SNPs selection using support vector regression and genetic algorithms in GWAS

Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic alg...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 15; no. Suppl 7; p. S4
Main Authors de Oliveira, Fabrízzio Condé, Borges, Carlos Cristiano Hasenclever, Almeida, Fernanda Nascimento, e Silva, Fabyano Fonseca, da Silva Verneque, Rui, da Silva, Marcos Vinicius GB, Arbex, Wagner
Format Journal Article
LanguageEnglish
Published London BioMed Central 27.10.2014
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-15-S7-S4

Cover

Abstract Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels.
AbstractList This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels.
This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels.
Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels. Keywords: Single nucleotide polymorphisms, GWAS, support vector regression, wrapper, genetic algorithms, Pearson Universal kernel
Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels.
Introduction: This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results: The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions: The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels.
Doc number: S4 Abstract Introduction: This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results: The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions: The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels.
This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence.INTRODUCTIONThis paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence.The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS.RESULTSThe suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS.The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels.CONCLUSIONSThe method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels.
ArticleNumber S4
Audience Academic
Author Borges, Carlos Cristiano Hasenclever
e Silva, Fabyano Fonseca
Arbex, Wagner
da Silva, Marcos Vinicius GB
de Oliveira, Fabrízzio Condé
Almeida, Fernanda Nascimento
da Silva Verneque, Rui
AuthorAffiliation 3 Federal University of Viçosa - UFV, Viçosa, Minas Gerais, Brasil
2 State of Minas Gerais Research Support Agency - FAPEMIG, Brasil
4 Brazilian Agricultural Research Corporation - Embrapa, Juiz de Fora, Minas Gerais, Brasil
1 Federal University of Juiz de Fora - UFJF, Juiz de Fora, Minas Gerais, Brasil
AuthorAffiliation_xml – name: 2 State of Minas Gerais Research Support Agency - FAPEMIG, Brasil
– name: 3 Federal University of Viçosa - UFV, Viçosa, Minas Gerais, Brasil
– name: 4 Brazilian Agricultural Research Corporation - Embrapa, Juiz de Fora, Minas Gerais, Brasil
– name: 1 Federal University of Juiz de Fora - UFJF, Juiz de Fora, Minas Gerais, Brasil
Author_xml – sequence: 1
  givenname: Fabrízzio Condé
  surname: de Oliveira
  fullname: de Oliveira, Fabrízzio Condé
  organization: Federal University of Juiz de Fora - UFJF, Juiz de Fora, Minas Gerais
– sequence: 2
  givenname: Carlos Cristiano Hasenclever
  surname: Borges
  fullname: Borges, Carlos Cristiano Hasenclever
  organization: Federal University of Juiz de Fora - UFJF, Juiz de Fora, Minas Gerais
– sequence: 3
  givenname: Fernanda Nascimento
  surname: Almeida
  fullname: Almeida, Fernanda Nascimento
  organization: State of Minas Gerais Research Support Agency - FAPEMIG, Brazilian Agricultural Research Corporation - Embrapa, Juiz de Fora, Minas Gerais
– sequence: 4
  givenname: Fabyano Fonseca
  surname: e Silva
  fullname: e Silva, Fabyano Fonseca
  organization: Federal University of Viçosa - UFV, Viçosa, Minas Gerais
– sequence: 5
  givenname: Rui
  surname: da Silva Verneque
  fullname: da Silva Verneque, Rui
  organization: Brazilian Agricultural Research Corporation - Embrapa, Juiz de Fora, Minas Gerais
– sequence: 6
  givenname: Marcos Vinicius GB
  surname: da Silva
  fullname: da Silva, Marcos Vinicius GB
  organization: Brazilian Agricultural Research Corporation - Embrapa, Juiz de Fora, Minas Gerais
– sequence: 7
  givenname: Wagner
  surname: Arbex
  fullname: Arbex, Wagner
  email: wagner.arbex@ufjf.edu.br
  organization: Federal University of Juiz de Fora - UFJF, Juiz de Fora, Minas Gerais, Brazilian Agricultural Research Corporation - Embrapa, Juiz de Fora, Minas Gerais
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25573332$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gD3BAkbjAIcXfTi9IqwpKpfIhAuJoeZ1J6iprB9sp9N_jaJeyW0GFfLA187xjz-s5LPacd1AUTzE6xrgWrzCTuCJYsArzqpFVwx4UB7fBva3zfnEY4xVCWNaEPyr2CeeSUkoOivfNh0-xjDCASda7corW9WWcxtGHVF7nqA9lgD5AjHNeu7bswUGyptRD74NNl6tYWleefVs0j4uHnR4iPNnsR8XXt2--nL6rLj6enZ8uLiojUJ0qoQ1aUgwgjDEI15wsST7UsKxljakwmNe6k60AirjuMDO4o1ISbloAjAU9Kui67uRGffNDD4Mag13pcKMwUrM5au5dzb0rzFWUKrKser1WjdNyBa0Bl4L-o_Taqt2Ms5eq99eKEZbdQrnAi02B4L9PEJNa2WhgGLQDP0WVb-NSUsz4f6CECMQ4kRl9fge98lNw2b9MYckFFXyL6vUAyrrO5yeauahacHrCJePsJFPHf6HyamFlTR6fzub4juDljiAzCX6mXk8xqvPm8y77bNu_W-N-T1MGyBowwccYoLv_VxqpmvlX6jsiY5OehzE_3Q73SzdjEPM9roew5dy_Vb8AMEf8Eg
CitedBy_id crossref_primary_10_3389_fgene_2019_00189
crossref_primary_10_4137_BBI_S29469
crossref_primary_10_1088_1755_1315_31_1_012015
crossref_primary_10_1002_gepi_22293
crossref_primary_10_1093_bib_bbaa263
crossref_primary_10_3390_plants12142659
Cites_doi 10.1016/S0004-3702(97)00043-X
10.1007/978-0-387-89554-3
10.1371/journal.pgen.1000678
10.1186/1297-9686-41-41
10.1093/bioinformatics/btr159
10.1016/j.chemolab.2005.09.003
10.1186/1471-2156-11-26
10.1145/1656274.1656278
10.1371/journal.pone.0013661
10.1093/genetics/163.1.347
10.1016/S0378-1119(99)00219-X
10.18637/jss.v011.i09
10.1002/humu.22161
ContentType Journal Article
Copyright de Oliveira et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
COPYRIGHT 2014 BioMed Central Ltd.
2014 de Oliveira et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Copyright © 2014 de Oliveira et al.; licensee BioMed Central Ltd. 2014 de Oliveira et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: de Oliveira et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.
– notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 de Oliveira et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
– notice: Copyright © 2014 de Oliveira et al.; licensee BioMed Central Ltd. 2014 de Oliveira et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2164-15-S7-S4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE



Genetics Abstracts
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 1471-2164
EndPage S4
ExternalDocumentID 10.1186/1471-2164-15-s7-s4
PMC4243330
3473472401
A539574549
25573332
10_1186_1471_2164_15_S7_S4
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
2VQ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c608t-6ac0b31ee6ccc01852b2cc08eb878136c158af7d6e305af14c1f37725cdee1163
IEDL.DBID M48
ISSN 1471-2164
IngestDate Sun Oct 26 04:11:21 EDT 2025
Tue Sep 30 16:23:04 EDT 2025
Fri Sep 05 09:18:05 EDT 2025
Fri Sep 05 06:57:18 EDT 2025
Mon Oct 06 18:38:00 EDT 2025
Mon Oct 20 22:49:48 EDT 2025
Mon Oct 20 16:58:05 EDT 2025
Thu Oct 16 16:01:42 EDT 2025
Mon Jul 21 05:48:04 EDT 2025
Wed Oct 01 03:03:16 EDT 2025
Thu Apr 24 22:57:55 EDT 2025
Sat Sep 06 07:21:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 7
Keywords support vector regression
Pearson Universal kernel
wrapper
GWAS
Single nucleotide polymorphisms
genetic algorithms
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-6ac0b31ee6ccc01852b2cc08eb878136c158af7d6e305af14c1f37725cdee1163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
OpenAccessLink https://www.proquest.com/docview/1617563657?pq-origsite=%requestingapplication%&accountid=15518
PMID 25573332
PQID 1617563657
PQPubID 44682
ParticipantIDs unpaywall_primary_10_1186_1471_2164_15_s7_s4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4243330
proquest_miscellaneous_1645773145
proquest_miscellaneous_1622604527
proquest_journals_1617563657
gale_infotracmisc_A539574549
gale_infotracacademiconefile_A539574549
gale_incontextgauss_ISR_A539574549
pubmed_primary_25573332
crossref_primary_10_1186_1471_2164_15_S7_S4
crossref_citationtrail_10_1186_1471_2164_15_S7_S4
springer_journals_10_1186_1471_2164_15_S7_S4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-27
PublicationDateYYYYMMDD 2014-10-27
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-27
  day: 27
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2014
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References 6612_CR11
DE Goldberg (6612_CR15) 1989
6612_CR12
6612_CR23
A Karatzoglou (6612_CR14) 2004; 11
A Field (6612_CR19) 2005
Z Wei (6612_CR6) 2009; 5
M Hall (6612_CR21) 2009; 11
NAL Erdal Cosgun (6612_CR9) 2011; 27
R Kohavi (6612_CR16) 1997; 97
AS Foulkes (6612_CR17) 2009
R Core Team: R: A Language and Environment for Statistical Computing (6612_CR22) 2012
F Mittag (6612_CR2) 2012; 33
JH Moore (6612_CR3) 2010; 26
D Gianola (6612_CR4) 2003; 163
JD Gibbons (6612_CR20) 2003
AJ Brookes (6612_CR1) 1999; 234
PS Wasan (6612_CR10) 2012; 10
6612_CR18
HJ Ban (6612_CR7) 2010; 11
G Morser (6612_CR5) 2010; 42
B Ünstü (6612_CR13) 2006; 81
B Ünstü (6612_CR24) 2005; 504
G Morser (6612_CR8) 2009; 41
20053841 - Bioinformatics. 2010 Feb 15;26(4):445-55
12586721 - Genetics. 2003 Jan;163(1):347-65
21450715 - Bioinformatics. 2011 May 15;27(10):1384-9
20416077 - BMC Genet. 2010;11:26
22777693 - Hum Mutat. 2012 Dec;33(12):1708-18
20950478 - Genet Sel Evol. 2010;42:37
21048968 - PLoS One. 2010;5(10):e13661
10395891 - Gene. 1999 Jul 8;234(2):177-86
20043835 - Genet Sel Evol. 2009;41:56
19816555 - PLoS Genet. 2009 Oct;5(10):e1000678
References_xml – volume: 97
  start-page: 273
  year: 1997
  ident: 6612_CR16
  publication-title: Articial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– volume-title: Nonparametric Statistical Inference
  year: 2003
  ident: 6612_CR20
– volume-title: Applied Statistical Genetics with R: for Population-based Association Studies
  year: 2009
  ident: 6612_CR17
  doi: 10.1007/978-0-387-89554-3
– volume-title: Discovering Statistics Using SPSS
  year: 2005
  ident: 6612_CR19
– volume: 504
  start-page: 292
  year: 2005
  ident: 6612_CR24
  publication-title: Anal Chim Acta
– volume: 26
  start-page: 445
  issue: 4
  year: 2010
  ident: 6612_CR3
  publication-title: Gene
– volume-title: Genetic Algorithms in Search, Optimization and Machine Learning
  year: 1989
  ident: 6612_CR15
– volume: 5
  start-page: 1
  issue: 10
  year: 2009
  ident: 6612_CR6
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1000678
– volume: 41
  start-page: 41
  issue: 1
  year: 2009
  ident: 6612_CR8
  publication-title: Generics Selection Evolution
  doi: 10.1186/1297-9686-41-41
– ident: 6612_CR11
– volume: 27
  start-page: 1384
  issue: 10
  year: 2011
  ident: 6612_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr159
– volume: 81
  start-page: 29
  year: 2006
  ident: 6612_CR13
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2005.09.003
– volume: 11
  start-page: 11
  year: 2010
  ident: 6612_CR7
  publication-title: BMC Genetics
  doi: 10.1186/1471-2156-11-26
– volume-title: R Foundation for Statistical Computing, Vienna, Austria
  year: 2012
  ident: 6612_CR22
– volume: 42
  start-page: 1
  issue: 37
  year: 2010
  ident: 6612_CR5
  publication-title: Generics Selection Evolution
– volume: 10
  start-page: 1384
  issue: 7
  year: 2012
  ident: 6612_CR10
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 6612_CR21
  publication-title: SIGKDD Explor Newsl
  doi: 10.1145/1656274.1656278
– ident: 6612_CR23
  doi: 10.1371/journal.pone.0013661
– ident: 6612_CR18
– volume: 163
  start-page: 445
  issue: 1
  year: 2003
  ident: 6612_CR4
  publication-title: Genetics
  doi: 10.1093/genetics/163.1.347
– ident: 6612_CR12
– volume: 234
  start-page: 177
  issue: 2
  year: 1999
  ident: 6612_CR1
  publication-title: Gene
  doi: 10.1016/S0378-1119(99)00219-X
– volume: 11
  start-page: 1
  issue: 9
  year: 2004
  ident: 6612_CR14
  publication-title: Journal Statistical Software
  doi: 10.18637/jss.v011.i09
– volume: 33
  start-page: 1708
  issue: 12
  year: 2012
  ident: 6612_CR2
  publication-title: Human Mutation
  doi: 10.1002/humu.22161
– reference: 22777693 - Hum Mutat. 2012 Dec;33(12):1708-18
– reference: 21048968 - PLoS One. 2010;5(10):e13661
– reference: 12586721 - Genetics. 2003 Jan;163(1):347-65
– reference: 10395891 - Gene. 1999 Jul 8;234(2):177-86
– reference: 20043835 - Genet Sel Evol. 2009;41:56
– reference: 20950478 - Genet Sel Evol. 2010;42:37
– reference: 20053841 - Bioinformatics. 2010 Feb 15;26(4):445-55
– reference: 21450715 - Bioinformatics. 2011 May 15;27(10):1384-9
– reference: 19816555 - PLoS Genet. 2009 Oct;5(10):e1000678
– reference: 20416077 - BMC Genet. 2010;11:26
SSID ssj0017825
Score 2.203292
Snippet Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype...
This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by...
Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype...
Doc number: S4 Abstract Introduction: This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of...
Introduction: This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage S4
SubjectTerms Algorithms
Analysis
Animal Genetics and Genomics
Animals
Artificial Intelligence
Bioinformatics
Biology
Biomedical and Life Sciences
Cattle - genetics
Computational Biology
Computer science
Computer Simulation
Databases, Nucleic Acid
Female
Genetic Markers
Genetic Techniques
Genetic vectors
Genome-Wide Association Study - methods
Genomics
Genotype & phenotype
Life Sciences
Male
Meetings
Microarrays
Microbial Genetics and Genomics
Models, Statistical
Peer review
Phenotype
Plant Genetics and Genomics
Polymorphism, Single Nucleotide
Proteomics
Quality control
Software
Statistical methods
Studies
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTgh44GN8BQYyCIkHFq2Ov5IHhAraGEirpoWJvVmO43STSlqWFrT_Hl-ahGYPfYvks5Lcnc939t3vAN5FvOBZzIvQZs4HKDahobEcu6aqRCaMF0OK9c7HY3l0xr-fi_MtGLe1MJhW2drE2lDnM4tn5PvohwvJpFCf5r9D7BqFt6ttCw3TtFbIP9YQY7dgO0JkrAFsfz4Yn5x29wp-PxRt6Uws96k3zWHkI4aQijBVYcp729NNI722S93MoOyuUe_BnWU5N9d_zXS6tlMdPoT7jYtJRiudeARbrtyB26umk9c78KBt5ECadf0YjtPxSUWquiWOlxPBZPgJqZZzdM7Jn_pgn1y5ySpntiSmzIlXPKx_JGY68WxaXPyqyGVJvv4cpU_g7PDgx5ejsOmzEFo5jBehNHaYMeqctNYOsZo6i_xD7LJYxZRJS0VsCpVL542DKSi3tGDeKxc2d456h-4pDMpZ6Z4DMVmSsSRHIXgywRLmhMpzyxgrKMuyAGjLXm0bEHLshTHVdTASS40i0SgSTYVOlU55AB-6OfMVBMdG6rcoNY3YFiUmz0zMsqr0t_RUjwReSnIfEQfwviEqZv711jS1CP4nEA6rR7nbo_SLz_aHW-XQzeKv9H9VDeBNN4wzMaGtdLMl0ni_F-HsN9JwoRSjXATwbKVvHQN8JKg8U6MAVE8TOwKEDe-PlJcXNXw4j7ifOQxgr9XZtU_fwNe9Tq83i6FSuuIvNjPmJdz1nidHJyBSuzBYXC3dK-_dLbLXzZL9B-y4Suw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA96IuoH8W31lCiCH7xym-bVflzE8xTuEOvifQtpmu4trN1lu1Xuv3emL7aHLPitkEkfk5nMb5p5EPIuEoXIYlGELvPgoLiEhdYJ7JqqE5VwUUwY5jufnavTmfh6IS-6pLCqj3bvjySbnbpR61gdM9hGwwjQfchkmOowFTfJLYnlvECKZ9F0ODsAmyf79Jh_zhuZoOsb8Y4luh4lORyV3iN36nJtr_7Y5XLHGp08IPc7GEmn7bo_JDd8-YjcbhtLXj0mZ-n5t4pWTY8bYDzF6PY5reo1om36u_lTTzd-3gbBltSWOQVJwoRGapfz1WaxvfxV0UVJP_-cpk_I7OTTj4-nYdc4IXRqEm9DZd0k48x75ZybYHp0FsFF7LNYx4wrx2RsC50rD9puCyYcKzjAbOly7xkgtKfkoFyV_jmhNksynuQIrIBM8oR7qfPccc4LxrMsIKznpXFdVXFsbrE0jXcRK4P8N8h_w6RJtUlFQD4Mc9ZtTY291G9xiQwWqygxGmZu66oyX9LvZirxlFGAixuQ9x1RsYLHO9slF8BHYH2rEeXhiBK0yY2He0kwnTZXBn1AqbiSOiBvhmGciRFqpV_VSANAFuvT76URUmvOhAzIs1a4BgaAa6eBqVFA9EjsBgKsAz4eKReXTT1wEQmYOQnIUS-gO6--h69HgxDvX4ZKm0q8-L-7vyR3AVoKtPKRPiQH203tXwF822avG239C3yZOzg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWgKwQc-FwgsCCDkDiw6dbxV3KsEMuCtNWKULGcrNhxuhVtWtUNaPn1eJo0anuohMStkp_VZDIeP8vzZhB6G7GC6ZgVodHWH1BMQsLMMOiaKhORUFb0COidzwfibMi-XPLLRh4NWhg9NVCcdDo2rrspQJ_U-gbon2AXJ_O8qJd7LE6ID69h5Fl_SHiYyjBlN9GB4J6Zd9DBcHDR_7ESGDWgtW5md6KToWNbe9NuhN7YonbTJ9s71LvodlXOs-vf2WSysU2d3kfT9QvW2Sk_u9VSd82fndqP_8sCD9C9hs_ifu2AD9ENWz5Ct-oOl9eP0Xk6uHDYrZrteA_AkGY_wq6aA-3Hv1ZXBnhhR3U2bomzMsf-uUBZibPJaLYYL6-mDo9L_Ol7Pz1Ew9OP3z6chU0Hh9CIXrwMRWZ6mhJrhTGmBzptHfkfsdWxjAkVhvA4K2QurA87WUGYIQX1fJ-b3FriqeIT1ClnpX2GcKYTTZMcGJ6HcZpQy2WeG0ppQajWASLrb6dMU94cumxM1OqYEwsFZlJgJkW4SqVKWYDet3PmdXGPveg34BIKqmaUkJYzyirn1Of0q-pzuO5k_qwdoHcNqJj5vzdZo3LwLwGFtraQR1tIv6zN9vDa81QTVpyCwygXVHAZoNftMMyEVLnSzirAeEYNhfL3YhiXkhLGA_S0dubWAP6MKb1RowDJLTdvAVCQfHukHF-tCpOziPmZvQAdrxfExqPvsetxu2j2fwYnlWPP_w3-At3xHJcB3YjkEeosF5V96XnkUr9qwsNf16xq_Q
  priority: 102
  providerName: Unpaywall
Title SNPs selection using support vector regression and genetic algorithms in GWAS
URI https://link.springer.com/article/10.1186/1471-2164-15-S7-S4
https://www.ncbi.nlm.nih.gov/pubmed/25573332
https://www.proquest.com/docview/1617563657
https://www.proquest.com/docview/1622604527
https://www.proquest.com/docview/1645773145
https://pubmed.ncbi.nlm.nih.gov/PMC4243330
https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-15-S7-S4
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2VQh4QHwTGFVACB5YoI7tOHlAqFQbA6lVtVBRnqzEcbpJJe2aFuh_z12ahGaaKl6iRD7n43z2_S6-D0JeuTzlsc9TR8cGDBQdUCfSHKumysALGE87FOOd-wPvdMS_jsV4j1TutiUD82tNO6wnNVpM3_25XH-ECf-hmPC-957CAuu4gPsdKpxQOiF_Pb90sLAUbsCWVTb2SQuUV4DVHfr830YDKEhRBCCVt6jiaq69bUN3XV3Bt1TYVffKeo_1Nrm5yubR-nc0nW6psZO75E6JP-3uRmDukT2T3Sc3NhUp1w9IPxwMczsviuPAiNnoFj-x89UcOWT_Kn7x2wsz2XjPZnaUJTaIIEZC2tF0AtxYnv_M7YvM_vy9Gz4ko5Pjb71Tp6y44Giv4y8dL9KdmFFjPK11B-OqYxdOfBP70qfM01T4USoTz8AyEaWUa5oywOdCJ8ZQgHaPyEE2y8wTYkdxELMgQUQGZIIFzAiZJJoxllIWxxahFS-VLtORY1WMqSrMEt9TyH-F_FdUqFCqkFvkbd1nvknGsZP6JQ6RwiwXGbrRTKJVnqsv4ZnqCtye5GAbW-RNSZTO4PE6KqMS4CMwMVaD8rBBCdNQN5srSVCVFCs0HoXHPCEt8qJuxp7o2paZ2QppAAFjYvudNFxIySgXFnm8Ea6aAWATSmCqaxHZELuaABOIN1uyi_MikTh3OfTsWOSoEtCtV9_B16NaiHcPQy5Vzp_-x5c_I7cAiHLEBK48JAfLxco8B7C3jNtkX45lm7Q-HQ-GZ3DV83rt4sdJu5jIcBy5cN4aDYbdH38B_YRThQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFVaocKBR3kZCiwIxIFazXp3vfahQgFaEtpGVd2K3hZ7vU4rBSfUCVV-jm9jxrFN0kNuvVnaWT9mZufheRHyzhOZSAKRuSax4KCYkLmxETg1VYV-yEXWYljvfNjzO6fi-5k8WyF_61oYTKusZWIpqNOhwX_k22iHS5_7Un0a_XZxahRGV-sRGnE1WiHdKVuMVYUd-3Z6BS5csdP9CvR-73l7uydfOm41ZcA1fisYu35sWgln1vrGmBbWEiceXAQ2CVTAuG-YDOJMpb6FoxFnTBiWcbBJpUmtZWDOwH1vkTXBRQjO39rn3d7RcRPHAP0r61KdwN9moApcDzwUl0k3Um4kFtThdaUwpxWvZ2w2Ydu7ZH2Sj-LpVTwYzGnGvQfkXmXS0vaMBx-SFZtvkNuzIZfTDXK_HhxBKznyiBxGvaOCFuUIHuALisn3fVpMRugM0D9lIIFe2v4sRzencZ5SYHSst6TxoA9kGZ__KuhFTr_9aEePyemNYPwJWc2HuX1GaJyECQ9TJDqASR5yK1WaGs55xniSOITV6NWmanqOszcGunR-Al8jSTSSRDOpI6Uj4ZCPzZ7RrOXHUui3SDWNvTRyTNbpx5Oi0N3oWLclBkEFeOAO-VABZUN4vImr2gf4CGy_tQC5uQAJh90sLtfMoSthU-j_R8Mhb5pl3IkJdLkdThAG7Gxsn78URkilOBPSIU9n_NYgADxPBUj1HKIWOLEBwDbliyv5xXnZrlx4Ana2HLJV8-zcqy_B61bD18vJUChdiOfLEfOarHdODg_0Qbe3_4LcAatXoAHiqU2yOr6c2JdgWY6TV9XxpeTnTUuMf39EiEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgiNcHxJvAAIOQ-MCi1fEr-VgVygasmggT-2Y5jtNVKm7VNKD99_iSNGomVIlvkXzO43zn-118D4TeRaxgWcyK0GTWOygmIaE2DLqmykQklBUDAvnOJxNxdMa-nPPzrSz-Otp9cyTZ5DRAlSa3PlzmRaPisTgkfksNI4_0Q8LDVIYpu45uMG_doIfBSIy6cwRv__gmVeaf83rm6OqmvGWVrkZMdsemd9Htyi315R89n29ZpvF9dK-FlHjYyMADdM26h-hm02Ty8hE6SSenJS7rfjd-ETBEuk9xWS0BeePf9V97vLLTJiDWYe1y7KUKkhuxnk8Xq9n64leJZw5__jlMH6Oz8acfo6OwbaIQGjGI16HQZpBRYq0wxgwgVTqL_EVss1jGhApDeKwLmQvrNV8XhBlSUA-5ucmtJR6tPUF7buHsM4R1lmQ0yQFkeTJOE2q5zHNDKS0IzbIAkQ0vlWkrjEOji7mqPY1YKOC_Av4rwlUqVcoC9KGbs2zqa-ykfgtLpKBwhYPImKmuylIdp9_VkMOJI_PuboDet0TFwj_e6DbRwH8E1LrqUe73KL1mmf7wRhJUq9mlAn-QCyq4DNCbbhhmQrSas4sKaDyohVr1O2kYl5ISxgP0tBGujgHezZOeqVGAZE_sOgKoCd4fcbOLujY4i5ifOQjQwUZAt159B18POiHevQylVCV7_n93f41unX4cq2_Hk68v0B2POBkY_0juo731qrIvPapbZ69qxf0LAn9CSg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWgKwQc-FwgsCCDkDiw6dbxV3KsEMuCtNWKULGcrNhxuhVtWtUNaPn1eJo0anuohMStkp_VZDIeP8vzZhB6G7GC6ZgVodHWH1BMQsLMMOiaKhORUFb0COidzwfibMi-XPLLRh4NWhg9NVCcdDo2rrspQJ_U-gbon2AXJ_O8qJd7LE6ID69h5Fl_SHiYyjBlN9GB4J6Zd9DBcHDR_7ESGDWgtW5md6KToWNbe9NuhN7YonbTJ9s71LvodlXOs-vf2WSysU2d3kfT9QvW2Sk_u9VSd82fndqP_8sCD9C9hs_ifu2AD9ENWz5Ct-oOl9eP0Xk6uHDYrZrteA_AkGY_wq6aA-3Hv1ZXBnhhR3U2bomzMsf-uUBZibPJaLYYL6-mDo9L_Ol7Pz1Ew9OP3z6chU0Hh9CIXrwMRWZ6mhJrhTGmBzptHfkfsdWxjAkVhvA4K2QurA87WUGYIQX1fJ-b3FriqeIT1ClnpX2GcKYTTZMcGJ6HcZpQy2WeG0ppQajWASLrb6dMU94cumxM1OqYEwsFZlJgJkW4SqVKWYDet3PmdXGPveg34BIKqmaUkJYzyirn1Of0q-pzuO5k_qwdoHcNqJj5vzdZo3LwLwGFtraQR1tIv6zN9vDa81QTVpyCwygXVHAZoNftMMyEVLnSzirAeEYNhfL3YhiXkhLGA_S0dubWAP6MKb1RowDJLTdvAVCQfHukHF-tCpOziPmZvQAdrxfExqPvsetxu2j2fwYnlWPP_w3-At3xHJcB3YjkEeosF5V96XnkUr9qwsNf16xq_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SNPs+selection+using+support+vector+regression+and+genetic+algorithms+in+GWAS&rft.jtitle=BMC+genomics&rft.au=de+Oliveira%2C+Fabrizzio+Conde&rft.au=Borges%2C+Carlos+Cristiano+Hasenclever&rft.au=Almeida%2C+Fernanda+Nascimento&rft.au=e+Silva%2C+Fabyano+Fonseca&rft.date=2014-10-27&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=15&rft.issue=Suppl+7&rft.spage=S4&rft.epage=S4&rft_id=info:doi/10.1186%2F1471-2164-15-S7-S4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon