MRI T2WI-based radiomics combined with KRAS gene mutation constructed models for predicting liver metastasis in rectal cancer

Background The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making. Methods A retrospective analysis was conducted on 193 patients diagnos...

Full description

Saved in:
Bibliographic Details
Published inBMC medical imaging Vol. 24; no. 1; pp. 262 - 13
Main Authors Ma, Jiaqi, Nie, Xinsheng, Kong, Xiangjiang, Xiao, Lingqing, Liu, Han, Shi, Shengming, Wu, Yupeng, Li, Na, Hu, Linlin, Li, Xiaofu
Format Journal Article
LanguageEnglish
Published London BioMed Central 04.10.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2342
1471-2342
DOI10.1186/s12880-024-01439-6

Cover

Abstract Background The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making. Methods A retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set ( n  = 136) and validation set ( n  = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared. Results KRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471–19.830; p  < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778–0.907) and the validation set (AUC: 0.805; 95%CI: 0.692–0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models. Conclusions Our study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis. Clinical Trial Number Not applicable.
AbstractList The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making. A retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set (n = 136) and validation set (n = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared. KRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471-19.830; p < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778-0.907) and the validation set (AUC: 0.805; 95%CI: 0.692-0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models. Our study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis.
The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making. A retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set (n = 136) and validation set (n = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared. KRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471-19.830; p < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778-0.907) and the validation set (AUC: 0.805; 95%CI: 0.692-0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models. Our study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis. Not applicable.
BackgroundThe study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making.MethodsA retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set (n = 136) and validation set (n = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared.ResultsKRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471–19.830; p < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778–0.907) and the validation set (AUC: 0.805; 95%CI: 0.692–0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models.ConclusionsOur study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis.Clinical Trial NumberNot applicable.
Abstract Background The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making. Methods A retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set (n = 136) and validation set (n = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared. Results KRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471–19.830; p < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778–0.907) and the validation set (AUC: 0.805; 95%CI: 0.692–0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models. Conclusions Our study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis. Clinical Trial Number Not applicable.
Background The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making. Methods A retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set ( n  = 136) and validation set ( n  = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared. Results KRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471–19.830; p  < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778–0.907) and the validation set (AUC: 0.805; 95%CI: 0.692–0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models. Conclusions Our study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis. Clinical Trial Number Not applicable.
Background The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making. Methods A retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set (n = 136) and validation set (n = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared. Results KRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471-19.830; p < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778-0.907) and the validation set (AUC: 0.805; 95%CI: 0.692-0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models. Conclusions Our study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis. Clinical Trial Number Not applicable. Keywords: RC, KRAS mutation, Radiomics, RCLM, MRI
The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making.BACKGROUNDThe study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid clinicians in early diagnosis and precise decision-making.A retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set (n = 136) and validation set (n = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared.METHODSA retrospective analysis was conducted on 193 patients diagnosed with rectal adenocarcinoma were randomly divided into training set (n = 136) and validation set (n = 57) at a ratio of 7:3. The predictive performance of three models was internally validated by 10-fold cross-validation in the training set. Delineation of the tumor region of interest (ROI) was performed, followed by the extraction of radiomics features from the ROI. The least absolute shrinkage and selection operator (LASSO) regression algorithm and multivariate Cox analysis were employed to reduce the dimensionality of radiomics features and identify significant features. Logistic regression was employed to construct three prediction models: clinical, radiomics, and combined models (radiomics + clinical). The predictive performance of each model was assessed and compared.KRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471-19.830; p < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778-0.907) and the validation set (AUC: 0.805; 95%CI: 0.692-0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models.RESULTSKRAS mutation emerged as an independent predictor of liver metastasis, yielding an odds ratio (OR) of 8.296 (95%CI: 3.471-19.830; p < 0.001). 5 radiomics features will be used to construct radiomics model. The combined model was built by integrating radiomics model with clinical model. In both the training set (AUC:0.842, 95%CI: 0.778-0.907) and the validation set (AUC: 0.805; 95%CI: 0.692-0.918), the AUCs for the combined model surpassed those of the radiomics and clinical models.Our study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis.CONCLUSIONSOur study reveals that KRAS mutation stands as an independent predictor of RCLM. The radiomics features based on MR play a crucial role in the evaluation of RCLM. The combined model exhibits superior performance in the prediction of liver metastasis.Not applicable.CLINICAL TRIAL NUMBERNot applicable.
ArticleNumber 262
Audience Academic
Author Liu, Han
Xiao, Lingqing
Hu, Linlin
Li, Xiaofu
Wu, Yupeng
Li, Na
Shi, Shengming
Ma, Jiaqi
Nie, Xinsheng
Kong, Xiangjiang
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Ma
  fullname: Ma, Jiaqi
  organization: Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University
– sequence: 2
  givenname: Xinsheng
  surname: Nie
  fullname: Nie, Xinsheng
  organization: Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital
– sequence: 3
  givenname: Xiangjiang
  surname: Kong
  fullname: Kong, Xiangjiang
  organization: Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital
– sequence: 4
  givenname: Lingqing
  surname: Xiao
  fullname: Xiao, Lingqing
  organization: Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital
– sequence: 5
  givenname: Han
  surname: Liu
  fullname: Liu, Han
  organization: Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University
– sequence: 6
  givenname: Shengming
  surname: Shi
  fullname: Shi, Shengming
  organization: Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University
– sequence: 7
  givenname: Yupeng
  surname: Wu
  fullname: Wu, Yupeng
  organization: Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University
– sequence: 8
  givenname: Na
  surname: Li
  fullname: Li, Na
  organization: Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital
– sequence: 9
  givenname: Linlin
  surname: Hu
  fullname: Hu, Linlin
  organization: Medical Imaging Center, the Xinjiang Production and Construction Corps Tenth Division Beitun Hospital
– sequence: 10
  givenname: Xiaofu
  surname: Li
  fullname: Li, Xiaofu
  email: drxiaofuli@hrbmu.edu.cn
  organization: Department of Magnetic Resonance Imaging Diagnostic, The 2nd Affiliated Hospital of Harbin Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39367333$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wB1ggS2zYpPiV1wqNKh4jipBKEUvLcW5SjxJ7sJNWXfDfudMMQ6dCFUqkRNffOfbxvcfJgfMOkuQlo6eMlfnbyHhZ0pRymVImRZXmT5IjJguWciH5wb3_w-Q4xhWlrCiFfJYcikrkhRDiKPn15WJJLvmPZVrrCA0JurF-sCYS44faOizd2PGKfL5YfCMdOCDDNOrReoeAi2OYzIjM4BvoI2l9IOsAjTWjdR3p7TUEMsCoI742EutIADPqnhjtDITnydNW9xFebL8nyfcP7y_PPqXnXz8uzxbnqclpOaZ5BqKmmWmLXDaSssYAUFm2La9xnRcNpbXmlJcZgMxyjFYBF0xryvMSpBQnyXL2bbxeqXWwgw63ymur7go-dEqH0ZoelBEMqoqaDLJWihY96qoGWgspGtbkLXqJ2Wtya317o_t-Z8io2jRGzY1R2Bh11xiVo-rdrFpP9QAYwI1B93tH2V9x9kp1_hoNZSZoztHhzdYh-J8TxFENNhroe-3AT1EJxgTjuRAb9PUDdOWn4PCGN1TGOC-Q21GdxtzWtR43NhtTtSgZ4wyzbKjTf1D4NIBjggPZWqzvCV7dT7qL-GfmEOAzYIKPMUD7f_dXPhAZO88hHsf2j0u3DYu4j-sg_L2NR1S_AaRZCUk
CitedBy_id crossref_primary_10_3389_fonc_2025_1511260
Cites_doi 10.1038/sj.bjc.6605164
10.1158/1078-0432.CCR-09-2446
10.3390/cancers11101545
10.1016/j.acra.2018.12.019
10.1007/s00330-018-5802-7
10.1093/annonc/mdw261
10.1007/s00261-018-1740-8
10.1109/ACCESS.2023.3272987
10.1007/s00261-015-0438-4
10.1186/s12859-020-03686-0
10.1200/JCO.2010.30.1366
10.1007/s00261-020-02624-1
10.3322/caac.21660
10.2214/AJR.14.14201
10.1038/s41598-022-16828-6
10.1148/radiol.2015151169
10.7717/peerj.9149
10.1186/1741-7015-10-135
10.3389/fonc.2020.00457
10.1200/JCO.2016.71.4394
10.1186/s12885-016-2141-4
10.1200/JCO.2015.65.9128
10.1002/cam4.6089
10.1186/s12935-020-1117-2
10.1136/gutjnl-2019-319292
10.3390/cancers12092665
10.1007/s00261-018-01891-3
10.1016/j.ejrad.2012.09.024
10.1016/j.artmed.2023.102690
10.18632/aging.202752
10.21037/qims.2019.12.16
10.3389/fonc.2022.1087882
10.5005/jp-journals-10018-1241
10.1007/s00268-010-0881-x
10.1097/01.sla.0000217629.94941.cf
10.1186/s12880-022-00825-2
10.1109/ICACA.2016.7887916
10.7717/peerj.8301
10.1016/j.compbiomed.2022.106478
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12880-024-01439-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological science database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2342
EndPage 13
ExternalDocumentID oai_doaj_org_article_c31e990c5e5f43faa0b9be0b343d1d6f
10.1186/s12880-024-01439-6
PMC11453062
A811211183
39367333
10_1186_s12880_024_01439_6
Genre Journal Article
GrantInformation_xml – fundername: Xinjiang Production and Construction Corps
  grantid: 2021AB029
  funderid: http://dx.doi.org/10.13039/501100009967
– fundername: Xinjiang Production and Construction Corps
  grantid: 2021AB029
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
123
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c608t-65e3b05cf764d401dcee048ff2b60827d00ba20285ee4566739e231aa0268e443
IEDL.DBID M48
ISSN 1471-2342
IngestDate Fri Oct 03 12:40:59 EDT 2025
Sun Oct 26 01:55:53 EDT 2025
Tue Sep 30 17:07:06 EDT 2025
Fri Sep 05 06:39:15 EDT 2025
Tue Oct 07 05:30:27 EDT 2025
Mon Oct 20 22:49:03 EDT 2025
Mon Oct 20 16:58:12 EDT 2025
Wed Feb 19 02:03:41 EST 2025
Thu Apr 24 23:02:05 EDT 2025
Wed Oct 01 04:39:23 EDT 2025
Sat Sep 06 07:26:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords RC
KRAS mutation
RCLM
MRI
Radiomics
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-65e3b05cf764d401dcee048ff2b60827d00ba20285ee4566739e231aa0268e443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s12880-024-01439-6
PMID 39367333
PQID 3115122763
PQPubID 44833
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c31e990c5e5f43faa0b9be0b343d1d6f
unpaywall_primary_10_1186_s12880_024_01439_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11453062
proquest_miscellaneous_3113126332
proquest_journals_3115122763
gale_infotracmisc_A811211183
gale_infotracacademiconefile_A811211183
pubmed_primary_39367333
crossref_primary_10_1186_s12880_024_01439_6
crossref_citationtrail_10_1186_s12880_024_01439_6
springer_journals_10_1186_s12880_024_01439_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-04
PublicationDateYYYYMMDD 2024-10-04
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical imaging
PublicationTitleAbbrev BMC Med Imaging
PublicationTitleAlternate BMC Med Imaging
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References W Mao (1439_CR9) 2019; 44
S Manfredi (1439_CR3) 2006; 244
C Reichling (1439_CR25) 2020; 69
MY Ansari (1439_CR14) 2023; 146
SE Baldus (1439_CR42) 2010; 16
C Zilkens (1439_CR12) 2013; 82
JC Jones (1439_CR7) 2017; 35
G Hutchins (1439_CR29) 2011; 29
JL Bos (1439_CR5) 1989; 49
D Dai (1439_CR22) 2020; 8
H Li (1439_CR39) 2022; 12
Y Zhang (1439_CR37) 2020; 10
R Shi (1439_CR23) 2020; 10
MG Lubner (1439_CR28) 2015; 40
SC Chuang (1439_CR32) 2011; 35
J Souglakos (1439_CR11) 2009; 101
M Liang (1439_CR36) 2019; 26
M Li (1439_CR35) 2020; 10
V Chandrasekar (1439_CR13) 2023; 11
MY Ansari (1439_CR15) 2023; 153
H Sung (1439_CR1) 2021; 71
H Liu (1439_CR31) 2019; 29
Y Li (1439_CR34) 2019; 9
MY Ansari (1439_CR16) 2022; 12
HS Kim (1439_CR30) 2016; 16
S Lee (1439_CR41) 2020; 21
DP Modest (1439_CR10) 2016; 27
AI Valderrama-Treviño (1439_CR4) 2017; 7
R Fusco (1439_CR20) 2020; 12
F Xue (1439_CR27) 2020; 8
P Rai (1439_CR18) 2023; 12
SJ Kim (1439_CR21) 2019; 44
MY Ansari (1439_CR17) 2022; 22
M Taghavi (1439_CR33) 2021; 46
T Machackova (1439_CR2) 2019; 11
YQ Huang (1439_CR24) 2016; 34
KS Jhaveri (1439_CR40) 2015; 205
G Bruera (1439_CR6) 2012; 10
RJ Gillies (1439_CR19) 2016; 278
H Zeng (1439_CR38) 2021; 13
1439_CR26
GN Fanelli (1439_CR8) 2020; 20
References_xml – volume: 101
  start-page: 465
  issue: 3
  year: 2009
  ident: 1439_CR11
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6605164
– volume: 16
  start-page: 790
  issue: 3
  year: 2010
  ident: 1439_CR42
  publication-title: Clin Cancer Res off J Am Assoc Cancer Res
  doi: 10.1158/1078-0432.CCR-09-2446
– volume: 11
  start-page: E1545
  issue: 10
  year: 2019
  ident: 1439_CR2
  publication-title: Cancers
  doi: 10.3390/cancers11101545
– volume: 26
  start-page: 1495
  issue: 11
  year: 2019
  ident: 1439_CR36
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2018.12.019
– volume: 29
  start-page: 4418
  issue: 8
  year: 2019
  ident: 1439_CR31
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5802-7
– volume: 27
  start-page: 1746
  issue: 9
  year: 2016
  ident: 1439_CR10
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdw261
– volume: 9
  start-page: 2482
  issue: 11
  year: 2019
  ident: 1439_CR34
  publication-title: Am J Cancer Res
– volume: 44
  start-page: 2059
  issue: 6
  year: 2019
  ident: 1439_CR9
  publication-title: Abdom Radiol N Y
  doi: 10.1007/s00261-018-1740-8
– volume: 11
  start-page: 52726
  year: 2023
  ident: 1439_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3272987
– volume: 40
  start-page: 2331
  issue: 7
  year: 2015
  ident: 1439_CR28
  publication-title: Abdom Imaging
  doi: 10.1007/s00261-015-0438-4
– volume: 21
  start-page: 382
  issue: Suppl 13
  year: 2020
  ident: 1439_CR41
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-020-03686-0
– volume: 29
  start-page: 1261
  issue: 10
  year: 2011
  ident: 1439_CR29
  publication-title: J Clin Oncol off J Am Soc Clin Oncol
  doi: 10.1200/JCO.2010.30.1366
– volume: 46
  start-page: 249
  issue: 1
  year: 2021
  ident: 1439_CR33
  publication-title: Abdom Radiol N Y
  doi: 10.1007/s00261-020-02624-1
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: 1439_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 205
  start-page: W42
  issue: 1
  year: 2015
  ident: 1439_CR40
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.14.14201
– volume: 12
  start-page: 14153
  issue: 1
  year: 2022
  ident: 1439_CR16
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-16828-6
– volume: 278
  start-page: 563
  issue: 2
  year: 2016
  ident: 1439_CR19
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 8
  start-page: e9149
  year: 2020
  ident: 1439_CR22
  publication-title: PeerJ
  doi: 10.7717/peerj.9149
– volume: 10
  start-page: 135
  issue: 1
  year: 2012
  ident: 1439_CR6
  publication-title: BMC Med
  doi: 10.1186/1741-7015-10-135
– volume: 10
  start-page: 457
  year: 2020
  ident: 1439_CR37
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.00457
– volume: 10
  start-page: 4513
  issue: 12
  year: 2020
  ident: 1439_CR23
  publication-title: Am J Cancer Res
– volume: 35
  start-page: 2624
  issue: 23
  year: 2017
  ident: 1439_CR7
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2016.71.4394
– volume: 16
  start-page: 120
  issue: 1
  year: 2016
  ident: 1439_CR30
  publication-title: BMC Cancer
  doi: 10.1186/s12885-016-2141-4
– volume: 34
  start-page: 2157
  issue: 18
  year: 2016
  ident: 1439_CR24
  publication-title: J Clin Oncol off J Am Soc Clin Oncol
  doi: 10.1200/JCO.2015.65.9128
– volume: 12
  start-page: 14225
  issue: 13
  year: 2023
  ident: 1439_CR18
  publication-title: Cancer Med
  doi: 10.1002/cam4.6089
– volume: 20
  start-page: 30
  issue: 1
  year: 2020
  ident: 1439_CR8
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-020-1117-2
– volume: 69
  start-page: 681
  issue: 4
  year: 2020
  ident: 1439_CR25
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-319292
– volume: 12
  start-page: E2665
  issue: 9
  year: 2020
  ident: 1439_CR20
  publication-title: Cancers
  doi: 10.3390/cancers12092665
– volume: 44
  start-page: 1703
  issue: 5
  year: 2019
  ident: 1439_CR21
  publication-title: Abdom Radiol
  doi: 10.1007/s00261-018-01891-3
– volume: 82
  start-page: e81
  issue: 2
  year: 2013
  ident: 1439_CR12
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2012.09.024
– volume: 146
  start-page: 102690
  year: 2023
  ident: 1439_CR14
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2023.102690
– volume: 13
  start-page: 9960
  issue: 7
  year: 2021
  ident: 1439_CR38
  publication-title: Aging
  doi: 10.18632/aging.202752
– volume: 10
  start-page: 397
  issue: 2
  year: 2020
  ident: 1439_CR35
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims.2019.12.16
– volume: 12
  start-page: 1087882
  year: 2022
  ident: 1439_CR39
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.1087882
– volume: 7
  start-page: 166
  issue: 2
  year: 2017
  ident: 1439_CR4
  publication-title: Euroasian J Hepato-Gastroenterol
  doi: 10.5005/jp-journals-10018-1241
– volume: 35
  start-page: 424
  issue: 2
  year: 2011
  ident: 1439_CR32
  publication-title: World J Surg
  doi: 10.1007/s00268-010-0881-x
– volume: 244
  start-page: 254
  issue: 2
  year: 2006
  ident: 1439_CR3
  publication-title: Ann Surg
  doi: 10.1097/01.sla.0000217629.94941.cf
– volume: 22
  start-page: 97
  issue: 1
  year: 2022
  ident: 1439_CR17
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-022-00825-2
– volume: 49
  start-page: 4682
  issue: 17
  year: 1989
  ident: 1439_CR5
  publication-title: Cancer Res
– ident: 1439_CR26
  doi: 10.1109/ICACA.2016.7887916
– volume: 8
  start-page: e8301
  year: 2020
  ident: 1439_CR27
  publication-title: PeerJ
  doi: 10.7717/peerj.8301
– volume: 153
  start-page: 106478
  year: 2023
  ident: 1439_CR15
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106478
SSID ssj0017834
Score 2.3559616
Snippet Background The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction...
The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction models to aid...
Background The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction...
BackgroundThe study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various prediction...
Abstract Background The study aimed to identify the optimal model for predicting rectal cancer liver metastasis (RCLM). This involved constructing various...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 262
SubjectTerms Ablation
Adenocarcinoma
Adenocarcinoma - diagnostic imaging
Adenocarcinoma - genetics
Adenocarcinoma - secondary
Adult
Aged
Algorithms
Cancer
Cancer therapies
Clinical decision making
Colorectal cancer
Decision making
Deep learning
Female
Gene mutations
Genetic aspects
Health aspects
Humans
Imaging
K-Ras protein
KRAS mutation
Liver
Liver cancer
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - genetics
Liver Neoplasms - secondary
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical prognosis
Medicine
Medicine & Public Health
Metastases
Metastasis
Middle Aged
MRI
Mutation
Performance evaluation
Performance prediction
Point mutation
Prediction models
Predictive Value of Tests
Proto-Oncogene Proteins p21(ras) - genetics
Radiology
Radiomics
RCLM
Rectal Neoplasms - diagnostic imaging
Rectal Neoplasms - genetics
Rectal Neoplasms - pathology
Rectum
Regression analysis
Retrospective Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiDeBgoyExIFaTWzHSY4LompB5VBa0ZtlJ2N1pW262uwKceC_M5MXG5AKB67xOIo9n2fG8fgbxl4XCiri_RaglcQNSgLCF4kXAb2R0UZmvmoTZD-bwzP98Tw93yr1RTlhHT1wN3H7pUoALWaZQhq0Cs7FvvAQe6VVlVQmkPWN82LYTPXnB1Q-Yrgik5v9Bq1wHgv0R4L47AphJm6oZev_0yZvOaXfEybHU9M77NamXrrv39xiseWYDu6xu31EyWfdSO6zG1A_YDeP-zPzh-zH8ckRP5VfjwR5rIqvXDWnq8gNR7Dhvhgf0c9Y_ulk9oUjnIBfbrrzeRTo-WVRpi2Z03CMcflyRS-nfGm-oLQOfglrh1FmM2_4vOZkQ_GDSsLT6hE7O_hw-v5Q9EUXRGnifC1MCsrHaRkyoyvUHY4ZcJWHID22y6yKY-8kRiUpAAZfJlMFYIyIepEmB63VY7ZTX9XwlHEdAHC3lBbelzo4T7UDMx_QazrpUxVHLBl0YMuekZwKYyxsuzPJje30ZlFvttWbNRF7O_ZZdnwc10q_I9WOksSl3T5AhNkeYfZvCIvYGwKGpRWPn1e6_uICDpK4s-wsT4gnD21jxHYnkrhSy2nzAC3bW4rGEttRIiWa-Yi9GpupJ2W_1XC1aWVUIo1SMmJPOiSOQ1I4q5lS2DufYHQy5mlLPb9oecRxK4xaMPjSvQHOv77rukndGyH_Dzp49j908JzdlrR6KXND77IdxD68wGhw7V-2C_8nW3lYdQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdGJ8E4IL4XGMhISByYtcR2nOSAUIc2baBVqGxiN8tOHKjUpaVphTjwv_Oem2QLSBXX-DmK_b7j598j5HUmXIG438xJwSFBiRyzWWRZCd5IScUTW_gC2ZE6uZAfL-PLLTJq78JgWWVrE72hLmY5_iM_QFSYiHNQh_fzHwy7RuHpattCwzStFYp3HmLsFtnmiIw1INuHR6PP4-5cAdtKtFdnUnVQg3VOQwZ-iiHOXcZUzz15FP9_bfUNZ_V3IWV3mnqX3FlVc_Prp5lObzis4_vkXhNp0uFaNB6QLVc9JLfPmrP0R-T32fiUnvOvpww9WUEXppjgFeWawoZAvgyP8Cct_TQefqEgZo5erdbn9kDQ4M4CjW-lU1OIfel8gS_HOmo6xXIPeuWWBqLPelLTSUXRtsIH5Shni8fk4vjo_MMJa5oxsFyF6ZKp2AkbxnmZKFkAT2HNDrS_LLmFcZ4UYWgNh2gldg6CMpWIzEHsaAwkeamTUjwhg2pWuV1CZekcZFFxZm0uS2Oxp2BiS_CmhttYhAGJWh7ovEEqx4YZU-0zllTpNd808E17vmkVkLfdnPkap2Mj9SGytqNEjG3_YLb4phuV1bmIHPjqPHZxKUUJK7GZdaEVUhRRocqAvEHB0GgJ4PNy01xogEUippYephHi54HNDMhejxI0OO8Pt6KlGwtS62t5D8irbhhnYlVc5WYrTyMiroTgAXm6lsRuSQJ2NRECZqc9Ge2tuT9STb57fHFIkYELCl6634rz9Xdt2tT9TuT_gwfPNq_6OdnhqJdYqyH3yACk2r2A-G9pXzZK_QdLhVU8
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSDwOiHcDBRkJiQONmtiOkxyXiqoFlUNpRW-WnYzFStt0tdlVxYH_zoyTDRtAFVzjsRVnvnllxmPG3pQSaur7HYOSAgOUFGJXpi72aI200iJ3dSiQ_awPz9TH8-y8b5NDZ2E28_dpofda1J9FEqMliakTXRnrm-wWGikdErN6f8gY0IUR60Mxf503MjyhP_-fWnjDDP1eIjnkSe-xO6tmbr9f2dlswxQdPGD3ex-STzqmP2Q3oHnEbh_3WfLH7MfxyRE_FV-PYrJRNV_YekqHj1uO8MJIGB_R71f-6WTyhSOAgF-suow8EvQdZZEmXJLTcvRq-XxBi1OFNJ9RIQe_gKVFv7KdtnzacNKa-EIVIWjxhJ0dfDjdP4z7axbiSifFMtYZSJdklc-1qpFbuGdAufZeOBwXeZ0kzgr0QzIAdLd0LktAr9BaDN8KUEo-ZVvNZQPbjCsPgPFRVjpXKW8d3RaYO4920gqXySRi6ZoHpup7kNNVGDMTYpFCm45vBvlmAt-Mjti7Yc6868BxLfV7Yu1ASd2zwwMElemF0VQyBbTCVQaZV9LjTlzpIHFSyTqttY_YWwKGIRnH16tsf1QBN0ndssykSKkzHmrDiO2MKFE2q_HwGlqm1w2tof5GqRCo2CP2ehimmVTv1sDlKtBIArkUEXvWIXHYksSvmkuJs4sRRkd7Ho8002-hczgGv8gFjYvuruH8672u-6i7A-T_gQfP_2_1F-yuIDmlqgy1w7YQ5fASPb2lexVE_CdwY0eo
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk_h4GF8Dsg1kJCQemEdiO07yWBDTBtqExirGkxUntqjosqpphUDif9-dk4ZmoGm8xmfLPp_vI777mZCXmbAl4n4zKwWHACWyzGSRYQ6skZKKJ6b0CbJHan8kP5zGpy1MDtbCrN7fR6l6U4P-TEMGloQhEl3G1E2ypmLwuwdkbXT0afjVlw8lEeNC8mVVzD879iyPB-j_Ww2v2KHLOZLdReldcntRTfOfP_LJZMUW7d1rHjWqPYQhpqB8313MzW7x6xLA4_WWeZ-sty4pHTYy9IDcsNVDcuuwvXR_RH4fHh_QE_7lgKHJK-ksL8dYy1xTkFYIrOET_s2lH4-HnynIo6Vni-aCHwhagFqg8W_u1BScZDqd4eCYcE0nmBdCz-w8Bze1Htd0XFFUwjChAgVytkFGe-9P3u2z9tUGVqgwnTMVW2HCuHCJkiVsPnDQgppwjhto50kZhibn4NbE1oL3phKRWXAy8xyiwdRKKR6TQXVe2aeESmcthFtxZkwhXW7w8cHEODC7OTexCAMSLXdUFy2kOb6sMdE-tEmVbviqga_a81WrgLzu-kwbQI8rqd-ioHSUCMbtP8Dm6fZs60JEFox6EdvYSeFgJSYzNjRCijIqlQvIKxQzjSoDplfkbeUDLBLBt_QwjRBoD5RrQLZ7lHDUi37zUlB1q2pqjXBJEedgJwLyomvGnpg-V9nzhacREVdC8IA8aeS6W5IAriZCQO-0J_G9NfdbqvE3D0QOsTTsgoJBd5aH48-8rmLqTneArrEHm_9HvkXucDxHmOQht8kApNw-A8dxbp63GuMCT8lgDg
  priority: 102
  providerName: Unpaywall
Title MRI T2WI-based radiomics combined with KRAS gene mutation constructed models for predicting liver metastasis in rectal cancer
URI https://link.springer.com/article/10.1186/s12880-024-01439-6
https://www.ncbi.nlm.nih.gov/pubmed/39367333
https://www.proquest.com/docview/3115122763
https://www.proquest.com/docview/3113126332
https://pubmed.ncbi.nlm.nih.gov/PMC11453062
https://doi.org/10.1186/s12880-024-01439-6
https://doaj.org/article/c31e990c5e5f43faa0b9be0b343d1d6f
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: KQ8
  dateStart: 20011101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: M48
  dateStart: 20011101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw0NqHxMcD4pvAqIyE4IEZEttxkgeE2mplA3WayioKL1GcOFCpS7t-CPbAf-fOTbIFpmkvkRKfLZ_vzncXn-8IeRkJk2Heb2ak4OCgeIbpyNMsB22kpOKBzmyA7KHaH8pPI3-0Qapw23IBF5e6dlhPajifvP19evYBBP69FfhQvVvAHhu6DLQNw2x1EVOvZqcMC0vhAWxZZWOTbIPyirC6Q1-eHzRgnQl7ASnwGBeSV_dqLh22obtsiv__N_ILmuzfKMv6qPU2ubkqZsnZr2QyuaDNenfJndIMpe0139wjG6a4T270y4P2B-RPf3BAj_nXA4ZqLqPzJBvj_eUFBQ4FZxo-4R9c-nnQ_kKBBw09Wa0P9QGgTEoLMLbOzoKCYUxncxwcg6zpBGNB6IlZJmCaLsYLOi4obrwwoRSZcP6QDHt7x919VlZqYKlywyVTvhHa9dM8UDIDggPOBraGPOca2nmQua5OOJgyvjFgsalARAYMyyQBDzA0UopHZKuYFuYJoTI3BlwsP9I6lXmiseBgoHNQtQnXvnAd4lU0iNMyjTlW05jE1p0JVbymWwx0iy3dYuWQN3Wf2TqJx5XQHSRtDYkJuO2H6fxHXMpznArPgCJPfePnUuSAiY60cbWQIvMylTvkNTJGjIwL00uT8rYDIIkJt-J26GFyPdhQHbLTgATxTpvNFWvFlXTEmCLJ4xx0g0Ne1M3YE0PmCjNdWRjhcSUEd8jjNSfWKAlY1UAI6B02eLSBc7OlGP-0ycfBfwYqKBh0t2Ln83ldtai7NctfgwZPr4HWM3KLo3BiNIfcIVvA2uY5WIhL3SKbwSiAZ9j72CLbnb3DowG8dVW3Zf-5tOweAM9B5zu0Dw-P2t_-Aop3ZUY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgcEG8CBYwE4kCtJrbjJAeElke1y3Z7KK26NxMnDqy0zS6bXVU98Jf4jczk1QakFZde47Flez7PIx7PEPIqEjbFvN_MSsHBQfEsM5FnWAbaSEnFA5OWAbIHqn8sv4z98Qb53byFwbDKRiaWgjqdJfiPfBezwnicw3F4P__JsGoU3q42JTQqWAzt-Rm4bMW7wSfg72vO9z4ffeyzuqoAS5QbLpnyrTCun2SBkilMLgU1ATDOMm6gnQep65qYg9r1rQXrQgUismAExTF4K6GVUsC418h1KUCWwPkJxq2D52HRiuZhTqh2C5D9octACzLMohcx1VF-ZY2AfzXBJVX4d5hme1d7i2yt8nl8fhZPp5fU4d4dcru2Y2mvAt5dsmHze-TGqL6pv09-jQ4H9IifDBjqyZQu4nSCD6ALCtsN3jh8wl_AdHjY-0oBxJaerqqoACCos9oCTVmop6BgWdP5AgfHKG06xWASemqXMdi2xaSgk5yi5IYJJYjixQNyfCVMeUg281luHxMqM2vBR_MjYxKZxQYrFgYmA10dc-ML1yFewwOd1HnQsRzHVJf-UKh0xTcNfNMl37RyyNu2z7zKArKW-gOytqXEDN7lh9niu64Fgk6EZ8ESSHzrZ1JksBITGesaIUXqpSpzyBsEhkY5A9NL4vq5BCwSM3bpXuhhdj6QyA7Z7lCCfEi6zQ20dC2fCn1xmhzysm3Gnhhzl9vZqqQRHldCcIc8qpDYLknArgZCQO-wg9HOmrst-eRHmb0cHHDggoJBdxo4X8xr3abutJD_Dx48Wb_qF2SrfzTa1_uDg-FTcpPjGcWoELlNNgHh9hlYmkvzvDzelHy7annyBy3wihU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdgSAMOiO8FBhgJiQOzltiOkxxLoVoZm9DYxG5WnNisUpdWTSvEgf-d95w0NIAmuMbPVpz3HT__HiGvMmFLxP1mVgoOCUpkmckiwxx4IyUVT0zpC2SP1cGZ_HAen2_c4vfV7usjyeZOA6I0Vcv9eekaFU_Vfg1WNQ0Z-BeG-HQZU9fJDQneDXsYDNWwO0fANhLrqzJ_nddzRx61_0_bvOGcfi-c7E5Pb5Obq2qef_-WT6cbDmp0l9xpI0s6aEThHrlmq_tk-6g9O39AfhydjOkp_zJm6LlKusjLCV5JrinsH_JjeIQ_ZenhyeAzBbGy9HLVnNMDQYszCzS-dU5NIdal8wUujnXTdIrlHfTSLnOINutJTScVRVsKL1SgXC0ekrPR-9PhAWubL7BChemSqdgKE8aFS5QsgYewZwva7hw3MM6TMgxNziE6ia2FIEwlIrMQK-Y5JHWplVI8IlvVrLI7hEpnLWRNcWZMIV1usIdgYhx4z5ybWIQBidY80EWLTI4NMqbaZyip0g3fNPBNe75pFZA33Zx5g8txJfVbZG1HiZja_sFs8VW3KqoLEVnwzUVsYyeFg52YzNjQCCnKqFQuIK9RMDRqPrxekbcXGGCTiKGlB2mEeHlgIwOy26MEjS36w2vR0q3FqDWiHkWcg7kPyMtuGGdiFVxlZytPIyKuhOABedxIYrclAV81EQJmpz0Z7e25P1JNLjyeOKTEwAUFi-6txfnXe131Ufc6kf8HHjz5v9VfkO1P70b64_j48Cm5xVFlsWxD7pItEHj7DELBpXnutf0n88JS3g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk_h4GF8Dsg1kJCQemEdiO07yWBDTBtqExirGkxUntqjosqpphUDif9-dk4ZmoGm8xmfLPp_vI777mZCXmbAl4n4zKwWHACWyzGSRYQ6skZKKJ6b0CbJHan8kP5zGpy1MDtbCrN7fR6l6U4P-TEMGloQhEl3G1E2ypmLwuwdkbXT0afjVlw8lEeNC8mVVzD879iyPB-j_Ww2v2KHLOZLdReldcntRTfOfP_LJZMUW7d1rHjWqPYQhpqB8313MzW7x6xLA4_WWeZ-sty4pHTYy9IDcsNVDcuuwvXR_RH4fHh_QE_7lgKHJK-ksL8dYy1xTkFYIrOET_s2lH4-HnynIo6Vni-aCHwhagFqg8W_u1BScZDqd4eCYcE0nmBdCz-w8Bze1Htd0XFFUwjChAgVytkFGe-9P3u2z9tUGVqgwnTMVW2HCuHCJkiVsPnDQgppwjhto50kZhibn4NbE1oL3phKRWXAy8xyiwdRKKR6TQXVe2aeESmcthFtxZkwhXW7w8cHEODC7OTexCAMSLXdUFy2kOb6sMdE-tEmVbviqga_a81WrgLzu-kwbQI8rqd-ioHSUCMbtP8Dm6fZs60JEFox6EdvYSeFgJSYzNjRCijIqlQvIKxQzjSoDplfkbeUDLBLBt_QwjRBoD5RrQLZ7lHDUi37zUlB1q2pqjXBJEedgJwLyomvGnpg-V9nzhacREVdC8IA8aeS6W5IAriZCQO-0J_G9NfdbqvE3D0QOsTTsgoJBd5aH48-8rmLqTneArrEHm_9HvkXucDxHmOQht8kApNw-A8dxbp63GuMCT8lgDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+T2WI-based+radiomics+combined+with+KRAS+gene+mutation+constructed+models+for+predicting+liver+metastasis+in+rectal+cancer&rft.jtitle=BMC+medical+imaging&rft.au=Ma%2C+Jiaqi&rft.au=Nie%2C+Xinsheng&rft.au=Kong%2C+Xiangjiang&rft.au=Xiao%2C+Lingqing&rft.date=2024-10-04&rft.issn=1471-2342&rft.eissn=1471-2342&rft.volume=24&rft.issue=1&rft.spage=262&rft_id=info:doi/10.1186%2Fs12880-024-01439-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2342&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2342&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2342&client=summon