An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation)
Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as in...
Saved in:
| Published in | BMC bioinformatics Vol. 10; no. 1; p. 409 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
10.12.2009
BioMed Central Ltd BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-10-409 |
Cover
| Abstract | Background
Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power.
Results
We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated.
Conclusions
Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package
betr
is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from
http://www.tm4.org/mev.html
. |
|---|---|
| AbstractList | Background
Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power.
Results
We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated.
Conclusions
Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package
betr
is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from
http://www.tm4.org/mev.html
. Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power. Results We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated. Conclusions Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power. We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated. Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html. Abstract Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power. Results We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated. Conclusions Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html. Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power. We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated. Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html. Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power.BACKGROUNDMicroarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power.We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated.RESULTSWe present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated.Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html.CONCLUSIONSBased on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html. |
| ArticleNumber | 409 |
| Audience | Academic |
| Author | Aryee, Martin J Quackenbush, John Gutiérrez-Pabello, José A Kramnik, Igor Maiti, Tapabrata |
| AuthorAffiliation | 4 Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney St, Boston, Massachusetts 02115, USA 2 Department of Immunology and Infectious Diseases, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA 1 Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA 3 Department of Statistics and Probability, Michigan State University, East Lansing, Massachusetts 48824, USA |
| AuthorAffiliation_xml | – name: 2 Department of Immunology and Infectious Diseases, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA – name: 3 Department of Statistics and Probability, Michigan State University, East Lansing, Massachusetts 48824, USA – name: 4 Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney St, Boston, Massachusetts 02115, USA – name: 1 Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA |
| Author_xml | – sequence: 1 givenname: Martin J surname: Aryee fullname: Aryee, Martin J organization: Department of Biostatistics, Harvard School of Public Health – sequence: 2 givenname: José A surname: Gutiérrez-Pabello fullname: Gutiérrez-Pabello, José A organization: Department of Immunology and Infectious Diseases, Harvard School of Public Health – sequence: 3 givenname: Igor surname: Kramnik fullname: Kramnik, Igor organization: Department of Immunology and Infectious Diseases, Harvard School of Public Health – sequence: 4 givenname: Tapabrata surname: Maiti fullname: Maiti, Tapabrata organization: Department of Statistics and Probability, Michigan State University – sequence: 5 givenname: John surname: Quackenbush fullname: Quackenbush, John email: johnq@jimmy.harvard.edu organization: Department of Biostatistics, Harvard School of Public Health, Department of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20003283$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAQjVAR_YA7J-Qb9JBi59PhgNRWBSpVQirL2Zq1J6mrrB3spHR_Dv-U2e6y6iKBqkRKNH7veWbeO0z2nHeYJK8FPxFCVu9FUYs0E7xMBU8L3jxLDralvUf_-8lhjLeci1ry8kWyn3HO80zmB8mvU8fsYgj-Dg3DxWCD1dCzOSwxMhjoAPQNGz3DONoFjNZ1zNi2xYButITs0CHD-yFgjNaTmGMLq4kWAiwZcTDVfgoRmYERPrCzi9k1e3e20rfg2MVGlpi-ZTPqwAdSvcZu6h_Kxy-T5y30EV9tvkfJ908Xs_Mv6dXXz5fnp1eprrgc0yI3bQlVmwte1wZ1VeYcpRaAvNFc11gYKTLT1qbiDYrGNChLKGtTzFtEhPwouVzrGg-3agjUVlgqD1Y9FHzoFITR6h6VmYNoZAZ504hizoVEUfC8lQWHCuklLbHWmtwAy5_Q91tBwdXKOrXyRq28WVXIOuJ8XHOGab5Ao2m_tImdRnZPnL1Rnb9TmeSikjUJvN0IBP9jIr_UwkaNfQ8O_RRVXdCVRcafgMxzWVVlnRHyZI3sgOa2rvV0tabHILlMYWwt1U8zUdalLCtJhOMdAmFGvB87mGJUl9-ud7FvHk-8HfVPOglQrQGUpxgDtkrb8SEV1IXt_7dL_hfxCevfWBYJ6joM6pZi6yhx_-b8Brj3GJM |
| CitedBy_id | crossref_primary_10_1016_j_csbj_2024_06_003 crossref_primary_10_1016_j_ijbiomac_2024_131515 crossref_primary_10_1177_0962280219852721 crossref_primary_10_3390_metabo12040318 crossref_primary_10_1371_journal_pgen_1004520 crossref_primary_10_1186_s12864_015_1527_z crossref_primary_10_1007_s11240_024_02932_0 crossref_primary_10_1093_nar_gkq488 crossref_primary_10_1016_j_biopsych_2018_08_019 crossref_primary_10_1242_dmm_043364 crossref_primary_10_1016_j_dib_2016_06_051 crossref_primary_10_1016_j_mad_2015_05_008 crossref_primary_10_1007_s11033_014_3471_4 crossref_primary_10_1016_j_stem_2015_01_017 crossref_primary_10_1038_s41598_020_57924_9 crossref_primary_10_1371_journal_pone_0293180 crossref_primary_10_1186_1750_1326_9_14 crossref_primary_10_1371_journal_pone_0039123 crossref_primary_10_1071_CP21769 crossref_primary_10_1371_journal_pone_0134540 crossref_primary_10_1371_journal_pone_0054543 crossref_primary_10_1016_j_cell_2011_03_042 crossref_primary_10_1155_2013_203681 crossref_primary_10_1038_jid_2013_375 crossref_primary_10_1038_sc_2016_183 crossref_primary_10_1016_j_csbj_2015_08_004 crossref_primary_10_1038_srep35456 crossref_primary_10_1016_j_gene_2014_04_002 crossref_primary_10_3390_genes10110939 crossref_primary_10_1371_journal_pgen_1005325 crossref_primary_10_3389_fpls_2022_836326 crossref_primary_10_5351_CSAM_2015_22_2_181 crossref_primary_10_1007_s10565_015_9294_9 crossref_primary_10_1371_journal_pone_0052172 crossref_primary_10_1186_s12859_016_1440_8 crossref_primary_10_1093_bioinformatics_btr528 crossref_primary_10_1371_journal_pone_0077656 crossref_primary_10_3390_ijms23010328 crossref_primary_10_1038_nrg3244 crossref_primary_10_1371_journal_ppat_1002027 crossref_primary_10_1016_j_ejphar_2016_04_018 crossref_primary_10_1016_j_ymeth_2014_02_001 crossref_primary_10_1152_physiolgenomics_00027_2015 crossref_primary_10_1128_IAI_05152_11 crossref_primary_10_1007_s10522_025_10203_4 crossref_primary_10_1186_1471_2164_15_1001 crossref_primary_10_3389_fonc_2022_904479 crossref_primary_10_1007_s10565_014_9281_6 crossref_primary_10_1016_j_xpro_2024_103578 crossref_primary_10_1038_s41467_022_35564_z crossref_primary_10_1038_srep40131 crossref_primary_10_1016_j_freeradbiomed_2013_06_011 crossref_primary_10_1182_blood_2011_06_363887 crossref_primary_10_1186_1471_2164_11_643 crossref_primary_10_1016_j_genrep_2020_100941 crossref_primary_10_1038_s41598_017_00651_5 crossref_primary_10_1089_neu_2015_4306 crossref_primary_10_1186_s13073_018_0545_2 crossref_primary_10_1186_1752_0509_8_55 crossref_primary_10_4161_rna_20494 crossref_primary_10_1007_s00438_014_0978_2 crossref_primary_10_1007_s00204_020_02680_y crossref_primary_10_7465_jkdi_2016_27_1_225 crossref_primary_10_1093_nar_gks1471 crossref_primary_10_3390_ijms221810112 crossref_primary_10_1155_2016_9181702 crossref_primary_10_1016_j_anireprosci_2018_06_001 crossref_primary_10_1111_tpj_14732 crossref_primary_10_1038_ismej_2015_36 crossref_primary_10_1097_BRS_0000000000001323 crossref_primary_10_1371_journal_pone_0079574 crossref_primary_10_1016_j_ygeno_2018_03_021 crossref_primary_10_1038_onc_2011_506 crossref_primary_10_1073_pnas_1519288112 crossref_primary_10_1186_2047_217X_3_20 crossref_primary_10_1016_j_imlet_2022_03_006 crossref_primary_10_4168_aair_2020_12_3_399 |
| Cites_doi | 10.1128/IAI.02048-05 10.1093/hmg/11.17.1977 10.1046/j.1440-1711.2000.00933.x 10.1073/pnas.0504609102 10.1016/j.immuni.2007.12.010 10.1128/IAI.69.5.3264-3270.2001 10.1093/bioinformatics/btg068 10.1093/bioinformatics/btg206 10.1073/pnas.98.1.31 10.1111/1467-9868.00346 10.1073/pnas.0506580102 10.1214/009053606000000759 10.1073/pnas.1732547100 10.1099/00221287-148-10-2959 10.4049/jimmunol.164.9.4853 10.1093/bioinformatics/btk005 10.1089/106652701753307520 10.1016/S0025-5564(01)00107-9 10.1017/S0016672301005055 10.1021/bi700235f 10.1198/016214501753382129 10.1016/j.immuni.2006.12.007 10.1081/BIP-200025656 10.1038/ng1180 10.4049/jimmunol.162.6.3504 |
| ContentType | Journal Article |
| Copyright | Aryee et al; licensee BioMed Central Ltd. 2009 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2009 BioMed Central Ltd. Copyright ©2009 Aryee et al; licensee BioMed Central Ltd. 2009 Aryee et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Aryee et al; licensee BioMed Central Ltd. 2009 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2009 BioMed Central Ltd. – notice: Copyright ©2009 Aryee et al; licensee BioMed Central Ltd. 2009 Aryee et al; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 7QO 8FD FR3 P64 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2105-10-409 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 409 |
| ExternalDocumentID | oai_doaj_org_article_dba1982a39914b018e1403f840a6ea6e 10.1186/1471-2105-10-409 PMC2801687 A215758568 20003283 10_1186_1471_2105_10_409 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL059836 – fundername: NHGRI NIH HHS grantid: 1P50 HG004233 – fundername: NHGRI NIH HHS grantid: P50 HG004233 |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM 123 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c608t-43df5a6f31077dec6530e8c1ae09c0c7e4d812df7d609e19d9e85a57d4bfeeea3 |
| IEDL.DBID | UNPAY |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:53:40 EDT 2025 Sun Oct 26 04:10:41 EDT 2025 Tue Sep 30 16:58:59 EDT 2025 Tue Oct 07 09:50:28 EDT 2025 Fri Sep 05 09:43:05 EDT 2025 Mon Oct 20 17:23:52 EDT 2025 Thu Oct 16 15:12:53 EDT 2025 Thu Apr 03 06:49:50 EDT 2025 Wed Oct 01 04:15:16 EDT 2025 Thu Apr 24 23:03:05 EDT 2025 Sat Sep 06 07:21:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Microarray Gene Expression Data True Positive Rate Time Series Structure Differential Expression Signal Shrinkage Procedure |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c608t-43df5a6f31077dec6530e8c1ae09c0c7e4d812df7d609e19d9e85a57d4bfeeea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-10-409 |
| PMID | 20003283 |
| PQID | 733866572 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dba1982a39914b018e1403f840a6ea6e unpaywall_primary_10_1186_1471_2105_10_409 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2801687 proquest_miscellaneous_744714207 proquest_miscellaneous_733866572 gale_infotracacademiconefile_A215758568 gale_incontextgauss_ISR_A215758568 pubmed_primary_20003283 crossref_citationtrail_10_1186_1471_2105_10_409 crossref_primary_10_1186_1471_2105_10_409 springer_journals_10_1186_1471_2105_10_409 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-12-10 |
| PublicationDateYYYYMMDD | 2009-12-10 |
| PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-10 day: 10 |
| PublicationDecade | 2000 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2009 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | RD Wolfinger (3139_CR3) 2001; 8 JE Eckel (3139_CR7) 2004; 14 VK Mootha (3139_CR19) 2003; 34 CG Feng (3139_CR22) 2000; 164 TM Chu (3139_CR4) 2002; 176 C Li (3139_CR17) 2001; 98 BM Saunders (3139_CR20) 2000; 78 J Turner (3139_CR24) 2001; 69 V Gruppo (3139_CR21) 2002; 148 YC Tai (3139_CR9) 2006; 34 C Li (3139_CR16) 2001; 2 Z Bar-Joseph (3139_CR11) 2003; 100 A Subramanian (3139_CR18) 2005; 102 XL Xu (3139_CR12) 2002; 11 JG Egen (3139_CR23) 2008; 28 JD Storey (3139_CR10) 2005; 102 JD Storey (3139_CR14) 2002; 64 P Kelly (3139_CR28) 2007; 46 JL Taylor (3139_CR26) 2006; 74 T Park (3139_CR2) 2003; 19 GK Smyth (3139_CR5) 2004 B Wu (3139_CR27) 2007; 26 X Guo (3139_CR8) 2003; 19 MK Kerr (3139_CR1) 2001; 77 YC Tai (3139_CR13) 2008; 65 B Efron (3139_CR6) 2001; 96 AG Bean (3139_CR25) 1999; 162 JT Leek (3139_CR15) 2006; 22 11867082 - Math Biosci. 2002 Mar;176(1):35-51 11355567 - Genet Res. 2001 Apr;77(2):123-8 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3 12691981 - Bioinformatics. 2003 Apr 12;19(6):694-703 18261937 - Immunity. 2008 Feb;28(2):271-84 12967958 - Bioinformatics. 2003 Sep 1;19(13):1628-35 15468757 - J Biopharm Stat. 2004 Aug;14(3):647-70 16982845 - Infect Immun. 2006 Nov;74(11):6135-44 16357033 - Bioinformatics. 2006 Feb 15;22(4):507-8 11747616 - J Comput Biol. 2001;8(6):625-37 12368429 - Microbiology. 2002 Oct;148(Pt 10):2959-66 16141318 - Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42 10092807 - J Immunol. 1999 Mar 15;162(6):3504-11 10779794 - J Immunol. 2000 May 1;164(9):4853-60 17503779 - Biochemistry. 2007 Jun 12;46(23):6677-87 10947857 - Immunol Cell Biol. 2000 Aug;78(4):334-41 12934016 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10146-51 17306568 - Immunity. 2007 Feb;26(2):227-39 11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 11292749 - Infect Immun. 2001 May;69(5):3264-70 18537947 - Biometrics. 2009 Mar;65(1):40-51 12808457 - Nat Genet. 2003 Jul;34(3):267-73 11532216 - Genome Biol. 2001;2(8):RESEARCH0032 12165559 - Hum Mol Genet. 2002 Aug 15;11(17):1977-85 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 |
| References_xml | – volume: 74 start-page: 6135 issue: 11 year: 2006 ident: 3139_CR26 publication-title: Infection and Immunity doi: 10.1128/IAI.02048-05 – volume: 11 start-page: 1977 issue: 17 year: 2002 ident: 3139_CR12 publication-title: Hum Mol Genet doi: 10.1093/hmg/11.17.1977 – volume: 65 start-page: 40 issue: 1 year: 2008 ident: 3139_CR13 publication-title: Biometrics – volume: 78 start-page: 334 issue: 4 year: 2000 ident: 3139_CR20 publication-title: Immunology and Cell Biology doi: 10.1046/j.1440-1711.2000.00933.x – volume: 102 start-page: 12837 issue: 36 year: 2005 ident: 3139_CR10 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504609102 – volume: 28 start-page: 271 issue: 2 year: 2008 ident: 3139_CR23 publication-title: Immunity doi: 10.1016/j.immuni.2007.12.010 – volume: 69 start-page: 3264 issue: 5 year: 2001 ident: 3139_CR24 publication-title: Infection and Immunity doi: 10.1128/IAI.69.5.3264-3270.2001 – volume: 19 start-page: 694 issue: 6 year: 2003 ident: 3139_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg068 – volume: 19 start-page: 1628 issue: 13 year: 2003 ident: 3139_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg206 – volume: 98 start-page: 31 issue: 1 year: 2001 ident: 3139_CR17 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.98.1.31 – volume: 64 start-page: 479 issue: 3 year: 2002 ident: 3139_CR14 publication-title: J R Statist Soc B doi: 10.1111/1467-9868.00346 – volume: 102 start-page: 15545 issue: 43 year: 2005 ident: 3139_CR18 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506580102 – volume: 34 start-page: 2387 issue: 5 year: 2006 ident: 3139_CR9 publication-title: Annals of Statistics doi: 10.1214/009053606000000759 – volume: 100 start-page: 10146 issue: 18 year: 2003 ident: 3139_CR11 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1732547100 – volume: 148 start-page: 2959 issue: Pt 10 year: 2002 ident: 3139_CR21 publication-title: Microbiology (Reading, Engl) doi: 10.1099/00221287-148-10-2959 – volume: 164 start-page: 4853 issue: 9 year: 2000 ident: 3139_CR22 publication-title: J Immunol doi: 10.4049/jimmunol.164.9.4853 – volume: 22 start-page: 507 issue: 4 year: 2006 ident: 3139_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btk005 – volume: 8 start-page: 625 issue: 6 year: 2001 ident: 3139_CR3 publication-title: J Comput Biol doi: 10.1089/106652701753307520 – volume: 176 start-page: 35 issue: 1 year: 2002 ident: 3139_CR4 publication-title: Mathematical biosciences doi: 10.1016/S0025-5564(01)00107-9 – volume: 77 start-page: 123 issue: 2 year: 2001 ident: 3139_CR1 publication-title: Genet Res doi: 10.1017/S0016672301005055 – volume: 46 start-page: 6677 issue: 23 year: 2007 ident: 3139_CR28 publication-title: Biochemistry doi: 10.1021/bi700235f – volume: 96 start-page: 1151 issue: 456 year: 2001 ident: 3139_CR6 publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753382129 – volume-title: Statistical applications in genetics and molecular biology year: 2004 ident: 3139_CR5 – volume: 2 start-page: RESEARCH0032 issue: 8 year: 2001 ident: 3139_CR16 publication-title: Genome Biol – volume: 26 start-page: 227 issue: 2 year: 2007 ident: 3139_CR27 publication-title: Immunity doi: 10.1016/j.immuni.2006.12.007 – volume: 14 start-page: 647 issue: 3 year: 2004 ident: 3139_CR7 publication-title: Journal of biopharmaceutical statistics doi: 10.1081/BIP-200025656 – volume: 34 start-page: 267 issue: 3 year: 2003 ident: 3139_CR19 publication-title: Nat Genet doi: 10.1038/ng1180 – volume: 162 start-page: 3504 issue: 6 year: 1999 ident: 3139_CR25 publication-title: J Immunol doi: 10.4049/jimmunol.162.6.3504 – reference: 10779794 - J Immunol. 2000 May 1;164(9):4853-60 – reference: 11292749 - Infect Immun. 2001 May;69(5):3264-70 – reference: 11747616 - J Comput Biol. 2001;8(6):625-37 – reference: 10947857 - Immunol Cell Biol. 2000 Aug;78(4):334-41 – reference: 18537947 - Biometrics. 2009 Mar;65(1):40-51 – reference: 11867082 - Math Biosci. 2002 Mar;176(1):35-51 – reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73 – reference: 12967958 - Bioinformatics. 2003 Sep 1;19(13):1628-35 – reference: 12934016 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10146-51 – reference: 15468757 - J Biopharm Stat. 2004 Aug;14(3):647-70 – reference: 11355567 - Genet Res. 2001 Apr;77(2):123-8 – reference: 16141318 - Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42 – reference: 10092807 - J Immunol. 1999 Mar 15;162(6):3504-11 – reference: 18261937 - Immunity. 2008 Feb;28(2):271-84 – reference: 12165559 - Hum Mol Genet. 2002 Aug 15;11(17):1977-85 – reference: 11532216 - Genome Biol. 2001;2(8):RESEARCH0032 – reference: 12368429 - Microbiology. 2002 Oct;148(Pt 10):2959-66 – reference: 17306568 - Immunity. 2007 Feb;26(2):227-39 – reference: 11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 – reference: 16357033 - Bioinformatics. 2006 Feb 15;22(4):507-8 – reference: 16982845 - Infect Immun. 2006 Nov;74(11):6135-44 – reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3 – reference: 12691981 - Bioinformatics. 2003 Apr 12;19(6):694-703 – reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 – reference: 17503779 - Biochemistry. 2007 Jun 12;46(23):6677-87 |
| SSID | ssj0017805 |
| Score | 2.2765443 |
| Snippet | Background
Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to... Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to... Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to... Abstract Background Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 409 |
| SubjectTerms | Algorithms Applications software Bayes Theorem Bayesian statistical decision theory Bioinformatics Biomedical and Life Sciences Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Databases, Genetic DNA microarrays Gene expression Gene Expression Profiling - methods Life Sciences Microarrays Oligonucleotide Array Sequence Analysis - methods Research Article |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlobQ9lL7rvhCl0O6CiZ-S01tSsmwL7SHNwt6ELI3TgNcOedDm5_SfdsaWTdJC9lLISRmLSPN5NJMZfcPYOyGo43sa-0bb3E9sHvi5xqhVJKGWRRiKqKCM7tdv4uIy-XKVXu21-qKasJYeuN24gc01xsWRxoM0TPIgzIAY5gqMS7QA_JD1DbJhF0y5_AEx9Tf3imToY1CTdgnKTAz6MbJACRUi7h1IDW__v9Z573j6u3Syz5_eY3e21VLvfuqy3Duizh-w-8635KN2TQ_ZLagesdttt8ndY_Z7VPFF8x8CWA7Xy0XDDsJzvYM177jF-abmRLxBjmw1513_FLQDJUesAYdfrnQWJ6v4NdXz6dVK7zh1qfdNTUUhnOpOP_LxZDblH8Y0P4KQT9y0-GRd8FnLiVXyKcxdC7HTJ-zyfDL7dOG7Dg2-EUG28ZPYFqkWBfqIUlowIo0DyEyoIRiawEhILDoQtpBWBEMIh3YIWapTaZO8AAAdP2UnVV3Bc8atyQVGX-iCRQY1FGa5gdigziXk1ljtsUGnJmUcfTl10ShVE8ZkQpFiFSmWRlCxHjvtn1i21B1HZMek-V6OSLebAYSiclBUN0HRY28JN4poNSqq25nr7XqtPn-fqhF6VhSZicxj751QUePvN9pdg8BdICauA0ne4U_hO0-JHF1BvV0rGcdEUyijIyIJrjCJAumxZy1i-7XR5awYvUqPyQMsHyz-8Jtq8aNhHo_QnxEZznnWoV45k7c-srVn_Xtxox5e_A89vGR3I9flIwxesZPNaguv0XXc5G8aK_EHq1loUA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1tb9MwELbGEAI-IN4G4U0WQsAmheXVSZAQalGngTQ-lFbaN8uxL6VSlnR9EevP4Z9ylzplhamT-im9nGrf2b7rnZ-HsTdCEON7HLpamdyNTO65ucKsVUS-SgrfF0FBFd2T7-J4GH07jU93WHu7xE7g7MrUjvikhtPyw8X58jMu-E_Ngk_FoY8brIupSwOpifnK28m5S7RSVH61HBs32E08ujLidjiJ_pYZCNC_uX5kFbR1zCuUbpxbDbz__5v4pVPs3w7LdZn1Lru9qCZq-UuV5aWT7Og-u2dDUN5Z-cwDtgPVQ3ZrRUq5fMR-dyo-bv5qAMPhbDJuQER4rpYw4y0EOZ_XnPA5KN6tRrylWcHtouToksDhwnbYorKKn1Hbn5pO1ZITmb2ra-od4dSe-pF3e4M-f98l_eirvGfV4pt1wQcr6KyS92Fkmcb2H7PhUW_w5di1RA6uFl46d6PQFLESBYaSSWJAizj0INW-Ai_Tnk4gMhhnmCIxwsvAz0wGaazixER5AQAq3GO7VV3BU8aNzgUmaRipBRot5Ke5hlBnaC3IjTbKYYetmaS2KOdEtlHKJttJhSTDSjIsPUHDOmx__cZkhfCxRbZLll_LETZ386CejqRd6tLkys_SQGHo50e556dAmIgFZtJKAH4c9pr8RhL6RkXtPSO1mM3k1x992cEAjBI4kTrsnRUqavz9WtnbEjgLBNi1Iclb_5O4NVC9R1VQL2YyCUNCM0yCLSIRjjAKvMRhT1Yeux4b3eEKMfh0WLLhyxuD3_ymGv9sAMoDDHtEijoPWq-X7cLeMrUH63VxrR2eXT_m5-xOYKk-fO8F251PF_AS48d5_qrZA_4ANTpsCA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEBZlS2n3UPpe94UohXYXzFp-yHZvyZJlW2gPaRb2JmRpvA1k7ZAHbX5O_2lnbNkkbUkp5KSMhOUZSd94Rt8w9lZKqvieRL7RtvBjWwR-odFrlbHQaSmEDEuK6H7-Ii8u409XyZX73kF3Ybbj9yKTpwI3Tx_dkoYuM6aberfxiJJNWFae9fECYubvgpB_6bVz6DTc_H_uwFtH0O_pkX2M9JDdXVdzvfmuZ7OtY-j8Abvv8CMftAp_yG5B9YjdaStKbh6zn4OKT5vvBGA53MynDQMIL_QGlrzjD-ermhO5BoHV6pp3NVJwrc842hNw-OHSY3Gwit9Qzp5eLPSGUyV639SU-MEpt_QDH44mY_5-SOOjofGRGxZ71iWftLxXMz5uK95j8_ETdnk-mpxd-K4Kg29kkK38OLJlomWJODBNLRiZRAFkRmgIchOYFGKLIMGWqZVBDiK3OWSJTlIbFyUA6OgpO6jqCo4Yt6aQ6GEhzAoNakhkhYHI5KgtKKyx2mOnnZqUcRTlVCljphpXJZOKFKtIsdSCivXYcd9j3tJz7JEdkuZ7OSLWbhrQ3pRbp8oWWuRZqBG3ibgIRAZEaFiiG6wl4M9jb8huFFFnVJSbc63Xy6X6-HWsBoieyPuSmcfeOaGyxuc32l11wLdAbFs7kryzP4XrmoI1uoJ6vVRpFBEVYRruEYlxhnEYpB571lpsPze6gBUhcvRYumPLO5Pf_aeafmvYxUPELDLDMU86q1duW1vuebUn_br4px6e_8_IL9i90FXsEMFLdrBarOEVwsBV8brZAX4B-h5Vzg priority: 102 providerName: Springer Nature |
| Title | An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation) |
| URI | https://link.springer.com/article/10.1186/1471-2105-10-409 https://www.ncbi.nlm.nih.gov/pubmed/20003283 https://www.proquest.com/docview/733866572 https://www.proquest.com/docview/744714207 https://pubmed.ncbi.nlm.nih.gov/PMC2801687 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-10-409 https://doaj.org/article/dba1982a39914b018e1403f840a6ea6e |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3raxNBEF9qg6gffD_iIywiaAvX3nPv4rekpNZCS0lbqJ-OfczFYHoX80Djf-N_6szdXkiqVAQhXGAzu-xOZmdnbmd-w9gbIajiexQ4WhrlhEa5jpLotYrQk3HmecLP6Eb36FgcnIeHF9HFBjupc2HUpVbDwoKGElDxzmoa-qjKcqAqCjDZHZus2vSJ2PVQyTrovpSwmiFl9DVEhNb5JmucH590PpVJRpakvq38Q7e106kE8f9dVa-cVVfjKJeXqXfYrXk-lotvcjRaOa_277Gv9UqrMJUvO_OZ2tE_roBA_k9W3Gd3rXHLO5U0PmAbkD9kN6tyl4tH7Gcn58PyJQYYDpfjYQlPwpVcwJTX4OZ8VnBC_qDJ5ANeF3BBRTTiKOzA4buN3cXBcn5JAYVyMpELjn3AwalOpsAp8PU97_bO-vxdl8bHXcB7dljsWWT8rALlGvE-DGwNs63H7Hy_d7Z34NgSEY4WbjJzwsBkkRQZGqlxbECLKHAh0Z4Et61dHUNo0IIxWWyE2wavbdqQRDKKTagyAJDBE7aZFzk8Y9xoJdD9QxvQ18hBL1EaAt1GboIy2sgm261FI9UWP53KeIzS0o9KREqMT4nx1IKMb7KtZY9xhR1yDW2XpG1JR6jfZUMxGaRWiaRGSa-d-BKNSi9UrpcAoS1m6KNLAfhpstckqynheuQUODSQ8-k0_XjaTzto2pFrKJIme2uJsgLnr6XNw0AuEBTYGiWvZT5FpUM3STKHYj5N4yAgnMTYv4YkxBWGvhs32dNqlyzXRtlhAZq1TRav7Z-1xa__kg8_l9DnPhpUIsExt-udllqdO72GtdvLvfjX_-H5vxC_YLd9W07Ec1-yzdlkDq_QRp2pFrsRX8T4TPY_tFij0zk8PcTvbu_4pI-te2KvVb79wedRmLSskvoF11OVOg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEF5CQkn7UHqm6rmUQpuAiM6V1De7ODhukofEgbwtq92Ra3Ak44PWP6f_tDPySsRtcSn4SZ4dvJpjZzyz3zD2QQia-B6HrlYmdyOTe26uMGsVka-SwvdFUFBF9_xC9K-jwU18s8OC5i5M3e3elCRrT12bdSqOfXSjLiYoNXBmRHf29qjFCo1xr9MZXA3a2gGh9DcFyb-s2ziAapz-P73xnePo91bJtl76gO0vy6lafVeTyZ0j6eQRe2hjSd5ZC_8x24HyCbu3ni65esp-dko-rv8zAMPhdjqu0UB4rlYw5w2WOF9UnIA2KHAtR7yZl4J2P-GoW8Dhh22VRWYlv6X-PTWbqRWnqfSurqgJhFOf6Wfe7Q0v-acu8Uel4z3LFldWBR-uMbAm_BJGdmTY4TN2fdIbfum7diKDq4WXLtwoNEWsRIExYZIY0CIOPUi1r8DLtKcTiAwGDKZIjPAy8DOTQRqrODFRXgCACp-z3bIq4QXjRucCsy0MuQKNEvLTXEOoM5QW5EYb5bDjRkxSW7hympoxkXXakgpJgpUkWHqCgnXYYbtiuobq2ELbJcm3dASyXT-oZiNpbVaaXPlZGiiM4fwo9_wUCNywwJRYCcCPw96T3kiC0SipT2eklvO5PL26lB2MpCgTE6nDPlqiosLfr5W99oBvgZC3Nih5o38SbZwKN6qEajmXSRgSLGESbCGJcIdR4CUOO1hrbLs3uowVYhTpsGRDlzc2v_lNOf5WI40HGL-IFHkeNVovrYubb3m1R61d_FMOL_-H8zu23x-en8mz04uvr9j9wE7y8L3XbHcxW8IbDA8X-VvrD34BxVxeJw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9NAEF_kxNcH8W18LiLoHYTmuUn81taWOx-H1B7ct2VfqYVeUpoW7Z_jf-pMsglXlYqQT8nskM3Mzs5kZn9DyGvGsON7HLpKaOlGWnquFBC1ssgXSe77LMgxo_v5lB2fRR_O43P7w61qq93blGRzpgFRmop1b6nzZomnrOeDSXUhWKlBNCM8v3c1gr0NOxgM2bDLIiBef5ua_Muona2oRuz_0y5f2ph-L5rsMqe3yI1NsRTb72KxuLQ5je-Q29arpP1GDe6SK6a4R641fSa398nPfkHn9d8Do6m5WM5rXBAqxdZUtEUVp-uSIuQGurDFjLadU8ACLChomaHmhy2aBWYFvcBKPrFaiS3F_vSuKrEchGLF6Ts6GE0n9O0A-YP60ZFlCyPLnE4bNKwFnZiZbR52-ICcjUfT4bFrezO4innp2o1CnceC5eAdJok2isWhZ1LlC-NlylOJiTTIQ-eJZl5m_ExnJo1FnOhI5sYYET4kB0VZmMeEaiUZxF3gfAUKJOSnUplQZSAtI7XSwiG9VkxcWeBy7J-x4HUAkzKOguUoWLwDgnXIYTdi2YB27KEdoOQ7OoTbrm-Uqxm3q5drKfwsDQR4c34kPT81CHOYQ3AsmIHLIa9QbzgCahRYsTMTm6riJ18nvA8-FcZkLHXIG0uUl_D-StgDEPAVEINrh5K2-sdhtWMKRxSm3FQ8CUMEKEyCPSQRzDAKvMQhjxqN7eaGx7JC8Ccdkuzo8s7kd58U82815ngAngxLgedRq_XcGrtqz6c96tbFP-Xw5H84vyTXv7wf808npx-fkpuBbenhe8_IwXq1Mc_BT1zLF7Ux-AUZTGEE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ri9NAEF-OO0T94Pu0vlhE0DtIm-cm9VsrPU7B46h3cH4K-5jUYpvUtEXrf-N_6kyyKe0pJ4KQT8nssjudmZ3pzvyGsZdCUMf3KHC0NMoJjXIdJTFqFaEn48zzhJ_Rje6HE3F8Hr6_iC522GlTC6OmWo0LCxpKQMXtzTL0SV3lQF0UoOzMTFYrfSI6HhpZB8OXClYzpIq-PRGhd77L9s5PTnufqiIjS9LcVv5h2NbpVIH4_26qN86qy3mU68vUm-z6Mp_J1Tc5mWycV0e32ddmp3Waypf2cqHa-sclEMj_yYo77JZ1bnmvlsa7bAfye-xa3e5ydZ_97OV8XP2JAYbDdDau4Em4kiuY8wbcnC8KTsgftJh8xJsGLmiIJhyFHTh8t7m7OFnOp5RQKMtSrjiOAQeXWs6BU-LrG94fnA356z7Nj1rAB3ZaHFlk_KwG5ZrwIYxsD7ODB-z8aHD29tixLSIcLdxk4YSBySIpMnRS49iAFlHgQqI9CW5XuzqG0KAHY7LYCLcLXtd0IYlkFJtQZQAgg322mxc5PGLcaCUw_EMf0NfIQS9RGgLdRW6CMtrIFus0opFqi59ObTwmaRVHJSIlxqfEeHqDjG-xg_WIWY0dcgVtn6RtTUeo39WLohyl1oikRkmvm_gSnUovVK6XAKEtZhijSwH4tNgLktWUcD1yShwayeV8nr77OEx76NpRaCiSFntlibIC16-lrcNALhAU2BYlb2Q-RaNDN0kyh2I5T-MgIJzE2L-CJMQdhr4bt9jDWkvWe6PqsADd2haLt_Rna_PbX_Lx5wr63EeHSiQ452Gjaam1ufMrWHu41sW__g6P_4X4Cbvh23YinvuU7S7KJTxDH3Whnluz8wvG842b |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+empirical+bayes+approach+to+estimating+differential+gene+expression+in+microarray+time-course+data%3A+BETR+%28Bayesian+Estimation+of+Temporal+Regulation%29&rft.jtitle=BMC+bioinformatics&rft.au=Aryee%2C+Martin+J&rft.au=Guti%C3%A9rrez-Pabello%2C+Jos%C3%A9+A&rft.au=Kramnik%2C+Igor&rft.au=Maiti%2C+Tapabrata&rft.date=2009-12-10&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=10&rft.spage=409&rft_id=info:doi/10.1186%2F1471-2105-10-409&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |