An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation)

Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as in...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 10; no. 1; p. 409
Main Authors Aryee, Martin J, Gutiérrez-Pabello, José A, Kramnik, Igor, Maiti, Tapabrata, Quackenbush, John
Format Journal Article
LanguageEnglish
Published London BioMed Central 10.12.2009
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-10-409

Cover

Abstract Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power. Results We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated. Conclusions Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html .
AbstractList Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power. Results We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated. Conclusions Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html .
Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power. Results We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated. Conclusions Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from
Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power. We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated. Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html.
Abstract Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power. Results We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated. Conclusions Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html.
Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power. We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated. Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html.
Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power.BACKGROUNDMicroarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power.We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated.RESULTSWe present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated.Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html.CONCLUSIONSBased on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html.
ArticleNumber 409
Audience Academic
Author Aryee, Martin J
Quackenbush, John
Gutiérrez-Pabello, José A
Kramnik, Igor
Maiti, Tapabrata
AuthorAffiliation 4 Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney St, Boston, Massachusetts 02115, USA
2 Department of Immunology and Infectious Diseases, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA
1 Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA
3 Department of Statistics and Probability, Michigan State University, East Lansing, Massachusetts 48824, USA
AuthorAffiliation_xml – name: 2 Department of Immunology and Infectious Diseases, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA
– name: 3 Department of Statistics and Probability, Michigan State University, East Lansing, Massachusetts 48824, USA
– name: 4 Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney St, Boston, Massachusetts 02115, USA
– name: 1 Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA
Author_xml – sequence: 1
  givenname: Martin J
  surname: Aryee
  fullname: Aryee, Martin J
  organization: Department of Biostatistics, Harvard School of Public Health
– sequence: 2
  givenname: José A
  surname: Gutiérrez-Pabello
  fullname: Gutiérrez-Pabello, José A
  organization: Department of Immunology and Infectious Diseases, Harvard School of Public Health
– sequence: 3
  givenname: Igor
  surname: Kramnik
  fullname: Kramnik, Igor
  organization: Department of Immunology and Infectious Diseases, Harvard School of Public Health
– sequence: 4
  givenname: Tapabrata
  surname: Maiti
  fullname: Maiti, Tapabrata
  organization: Department of Statistics and Probability, Michigan State University
– sequence: 5
  givenname: John
  surname: Quackenbush
  fullname: Quackenbush, John
  email: johnq@jimmy.harvard.edu
  organization: Department of Biostatistics, Harvard School of Public Health, Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20003283$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVAR_YA7J-Qb9JBi59PhgNRWBSpVQirL2Zq1J6mrrB3spHR_Dv-U2e6y6iKBqkRKNH7veWbeO0z2nHeYJK8FPxFCVu9FUYs0E7xMBU8L3jxLDralvUf_-8lhjLeci1ry8kWyn3HO80zmB8mvU8fsYgj-Dg3DxWCD1dCzOSwxMhjoAPQNGz3DONoFjNZ1zNi2xYButITs0CHD-yFgjNaTmGMLq4kWAiwZcTDVfgoRmYERPrCzi9k1e3e20rfg2MVGlpi-ZTPqwAdSvcZu6h_Kxy-T5y30EV9tvkfJ908Xs_Mv6dXXz5fnp1eprrgc0yI3bQlVmwte1wZ1VeYcpRaAvNFc11gYKTLT1qbiDYrGNChLKGtTzFtEhPwouVzrGg-3agjUVlgqD1Y9FHzoFITR6h6VmYNoZAZ504hizoVEUfC8lQWHCuklLbHWmtwAy5_Q91tBwdXKOrXyRq28WVXIOuJ8XHOGab5Ao2m_tImdRnZPnL1Rnb9TmeSikjUJvN0IBP9jIr_UwkaNfQ8O_RRVXdCVRcafgMxzWVVlnRHyZI3sgOa2rvV0tabHILlMYWwt1U8zUdalLCtJhOMdAmFGvB87mGJUl9-ud7FvHk-8HfVPOglQrQGUpxgDtkrb8SEV1IXt_7dL_hfxCevfWBYJ6joM6pZi6yhx_-b8Brj3GJM
CitedBy_id crossref_primary_10_1016_j_csbj_2024_06_003
crossref_primary_10_1016_j_ijbiomac_2024_131515
crossref_primary_10_1177_0962280219852721
crossref_primary_10_3390_metabo12040318
crossref_primary_10_1371_journal_pgen_1004520
crossref_primary_10_1186_s12864_015_1527_z
crossref_primary_10_1007_s11240_024_02932_0
crossref_primary_10_1093_nar_gkq488
crossref_primary_10_1016_j_biopsych_2018_08_019
crossref_primary_10_1242_dmm_043364
crossref_primary_10_1016_j_dib_2016_06_051
crossref_primary_10_1016_j_mad_2015_05_008
crossref_primary_10_1007_s11033_014_3471_4
crossref_primary_10_1016_j_stem_2015_01_017
crossref_primary_10_1038_s41598_020_57924_9
crossref_primary_10_1371_journal_pone_0293180
crossref_primary_10_1186_1750_1326_9_14
crossref_primary_10_1371_journal_pone_0039123
crossref_primary_10_1071_CP21769
crossref_primary_10_1371_journal_pone_0134540
crossref_primary_10_1371_journal_pone_0054543
crossref_primary_10_1016_j_cell_2011_03_042
crossref_primary_10_1155_2013_203681
crossref_primary_10_1038_jid_2013_375
crossref_primary_10_1038_sc_2016_183
crossref_primary_10_1016_j_csbj_2015_08_004
crossref_primary_10_1038_srep35456
crossref_primary_10_1016_j_gene_2014_04_002
crossref_primary_10_3390_genes10110939
crossref_primary_10_1371_journal_pgen_1005325
crossref_primary_10_3389_fpls_2022_836326
crossref_primary_10_5351_CSAM_2015_22_2_181
crossref_primary_10_1007_s10565_015_9294_9
crossref_primary_10_1371_journal_pone_0052172
crossref_primary_10_1186_s12859_016_1440_8
crossref_primary_10_1093_bioinformatics_btr528
crossref_primary_10_1371_journal_pone_0077656
crossref_primary_10_3390_ijms23010328
crossref_primary_10_1038_nrg3244
crossref_primary_10_1371_journal_ppat_1002027
crossref_primary_10_1016_j_ejphar_2016_04_018
crossref_primary_10_1016_j_ymeth_2014_02_001
crossref_primary_10_1152_physiolgenomics_00027_2015
crossref_primary_10_1128_IAI_05152_11
crossref_primary_10_1007_s10522_025_10203_4
crossref_primary_10_1186_1471_2164_15_1001
crossref_primary_10_3389_fonc_2022_904479
crossref_primary_10_1007_s10565_014_9281_6
crossref_primary_10_1016_j_xpro_2024_103578
crossref_primary_10_1038_s41467_022_35564_z
crossref_primary_10_1038_srep40131
crossref_primary_10_1016_j_freeradbiomed_2013_06_011
crossref_primary_10_1182_blood_2011_06_363887
crossref_primary_10_1186_1471_2164_11_643
crossref_primary_10_1016_j_genrep_2020_100941
crossref_primary_10_1038_s41598_017_00651_5
crossref_primary_10_1089_neu_2015_4306
crossref_primary_10_1186_s13073_018_0545_2
crossref_primary_10_1186_1752_0509_8_55
crossref_primary_10_4161_rna_20494
crossref_primary_10_1007_s00438_014_0978_2
crossref_primary_10_1007_s00204_020_02680_y
crossref_primary_10_7465_jkdi_2016_27_1_225
crossref_primary_10_1093_nar_gks1471
crossref_primary_10_3390_ijms221810112
crossref_primary_10_1155_2016_9181702
crossref_primary_10_1016_j_anireprosci_2018_06_001
crossref_primary_10_1111_tpj_14732
crossref_primary_10_1038_ismej_2015_36
crossref_primary_10_1097_BRS_0000000000001323
crossref_primary_10_1371_journal_pone_0079574
crossref_primary_10_1016_j_ygeno_2018_03_021
crossref_primary_10_1038_onc_2011_506
crossref_primary_10_1073_pnas_1519288112
crossref_primary_10_1186_2047_217X_3_20
crossref_primary_10_1016_j_imlet_2022_03_006
crossref_primary_10_4168_aair_2020_12_3_399
Cites_doi 10.1128/IAI.02048-05
10.1093/hmg/11.17.1977
10.1046/j.1440-1711.2000.00933.x
10.1073/pnas.0504609102
10.1016/j.immuni.2007.12.010
10.1128/IAI.69.5.3264-3270.2001
10.1093/bioinformatics/btg068
10.1093/bioinformatics/btg206
10.1073/pnas.98.1.31
10.1111/1467-9868.00346
10.1073/pnas.0506580102
10.1214/009053606000000759
10.1073/pnas.1732547100
10.1099/00221287-148-10-2959
10.4049/jimmunol.164.9.4853
10.1093/bioinformatics/btk005
10.1089/106652701753307520
10.1016/S0025-5564(01)00107-9
10.1017/S0016672301005055
10.1021/bi700235f
10.1198/016214501753382129
10.1016/j.immuni.2006.12.007
10.1081/BIP-200025656
10.1038/ng1180
10.4049/jimmunol.162.6.3504
ContentType Journal Article
Copyright Aryee et al; licensee BioMed Central Ltd. 2009 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2009 BioMed Central Ltd.
Copyright ©2009 Aryee et al; licensee BioMed Central Ltd. 2009 Aryee et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Aryee et al; licensee BioMed Central Ltd. 2009 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2009 BioMed Central Ltd.
– notice: Copyright ©2009 Aryee et al; licensee BioMed Central Ltd. 2009 Aryee et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-10-409
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList

Engineering Research Database

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 409
ExternalDocumentID oai_doaj_org_article_dba1982a39914b018e1403f840a6ea6e
10.1186/1471-2105-10-409
PMC2801687
A215758568
20003283
10_1186_1471_2105_10_409
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL059836
– fundername: NHGRI NIH HHS
  grantid: 1P50 HG004233
– fundername: NHGRI NIH HHS
  grantid: P50 HG004233
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
123
ADTOC
UNPAY
ID FETCH-LOGICAL-c608t-43df5a6f31077dec6530e8c1ae09c0c7e4d812df7d609e19d9e85a57d4bfeeea3
IEDL.DBID UNPAY
ISSN 1471-2105
IngestDate Fri Oct 03 12:53:40 EDT 2025
Sun Oct 26 04:10:41 EDT 2025
Tue Sep 30 16:58:59 EDT 2025
Tue Oct 07 09:50:28 EDT 2025
Fri Sep 05 09:43:05 EDT 2025
Mon Oct 20 17:23:52 EDT 2025
Thu Oct 16 15:12:53 EDT 2025
Thu Apr 03 06:49:50 EDT 2025
Wed Oct 01 04:15:16 EDT 2025
Thu Apr 24 23:03:05 EDT 2025
Sat Sep 06 07:21:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Microarray Gene Expression Data
True Positive Rate
Time Series Structure
Differential Expression Signal
Shrinkage Procedure
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-43df5a6f31077dec6530e8c1ae09c0c7e4d812df7d609e19d9e85a57d4bfeeea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-10-409
PMID 20003283
PQID 733866572
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_dba1982a39914b018e1403f840a6ea6e
unpaywall_primary_10_1186_1471_2105_10_409
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2801687
proquest_miscellaneous_744714207
proquest_miscellaneous_733866572
gale_infotracacademiconefile_A215758568
gale_incontextgauss_ISR_A215758568
pubmed_primary_20003283
crossref_citationtrail_10_1186_1471_2105_10_409
crossref_primary_10_1186_1471_2105_10_409
springer_journals_10_1186_1471_2105_10_409
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-10
PublicationDateYYYYMMDD 2009-12-10
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-10
  day: 10
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2009
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References RD Wolfinger (3139_CR3) 2001; 8
JE Eckel (3139_CR7) 2004; 14
VK Mootha (3139_CR19) 2003; 34
CG Feng (3139_CR22) 2000; 164
TM Chu (3139_CR4) 2002; 176
C Li (3139_CR17) 2001; 98
BM Saunders (3139_CR20) 2000; 78
J Turner (3139_CR24) 2001; 69
V Gruppo (3139_CR21) 2002; 148
YC Tai (3139_CR9) 2006; 34
C Li (3139_CR16) 2001; 2
Z Bar-Joseph (3139_CR11) 2003; 100
A Subramanian (3139_CR18) 2005; 102
XL Xu (3139_CR12) 2002; 11
JG Egen (3139_CR23) 2008; 28
JD Storey (3139_CR10) 2005; 102
JD Storey (3139_CR14) 2002; 64
P Kelly (3139_CR28) 2007; 46
JL Taylor (3139_CR26) 2006; 74
T Park (3139_CR2) 2003; 19
GK Smyth (3139_CR5) 2004
B Wu (3139_CR27) 2007; 26
X Guo (3139_CR8) 2003; 19
MK Kerr (3139_CR1) 2001; 77
YC Tai (3139_CR13) 2008; 65
B Efron (3139_CR6) 2001; 96
AG Bean (3139_CR25) 1999; 162
JT Leek (3139_CR15) 2006; 22
11867082 - Math Biosci. 2002 Mar;176(1):35-51
11355567 - Genet Res. 2001 Apr;77(2):123-8
16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
12691981 - Bioinformatics. 2003 Apr 12;19(6):694-703
18261937 - Immunity. 2008 Feb;28(2):271-84
12967958 - Bioinformatics. 2003 Sep 1;19(13):1628-35
15468757 - J Biopharm Stat. 2004 Aug;14(3):647-70
16982845 - Infect Immun. 2006 Nov;74(11):6135-44
16357033 - Bioinformatics. 2006 Feb 15;22(4):507-8
11747616 - J Comput Biol. 2001;8(6):625-37
12368429 - Microbiology. 2002 Oct;148(Pt 10):2959-66
16141318 - Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42
10092807 - J Immunol. 1999 Mar 15;162(6):3504-11
10779794 - J Immunol. 2000 May 1;164(9):4853-60
17503779 - Biochemistry. 2007 Jun 12;46(23):6677-87
10947857 - Immunol Cell Biol. 2000 Aug;78(4):334-41
12934016 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10146-51
17306568 - Immunity. 2007 Feb;26(2):227-39
11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6
11292749 - Infect Immun. 2001 May;69(5):3264-70
18537947 - Biometrics. 2009 Mar;65(1):40-51
12808457 - Nat Genet. 2003 Jul;34(3):267-73
11532216 - Genome Biol. 2001;2(8):RESEARCH0032
12165559 - Hum Mol Genet. 2002 Aug 15;11(17):1977-85
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
References_xml – volume: 74
  start-page: 6135
  issue: 11
  year: 2006
  ident: 3139_CR26
  publication-title: Infection and Immunity
  doi: 10.1128/IAI.02048-05
– volume: 11
  start-page: 1977
  issue: 17
  year: 2002
  ident: 3139_CR12
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/11.17.1977
– volume: 65
  start-page: 40
  issue: 1
  year: 2008
  ident: 3139_CR13
  publication-title: Biometrics
– volume: 78
  start-page: 334
  issue: 4
  year: 2000
  ident: 3139_CR20
  publication-title: Immunology and Cell Biology
  doi: 10.1046/j.1440-1711.2000.00933.x
– volume: 102
  start-page: 12837
  issue: 36
  year: 2005
  ident: 3139_CR10
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504609102
– volume: 28
  start-page: 271
  issue: 2
  year: 2008
  ident: 3139_CR23
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.12.010
– volume: 69
  start-page: 3264
  issue: 5
  year: 2001
  ident: 3139_CR24
  publication-title: Infection and Immunity
  doi: 10.1128/IAI.69.5.3264-3270.2001
– volume: 19
  start-page: 694
  issue: 6
  year: 2003
  ident: 3139_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg068
– volume: 19
  start-page: 1628
  issue: 13
  year: 2003
  ident: 3139_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg206
– volume: 98
  start-page: 31
  issue: 1
  year: 2001
  ident: 3139_CR17
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.98.1.31
– volume: 64
  start-page: 479
  issue: 3
  year: 2002
  ident: 3139_CR14
  publication-title: J R Statist Soc B
  doi: 10.1111/1467-9868.00346
– volume: 102
  start-page: 15545
  issue: 43
  year: 2005
  ident: 3139_CR18
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506580102
– volume: 34
  start-page: 2387
  issue: 5
  year: 2006
  ident: 3139_CR9
  publication-title: Annals of Statistics
  doi: 10.1214/009053606000000759
– volume: 100
  start-page: 10146
  issue: 18
  year: 2003
  ident: 3139_CR11
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1732547100
– volume: 148
  start-page: 2959
  issue: Pt 10
  year: 2002
  ident: 3139_CR21
  publication-title: Microbiology (Reading, Engl)
  doi: 10.1099/00221287-148-10-2959
– volume: 164
  start-page: 4853
  issue: 9
  year: 2000
  ident: 3139_CR22
  publication-title: J Immunol
  doi: 10.4049/jimmunol.164.9.4853
– volume: 22
  start-page: 507
  issue: 4
  year: 2006
  ident: 3139_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btk005
– volume: 8
  start-page: 625
  issue: 6
  year: 2001
  ident: 3139_CR3
  publication-title: J Comput Biol
  doi: 10.1089/106652701753307520
– volume: 176
  start-page: 35
  issue: 1
  year: 2002
  ident: 3139_CR4
  publication-title: Mathematical biosciences
  doi: 10.1016/S0025-5564(01)00107-9
– volume: 77
  start-page: 123
  issue: 2
  year: 2001
  ident: 3139_CR1
  publication-title: Genet Res
  doi: 10.1017/S0016672301005055
– volume: 46
  start-page: 6677
  issue: 23
  year: 2007
  ident: 3139_CR28
  publication-title: Biochemistry
  doi: 10.1021/bi700235f
– volume: 96
  start-page: 1151
  issue: 456
  year: 2001
  ident: 3139_CR6
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753382129
– volume-title: Statistical applications in genetics and molecular biology
  year: 2004
  ident: 3139_CR5
– volume: 2
  start-page: RESEARCH0032
  issue: 8
  year: 2001
  ident: 3139_CR16
  publication-title: Genome Biol
– volume: 26
  start-page: 227
  issue: 2
  year: 2007
  ident: 3139_CR27
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.12.007
– volume: 14
  start-page: 647
  issue: 3
  year: 2004
  ident: 3139_CR7
  publication-title: Journal of biopharmaceutical statistics
  doi: 10.1081/BIP-200025656
– volume: 34
  start-page: 267
  issue: 3
  year: 2003
  ident: 3139_CR19
  publication-title: Nat Genet
  doi: 10.1038/ng1180
– volume: 162
  start-page: 3504
  issue: 6
  year: 1999
  ident: 3139_CR25
  publication-title: J Immunol
  doi: 10.4049/jimmunol.162.6.3504
– reference: 10779794 - J Immunol. 2000 May 1;164(9):4853-60
– reference: 11292749 - Infect Immun. 2001 May;69(5):3264-70
– reference: 11747616 - J Comput Biol. 2001;8(6):625-37
– reference: 10947857 - Immunol Cell Biol. 2000 Aug;78(4):334-41
– reference: 18537947 - Biometrics. 2009 Mar;65(1):40-51
– reference: 11867082 - Math Biosci. 2002 Mar;176(1):35-51
– reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73
– reference: 12967958 - Bioinformatics. 2003 Sep 1;19(13):1628-35
– reference: 12934016 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10146-51
– reference: 15468757 - J Biopharm Stat. 2004 Aug;14(3):647-70
– reference: 11355567 - Genet Res. 2001 Apr;77(2):123-8
– reference: 16141318 - Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42
– reference: 10092807 - J Immunol. 1999 Mar 15;162(6):3504-11
– reference: 18261937 - Immunity. 2008 Feb;28(2):271-84
– reference: 12165559 - Hum Mol Genet. 2002 Aug 15;11(17):1977-85
– reference: 11532216 - Genome Biol. 2001;2(8):RESEARCH0032
– reference: 12368429 - Microbiology. 2002 Oct;148(Pt 10):2959-66
– reference: 17306568 - Immunity. 2007 Feb;26(2):227-39
– reference: 11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6
– reference: 16357033 - Bioinformatics. 2006 Feb 15;22(4):507-8
– reference: 16982845 - Infect Immun. 2006 Nov;74(11):6135-44
– reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
– reference: 12691981 - Bioinformatics. 2003 Apr 12;19(6):694-703
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 17503779 - Biochemistry. 2007 Jun 12;46(23):6677-87
SSID ssj0017805
Score 2.2765443
Snippet Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to...
Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to...
Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to...
Abstract Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 409
SubjectTerms Algorithms
Applications software
Bayes Theorem
Bayesian statistical decision theory
Bioinformatics
Biomedical and Life Sciences
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Databases, Genetic
DNA microarrays
Gene expression
Gene Expression Profiling - methods
Life Sciences
Microarrays
Oligonucleotide Array Sequence Analysis - methods
Research Article
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlobQ9lL7rvhCl0O6CiZ-S01tSsmwL7SHNwt6ELI3TgNcOedDm5_SfdsaWTdJC9lLISRmLSPN5NJMZfcPYOyGo43sa-0bb3E9sHvi5xqhVJKGWRRiKqKCM7tdv4uIy-XKVXu21-qKasJYeuN24gc01xsWRxoM0TPIgzIAY5gqMS7QA_JD1DbJhF0y5_AEx9Tf3imToY1CTdgnKTAz6MbJACRUi7h1IDW__v9Z573j6u3Syz5_eY3e21VLvfuqy3Duizh-w-8635KN2TQ_ZLagesdttt8ndY_Z7VPFF8x8CWA7Xy0XDDsJzvYM177jF-abmRLxBjmw1513_FLQDJUesAYdfrnQWJ6v4NdXz6dVK7zh1qfdNTUUhnOpOP_LxZDblH8Y0P4KQT9y0-GRd8FnLiVXyKcxdC7HTJ-zyfDL7dOG7Dg2-EUG28ZPYFqkWBfqIUlowIo0DyEyoIRiawEhILDoQtpBWBEMIh3YIWapTaZO8AAAdP2UnVV3Bc8atyQVGX-iCRQY1FGa5gdigziXk1ljtsUGnJmUcfTl10ShVE8ZkQpFiFSmWRlCxHjvtn1i21B1HZMek-V6OSLebAYSiclBUN0HRY28JN4poNSqq25nr7XqtPn-fqhF6VhSZicxj751QUePvN9pdg8BdICauA0ne4U_hO0-JHF1BvV0rGcdEUyijIyIJrjCJAumxZy1i-7XR5awYvUqPyQMsHyz-8Jtq8aNhHo_QnxEZznnWoV45k7c-srVn_Xtxox5e_A89vGR3I9flIwxesZPNaguv0XXc5G8aK_EHq1loUA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1tb9MwELbGEAI-IN4G4U0WQsAmheXVSZAQalGngTQ-lFbaN8uxL6VSlnR9EevP4Z9ylzplhamT-im9nGrf2b7rnZ-HsTdCEON7HLpamdyNTO65ucKsVUS-SgrfF0FBFd2T7-J4GH07jU93WHu7xE7g7MrUjvikhtPyw8X58jMu-E_Ngk_FoY8brIupSwOpifnK28m5S7RSVH61HBs32E08ujLidjiJ_pYZCNC_uX5kFbR1zCuUbpxbDbz__5v4pVPs3w7LdZn1Lru9qCZq-UuV5aWT7Og-u2dDUN5Z-cwDtgPVQ3ZrRUq5fMR-dyo-bv5qAMPhbDJuQER4rpYw4y0EOZ_XnPA5KN6tRrylWcHtouToksDhwnbYorKKn1Hbn5pO1ZITmb2ra-od4dSe-pF3e4M-f98l_eirvGfV4pt1wQcr6KyS92Fkmcb2H7PhUW_w5di1RA6uFl46d6PQFLESBYaSSWJAizj0INW-Ai_Tnk4gMhhnmCIxwsvAz0wGaazixER5AQAq3GO7VV3BU8aNzgUmaRipBRot5Ke5hlBnaC3IjTbKYYetmaS2KOdEtlHKJttJhSTDSjIsPUHDOmx__cZkhfCxRbZLll_LETZ386CejqRd6tLkys_SQGHo50e556dAmIgFZtJKAH4c9pr8RhL6RkXtPSO1mM3k1x992cEAjBI4kTrsnRUqavz9WtnbEjgLBNi1Iclb_5O4NVC9R1VQL2YyCUNCM0yCLSIRjjAKvMRhT1Yeux4b3eEKMfh0WLLhyxuD3_ymGv9sAMoDDHtEijoPWq-X7cLeMrUH63VxrR2eXT_m5-xOYKk-fO8F251PF_AS48d5_qrZA_4ANTpsCA
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEBZlS2n3UPpe94UohXYXzFp-yHZvyZJlW2gPaRb2JmRpvA1k7ZAHbX5O_2lnbNkkbUkp5KSMhOUZSd94Rt8w9lZKqvieRL7RtvBjWwR-odFrlbHQaSmEDEuK6H7-Ii8u409XyZX73kF3Ybbj9yKTpwI3Tx_dkoYuM6aberfxiJJNWFae9fECYubvgpB_6bVz6DTc_H_uwFtH0O_pkX2M9JDdXVdzvfmuZ7OtY-j8Abvv8CMftAp_yG5B9YjdaStKbh6zn4OKT5vvBGA53MynDQMIL_QGlrzjD-ermhO5BoHV6pp3NVJwrc842hNw-OHSY3Gwit9Qzp5eLPSGUyV639SU-MEpt_QDH44mY_5-SOOjofGRGxZ71iWftLxXMz5uK95j8_ETdnk-mpxd-K4Kg29kkK38OLJlomWJODBNLRiZRAFkRmgIchOYFGKLIMGWqZVBDiK3OWSJTlIbFyUA6OgpO6jqCo4Yt6aQ6GEhzAoNakhkhYHI5KgtKKyx2mOnnZqUcRTlVCljphpXJZOKFKtIsdSCivXYcd9j3tJz7JEdkuZ7OSLWbhrQ3pRbp8oWWuRZqBG3ibgIRAZEaFiiG6wl4M9jb8huFFFnVJSbc63Xy6X6-HWsBoieyPuSmcfeOaGyxuc32l11wLdAbFs7kryzP4XrmoI1uoJ6vVRpFBEVYRruEYlxhnEYpB571lpsPze6gBUhcvRYumPLO5Pf_aeafmvYxUPELDLDMU86q1duW1vuebUn_br4px6e_8_IL9i90FXsEMFLdrBarOEVwsBV8brZAX4B-h5Vzg
  priority: 102
  providerName: Springer Nature
Title An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation)
URI https://link.springer.com/article/10.1186/1471-2105-10-409
https://www.ncbi.nlm.nih.gov/pubmed/20003283
https://www.proquest.com/docview/733866572
https://www.proquest.com/docview/744714207
https://pubmed.ncbi.nlm.nih.gov/PMC2801687
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-10-409
https://doaj.org/article/dba1982a39914b018e1403f840a6ea6e
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3raxNBEF9qg6gffD_iIywiaAvX3nPv4rekpNZCS0lbqJ-OfczFYHoX80Djf-N_6szdXkiqVAQhXGAzu-xOZmdnbmd-w9gbIajiexQ4WhrlhEa5jpLotYrQk3HmecLP6Eb36FgcnIeHF9HFBjupc2HUpVbDwoKGElDxzmoa-qjKcqAqCjDZHZus2vSJ2PVQyTrovpSwmiFl9DVEhNb5JmucH590PpVJRpakvq38Q7e106kE8f9dVa-cVVfjKJeXqXfYrXk-lotvcjRaOa_277Gv9UqrMJUvO_OZ2tE_roBA_k9W3Gd3rXHLO5U0PmAbkD9kN6tyl4tH7Gcn58PyJQYYDpfjYQlPwpVcwJTX4OZ8VnBC_qDJ5ANeF3BBRTTiKOzA4buN3cXBcn5JAYVyMpELjn3AwalOpsAp8PU97_bO-vxdl8bHXcB7dljsWWT8rALlGvE-DGwNs63H7Hy_d7Z34NgSEY4WbjJzwsBkkRQZGqlxbECLKHAh0Z4Et61dHUNo0IIxWWyE2wavbdqQRDKKTagyAJDBE7aZFzk8Y9xoJdD9QxvQ18hBL1EaAt1GboIy2sgm261FI9UWP53KeIzS0o9KREqMT4nx1IKMb7KtZY9xhR1yDW2XpG1JR6jfZUMxGaRWiaRGSa-d-BKNSi9UrpcAoS1m6KNLAfhpstckqynheuQUODSQ8-k0_XjaTzto2pFrKJIme2uJsgLnr6XNw0AuEBTYGiWvZT5FpUM3STKHYj5N4yAgnMTYv4YkxBWGvhs32dNqlyzXRtlhAZq1TRav7Z-1xa__kg8_l9DnPhpUIsExt-udllqdO72GtdvLvfjX_-H5vxC_YLd9W07Ec1-yzdlkDq_QRp2pFrsRX8T4TPY_tFij0zk8PcTvbu_4pI-te2KvVb79wedRmLSskvoF11OVOg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEF5CQkn7UHqm6rmUQpuAiM6V1De7ODhukofEgbwtq92Ra3Ak44PWP6f_tDPySsRtcSn4SZ4dvJpjZzyz3zD2QQia-B6HrlYmdyOTe26uMGsVka-SwvdFUFBF9_xC9K-jwU18s8OC5i5M3e3elCRrT12bdSqOfXSjLiYoNXBmRHf29qjFCo1xr9MZXA3a2gGh9DcFyb-s2ziAapz-P73xnePo91bJtl76gO0vy6lafVeTyZ0j6eQRe2hjSd5ZC_8x24HyCbu3ni65esp-dko-rv8zAMPhdjqu0UB4rlYw5w2WOF9UnIA2KHAtR7yZl4J2P-GoW8Dhh22VRWYlv6X-PTWbqRWnqfSurqgJhFOf6Wfe7Q0v-acu8Uel4z3LFldWBR-uMbAm_BJGdmTY4TN2fdIbfum7diKDq4WXLtwoNEWsRIExYZIY0CIOPUi1r8DLtKcTiAwGDKZIjPAy8DOTQRqrODFRXgCACp-z3bIq4QXjRucCsy0MuQKNEvLTXEOoM5QW5EYb5bDjRkxSW7hympoxkXXakgpJgpUkWHqCgnXYYbtiuobq2ELbJcm3dASyXT-oZiNpbVaaXPlZGiiM4fwo9_wUCNywwJRYCcCPw96T3kiC0SipT2eklvO5PL26lB2MpCgTE6nDPlqiosLfr5W99oBvgZC3Nih5o38SbZwKN6qEajmXSRgSLGESbCGJcIdR4CUOO1hrbLs3uowVYhTpsGRDlzc2v_lNOf5WI40HGL-IFHkeNVovrYubb3m1R61d_FMOL_-H8zu23x-en8mz04uvr9j9wE7y8L3XbHcxW8IbDA8X-VvrD34BxVxeJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9NAEF_kxNcH8W18LiLoHYTmuUn81taWOx-H1B7ct2VfqYVeUpoW7Z_jf-pMsglXlYqQT8nskM3Mzs5kZn9DyGvGsON7HLpKaOlGWnquFBC1ssgXSe77LMgxo_v5lB2fRR_O43P7w61qq93blGRzpgFRmop1b6nzZomnrOeDSXUhWKlBNCM8v3c1gr0NOxgM2bDLIiBef5ua_Muona2oRuz_0y5f2ph-L5rsMqe3yI1NsRTb72KxuLQ5je-Q29arpP1GDe6SK6a4R641fSa398nPfkHn9d8Do6m5WM5rXBAqxdZUtEUVp-uSIuQGurDFjLadU8ACLChomaHmhy2aBWYFvcBKPrFaiS3F_vSuKrEchGLF6Ts6GE0n9O0A-YP60ZFlCyPLnE4bNKwFnZiZbR52-ICcjUfT4bFrezO4innp2o1CnceC5eAdJok2isWhZ1LlC-NlylOJiTTIQ-eJZl5m_ExnJo1FnOhI5sYYET4kB0VZmMeEaiUZxF3gfAUKJOSnUplQZSAtI7XSwiG9VkxcWeBy7J-x4HUAkzKOguUoWLwDgnXIYTdi2YB27KEdoOQ7OoTbrm-Uqxm3q5drKfwsDQR4c34kPT81CHOYQ3AsmIHLIa9QbzgCahRYsTMTm6riJ18nvA8-FcZkLHXIG0uUl_D-StgDEPAVEINrh5K2-sdhtWMKRxSm3FQ8CUMEKEyCPSQRzDAKvMQhjxqN7eaGx7JC8Ccdkuzo8s7kd58U82815ngAngxLgedRq_XcGrtqz6c96tbFP-Xw5H84vyTXv7wf808npx-fkpuBbenhe8_IwXq1Mc_BT1zLF7Ux-AUZTGEE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ri9NAEF-OO0T94Pu0vlhE0DtIm-cm9VsrPU7B46h3cH4K-5jUYpvUtEXrf-N_6kyyKe0pJ4KQT8nssjudmZ3pzvyGsZdCUMf3KHC0NMoJjXIdJTFqFaEn48zzhJ_Rje6HE3F8Hr6_iC522GlTC6OmWo0LCxpKQMXtzTL0SV3lQF0UoOzMTFYrfSI6HhpZB8OXClYzpIq-PRGhd77L9s5PTnufqiIjS9LcVv5h2NbpVIH4_26qN86qy3mU68vUm-z6Mp_J1Tc5mWycV0e32ddmp3Waypf2cqHa-sclEMj_yYo77JZ1bnmvlsa7bAfye-xa3e5ydZ_97OV8XP2JAYbDdDau4Em4kiuY8wbcnC8KTsgftJh8xJsGLmiIJhyFHTh8t7m7OFnOp5RQKMtSrjiOAQeXWs6BU-LrG94fnA356z7Nj1rAB3ZaHFlk_KwG5ZrwIYxsD7ODB-z8aHD29tixLSIcLdxk4YSBySIpMnRS49iAFlHgQqI9CW5XuzqG0KAHY7LYCLcLXtd0IYlkFJtQZQAgg322mxc5PGLcaCUw_EMf0NfIQS9RGgLdRW6CMtrIFus0opFqi59ObTwmaRVHJSIlxqfEeHqDjG-xg_WIWY0dcgVtn6RtTUeo39WLohyl1oikRkmvm_gSnUovVK6XAKEtZhijSwH4tNgLktWUcD1yShwayeV8nr77OEx76NpRaCiSFntlibIC16-lrcNALhAU2BYlb2Q-RaNDN0kyh2I5T-MgIJzE2L-CJMQdhr4bt9jDWkvWe6PqsADd2haLt_Rna_PbX_Lx5wr63EeHSiQ452Gjaam1ufMrWHu41sW__g6P_4X4Cbvh23YinvuU7S7KJTxDH3Whnluz8wvG842b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+empirical+bayes+approach+to+estimating+differential+gene+expression+in+microarray+time-course+data%3A+BETR+%28Bayesian+Estimation+of+Temporal+Regulation%29&rft.jtitle=BMC+bioinformatics&rft.au=Aryee%2C+Martin+J&rft.au=Guti%C3%A9rrez-Pabello%2C+Jos%C3%A9+A&rft.au=Kramnik%2C+Igor&rft.au=Maiti%2C+Tapabrata&rft.date=2009-12-10&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=10&rft.spage=409&rft_id=info:doi/10.1186%2F1471-2105-10-409&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon