Machine learning–based predictive model for post-stroke dementia

Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 24; no. 1; pp. 334 - 9
Main Authors Wei, Zemin, Li, Mengqi, Zhang, Chenghui, Miao, Jinli, Wang, Wenmin, Fan, Hong
Format Journal Article
LanguageEnglish
Published London BioMed Central 11.11.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-024-02752-4

Cover

Abstract Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD. Methods 9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron. Results A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage. Conclusion Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD.
AbstractList Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD. Methods 9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron. Results A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage. Conclusion Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD.
Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD. 9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron. A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage. Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD.
Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD. Methods 9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron. Results A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage. Conclusion Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD. Keywords: Stroke, Post-stroke dementia, Boruta algorithm, Machine learning, Prediction model
Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD.BACKGROUNDPost-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD.9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron.METHODS9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron.A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage.RESULTSA total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage.Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD.CONCLUSIONOur findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD.
BackgroundPost-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD.Methods9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron.ResultsA total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage.ConclusionOur findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD.
Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD. 9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron. A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage. Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD.
Abstract Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, and examination characteristics. However, most existing methods are qualitative evaluations of independent factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the applicability of machine learning (ML) methods for predicting PSD. Methods 9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme gradient boosting, support vector machine, random forest, and multilayer perceptron. Results A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral hemorrhage. Conclusion Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of PSD.
ArticleNumber 334
Audience Academic
Author Li, Mengqi
Wang, Wenmin
Wei, Zemin
Zhang, Chenghui
Miao, Jinli
Fan, Hong
Author_xml – sequence: 1
  givenname: Zemin
  surname: Wei
  fullname: Wei, Zemin
  organization: Department of Geriatrics, Shaoxing People’s Hospital
– sequence: 2
  givenname: Mengqi
  surname: Li
  fullname: Li, Mengqi
  organization: School of Medicine, Shaoxing University
– sequence: 3
  givenname: Chenghui
  surname: Zhang
  fullname: Zhang, Chenghui
  organization: School of Medicine, Shaoxing University
– sequence: 4
  givenname: Jinli
  surname: Miao
  fullname: Miao, Jinli
  organization: The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University
– sequence: 5
  givenname: Wenmin
  surname: Wang
  fullname: Wang, Wenmin
  organization: The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University
– sequence: 6
  givenname: Hong
  surname: Fan
  fullname: Fan, Hong
  email: fanhongsx@126.com
  organization: Department of Geriatrics, Shaoxing People’s Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39529118$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARfcAPsECR2LBJ8Tv2CpWKR6UiNrC2bOdm6iFjD3ZS1B3_wB_yJTidoe1UqEKWZcs-59x7jn1Y7YUYoKqeY3SMsRSvMyYK4wYRVmbLScMeVQeYtaQRirV7d_b71WHOS4RwKyl_Uu1TxWeqPKjefjLuwgeoBzAp-LD4_fOXNRm6ep2g8270l1CvYgdD3cdUr2Memzym-A3qDlYQRm-eVo97M2R4tl2Pqq_v3305_dicf_5wdnpy3jiB5NgIY21rCJXAJS-NEERAICPAWt63SCgFmKrOCctc74DyvmeK9bJDFjmsHD2qzja6XTRLvU5-ZdKVjsbr64OYFtqk0bsBNOG2Mwj1xGHCGAgjBW-taKlyVrVk1qIbrSmszdUPMww3ghjpOV29SVeXdPV1upoV1psNaz3ZFXSu2E9m2Gll9yb4C72Il0WQc644Kgqvtgopfp8gj3rls4NhMAHilDXFRLa81J2LvbwHXcYphZJwQTFCFFKM3qIWpvj2oY-lsJtF9YnEXCjKOS6o43-gyihv6F35Vb0v5zuEF3ed3lj8-3EKQG4ALsWcE_Ta-dGMPs7G_fBwiuQe9b-i3z5YLuCwgHSbxgOsP4KP9as
CitedBy_id crossref_primary_10_1016_j_mex_2025_103277
Cites_doi 10.1016/j.jstrokecerebrovasdis.2023.107354
10.1161/circresaha.122.319951
10.1186/s13195-023-01289-4
10.3233/jad-150736
10.1055/s-0038-1649503
10.1111/j.1747-4949.2011.00731.x
10.3390/s22134670
10.1161/strokeaha.117.018529
10.21203/rs.3.rs-2456615/v1
10.3390/ijms23020602
10.1186/s13195-019-0480-5
10.1016/s1474-4422(19)30030-4
10.1186/s12916-017-0779-7
10.1038/s41598-017-12755-z
10.1212/wnl.0000000000008612
10.1161/strokeaha.120.027473
10.1016/s1474-4422(09)70236-4
10.3389/fnagi.2023.1180351
10.1017/s0033291717003130
10.1007/s12017-023-08761-2
10.1111/ejn.15665
10.1161/strokeaha.119.027479
10.1016/s2666-7568(23)00217-9
10.1186/s12859-023-05300-5
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12911-024-02752-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Healthcare Administration Database
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals (LUT & LAB)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 9
ExternalDocumentID oai_doaj_org_article_25bda00f2c1244e6a8657b6739cb972c
10.1186/s12911-024-02752-4
PMC11555950
A815693551
39529118
10_1186_s12911_024_02752_4
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Health Science and Technology Program of Zhejiang Province
  grantid: 2022KY1285
– fundername: Shaoxing Health Science and Technology Plan Project
  grantid: 2023SKY029
– fundername: Traditional Chinese Medicine Scientific Research Fund Project of Zhejiang Province
  grantid: 2020ZB270
– fundername: Zhejiang Province Public Welfare Technology Application Research Project
  grantid: LGF20H170005
  funderid: http://dx.doi.org/10.13039/501100010248
– fundername: Zhejiang Province Public Welfare Technology Application Research Project
  grantid: LGF20H170005
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c608t-6abb7a238e585178202e60a6ebb5f70699e139dc6b4cfce35ff494f8d0b0c19c3
IEDL.DBID M48
ISSN 1472-6947
IngestDate Fri Oct 03 12:45:33 EDT 2025
Sun Oct 26 02:48:37 EDT 2025
Tue Sep 30 17:06:29 EDT 2025
Thu Sep 04 17:48:45 EDT 2025
Tue Oct 07 05:36:33 EDT 2025
Mon Oct 20 22:47:00 EDT 2025
Mon Oct 20 16:55:11 EDT 2025
Thu Jan 02 22:23:45 EST 2025
Thu Apr 24 23:10:04 EDT 2025
Wed Oct 01 04:44:45 EDT 2025
Sat Sep 06 07:31:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stroke
Boruta algorithm
Post-stroke dementia
Machine learning
Prediction model
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-6abb7a238e585178202e60a6ebb5f70699e139dc6b4cfce35ff494f8d0b0c19c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12911-024-02752-4
PMID 39529118
PQID 3142290943
PQPubID 42572
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_25bda00f2c1244e6a8657b6739cb972c
unpaywall_primary_10_1186_s12911_024_02752_4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11555950
proquest_miscellaneous_3128759114
proquest_journals_3142290943
gale_infotracmisc_A815693551
gale_infotracacademiconefile_A815693551
pubmed_primary_39529118
crossref_citationtrail_10_1186_s12911_024_02752_4
crossref_primary_10_1186_s12911_024_02752_4
springer_journals_10_1186_s12911_024_02752_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-11
PublicationDateYYYYMMDD 2024-11-11
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References K Mouridsen (2752_CR14) 2020; 51
NS Rost (2752_CR3) 2022; 130
2752_CR15
ST Pendlebury (2752_CR5) 2009; 8
FJ Yan (2752_CR18) 2023; 15
MB Kursa (2752_CR19) 2010; 36
J Filler (2752_CR21) 2024; 5
DA Levine (2752_CR23) 2018; 49
F Zheng (2752_CR26) 2018; 48
EYH Tang (2752_CR13) 2020; 51
M Katan (2752_CR1) 2018; 38
R Sahathevan (2752_CR10) 2012; 7
D Sadhukhan (2752_CR9) 2023
MN Kaddumukasa (2752_CR7) 2023
W Ji (2752_CR16) 2023; 32
RJ Chander (2752_CR11) 2017; 7
H Zhou (2752_CR20) 2023; 24
AD Samson (2752_CR24) 2022; 56
H Shimada (2752_CR4) 2019; 11
JW Lo (2752_CR8) 2019; 93
N Kandiah (2752_CR12) 2016; 49
M Lee (2752_CR17) 2023; 15
2752_CR22
MD Mijajlović (2752_CR6) 2017; 15
2752_CR25
PB Gorelick (2752_CR2) 2019; 18
References_xml – volume: 32
  start-page: 107354
  issue: 11
  year: 2023
  ident: 2752_CR16
  publication-title: J Stroke Cerebrovasc Dis
  doi: 10.1016/j.jstrokecerebrovasdis.2023.107354
– volume: 130
  start-page: 1252
  issue: 8
  year: 2022
  ident: 2752_CR3
  publication-title: Circ Res
  doi: 10.1161/circresaha.122.319951
– volume: 15
  start-page: 147
  issue: 1
  year: 2023
  ident: 2752_CR17
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-023-01289-4
– volume: 49
  start-page: 1169
  issue: 4
  year: 2016
  ident: 2752_CR12
  publication-title: J Alzheimers Dis
  doi: 10.3233/jad-150736
– ident: 2752_CR22
– volume: 38
  start-page: 208
  issue: 2
  year: 2018
  ident: 2752_CR1
  publication-title: Semin Neurol
  doi: 10.1055/s-0038-1649503
– volume: 7
  start-page: 61
  issue: 1
  year: 2012
  ident: 2752_CR10
  publication-title: Int J Stroke
  doi: 10.1111/j.1747-4949.2011.00731.x
– ident: 2752_CR15
  doi: 10.3390/s22134670
– volume: 49
  start-page: 987
  issue: 4
  year: 2018
  ident: 2752_CR23
  publication-title: Stroke
  doi: 10.1161/strokeaha.117.018529
– year: 2023
  ident: 2752_CR7
  publication-title: Res Sq
  doi: 10.21203/rs.3.rs-2456615/v1
– ident: 2752_CR25
  doi: 10.3390/ijms23020602
– volume: 11
  start-page: 24
  issue: 1
  year: 2019
  ident: 2752_CR4
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-019-0480-5
– volume: 18
  start-page: 417
  issue: 5
  year: 2019
  ident: 2752_CR2
  publication-title: Lancet Neurol
  doi: 10.1016/s1474-4422(19)30030-4
– volume: 15
  start-page: 11
  issue: 1
  year: 2017
  ident: 2752_CR6
  publication-title: BMC Med
  doi: 10.1186/s12916-017-0779-7
– volume: 7
  start-page: 12441
  issue: 1
  year: 2017
  ident: 2752_CR11
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12755-z
– volume: 93
  start-page: e2257
  issue: 24
  year: 2019
  ident: 2752_CR8
  publication-title: Neurology
  doi: 10.1212/wnl.0000000000008612
– volume: 51
  start-page: 2095
  issue: 7
  year: 2020
  ident: 2752_CR13
  publication-title: Stroke
  doi: 10.1161/strokeaha.120.027473
– volume: 8
  start-page: 1006
  issue: 11
  year: 2009
  ident: 2752_CR5
  publication-title: Lancet Neurol
  doi: 10.1016/s1474-4422(09)70236-4
– volume: 36
  start-page: 1
  issue: 11
  year: 2010
  ident: 2752_CR19
  publication-title: Feature Selection Boruta Package
– volume: 15
  start-page: 1180351
  year: 2023
  ident: 2752_CR18
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2023.1180351
– volume: 48
  start-page: 1381
  issue: 8
  year: 2018
  ident: 2752_CR26
  publication-title: Psychol Med
  doi: 10.1017/s0033291717003130
– year: 2023
  ident: 2752_CR9
  publication-title: Neuromolecular Med
  doi: 10.1007/s12017-023-08761-2
– volume: 56
  start-page: 5368
  issue: 9
  year: 2022
  ident: 2752_CR24
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.15665
– volume: 51
  start-page: 2573
  issue: 8
  year: 2020
  ident: 2752_CR14
  publication-title: Stroke
  doi: 10.1161/strokeaha.119.027479
– volume: 5
  start-page: e31
  issue: 1
  year: 2024
  ident: 2752_CR21
  publication-title: Lancet Healthy Longev
  doi: 10.1016/s2666-7568(23)00217-9
– volume: 24
  start-page: 224
  issue: 1
  year: 2023
  ident: 2752_CR20
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-023-05300-5
SSID ssj0017835
Score 2.3907166
Snippet Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors...
Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors may be...
Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors...
BackgroundPost-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients. Many factors...
Abstract Background Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects disease prognosis in stroke patients....
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 334
SubjectTerms Accuracy
Aged
Aged, 80 and over
Algorithms
Body mass index
Boruta algorithm
C-reactive protein
Cognitive ability
Comorbidity
Complications and side effects
Correlation analysis
Decision trees
Dementia
Dementia disorders
Demographic aspects
Diagnosis
Feature selection
Female
Health aspects
Health Informatics
Hemorrhage
Humans
Hypertension
Information Systems and Communication Service
Learning algorithms
Machine Learning
Male
Management of Computing and Information Systems
Medical colleges
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Middle Aged
Mortality
Multilayer perceptrons
Post-stroke dementia
Prediction model
Prediction models
Prognosis
Qualitative analysis
Regression analysis
Risk factors
Statistical analysis
Stroke
Stroke (Disease)
Stroke - complications
Stroke patients
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hHngcEG8CBQUJiQON6k1sxz62iKpCWk5U6s2yHRsqVtnVblaIW_9D_yG_BI_jhA1IhQPXeCxlXp6xPf4G4LUUpGKVRZj9yhYhpTaFbrgsfGO9Ny5k-A4fJ88_8tMz-uGcne-0-sKasB4euBfcYclMownxpcVI5LgWnNWG15W0RtalxdWXCDlsptL9AZ5nDE9kBD_chKiGR4ElxTtLVhZ0EoYiWv-fa_JOUPq9YHK8Nb0Dt7btSn__pheLncB0cg_upowyP-o5uQ83XPsAbs7TnflDOJ7HekmXpwYRn39cXmHsavLVGolwvctjQ5w8JLD5arnpik23Xn51eRPPDi_0Izg7ef_p3WmROicUlhPRFVwbU-sQjR3e-iEkXuk40dwZw3xNeNBAyPwayw213rqKeU8l9aIhhtiZtNVj2GuXrXsKuZGMessEp6ai0hLptbEN0drXmjLDM5gNglQ2wYpjd4uFitsLwVUvfBWEr6LwFc3g7Thn1YNqXEt9jPoZKREQO34IZqKSmai_mUkGb1C7Ct02_J7V6fVBYBIBsNQRouYg1vwsg_0JZXA3Ox0e7EMld9-oCk_SJBZpZvBqHMaZWMLWuuUWacLmlAXeAkNPenMaWaokQ65FBmJiaBOepyPtxZcIBh4y-rApZCSDg8Emf_3XdUI9GO32H3Tw7H_o4DncLtEFsYhytg973XrrXoSUrjMvo_f-BN9ORLM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7ULXh5EO9Gq0QQfLChs8nMJPMg0pWWIuwiYqFvw1zb4pLEvSC--R_8h_4S52STtFFYfM3MQM6Zc5s5Z74D8FoUJGOZQZj9zCQhpNaJslwk3hrvtQsRvsPHydMZPzmlH8_Y2Q7MurcwWFbZ2cTGUNvK4B35QYaXFQLr4N7X3xLsGoXZ1a6FhmpbK9h3DcTYDdhNERlrBLuTo9mnz31eAe85uqczBT9YBm-HV4QpxVwmSxM6cE8Niv-_tvqas_q7kLLPpt6BW-uyVj--q_n8msM6vgd320gzPtyIxn3YceUDuDltc-kPYTJt6ihd3DaOOP_98xf6NBvXC5yEdjBuGuXEIbCN62q5SparRfXVxba5U7xUj-D0-OjLh5Ok7aiQGE6KVcKV1rkKXtphNhCh8lLHieJOa-ZzwsPOhIjQGq6p8cZlzHsqqC8s0cSMhckew6isSvcUYi0Y9YYVnOqMCkOEV9pYopTPFWWaRzDuGClNCzeOXS_msjl2FFxumC8D82XDfEkjeNuvqTdgG1tnT3B_-pkIlN18qBbnstU7mTJtFSE-NRjIOK4KznLN80wYLfLURPAGd1eiOoffM6p9lRCIRGAseYhoOohBP45gbzAzqKEZDnfyIVszsJRXQhvBq34YV2JpW-mqNc4Jh1YWaAsEPdmIU09SJhhSXURQDARtQPNwpLy8aEDCQ6QfDouMRLDfyeTVf21j6n4vt_-xB8-2U_0cbqeoXFg2Od6D0Wqxdi9CELfSL1vN_AM52kL4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BkYAeEP-kFBQkJA40wklsJz62FVWFtJyo1JtlOzZUrLKr3awQt75D35AnYcabDRtAFVzjceQZz3jGnvFngNeqZqUoHcHsly7DkNpmppEqC40LwXqM8D1dTp58lKdn_MO5OO9hcuguzHb-Pq_luyX6IzrEKzhlG0WR8ZtwC52UjIlZeTxkDOgEY3Mp5q_9Ro4n4vP_uQpvuaHfSySHPOku3Fm1c_P9m5lOt1zRyX2418eQ6eF60h_ADd8-hNuTPkv-CI4msULSp_2TEJ9_XF6Rt2rS-YKIaIVL4xM4KYas6Xy27LJlt5h99WkTTwsvzGM4O3n_6fg0699KyJxkdZdJY21l0P96yvMRCF7hJTPSWytCxSTKHGO9xknLXXC-FCFwxUPdMMtcrlz5BHbaWeufQWqV4MGJWnJbcuWYCsa6hhkTKsOFlQnkG0Fq1wOJ03sWUx03FLXUa-FrFL6Owtc8gbdDn_kaRuNa6iOan4GSILDjB9QM3VuULoRtDGOhcBSieGlqKSorq1I5q6rCJfCGZleToeLwnOnvGyCTBHmlDwknh9Dl8wT2R5RoYG7cvNEP3Rv4Upd0dqaoLDOBV0Mz9aSitdbPVkSD21GBvCFDT9fqNLBUKkFc1wnUI0Ub8TxuaS--RPhvjOFxGyhYAgcbnfw1ruuEejDo7T_Mwd7__f053C3I2KhAMt-HnW6x8i8wXOvsy2inPwH0PjVI
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4P0IFBQkJA40xUlsJz5uEVWFtBUHViony3ZsqLrKrnazQnDiP_AP-SV4nGzYFFSVazyWMp4Zz9ie-QbgpShJznKDMPu5SXxIrRNVcZG4yjinrY_wLRYnT4750ZS-P2EnHUwO1sJsv9-nJX-z8v4IL_Eyiq-NLEvoVdjhzMfdI9iZHn8YfwrlQ0WWcEGLTVXMPycOPE8A6P97G97yQ-dzJPuH0ptwfV0v1Levajbb8kWHt9umRqsAYYgpKGf760bvm-_nAB4vx-YduNWFpPG41aG7cMXW9-DapHt0vw8Hk5BwaeOuw8TnXz9-ovOr4sUSiXDDjENHndhHwPFivmqSVbOcn9m4CpePp-oBTA_ffXx7lHStFxLDSdkkXGldKO_OLT4bIqZeZjlR3GrNXEG4F6EPHSvDNTXO2Jw5RwV1ZUU0Makw-UMY1fPaPoZYC0adYSWnOqfCEOGUNhVRyhWKMs0jSDdikabDJcf2GDMZzicll-3iSL84MiyOpBG87ucsWlSOC6kPUNo9JSJqhw9eArIzUJkxXSlCXGYw4rFclZwVmhe5MFoUmYngFeqKRLv3v2dUV77gmUQELTlG2B0Eq08j2B1Qens1w-GNtsluv1jJHK_iBGZ5RvCiH8aZmANX2_kaafzplnnePEOPWuXsWcoFQ67LCMqB2g54Ho7Up18Cmrg_EvhTJSMR7G00_M9_XbSoe70VXEIGT_6P_CncyNAYMN8y3YVRs1zbZz76a_Tzzux_A6wITbU
  priority: 102
  providerName: Unpaywall
Title Machine learning–based predictive model for post-stroke dementia
URI https://link.springer.com/article/10.1186/s12911-024-02752-4
https://www.ncbi.nlm.nih.gov/pubmed/39529118
https://www.proquest.com/docview/3142290943
https://www.proquest.com/docview/3128759114
https://pubmed.ncbi.nlm.nih.gov/PMC11555950
https://doi.org/10.1186/s12911-024-02752-4
https://doaj.org/article/25bda00f2c1244e6a8657b6739cb972c
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central Free
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Complete
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M48
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals (LUT & LAB)
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwMNwH-PEgfls9lwqCD1612yZp8yCyu9x6CLschwurLyFJk_Nwadf9QO_N_-A_9Jc40217Vz0OfSm0mZTOZKYzmZnMEPJcpGHMYoNl9mMTgEmtA5VxEbjMOKctWPgWDyePxvxwQt9P2XSL1O2OKgIuL93aYT-pyWL26vvXs7cg8G9KgU_56yXoLHT0RRQjkiwK6DbZBU0lsJXDiJ5HFdDLUR-cuXReSzmVNfz__lNfUFV_plE2sdSb5Po6n6uzb2o2u6CuhrfJrcrO9HsbxrhDtmx-l1wbVZH0e6Q_KrMorV-1jTj59eMnarTMny8QCP-Cftkmxwez1p8Xy1WwXC2KL9bPSo_iqbpPJsODD4PDoOqnEBgepquAK60TBTraYiwQC-VFloeKW62ZS0IO6wL2YGa4psYZGzPnqKAuzUIdmq4w8QOykxe5fUR8LRh1hqWc6pgKEwqntMlCpVyiKNPcI92akNJUxcax58VMlpuOlMsN8SUQX5bEl9QjL5s5802pjSuh-7g-DSSWyS4fFIsTWUmdjJjOVBi6yKAZY7lKOUs0T2JhtEgi45EXuLoS2Qs-z6jqTAIgiWWxZA9r6WAF-q5H9lqQIISmPVzzh6x5WMboXxOYuumRZ80wzsTEttwWa4SBLSsD3AChhxt2alCKBUOsU4-kLUZr4dweyU8_lyXCwc6HrSILPbJf8-T5d11F1P2Gb_9hDR7_39ufkBsRChsmUXb3yM5qsbZPwaRb6Q7ZTqYJXNPhuw7Z7R-Mj47hbsAHndJJ0inlGK7H_U8wPhkf9T7-BhjJS8s
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKROGAeBMoECQQBxrVm9hOfECoBaot7fbUSnsztmO3VVfJsg9VvfEP_AcfxZfgySZpA9KKS69rZ-UZz3vGMwBvREYSlhhss5-YyJvUOlI5F5HLjXPaegvf4uPkwQHvH9GvQzZcgV_NWxgsq2xkYiWo89JgjHwzwWCFwDq4j-PvEU6NwuxqM0JjQRZ79uLcu2zTD7uf_f2-jeOdL4ef-lE9VSAynGSziCutU-U1lcWMGLaLiy0nilutmUsJ96fzVlFuuKbGGZsw56igLsuJJqYnTOL_9wbcpImXJZ5_0mHr4PUwitI8zMn45tTrUgxAxhQzpSyOaEf5VTMC_tUEV1Th32Waba72DqzNi7G6OFej0RV1uHMP7tZ2bLi1ILz7sGKLB3BrUGfqH8L2oKrStGE9luL494-fqDHzcDzBTShlw2oMT-jN5nBcTmfRdDYpz2yYVxHLU_UIjq4Fs49htSgL-xRCLRh1hmWc6oQKQ4RT2uREKZcqyjQPoNcgUpq6mTnO1BjJyqnJuFwgX3rkywr5kgbwvv1mvGjlsXT3Nt5PuxPbcFc_lJNjWXO1jJnOFSEuNmgmWa4yzlLN00QYLdLYBPAOb1eisPDHM6p-8-CBxLZbcgt79WCH-14A652dnslNd7mhD1kLmam8ZIkAXrfL-CUWzhW2nOMe7xIzD5sH6MmCnFqQEsEQ6iyArENoHZi7K8XpSdWC3PsR3hVlJICNhiYvz7UMqRst3f7HHTxbDvUrWOsfDvbl_u7B3nO4HSOjYYFmbx1WZ5O5feHNxZl-WfFoCN-uWyj8ASnreeU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkUo5IN4NFAgSEgca1ZvYTnxsF1blsRUHKvVm2Y5dKlZJtJsV4sZ_4B_yS_DkxQZQBdd4HGXGM5mxZ_wNwHORkYQlBmH2ExP5kFpHKucicrlxTlsf4Vu8nDw_4cen9O0ZO9u4xd9Uu_cpyfZOA6I0FfVBlbvWxDN-sPJeCo_2Yoo5SBZH9Cpco967YQ-DKZ8OeQQ81-ivyvx13sgdNaj9f_6bN5zT74WTQ_b0BlxfF5X6-kUtFhsOanYLbnaRZXjYqsJtuGKLO7A973Lnd-Fo3tRN2rBrFHH-49t39GF5WC2RCP97YdMYJ_SBbFiVqzpa1cvysw3z5gzxQt2D09nrj9PjqOugEBlOsjriSutUea9sMfuH0Hix5URxqzVzKeF-JXwEmBuuqXHGJsw5KqjLcqKJmQiT3IetoizsLoRaMOoMyzjVCRWGCKe0yYlSLlWUaR7ApBekNB28OHa5WMhmm5Fx2QpfeuHLRviSBvBymFO14BqXUh_h-gyUCIzdPCiX57KzMxkznStCXGwwcLFcZZylmqeJMFqksQngBa6uRPP1n2dUdwvBM4lAWPIQ0XMQc34SwN6I0pudGQ_3-iE7s1_JBE_UBBZrBvBsGMaZWMpW2HKNNH6TyjxvnqEHrToNLCWCIddZANlI0UY8j0eKi08NKLiP7P3mkJEA9nud_PVdlwl1f9Dbf1iDh__39qew_eHVTL5_c_LuEezEaHdYQTnZg616ubaPfTxX6yeNyf4ExC5Afg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVuJx4P0IFBQkJA40xUlsJz5uEVWFtBUHViony3ZsqLrKrnazQnDiP_AP-SV4nGzYFFSVazyWMp4Zz9ie-QbgpShJznKDMPu5SXxIrRNVcZG4yjinrY_wLRYnT4750ZS-P2EnHUwO1sJsv9-nJX-z8v4IL_Eyiq-NLEvoVdjhzMfdI9iZHn8YfwrlQ0WWcEGLTVXMPycOPE8A6P97G97yQ-dzJPuH0ptwfV0v1Levajbb8kWHt9umRqsAYYgpKGf760bvm-_nAB4vx-YduNWFpPG41aG7cMXW9-DapHt0vw8Hk5BwaeOuw8TnXz9-ovOr4sUSiXDDjENHndhHwPFivmqSVbOcn9m4CpePp-oBTA_ffXx7lHStFxLDSdkkXGldKO_OLT4bIqZeZjlR3GrNXEG4F6EPHSvDNTXO2Jw5RwV1ZUU0Makw-UMY1fPaPoZYC0adYSWnOqfCEOGUNhVRyhWKMs0jSDdikabDJcf2GDMZzicll-3iSL84MiyOpBG87ucsWlSOC6kPUNo9JSJqhw9eArIzUJkxXSlCXGYw4rFclZwVmhe5MFoUmYngFeqKRLv3v2dUV77gmUQELTlG2B0Eq08j2B1Qens1w-GNtsluv1jJHK_iBGZ5RvCiH8aZmANX2_kaafzplnnePEOPWuXsWcoFQ67LCMqB2g54Ho7Up18Cmrg_EvhTJSMR7G00_M9_XbSoe70VXEIGT_6P_CncyNAYMN8y3YVRs1zbZz76a_Tzzux_A6wITbU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning%E2%80%93based+predictive+model+for+post-stroke+dementia&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Wei%2C+Zemin&rft.au=Li%2C+Mengqi&rft.au=Zhang%2C+Chenghui&rft.au=Miao%2C+Jinli&rft.date=2024-11-11&rft.pub=BioMed+Central&rft.eissn=1472-6947&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12911-024-02752-4&rft.externalDocID=10_1186_s12911_024_02752_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon