baOiutUL5PkCM3SC7KSJjjcju4dH085fhXAHzHH3pjOD7C9jtMEWYMvgIlsXpxvYUUPz_9dXXNqu_L1IOp6l3yK1VPde_fuqqurZhHd8jd7tIkx60qnGf7Lj6Abl52p2lPyS_se8WnX0Hh0J1B01CIYSlpVuG-1k1PC7p5UrXoRAN3CLVA44nbTwQtvHubDGmP-Crml00YY6umtDWnmoMSTWtHObkFu-opmvkaFoNiM60LaB5RM6Oj75-PIm7Bg2x5ROxjEuTeJlPjHPSMCedZEJ6ySQXUmR6UvjUMVOYDOzeGAOD3KXcgApMNPNS-uwxGdVN7Z4S6lhiIbLMNSsR8KfUUtrUew7RSypNJiKS9HJRtkMvxyYalQpvMYKrVpYKZKmCLFUakbfDnHmL3bGV-hDFPVAi7nZ40FxdqM6Mlea-KHThM28dyxE7jllecmCwwO5LPCJvUFkUegdYntVdkQMwiThb6gDiMSHygrGI7G1QglXbzeFe3VTnVRZqbQMReTUM40y8KVe7ZhVoMiHAzcJanrTaObCUIdxUwvKIiA293eB5c6SefQuY49igqBACfnjcq_h6Xdv-1PFgBv8hg2fbuX5ObqfYfhkzYGKPjJZXK_cCYsKledkZ-h_7sF6K
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkYAeEG8CBRkJiQMbsYkdP7iViqpCKicq9WbZjg0rpUlhd4v4GfxjZpxsugFUwWEVKR5v7MzDk7HnG0JeeldgsNHmXkmfc1va3DL4WJHeRiZrxGPB0MDxR3F0wj-cVqcDTA7mwmzv3xdKvFnCeoRBvJLDT3GWg7m9DouUSBuz4mDcMcAIxiYp5q_9JgtPwuf_0wpvLUO_H5Ec90l3yc11e25_fLdNs7UUHd4htwcfku73TL9LroX2HrlxPOyS3yc_saIWXZyBqaB2AB2h4JzSOqzSyasWbtf069q2KcUMDB61I0In7SIQ9p7sYjmjF3BpFp-71Mc2XSpYTy06m5Y2AaNty7fU0ktMaNqMWM20T415QE4O3386OMqH0gu5F3O1ymtXRF3NXQja8aCD5kpHzbVQWjE7l7EM3EnHQKOdc9AoQikcMHduedQ6sodkp-3a8JjQwAsPPmNleY1QPrXV2pcxCvBLSu2Yykix4YvxAy45lsdoTPo-UcL0vDTAS5N4acqMvB77nPeoHFdSv0N2j5SIqJ1ugKCZQUGNFVFKKyOLPvAKUeG4F7WACUqsqyQy8gqFxaDew_C8HdIXYJKIoGX2wdNSqpKcZ2RvQgn66qfNG3Ezg71YGlYk2B2pdUZejM3YE8_AtaFbJxqmFBhQGMujXjrHKTEEkip4lRE1kdvJnKct7eJLQhPH0kNSKXjwbCPil-O66qXORjX4Bx48-b9_f0pulVhoGWNdao_srL6twzPw_lbueVL7X68eULY
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELaqrcTxwH0ECjISEg9struJ44O3BVFVSK14YKXyFNmOXVbNJsseRfAv-MfM5OpuQRVIPESR4rHimYzHk7HnG0JeWjPCYKMOrRQ2ZDrSoY7hZ0VY7WORIR4LhgaOjvnhhH04SU52yKTNhTEzi5vKVSpOhlVmZvpssJmJnteJDlhIwS3255mv573k-0tYujDeFzG4JItDsMy7PAEXvUd2J8cfx5-rTCMRhVwx0SbQ_LHj1iJVYfn_brE3lqzLxym7PdWb5Pq6mOvv33SebyxbB7fJectwfVrlbLBemYH9cQkL8r9L5A651Ti6dFxr5l2y44p75NpRs5V_n_zEsl90OgN7RnWDjELh7TRzq-p4WAGPM_p1rYsqDw6sMtUdjCgtPRDW7vZ02afncMunp2XVR-flHFjQVKNHrGnuMCS4fEM1vQCupnkHKE3r_J0HZHLw_tO7w7CpDxFaPpSrMDMjr5KhcU4Z5pRTTCqvmOJSyVgPhY8cM8LEYHaMMdDIXcQNaOBQM6-Ujx-SXlEW7jGhjo0sOLaJZhniDWVaKRt5z8F5ipSJZUBGrUKktgFPxxoeeVr9REme1rJOQdZpJes0Csjrrs-8hg65kvot6llHibDf1YNycZo2ViTV3AuhhY-9dSxB6DpmecaBQYHFn3hAXqGWpqgtMDyrmxwLYBJhvtIxuINSJoKxgOxtUYJRsdvNrZ6njVFbpvGowgYSSgXkRdeMPfGgXuHKdUUTSwlWHsbyqJ4WHUsxol2NWBIQuTVhtnjebimmXyrIc6yPJKSEF_fbuXUxrquE2u_m3198gyf_Rv6U3IiwGjQG5OQe6a0Wa_cMXNSVed4YnF9mY4uU
  priority: 102
  providerName: Unpaywall
Title Skin image analysis for detection and quantitative assessment of dermatitis, vitiligo and alopecia areata lesions: a systematic literature review
URI https://link.springer.com/article/10.1186/s12911-024-02843-2
https://www.ncbi.nlm.nih.gov/pubmed/39780145
https://www.proquest.com/docview/3152684799
https://www.proquest.com/docview/3153881796
https://pubmed.ncbi.nlm.nih.gov/PMC11707889
https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-024-02843-2
https://doaj.org/article/a6f77a7f3fce4535814c6d6510730236
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M48
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGJo3xgLgTGJWRkHiggSZxfUFCqK1WJqRW00SlwkvkJM6oFJKtF2A_g3_MOc6lLYyJhyRqbKt2ztXH9ncIeRFHHgYbtRtLEbtM-9rVAUxWRKzTQCSIx4KhgdGYH0_Yx2l3ukPqdEfVB1xcObXDfFKTefb658XlexD4d1bgJX-zAJuFgT6fwSVZ4IJK3gNLpTCVw4itVxUwylEfnLmy3QHZDxCSx8PTTRt2ysL5_620N6zWnzsqm2XVW-TmKj_Xlz90lm1YruEdcrtyOWmv5JG7ZMfk98j-qFpUv09-YQIuOvsGmoXqCqOEgi9LE7O0G7VyeJ3Qi5XO7Yk00I9UN4CetEihYun4zhZt-h0e2eyssG10Vtj89lSjb6ppZjA4t3hLNV1DSNOsgXam5UmaB2QyPPo0OHarTA1uzDty6SaRl6puJzJGRcwoo5hUqWKKSyUD3RGpb1gkogAUQBRFUMiNzyPghY5mqVJp8JDs5kVuHhNqmBeDi9nVLEHkn0QrFftpysGN8VUUSId4NV3CuIIxx2waWWinM5KHJVlDIGtoyRr6DnnVtDkvQTyurd1Hcjc1EYDbvijmZ2Elz6HmqRBapEEaG9ZFEDkW84TDAAWmYeIOeYnMEiLjQvdiXZ12gEEi4FbYA8dMyq5gzCGHWzVBvOPt4prdwlo6wsCzKD1CKYc8b4qxJW6Zy02xsnUCKUHfQl8eldzZDKlmcofILb7dGvN2ST77asHHMVORkBL-uF2z-Lpf133UdiMG_0GDJ__s8lNy4GMKZoyCyUOyu5yvzDPwC5dRi9wQUwF3OfzQInv9o_HJKfwa8EHLRlpaVhnA_bT_Bcon45Pe59_7LWLj
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBg8IO4EBhgJxAON1iRObCMhNC5Tx9Y9bdLejO04o1JIurVl2s_gj_AbOSe3LiBVvOyhqhTbjd1z_J3jY_s7hLyyJsBgo_at4NZnOtS-jmCxwq3OIp4iHwuGBsYHyeiIfT2Oj9fI7_YuDB6rbDGxAuq0tBgj34qCipiES_lheupj1ijcXW1TaNRqsecuzmHJNnu_-xnk-zoMd74cfhr5TVYB3yZDMfdTE2QyHhrnpGFOOsmEzCSTiZAi0kOehY4ZbiJQVmMMFCYuTAz0e6hZJmUWwe9eI9dZBFgC84cfdwu8AKMo7cUckWzNwJZiADJk8BEs8sOe8atyBPxrCS6Zwr-PaXZ7tbfIxqKY6otzneeXzOHOHXK78WPpdq14d8maK-6RG-Nmp_4--YVZvejkB8AV1Q3xCQUHmaZuXp3-KuBxSk8XuqiuuQHoUt2xhNIyg4q1Nz2ZDehP-MonJ2XVRufl1IFKUY0Or6a5w4jf7B3VdMlLTfOOL5rW13MekKMrEdRDsl6UhXtMqGOBBb811ixFOqFUS2nDLEvANwqliYRHglYuyjbc6JiiI1fVGkkkqpalAlmqSpYq9Mjbrs20ZgZZWfsjiruriaze1YPy7EQ1IKF0knGueRZl1rEYmemYTdIEBsgxt1PikTeoLAqxB7pndXOFAgaJLF5qG7w9IWLOmEc2ezUBM2y_uFU31WDWTC1nmEdedsXYEs_hFa5cVHUiIQDEoS-Pau3shhQhmVXAYo-Int72xtwvKSbfK0ZzTH_EhYAXD1oVX_Zr1Z866KbBf8jgyepRvyAbo8PxvtrfPdh7Sm6GmOgZY21ik6zPzxbuGXifc_O8mvKUfLtqjPkDuvmU_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkAY8IL4JDDASEg8sWps4_uBtFKrxsYkHJu3Nsh17VApJWVsQfwb_MXdOmjWAJnioIsXnxs6d7y5n3-8IeebsGIONJnVSuJSZzKQmh48V4UzIRYl4LBgaODziB8fs3UlxspHFH0-7r7ck25wGRGmql3vzMrRLXPK9BVgpDO1lDH6S5Sko4csMrBvWMJjwSb-PgHGNdarMX_sNzFFE7f9TN28Yp98PTva7p9fIlVU9Nz--m6raMFDTG-R651nS_VYUbpJLvr5Ftg-7vfPb5CfW2aKzL6BAqOmgSCi4rLT0y3geq4bbJf26MnVMPAM1SE2P20mbAIStfztb7NJvcKlmp03sY6omlrGnBl1QQyuPMbjFS2roOVI0rXoEZ9omzNwhx9M3nyYHaVeQIXV8JJdpacdBFSPrvbLMK6-YVEExxaWSuRmJkHlmhc1hnVtroZH7jFtg-ciwoFTI75Ktuqn9fUI9GzvwJAvDSgT4KY1SLguBg7eSKZvLhIzXfNGuQyvHohmVjl8tkuuWlxp4qSMvdZaQF32feYvVcSH1K2R3T4k42_FGc3aqu2WrDQ9CGBHy4DwrECuOOV5ymKDAaks8Ic9RWDRqAxieM11SA0wScbX0PvhfUhaCsYTsDChhFbth81rcdKdFFjofRzAeoVRCnvbN2BNPxtW-WUWaXEpQqzCWe6109lPKEV5qzIqEyIHcDuY8bKlnnyPGOBYkElLCg3fXIn4-rote6m6_DP6BBw_-79-fkO2Pr6f6w9uj9w_J1QwrMWMwTO6QreXZyj8C93BpH0cN8AtNxlvs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELaqrcTxwH0ECjISEg9struJ44O3BVFVSK14YKXyFNmOXVbNJsseRfAv-MfM5OpuQRVIPESR4rHimYzHk7HnG0JeWjPCYKMOrRQ2ZDrSoY7hZ0VY7WORIR4LhgaOjvnhhH04SU52yKTNhTEzi5vKVSpOhlVmZvpssJmJnteJDlhIwS3255mv573k-0tYujDeFzG4JItDsMy7PAEXvUd2J8cfx5-rTCMRhVwx0SbQ_LHj1iJVYfn_brE3lqzLxym7PdWb5Pq6mOvv33SebyxbB7fJectwfVrlbLBemYH9cQkL8r9L5A651Ti6dFxr5l2y44p75NpRs5V_n_zEsl90OgN7RnWDjELh7TRzq-p4WAGPM_p1rYsqDw6sMtUdjCgtPRDW7vZ02afncMunp2XVR-flHFjQVKNHrGnuMCS4fEM1vQCupnkHKE3r_J0HZHLw_tO7w7CpDxFaPpSrMDMjr5KhcU4Z5pRTTCqvmOJSyVgPhY8cM8LEYHaMMdDIXcQNaOBQM6-Ujx-SXlEW7jGhjo0sOLaJZhniDWVaKRt5z8F5ipSJZUBGrUKktgFPxxoeeVr9REme1rJOQdZpJes0Csjrrs-8hg65kvot6llHibDf1YNycZo2ViTV3AuhhY-9dSxB6DpmecaBQYHFn3hAXqGWpqgtMDyrmxwLYBJhvtIxuINSJoKxgOxtUYJRsdvNrZ6njVFbpvGowgYSSgXkRdeMPfGgXuHKdUUTSwlWHsbyqJ4WHUsxol2NWBIQuTVhtnjebimmXyrIc6yPJKSEF_fbuXUxrquE2u_m3198gyf_Rv6U3IiwGjQG5OQe6a0Wa_cMXNSVed4YnF9mY4uU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skin+image+analysis+for+detection+and+quantitative+assessment+of+dermatitis%2C+vitiligo+and+alopecia+areata+lesions%3A+a+systematic+literature+review&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Kallipolitis%2C+Athanasios&rft.au=Moutselos%2C+Konstantinos&rft.au=Zafeiriou%2C+Argyri%CE%BFs&rft.au=Andreadis%2C+Stelios&rft.date=2025-01-08&rft.eissn=1472-6947&rft.volume=25&rft.issue=1&rft.spage=10&rft_id=info:doi/10.1186%2Fs12911-024-02843-2&rft_id=info%3Apmid%2F39780145&rft.externalDocID=39780145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon