Machine learning–based predictive model for post-stroke dementia
Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative...
Saved in:
| Published in | BMC medical informatics and decision making Vol. 24; no. 1; pp. 334 - 9 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
11.11.2024
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1472-6947 1472-6947 |
| DOI | 10.1186/s12911-024-02752-4 |
Cover
| Abstract | Background
Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD.
Methods
9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron.
Results
A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage.
Conclusion
Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD. |
|---|---|
| AbstractList | Background
Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD.
Methods
9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron.
Results
A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage.
Conclusion
Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD. Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD. 9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron. A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage. Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD. Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD. Methods 9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron. Results A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage. Conclusion Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD. Keywords: Stroke, Post-stroke dementia, Boruta algorithm, Machine learning, Prediction model Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD.BACKGROUNDPost-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD.9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron.METHODS9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron.A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage.RESULTSA total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage.Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD.CONCLUSIONOur findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD. BackgroundPost-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD.Methods9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron.ResultsA total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage.ConclusionOur findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD. Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD. 9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron. A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage. Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD. Abstract Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD. Methods 9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron. Results A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage. Conclusion Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD. |
| ArticleNumber | 334 |
| Audience | Academic |
| Author | Li, Mengqi Wang, Wenmin Wei, Zemin Zhang, Chenghui Miao, Jinli Fan, Hong |
| Author_xml | – sequence: 1 givenname: Zemin surname: Wei fullname: Wei, Zemin organization: Department of Geriatrics, Shaoxing People’s Hospital – sequence: 2 givenname: Mengqi surname: Li fullname: Li, Mengqi organization: School of Medicine, Shaoxing University – sequence: 3 givenname: Chenghui surname: Zhang fullname: Zhang, Chenghui organization: School of Medicine, Shaoxing University – sequence: 4 givenname: Jinli surname: Miao fullname: Miao, Jinli organization: The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University – sequence: 5 givenname: Wenmin surname: Wang fullname: Wang, Wenmin organization: The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University – sequence: 6 givenname: Hong surname: Fan fullname: Fan, Hong email: fanhongsx@126.com organization: Department of Geriatrics, Shaoxing People’s Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39529118$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu1DAUjVARfcAPsECR2LBJ8Tv2CpWKR6UiNrC2bOdm6iFjD3ZS1B3_wB_yJTidoe1UqEKWZcs-59x7jn1Y7YUYoKqeY3SMsRSvMyYK4wYRVmbLScMeVQeYtaQRirV7d_b71WHOS4RwKyl_Uu1TxWeqPKjefjLuwgeoBzAp-LD4_fOXNRm6ep2g8270l1CvYgdD3cdUr2Memzym-A3qDlYQRm-eVo97M2R4tl2Pqq_v3305_dicf_5wdnpy3jiB5NgIY21rCJXAJS-NEERAICPAWt63SCgFmKrOCctc74DyvmeK9bJDFjmsHD2qzja6XTRLvU5-ZdKVjsbr64OYFtqk0bsBNOG2Mwj1xGHCGAgjBW-taKlyVrVk1qIbrSmszdUPMww3ghjpOV29SVeXdPV1upoV1psNaz3ZFXSu2E9m2Gll9yb4C72Il0WQc644Kgqvtgopfp8gj3rls4NhMAHilDXFRLa81J2LvbwHXcYphZJwQTFCFFKM3qIWpvj2oY-lsJtF9YnEXCjKOS6o43-gyihv6F35Vb0v5zuEF3ed3lj8-3EKQG4ALsWcE_Ta-dGMPs7G_fBwiuQe9b-i3z5YLuCwgHSbxgOsP4KP9as |
| CitedBy_id | crossref_primary_10_1016_j_mex_2025_103277 |
| Cites_doi | 10.1016/j.jstrokecerebrovasdis.2023.107354 10.1161/circresaha.122.319951 10.1186/s13195-023-01289-4 10.3233/jad-150736 10.1055/s-0038-1649503 10.1111/j.1747-4949.2011.00731.x 10.3390/s22134670 10.1161/strokeaha.117.018529 10.21203/rs.3.rs-2456615/v1 10.3390/ijms23020602 10.1186/s13195-019-0480-5 10.1016/s1474-4422(19)30030-4 10.1186/s12916-017-0779-7 10.1038/s41598-017-12755-z 10.1212/wnl.0000000000008612 10.1161/strokeaha.120.027473 10.1016/s1474-4422(09)70236-4 10.3389/fnagi.2023.1180351 10.1017/s0033291717003130 10.1007/s12017-023-08761-2 10.1111/ejn.15665 10.1161/strokeaha.119.027479 10.1016/s2666-7568(23)00217-9 10.1186/s12859-023-05300-5 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88C 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M0T M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12911-024-02752-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Healthcare Administration Database Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals (LUT & LAB) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1472-6947 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_25bda00f2c1244e6a8657b6739cb972c 10.1186/s12911-024-02752-4 PMC11555950 A815693551 39529118 10_1186_s12911_024_02752_4 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Health Science and Technology Program of Zhejiang Province grantid: 2022KY1285 – fundername: Shaoxing Health Science and Technology Plan Project grantid: 2023SKY029 – fundername: Traditional Chinese Medicine Scientific Research Fund Project of Zhejiang Province grantid: 2020ZB270 – fundername: Zhejiang Province Public Welfare Technology Application Research Project grantid: LGF20H170005 funderid: http://dx.doi.org/10.13039/501100010248 – fundername: Zhejiang Province Public Welfare Technology Application Research Project grantid: LGF20H170005 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ITC K6V K7- KQ8 LK8 M0T M1P M48 M7P M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c608t-6abb7a238e585178202e60a6ebb5f70699e139dc6b4cfce35ff494f8d0b0c19c3 |
| IEDL.DBID | M48 |
| ISSN | 1472-6947 |
| IngestDate | Fri Oct 03 12:45:33 EDT 2025 Sun Oct 26 02:48:37 EDT 2025 Tue Sep 30 17:06:29 EDT 2025 Thu Sep 04 17:48:45 EDT 2025 Tue Oct 07 05:36:33 EDT 2025 Mon Oct 20 22:47:00 EDT 2025 Mon Oct 20 16:55:11 EDT 2025 Thu Jan 02 22:23:45 EST 2025 Thu Apr 24 23:10:04 EDT 2025 Wed Oct 01 04:44:45 EDT 2025 Sat Sep 06 07:31:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Stroke Boruta algorithm Post-stroke dementia Machine learning Prediction model |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c608t-6abb7a238e585178202e60a6ebb5f70699e139dc6b4cfce35ff494f8d0b0c19c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12911-024-02752-4 |
| PMID | 39529118 |
| PQID | 3142290943 |
| PQPubID | 42572 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_25bda00f2c1244e6a8657b6739cb972c unpaywall_primary_10_1186_s12911_024_02752_4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11555950 proquest_miscellaneous_3128759114 proquest_journals_3142290943 gale_infotracmisc_A815693551 gale_infotracacademiconefile_A815693551 pubmed_primary_39529118 crossref_citationtrail_10_1186_s12911_024_02752_4 crossref_primary_10_1186_s12911_024_02752_4 springer_journals_10_1186_s12911_024_02752_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-11 |
| PublicationDateYYYYMMDD | 2024-11-11 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC medical informatics and decision making |
| PublicationTitleAbbrev | BMC Med Inform Decis Mak |
| PublicationTitleAlternate | BMC Med Inform Decis Mak |
| PublicationYear | 2024 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | K Mouridsen (2752_CR14) 2020; 51 NS Rost (2752_CR3) 2022; 130 2752_CR15 ST Pendlebury (2752_CR5) 2009; 8 FJ Yan (2752_CR18) 2023; 15 MB Kursa (2752_CR19) 2010; 36 J Filler (2752_CR21) 2024; 5 DA Levine (2752_CR23) 2018; 49 F Zheng (2752_CR26) 2018; 48 EYH Tang (2752_CR13) 2020; 51 M Katan (2752_CR1) 2018; 38 R Sahathevan (2752_CR10) 2012; 7 D Sadhukhan (2752_CR9) 2023 MN Kaddumukasa (2752_CR7) 2023 W Ji (2752_CR16) 2023; 32 RJ Chander (2752_CR11) 2017; 7 H Zhou (2752_CR20) 2023; 24 AD Samson (2752_CR24) 2022; 56 H Shimada (2752_CR4) 2019; 11 JW Lo (2752_CR8) 2019; 93 N Kandiah (2752_CR12) 2016; 49 M Lee (2752_CR17) 2023; 15 2752_CR22 MD Mijajlović (2752_CR6) 2017; 15 2752_CR25 PB Gorelick (2752_CR2) 2019; 18 |
| References_xml | – volume: 32 start-page: 107354 issue: 11 year: 2023 ident: 2752_CR16 publication-title: J Stroke Cerebrovasc Dis doi: 10.1016/j.jstrokecerebrovasdis.2023.107354 – volume: 130 start-page: 1252 issue: 8 year: 2022 ident: 2752_CR3 publication-title: Circ Res doi: 10.1161/circresaha.122.319951 – volume: 15 start-page: 147 issue: 1 year: 2023 ident: 2752_CR17 publication-title: Alzheimers Res Ther doi: 10.1186/s13195-023-01289-4 – volume: 49 start-page: 1169 issue: 4 year: 2016 ident: 2752_CR12 publication-title: J Alzheimers Dis doi: 10.3233/jad-150736 – ident: 2752_CR22 – volume: 38 start-page: 208 issue: 2 year: 2018 ident: 2752_CR1 publication-title: Semin Neurol doi: 10.1055/s-0038-1649503 – volume: 7 start-page: 61 issue: 1 year: 2012 ident: 2752_CR10 publication-title: Int J Stroke doi: 10.1111/j.1747-4949.2011.00731.x – ident: 2752_CR15 doi: 10.3390/s22134670 – volume: 49 start-page: 987 issue: 4 year: 2018 ident: 2752_CR23 publication-title: Stroke doi: 10.1161/strokeaha.117.018529 – year: 2023 ident: 2752_CR7 publication-title: Res Sq doi: 10.21203/rs.3.rs-2456615/v1 – ident: 2752_CR25 doi: 10.3390/ijms23020602 – volume: 11 start-page: 24 issue: 1 year: 2019 ident: 2752_CR4 publication-title: Alzheimers Res Ther doi: 10.1186/s13195-019-0480-5 – volume: 18 start-page: 417 issue: 5 year: 2019 ident: 2752_CR2 publication-title: Lancet Neurol doi: 10.1016/s1474-4422(19)30030-4 – volume: 15 start-page: 11 issue: 1 year: 2017 ident: 2752_CR6 publication-title: BMC Med doi: 10.1186/s12916-017-0779-7 – volume: 7 start-page: 12441 issue: 1 year: 2017 ident: 2752_CR11 publication-title: Sci Rep doi: 10.1038/s41598-017-12755-z – volume: 93 start-page: e2257 issue: 24 year: 2019 ident: 2752_CR8 publication-title: Neurology doi: 10.1212/wnl.0000000000008612 – volume: 51 start-page: 2095 issue: 7 year: 2020 ident: 2752_CR13 publication-title: Stroke doi: 10.1161/strokeaha.120.027473 – volume: 8 start-page: 1006 issue: 11 year: 2009 ident: 2752_CR5 publication-title: Lancet Neurol doi: 10.1016/s1474-4422(09)70236-4 – volume: 36 start-page: 1 issue: 11 year: 2010 ident: 2752_CR19 publication-title: Feature Selection Boruta Package – volume: 15 start-page: 1180351 year: 2023 ident: 2752_CR18 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2023.1180351 – volume: 48 start-page: 1381 issue: 8 year: 2018 ident: 2752_CR26 publication-title: Psychol Med doi: 10.1017/s0033291717003130 – year: 2023 ident: 2752_CR9 publication-title: Neuromolecular Med doi: 10.1007/s12017-023-08761-2 – volume: 56 start-page: 5368 issue: 9 year: 2022 ident: 2752_CR24 publication-title: Eur J Neurosci doi: 10.1111/ejn.15665 – volume: 51 start-page: 2573 issue: 8 year: 2020 ident: 2752_CR14 publication-title: Stroke doi: 10.1161/strokeaha.119.027479 – volume: 5 start-page: e31 issue: 1 year: 2024 ident: 2752_CR21 publication-title: Lancet Healthy Longev doi: 10.1016/s2666-7568(23)00217-9 – volume: 24 start-page: 224 issue: 1 year: 2023 ident: 2752_CR20 publication-title: BMC Bioinformatics doi: 10.1186/s12859-023-05300-5 |
| SSID | ssj0017835 |
| Score | 2.3907166 |
| Snippet | Background
Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors... Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be... Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors... BackgroundPost-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors... Abstract Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients.... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 334 |
| SubjectTerms | Accuracy Aged Aged, 80 and over Algorithms Body mass index Boruta algorithm C-reactive protein Cognitive ability Comorbidity Complications and side effects Correlation analysis Decision trees Dementia Dementia disorders Demographic aspects Diagnosis Feature selection Female Health aspects Health Informatics Hemorrhage Humans Hypertension Information Systems and Communication Service Learning algorithms Machine Learning Male Management of Computing and Information Systems Medical colleges Medical research Medicine Medicine & Public Health Medicine, Experimental Middle Aged Mortality Multilayer perceptrons Post-stroke dementia Prediction model Prediction models Prognosis Qualitative analysis Regression analysis Risk factors Statistical analysis Stroke Stroke (Disease) Stroke - complications Stroke patients Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hHngcEG8CBQUJiQON6k1sxz62iKpCWk5U6s2yHRsqVtnVblaIW_9D_yG_BI_jhA1IhQPXeCxlXp6xPf4G4LUUpGKVRZj9yhYhpTaFbrgsfGO9Ny5k-A4fJ88_8tMz-uGcne-0-sKasB4euBfcYclMownxpcVI5LgWnNWG15W0RtalxdWXCDlsptL9AZ5nDE9kBD_chKiGR4ElxTtLVhZ0EoYiWv-fa_JOUPq9YHK8Nb0Dt7btSn__pheLncB0cg_upowyP-o5uQ83XPsAbs7TnflDOJ7HekmXpwYRn39cXmHsavLVGolwvctjQ5w8JLD5arnpik23Xn51eRPPDi_0Izg7ef_p3WmROicUlhPRFVwbU-sQjR3e-iEkXuk40dwZw3xNeNBAyPwayw213rqKeU8l9aIhhtiZtNVj2GuXrXsKuZGMessEp6ai0hLptbEN0drXmjLDM5gNglQ2wYpjd4uFitsLwVUvfBWEr6LwFc3g7Thn1YNqXEt9jPoZKREQO34IZqKSmai_mUkGb1C7Ct02_J7V6fVBYBIBsNQRouYg1vwsg_0JZXA3Ox0e7EMld9-oCk_SJBZpZvBqHMaZWMLWuuUWacLmlAXeAkNPenMaWaokQ65FBmJiaBOepyPtxZcIBh4y-rApZCSDg8Emf_3XdUI9GO32H3Tw7H_o4DncLtEFsYhytg973XrrXoSUrjMvo_f-BN9ORLM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7ULXh5EO9Gq0QQfLChs8nMJPMg0pWWIuwiYqFvw1zb4pLEvSC--R_8h_4S52STtFFYfM3MQM6Zc5s5Z74D8FoUJGOZQZj9zCQhpNaJslwk3hrvtQsRvsPHydMZPzmlH8_Y2Q7MurcwWFbZ2cTGUNvK4B35QYaXFQLr4N7X3xLsGoXZ1a6FhmpbK9h3DcTYDdhNERlrBLuTo9mnz31eAe85uqczBT9YBm-HV4QpxVwmSxM6cE8Niv-_tvqas_q7kLLPpt6BW-uyVj--q_n8msM6vgd320gzPtyIxn3YceUDuDltc-kPYTJt6ihd3DaOOP_98xf6NBvXC5yEdjBuGuXEIbCN62q5SparRfXVxba5U7xUj-D0-OjLh5Ok7aiQGE6KVcKV1rkKXtphNhCh8lLHieJOa-ZzwsPOhIjQGq6p8cZlzHsqqC8s0cSMhckew6isSvcUYi0Y9YYVnOqMCkOEV9pYopTPFWWaRzDuGClNCzeOXS_msjl2FFxumC8D82XDfEkjeNuvqTdgG1tnT3B_-pkIlN18qBbnstU7mTJtFSE-NRjIOK4KznLN80wYLfLURPAGd1eiOoffM6p9lRCIRGAseYhoOohBP45gbzAzqKEZDnfyIVszsJRXQhvBq34YV2JpW-mqNc4Jh1YWaAsEPdmIU09SJhhSXURQDARtQPNwpLy8aEDCQ6QfDouMRLDfyeTVf21j6n4vt_-xB8-2U_0cbqeoXFg2Od6D0Wqxdi9CELfSL1vN_AM52kL4 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BkYAeEP-kFBQkJA40wklsJz62FVWFtJyo1JtlOzZUrLKr3awQt75D35AnYcabDRtAFVzjceQZz3jGnvFngNeqZqUoHcHsly7DkNpmppEqC40LwXqM8D1dTp58lKdn_MO5OO9hcuguzHb-Pq_luyX6IzrEKzhlG0WR8ZtwC52UjIlZeTxkDOgEY3Mp5q_9Ro4n4vP_uQpvuaHfSySHPOku3Fm1c_P9m5lOt1zRyX2418eQ6eF60h_ADd8-hNuTPkv-CI4msULSp_2TEJ9_XF6Rt2rS-YKIaIVL4xM4KYas6Xy27LJlt5h99WkTTwsvzGM4O3n_6fg0699KyJxkdZdJY21l0P96yvMRCF7hJTPSWytCxSTKHGO9xknLXXC-FCFwxUPdMMtcrlz5BHbaWeufQWqV4MGJWnJbcuWYCsa6hhkTKsOFlQnkG0Fq1wOJ03sWUx03FLXUa-FrFL6Owtc8gbdDn_kaRuNa6iOan4GSILDjB9QM3VuULoRtDGOhcBSieGlqKSorq1I5q6rCJfCGZleToeLwnOnvGyCTBHmlDwknh9Dl8wT2R5RoYG7cvNEP3Rv4Upd0dqaoLDOBV0Mz9aSitdbPVkSD21GBvCFDT9fqNLBUKkFc1wnUI0Ub8TxuaS--RPhvjOFxGyhYAgcbnfw1ruuEejDo7T_Mwd7__f053C3I2KhAMt-HnW6x8i8wXOvsy2inPwH0PjVI priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4P0IFBQkJA40xUlsJz5uEVWFtBUHViony3ZsqLrKrnazQnDiP_AP-SV4nGzYFFSVazyWMp4Zz9ie-QbgpShJznKDMPu5SXxIrRNVcZG4yjinrY_wLRYnT4750ZS-P2EnHUwO1sJsv9-nJX-z8v4IL_Eyiq-NLEvoVdjhzMfdI9iZHn8YfwrlQ0WWcEGLTVXMPycOPE8A6P97G97yQ-dzJPuH0ptwfV0v1Levajbb8kWHt9umRqsAYYgpKGf760bvm-_nAB4vx-YduNWFpPG41aG7cMXW9-DapHt0vw8Hk5BwaeOuw8TnXz9-ovOr4sUSiXDDjENHndhHwPFivmqSVbOcn9m4CpePp-oBTA_ffXx7lHStFxLDSdkkXGldKO_OLT4bIqZeZjlR3GrNXEG4F6EPHSvDNTXO2Jw5RwV1ZUU0Makw-UMY1fPaPoZYC0adYSWnOqfCEOGUNhVRyhWKMs0jSDdikabDJcf2GDMZzicll-3iSL84MiyOpBG87ucsWlSOC6kPUNo9JSJqhw9eArIzUJkxXSlCXGYw4rFclZwVmhe5MFoUmYngFeqKRLv3v2dUV77gmUQELTlG2B0Eq08j2B1Qens1w-GNtsluv1jJHK_iBGZ5RvCiH8aZmANX2_kaafzplnnePEOPWuXsWcoFQ67LCMqB2g54Ho7Up18Cmrg_EvhTJSMR7G00_M9_XbSoe70VXEIGT_6P_CncyNAYMN8y3YVRs1zbZz76a_Tzzux_A6wITbU priority: 102 providerName: Unpaywall |
| Title | Machine learning–based predictive model for post-stroke dementia |
| URI | https://link.springer.com/article/10.1186/s12911-024-02752-4 https://www.ncbi.nlm.nih.gov/pubmed/39529118 https://www.proquest.com/docview/3142290943 https://www.proquest.com/docview/3128759114 https://pubmed.ncbi.nlm.nih.gov/PMC11555950 https://doi.org/10.1186/s12911-024-02752-4 https://doaj.org/article/25bda00f2c1244e6a8657b6739cb972c |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: KQ8 dateStart: 20010401 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central Free customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Complete customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1472-6947 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: M48 dateStart: 20010401 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals (LUT & LAB) customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: C6C dateStart: 20010112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwMNwH-PEgfls9lwqCD1612yZp8yCyu9x6CLschwurLyFJk_Nwadf9QO_N_-A_9Jc40217Vz0OfSm0mZTOZKYzmZnMEPJcpGHMYoNl9mMTgEmtA5VxEbjMOKctWPgWDyePxvxwQt9P2XSL1O2OKgIuL93aYT-pyWL26vvXs7cg8G9KgU_56yXoLHT0RRQjkiwK6DbZBU0lsJXDiJ5HFdDLUR-cuXReSzmVNfz__lNfUFV_plE2sdSb5Po6n6uzb2o2u6CuhrfJrcrO9HsbxrhDtmx-l1wbVZH0e6Q_KrMorV-1jTj59eMnarTMny8QCP-Cftkmxwez1p8Xy1WwXC2KL9bPSo_iqbpPJsODD4PDoOqnEBgepquAK60TBTraYiwQC-VFloeKW62ZS0IO6wL2YGa4psYZGzPnqKAuzUIdmq4w8QOykxe5fUR8LRh1hqWc6pgKEwqntMlCpVyiKNPcI92akNJUxcax58VMlpuOlMsN8SUQX5bEl9QjL5s5802pjSuh-7g-DSSWyS4fFIsTWUmdjJjOVBi6yKAZY7lKOUs0T2JhtEgi45EXuLoS2Qs-z6jqTAIgiWWxZA9r6WAF-q5H9lqQIISmPVzzh6x5WMboXxOYuumRZ80wzsTEttwWa4SBLSsD3AChhxt2alCKBUOsU4-kLUZr4dweyU8_lyXCwc6HrSILPbJf8-T5d11F1P2Gb_9hDR7_39ufkBsRChsmUXb3yM5qsbZPwaRb6Q7ZTqYJXNPhuw7Z7R-Mj47hbsAHndJJ0inlGK7H_U8wPhkf9T7-BhjJS8s |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKROGAeBMoECQQBxrVm9hOfECoBaot7fbUSnsztmO3VVfJsg9VvfEP_AcfxZfgySZpA9KKS69rZ-UZz3vGMwBvREYSlhhss5-YyJvUOlI5F5HLjXPaegvf4uPkwQHvH9GvQzZcgV_NWxgsq2xkYiWo89JgjHwzwWCFwDq4j-PvEU6NwuxqM0JjQRZ79uLcu2zTD7uf_f2-jeOdL4ef-lE9VSAynGSziCutU-U1lcWMGLaLiy0nilutmUsJ96fzVlFuuKbGGZsw56igLsuJJqYnTOL_9wbcpImXJZ5_0mHr4PUwitI8zMn45tTrUgxAxhQzpSyOaEf5VTMC_tUEV1Th32Waba72DqzNi7G6OFej0RV1uHMP7tZ2bLi1ILz7sGKLB3BrUGfqH8L2oKrStGE9luL494-fqDHzcDzBTShlw2oMT-jN5nBcTmfRdDYpz2yYVxHLU_UIjq4Fs49htSgL-xRCLRh1hmWc6oQKQ4RT2uREKZcqyjQPoNcgUpq6mTnO1BjJyqnJuFwgX3rkywr5kgbwvv1mvGjlsXT3Nt5PuxPbcFc_lJNjWXO1jJnOFSEuNmgmWa4yzlLN00QYLdLYBPAOb1eisPDHM6p-8-CBxLZbcgt79WCH-14A652dnslNd7mhD1kLmam8ZIkAXrfL-CUWzhW2nOMe7xIzD5sH6MmCnFqQEsEQ6iyArENoHZi7K8XpSdWC3PsR3hVlJICNhiYvz7UMqRst3f7HHTxbDvUrWOsfDvbl_u7B3nO4HSOjYYFmbx1WZ5O5feHNxZl-WfFoCN-uWyj8ASnreeU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkUo5IN4NFAgSEgca1ZvYTnxsF1blsRUHKvVm2Y5dKlZJtJsV4sZ_4B_yS_DkxQZQBdd4HGXGM5mxZ_wNwHORkYQlBmH2ExP5kFpHKucicrlxTlsf4Vu8nDw_4cen9O0ZO9u4xd9Uu_cpyfZOA6I0FfVBlbvWxDN-sPJeCo_2Yoo5SBZH9Cpco967YQ-DKZ8OeQQ81-ivyvx13sgdNaj9f_6bN5zT74WTQ_b0BlxfF5X6-kUtFhsOanYLbnaRZXjYqsJtuGKLO7A973Lnd-Fo3tRN2rBrFHH-49t39GF5WC2RCP97YdMYJ_SBbFiVqzpa1cvysw3z5gzxQt2D09nrj9PjqOugEBlOsjriSutUea9sMfuH0Hix5URxqzVzKeF-JXwEmBuuqXHGJsw5KqjLcqKJmQiT3IetoizsLoRaMOoMyzjVCRWGCKe0yYlSLlWUaR7ApBekNB28OHa5WMhmm5Fx2QpfeuHLRviSBvBymFO14BqXUh_h-gyUCIzdPCiX57KzMxkznStCXGwwcLFcZZylmqeJMFqksQngBa6uRPP1n2dUdwvBM4lAWPIQ0XMQc34SwN6I0pudGQ_3-iE7s1_JBE_UBBZrBvBsGMaZWMpW2HKNNH6TyjxvnqEHrToNLCWCIddZANlI0UY8j0eKi08NKLiP7P3mkJEA9nud_PVdlwl1f9Dbf1iDh__39qew_eHVTL5_c_LuEezEaHdYQTnZg616ubaPfTxX6yeNyf4ExC5Afg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4P0IFBQkJA40xUlsJz5uEVWFtBUHViony3ZsqLrKrnazQnDiP_AP-SV4nGzYFFSVazyWMp4Zz9ie-QbgpShJznKDMPu5SXxIrRNVcZG4yjinrY_wLRYnT4750ZS-P2EnHUwO1sJsv9-nJX-z8v4IL_Eyiq-NLEvoVdjhzMfdI9iZHn8YfwrlQ0WWcEGLTVXMPycOPE8A6P97G97yQ-dzJPuH0ptwfV0v1Levajbb8kWHt9umRqsAYYgpKGf760bvm-_nAB4vx-YduNWFpPG41aG7cMXW9-DapHt0vw8Hk5BwaeOuw8TnXz9-ovOr4sUSiXDDjENHndhHwPFivmqSVbOcn9m4CpePp-oBTA_ffXx7lHStFxLDSdkkXGldKO_OLT4bIqZeZjlR3GrNXEG4F6EPHSvDNTXO2Jw5RwV1ZUU0Makw-UMY1fPaPoZYC0adYSWnOqfCEOGUNhVRyhWKMs0jSDdikabDJcf2GDMZzicll-3iSL84MiyOpBG87ucsWlSOC6kPUNo9JSJqhw9eArIzUJkxXSlCXGYw4rFclZwVmhe5MFoUmYngFeqKRLv3v2dUV77gmUQELTlG2B0Eq08j2B1Qens1w-GNtsluv1jJHK_iBGZ5RvCiH8aZmANX2_kaafzplnnePEOPWuXsWcoFQ67LCMqB2g54Ho7Up18Cmrg_EvhTJSMR7G00_M9_XbSoe70VXEIGT_6P_CncyNAYMN8y3YVRs1zbZz76a_Tzzux_A6wITbU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning%E2%80%93based+predictive+model+for+post-stroke+dementia&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Wei%2C+Zemin&rft.au=Li%2C+Mengqi&rft.au=Zhang%2C+Chenghui&rft.au=Miao%2C+Jinli&rft.date=2024-11-11&rft.pub=BioMed+Central&rft.eissn=1472-6947&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12911-024-02752-4&rft.externalDocID=10_1186_s12911_024_02752_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon |