Whole-orbit radiomics: machine learning-based multi- and fused- region radiomics signatures for intravenous glucocorticoid response prediction in thyroid eye disease

Background Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It wou...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational medicine Vol. 22; no. 1; pp. 56 - 14
Main Authors Zhang, Haiyang, Jiang, Mengda, Chan, Hoi Chi, Zhang, Huijie, Xu, Jiashuo, Liu, Yuting, Zhu, Ling, Tao, Xiaofeng, Xia, Duojin, Zhou, Lei, Li, Yinwei, Sun, Jing, Song, Xuefei, Zhou, Huifang, Fan, Xianqun
Format Journal Article
LanguageEnglish
Published London BioMed Central 13.01.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1479-5876
1479-5876
DOI10.1186/s12967-023-04792-2

Cover

Abstract Background Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model. Methods In this retrospective study, we enrolled 127 patients with TED that received 4·5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms. Results The support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0·961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0·766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0·760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0·916, LR) led to different conclusions. Conclusions The WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.
AbstractList Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model.BACKGROUNDRadiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model.In this retrospective study, we enrolled 127 patients with TED that received 4·5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms.METHODSIn this retrospective study, we enrolled 127 patients with TED that received 4·5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms.The support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0·961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0·766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0·760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0·916, LR) led to different conclusions.RESULTSThe support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0·961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0·766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0·760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0·916, LR) led to different conclusions.The WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.CONCLUSIONSThe WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.
Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model. In this retrospective study, we enrolled 127 patients with TED that received 4·5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms. The support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0·961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0·766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0·760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0·916, LR) led to different conclusions. The WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.
Background Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model. Methods In this retrospective study, we enrolled 127 patients with TED that received 4·5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms. Results The support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0·961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0·766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0·760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0·916, LR) led to different conclusions. Conclusions The WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.
Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model. In this retrospective study, we enrolled 127 patients with TED that received 4*5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms. The support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0*961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0*766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0*760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0*916, LR) led to different conclusions. The WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.
Background Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model. Methods In this retrospective study, we enrolled 127 patients with TED that received 4*5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms. Results The support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0*961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0*766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0*760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0*916, LR) led to different conclusions. Conclusions The WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result. Keywords: Thyroid eye disease, MRI, Radiomics analysis, Intravenous glucocorticoid, Response prediction, Multi-organ segmentation
Abstract Background Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model. Methods In this retrospective study, we enrolled 127 patients with TED that received 4·5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms. Results The support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0·961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0·766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0·760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0·916, LR) led to different conclusions. Conclusions The WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.
BackgroundRadiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid eye disease (TED). The current region of interest segmentation contains only a single organ as extraocular muscles (EOMs). It would be of great value to consider all orbital soft tissues and construct a better prediction model.MethodsIn this retrospective study, we enrolled 127 patients with TED that received 4·5 g IVGC therapy and had complete follow-up examinations. Pre-treatment orbital T2-weighted imaging (T2WI) was acquired for all subjects. Using multi-organ segmentation (MOS) strategy, we contoured the EOMs, lacrimal gland (LG), orbital fat (OF), and optic nerve (ON), respectively. By fused-organ segmentation (FOS), we contoured the aforementioned structures as a cohesive unit. Whole-orbit radiomics (WOR) models consisting of a multi-regional radiomics (MRR) model and a fused-regional radiomics (FRR) model were further constructed using six machine learning (ML) algorithms.ResultsThe support vector machine (SVM) classifier had the best performance on the MRR model (AUC = 0·961). The MRR model outperformed the single-regional radiomics (SRR) models (highest AUC = 0·766, XGBoost on EOMs, or LR on OF) and conventional semiquantitative imaging model (highest AUC = 0·760, NaiveBayes). The application of different ML algorithms for the comparison between the MRR model and the FRR model (highest AUC = 0·916, LR) led to different conclusions.ConclusionsThe WOR models achieved a satisfactory result in IVGC response prediction of TED. It would be beneficial to include more orbital structures and implement ML algorithms while constructing radiomics models. The selection of separate or overall segmentation of orbital soft tissues has not yet attained its final optimal result.
ArticleNumber 56
Audience Academic
Author Tao, Xiaofeng
Xia, Duojin
Jiang, Mengda
Fan, Xianqun
Zhu, Ling
Song, Xuefei
Zhang, Haiyang
Zhou, Huifang
Chan, Hoi Chi
Zhou, Lei
Liu, Yuting
Li, Yinwei
Sun, Jing
Xu, Jiashuo
Zhang, Huijie
Author_xml – sequence: 1
  givenname: Haiyang
  surname: Zhang
  fullname: Zhang, Haiyang
  organization: Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
– sequence: 2
  givenname: Mengda
  surname: Jiang
  fullname: Jiang, Mengda
  organization: Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
– sequence: 3
  givenname: Hoi Chi
  surname: Chan
  fullname: Chan, Hoi Chi
  organization: Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
– sequence: 4
  givenname: Huijie
  surname: Zhang
  fullname: Zhang, Huijie
  organization: Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
– sequence: 5
  givenname: Jiashuo
  surname: Xu
  fullname: Xu, Jiashuo
  organization: Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
– sequence: 6
  givenname: Yuting
  surname: Liu
  fullname: Liu, Yuting
  organization: Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
– sequence: 7
  givenname: Ling
  surname: Zhu
  fullname: Zhu, Ling
  organization: Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
– sequence: 8
  givenname: Xiaofeng
  surname: Tao
  fullname: Tao, Xiaofeng
  organization: Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
– sequence: 9
  givenname: Duojin
  surname: Xia
  fullname: Xia, Duojin
  organization: School of Health Science and Engineering, University of Shanghai for Science and Technology
– sequence: 10
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
  organization: School of Health Science and Engineering, University of Shanghai for Science and Technology
– sequence: 11
  givenname: Yinwei
  surname: Li
  fullname: Li, Yinwei
  organization: Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
– sequence: 12
  givenname: Jing
  surname: Sun
  fullname: Sun, Jing
  organization: Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
– sequence: 13
  givenname: Xuefei
  surname: Song
  fullname: Song, Xuefei
  email: songxuefei@shsmu.edu.cn
  organization: Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
– sequence: 14
  givenname: Huifang
  orcidid: 0000-0002-8636-861X
  surname: Zhou
  fullname: Zhou, Huifang
  email: fangzzfang@sjtu.edu.cn
  organization: Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
– sequence: 15
  givenname: Xianqun
  surname: Fan
  fullname: Fan, Xianqun
  email: fanxq@sjtu.edu.cn
  organization: Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38218934$$D View this record in MEDLINE/PubMed
BookMark eNqNUstq3DAUNSWlebQ_0EURdNONU0m29eimhNBHINBNoEshS9ceBY80leyE-aD-Z-WZaSYTSihe-HJ1zrmPc0-LIx88FMVbgs8JEexjIlQyXmJalbjmkpb0RXFCclQ2grOjR_FxcZrSLca0bmr5qjiuBCVCVvVJ8fvnIgxQhti6EUVtXVg6kz6hpTYL5wENoKN3vi9bncCi5TSMrkTaW9RNOVGiCL0Lfk9FyfVej1OEhLoQkfNj1Hfgw5RQP0wmmBBHZ4KzmZpWwSdAqwjWmXHWcR6Ni3Wcn2ENyLoEufDr4mWnhwRvdv-z4ubrl5vL7-X1j29XlxfXpWFYjGXFWsmpacByzYzuqkrUrGW1qTEnpIEctrXmHWeSMwoSOkEZYMtpLZu8j7Piaitrg75Vq-iWOq5V0E5tEiH2Ss_ND6BabDFUtpUVsNo2UoiOk7YVUlRtU4HJWtVWa_Irvb7Xw_AgSLCa_VNb_1T2T238UzSzPm9Zq6ldgjUwb284aOXwxbuF6sNd1uSCSzkrfNgpxPBrgjSqpUsGhkF7yB4oKklNm4YIkqHvn0BvwxR9XvAGVWHGpNyjep3ndr4LubCZRdUFz3ckMxBn1Pk_UPmzkK8i323ncv6A8O7xpA8j_j3NDKBbgIkhpQjd_-1PPCEZN-r5snI7bnieujMs5Tq-h7jfxjOsP-h1Gjo
CitedBy_id crossref_primary_10_1007_s10792_024_03138_1
crossref_primary_10_1016_j_preteyeres_2025_101350
crossref_primary_10_3389_fendo_2024_1356055
crossref_primary_10_1007_s42979_024_03451_7
Cites_doi 10.1002/jmri.28088
10.1097/WNO.0000000000000128
10.1007/s12020-022-03167-9
10.1002/jmri.28498
10.1530/EJE-21-0479
10.1002/jmri.29114
10.1007/s00330-021-08300-2
10.1155/2017/3196059
10.1007/s11548-020-02281-1
10.1016/j.eclinm.2021.101215
10.3389/fendo.2022.1001349
10.4158/EP-2019-0133
10.1097/RLI.0000000000000722
10.1530/EJE-13-0611
10.1016/S2213-8587(16)30046-8
10.3892/etm.2016.3389
10.1109/JBHI.2022.3181791
10.1210/jc.2012-2389
10.1016/j.tem.2017.10.010
10.1167/iovs.08-2020
10.1148/radiology.172.3.2772184
10.1007/s12020-020-02367-5
10.3389/fendo.2021.614536
10.1038/s41574-019-0305-4
10.1016/j.bspc.2021.103373
10.1167/iovs.62.9.24
10.1145/2939672.2939785
10.1007/BF00994018
10.1056/NEJMra0905750
10.1089/105072502753600179
10.1016/j.eclinm.2021.101201
10.2967/jnumed.118.222893
10.3389/fendo.2022.895186
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12967-023-04792-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE




Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 14
ExternalDocumentID oai_doaj_org_article_b0d0e3db93e64d5988f71bb8983b53ec
10.1186/s12967-023-04792-2
PMC10787992
A782194300
38218934
10_1186_s12967_023_04792_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Shanghai Key Clinical Specialty, Shanghai Eye Disease Research Center
  grantid: 2022ZZ01003
– fundername: Science and Technology Commission of Shanghai
  grantid: 20DZ2270800
– fundername: Clinical Acceleration Program of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
  grantid: JYLJ202202
– fundername: Cross disciplinary Research Fund of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
  grantid: JYJC202115
– fundername: National Natural Science Foundation of China
  grantid: 81930024; 82271122
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 81930024
– fundername: National Natural Science Foundation of China
  grantid: 82271122
– fundername: Clinical Acceleration Program of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
  grantid: JYLJ202202
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
2VQ
4.4
ADRAZ
ADTOC
AHSBF
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c608t-36b972c5ed7a6caf33846b64c407115eb64b4a7f769762e9ef826e0d72495893
IEDL.DBID M48
ISSN 1479-5876
IngestDate Fri Oct 03 12:53:03 EDT 2025
Sun Oct 26 03:39:07 EDT 2025
Tue Sep 30 17:10:21 EDT 2025
Wed Oct 01 14:09:36 EDT 2025
Sat Oct 18 23:49:09 EDT 2025
Mon Oct 20 22:59:37 EDT 2025
Mon Oct 20 17:03:56 EDT 2025
Thu Apr 03 07:08:08 EDT 2025
Wed Oct 01 03:39:52 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Sat Sep 06 07:28:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Radiomics analysis
Thyroid eye disease
MRI
Multi-organ segmentation
Response prediction
Intravenous glucocorticoid
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-36b972c5ed7a6caf33846b64c407115eb64b4a7f769762e9ef826e0d72495893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8636-861X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12967-023-04792-2
PMID 38218934
PQID 2914306699
PQPubID 43076
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b0d0e3db93e64d5988f71bb8983b53ec
unpaywall_primary_10_1186_s12967_023_04792_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10787992
proquest_miscellaneous_2914255181
proquest_journals_2914306699
gale_infotracmisc_A782194300
gale_infotracacademiconefile_A782194300
pubmed_primary_38218934
crossref_primary_10_1186_s12967_023_04792_2
crossref_citationtrail_10_1186_s12967_023_04792_2
springer_journals_10_1186_s12967_023_04792_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-13
PublicationDateYYYYMMDD 2024-01-13
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of translational medicine
PublicationTitleAbbrev J Transl Med
PublicationTitleAlternate J Transl Med
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References M Jiang (4792_CR19) 2022; 78
Oculoplastic and Orbital Disease Group of Chinese Ophthalmological Society of Chinese Medical Association (4792_CR4) 2022; 58
H Jiang (4792_CR9) 2018; 27
L Zhang (4792_CR25) 2022; 58
J Huang (4792_CR20) 2022; 13
MH Chen (4792_CR29) 2008; 49
M Zou (4792_CR33) 2021; 32
P Zhu (4792_CR21) 2022; 13
X Li (4792_CR17) 2021; 43
G Vannucchi (4792_CR6) 2014; 170
N Hosten (4792_CR13) 1989; 172
DW Kim (4792_CR30) 2021; 62
ME Mayerhoefer (4792_CR15) 2020; 61
H Hu (4792_CR24) 2020; 70
M Zhou (4792_CR10) 2019; 25
C Cortes (4792_CR36) 1995; 20
RS Bahn (4792_CR2) 2010; 362
L Xu (4792_CR22) 2017; 2017
M Meng (4792_CR34) 2022; 26
4792_CR35
N Yokoyama (4792_CR11) 2002; 12
4792_CR12
P Liu (4792_CR27) 2021; 12
J Shi (4792_CR26) 2022; 72
H Hu (4792_CR32) 2016; 12
X Song (4792_CR23) 2020; 16
MT Bhatti (4792_CR28) 2014; 34
L Bartalena (4792_CR1) 2021; 185
H Hu (4792_CR14) 2022; 56
Y Hei (4792_CR31) 2008; 44
S Fu (4792_CR16) 2021; 42
J Vandewalle (4792_CR5) 2018; 29
L Bartalena (4792_CR7) 2012; 97
PN Taylor (4792_CR3) 2020; 16
WM Wiersinga (4792_CR8) 2016; 5
L Duron (4792_CR18) 2021; 56
References_xml – volume: 56
  start-page: 862
  issue: 3
  year: 2022
  ident: 4792_CR14
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28088
– volume: 34
  start-page: 186
  issue: 2
  year: 2014
  ident: 4792_CR28
  publication-title: J Neuroophthalmol
  doi: 10.1097/WNO.0000000000000128
– volume: 78
  start-page: 321
  issue: 2
  year: 2022
  ident: 4792_CR19
  publication-title: Endocrine
  doi: 10.1007/s12020-022-03167-9
– volume: 58
  start-page: 258
  issue: 1
  year: 2022
  ident: 4792_CR25
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28498
– volume: 185
  start-page: G43
  issue: 4
  year: 2021
  ident: 4792_CR1
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-21-0479
– ident: 4792_CR12
  doi: 10.1002/jmri.29114
– volume: 32
  start-page: 1931
  issue: 3
  year: 2021
  ident: 4792_CR33
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08300-2
– volume: 2017
  start-page: 3196059
  year: 2017
  ident: 4792_CR22
  publication-title: Int J Endocrinol
  doi: 10.1155/2017/3196059
– volume: 16
  start-page: 323
  issue: 2
  year: 2020
  ident: 4792_CR23
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-020-02281-1
– volume: 43
  year: 2021
  ident: 4792_CR17
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2021.101215
– volume: 13
  start-page: 1001349
  year: 2022
  ident: 4792_CR20
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2022.1001349
– volume: 25
  start-page: 1268
  issue: 12
  year: 2019
  ident: 4792_CR10
  publication-title: Endocr Pract
  doi: 10.4158/EP-2019-0133
– volume: 56
  start-page: 173
  issue: 3
  year: 2021
  ident: 4792_CR18
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000722
– volume: 170
  start-page: 55
  issue: 1
  year: 2014
  ident: 4792_CR6
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-13-0611
– volume: 5
  start-page: 134
  issue: 2
  year: 2016
  ident: 4792_CR8
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(16)30046-8
– volume: 12
  start-page: 725
  issue: 2
  year: 2016
  ident: 4792_CR32
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2016.3389
– volume: 26
  start-page: 4497
  issue: 9
  year: 2022
  ident: 4792_CR34
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3181791
– volume: 97
  start-page: 4454
  issue: 12
  year: 2012
  ident: 4792_CR7
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2012-2389
– volume: 29
  start-page: 42
  issue: 1
  year: 2018
  ident: 4792_CR5
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2017.10.010
– volume: 49
  start-page: 4760
  issue: 11
  year: 2008
  ident: 4792_CR29
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.08-2020
– volume: 172
  start-page: 759
  issue: 3
  year: 1989
  ident: 4792_CR13
  publication-title: Radiology
  doi: 10.1148/radiology.172.3.2772184
– volume: 70
  start-page: 372
  issue: 2
  year: 2020
  ident: 4792_CR24
  publication-title: Endocrine
  doi: 10.1007/s12020-020-02367-5
– volume: 12
  start-page: 614536
  year: 2021
  ident: 4792_CR27
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2021.614536
– volume: 16
  start-page: 104
  issue: 2
  year: 2020
  ident: 4792_CR3
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/s41574-019-0305-4
– volume: 72
  year: 2022
  ident: 4792_CR26
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103373
– volume: 44
  start-page: 423
  issue: 5
  year: 2008
  ident: 4792_CR31
  publication-title: Zhonghua Yan Ke Za Zhi
– volume: 62
  start-page: 24
  issue: 9
  year: 2021
  ident: 4792_CR30
  publication-title: Invest Ophth Vis Sci
  doi: 10.1167/iovs.62.9.24
– ident: 4792_CR35
  doi: 10.1145/2939672.2939785
– volume: 58
  start-page: 646
  issue: 9
  year: 2022
  ident: 4792_CR4
  publication-title: Trends Endocrinol Metab
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 4792_CR36
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 362
  start-page: 726
  issue: 8
  year: 2010
  ident: 4792_CR2
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra0905750
– volume: 12
  start-page: 223
  issue: 3
  year: 2002
  ident: 4792_CR11
  publication-title: Thyroid
  doi: 10.1089/105072502753600179
– volume: 42
  year: 2021
  ident: 4792_CR16
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2021.101201
– volume: 61
  start-page: 488
  issue: 4
  year: 2020
  ident: 4792_CR15
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.118.222893
– volume: 13
  year: 2022
  ident: 4792_CR21
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2022.895186
– volume: 27
  start-page: 339
  issue: 5
  year: 2018
  ident: 4792_CR9
  publication-title: Ophthalmol China
SSID ssj0024549
Score 2.4529498
Snippet Background Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction...
Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction of thyroid...
Background Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction...
BackgroundRadiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response prediction...
Abstract Background Radiomics analysis of orbital magnetic resonance imaging (MRI) shows preliminary potential for intravenous glucocorticoid (IVGC) response...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56
SubjectTerms Algorithms
Biomedical and Life Sciences
Biomedicine
Care and treatment
Corticosteroids
Diagnosis
Diplopia
Dosage and administration
Edema
Eye diseases
Glucocorticoids
Glucocorticoids - therapeutic use
Graves Ophthalmopathy - diagnostic imaging
Health aspects
Humans
Image processing
Intravenous administration
Intravenous glucocorticoid
Lacrimal gland and Nasolacrimal duct
Learning algorithms
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medicine/Public Health
Methods
MRI
Multi-organ segmentation
Muscles
Oculomotor system
Optic nerve
Orbit - diagnostic imaging
Pathogenesis
Prediction models
Radiomics
Radiomics analysis
Response prediction
Retrospective Studies
Segmentation
Soft tissues
Thyroid
Thyroid eye disease
Thyroid gland
Translational Ophthalmology
Visual acuity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiDeBgoyExIFaTRzHsbkVRFUhlVMRvVm240CkJbvK7oL6g_ifzDiPbkAqHLitYntle77MIx5_Q8hLsCEil04wD-aCCVE7ZsEKM-EclzwUdRpveJ9-lCefxIfz4nyn1BfmhPX0wP3GHbq0SkNeOZ0HKapCK1WXmXNKq9wVefCofVOlx2BqZNmDsGe8IqPk4RqsGigEsE8MKdU54zMzFNn6_9TJO0bp94TJ6dT0FrmxbVf24oddLHYM0_EdcnvwKOlRv5K75Fpo75Hrp8OZ-X3y8zOWwGXLzjUb2tmqwXvI6zf0W0yjDHSoG_GFoUGraMwwZNS2Fa238IBRrN2wbC-HUsz5iHygawouL21wtt8j1yuNGfAQ0MJclk0FQ2MGbqCrDueDIIDuFMDRYXO4CHQ4IXpAzo7fn707YUNxBuZlqjYMBKxL7otQlVZ6W0OoK6STwmOEmBUBfjphy7qU4PDwoEMNgUxIqxKLXYOT9JDstcs2PCa0dF7xDMKqICqIZmtnhc2LgAk7eZFJlZBsFJXxA3E51s9YmBjAKGl68RoQr4niNTwhr6cxq56248rebxEBU0-k3I4PAIhmAKL5GxAT8grxY1AxwPS8He43wCKRYsscgS-WIdl9mpD9WU94of28eUSgGRTK2nANji24h1on5MXUjCMxSa4NIOLYhyPDXpaQRz1gpyXl8O-w6yIhagbl2ZrnLW3zNdKNZ-BFllrDLh2MqL-c11WbejC9Gf8ggyf_QwZPyU0OLz9-IsvyfbK36bbhGTiNG_c86odfKrNnvQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB7qFrw8iLfaaJURBB_s0GQymSSCSCstRegiUrFvw9xSF9bsdi9Kf5D_03Nmk2yjsPgWMjNhZs49c-Y7hLwGGyJSaQSzYC6YEJVhGqwwE8ZwyX1WxeGG99lQnn4Vny6yiy0ybO_CYFplqxODonYTi__ID3gJlh3sY1l-mF4xrBqFp6ttCQ3dlFZw7wPE2C2yzREZa0C2j46Hn7-s0fcgHGqvzhTyYA7WDhQF2C2GUOuc8Z55Cij-_-rqG8bq70TK7jT1HrmzrKf6-pcej28YrJMH5H7jadLDFWs8JFu-fkRunzVn6Y_J729YGhfWaEYLOtNuhPeT5-_oj5Be6WlTT-KSoaFzNGQeMqprR6slvGAUazpM6vVQirkgASd0TsEVpiOc7c-AAUtDZjwEujCXycjB0JCZ6-l0hvNB5oDuFJhmhs3-2tPm5OgJOT85Pv94ypqiDczKuFgwIHyZc5t5l2tpdQUhsJBGCouRY5J5eDRC51UuwRHivvQVBDg-djkWwQbnaYcM6kntdwnNjS14AuGWFw6i3MpoodPMYyJPmiWyiEjSkkrZBtAc62qMVQhsCqlW5FVAXhXIq3hE3nZjpis4j429j5ADup4IxR1eTGaXqpFsZWIX-9SZMvVSuKwsiipPjCnKIjVZ6m1E3iD_KFQYMD2rm3sPsEiE3lKH4KMlCIIfR2Sv1xME3fabWw5UjaKZq7VYRORV14wjMXmu9kDi0IejWCQRebpi2G5JKXwddl1EpOixcm_N_ZZ69D3AkCfgXeZlCbu033L9el6bNnW_k4z_oMGzzat-Tu5yEGv8KZake2SwmC39C3ATF-ZlI_t_ANx9ZTY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkXgcEG8CBRkJiQO1iBPHcbiViqpCKqcierP8Co20ZFf7APUH8T-Z8XqzG0AV3FaxJ2t7xp6ZzPgbQl6BDhGltII5UBdMiNYyA1qYCWsLWYSqzeMN79NP8uSz-HhenSeYHLwLsxu_50q-XYA-gq0MmoUhGHrB4Li9Dn8gY2BWHm1x9cDR2VyK-SvdSPFEfP4_T-EdNfR7iuQQJ71Nbq76mbn8YSaTHVV0fJfcSTYkPVwz_R65Fvr75MZpipI_ID-_YNFbNp3bbknnxnd483jxjn6LiZOBpkoRXxmqME9jTiGjpve0XcEDRrFaw7TfklLM8ogIoAsKRi7tcLTfI7orjTnv4MLCWKadB9KYcxvobI7jQbZDdwriMMfmcBloigk9JGfHH86OTlgqx8CczNWSAUubunBV8LWRzrTg3ApppXDoE_IqwE8rTN3WEkycIjShBdcl5L7G8tZgFj0ie_20D08Ira1TBQdHKggP_mtrjTBlFTBFp6y4VBnhG1Zpl6DKsWLGREeXRUm9Zq8G9urIXl1k5M1AM1sDdVzZ-z1KwNATQbbjA5A9nfastrnPQ-ltUwYpfNUo1dbcWtWo0lZlcBl5jfKj8SiA4TmTbjTAJBFUSx-C9cUR3j7PyP6oJ2xhN27eSKBOR8hCFw2YsmAQNk1GXg7NSIlpcX0AFsc-BWLq8Yw8XgvsMKUS3g6rLjKiRqI8mvO4pe8uIsA4B7uxbhpYpYON1G_HddWiHgw74x948PT_3v6M3Cpgm-PnL17uk73lfBWeg0G4tC_iSfALE_JXig
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrcTjwLsQKMhISByot3k4TsxtQVQVUisOrVpOVpw4ZcWSXWWzQPk__E9mHCfdFFTBgVsUjyN7Mp5HMvMNIS_AhvBIaM5yMBeM81KzDKww41qHIjRx6dsK74NDsX_M35_GpxvkpKuFaVBDz9x3MNb9Xx6v16LP2lIHbKVg6t1FUbYnPxW7SzBecO7BDDFETg8Z6OZNEYOTPiKbx4cfJh9trVEiWQxKoCuh-ePEgZmyaP6_6-w1o3U5obL_q3qTXF9Vi-z8WzabrRmuvdvke7flNl_l83jV6HH-4xIa5H_gyR1yyzm7dNJK512yYap75NqBe_R98vMEu_Oyea2nDa2zYool0svX9IvN8DTUtbQ4Y2hrC2qTHxnNqoKWK7jBKLaVmFcXUymmo1io0iUFb5xOcdVfLQwttcn5EGvDWubTAqba5GBDFzWuB7cN5BTktsZhc26o-3n1gBztvTt6u89c3wiWCz9tGMieTMI8NkWSiTwrIQrnQgueY_AaxAYuNc-SMhHgi4VGmhJiLOMXCfbhBv9ti4yqeWUeEZroPA0DiPgMLyDQLnXGsyg2mEsUxYFIPRJ0UqJyh6mOrT1mysZWqVAt-xWwX1n2q9Ajr_o5ixZR5ErqNyh8PSWigdsb8_pMOeWitF_4Jiq0jIzgRSzTtEwCrVOZRjqOTO6Rlyi6CnUWLC_PXOkFbBLRv9QE3MQAcfh9j2wPKEHX5MPhTviV03VLFUrwucFzldIjz_thnIn5e5WBV2xpQgT_CzzysD0r_ZYieDpwnXskHZyiwZ6HI9X0k0VCD8DBTaQELu10B-5iXVcxdac_lH_xDh7_G_kTciMEzxe_0wXRNhk19co8Bc-10c-cFvoFLJiT6A
  priority: 102
  providerName: Unpaywall
Title Whole-orbit radiomics: machine learning-based multi- and fused- region radiomics signatures for intravenous glucocorticoid response prediction in thyroid eye disease
URI https://link.springer.com/article/10.1186/s12967-023-04792-2
https://www.ncbi.nlm.nih.gov/pubmed/38218934
https://www.proquest.com/docview/2914306699
https://www.proquest.com/docview/2914255181
https://pubmed.ncbi.nlm.nih.gov/PMC10787992
https://translational-medicine.biomedcentral.com/counter/pdf/10.1186/s12967-023-04792-2
https://doaj.org/article/b0d0e3db93e64d5988f71bb8983b53ec
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: KQ8
  dateStart: 20030701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: M48
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: AAJSJ
  dateStart: 20030601
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (WRLC)
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: C6C
  dateStart: 20030106
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJvHxgPgmMCojIfHADPlwnAQJobbaNCG1mqZVFF4sO3FGpZKWtAX6B_F_cucm6QLTBC9VG59Tx3fnu4vPvyPkBdgQHgjNWQrmgnGea6bACjOutS98E-auPeE9GIrjEf8wDsc7pC53VE3g4tLQDutJjcrp65_f1u9B4d9ZhY_FmwXYLFB3sD4MAdN9BkvyHvx1gqUcBjzeYu-F1h32gIiFsAzUh2guvUfLUFk8_79X7Qtm68-UymZf9Ra5sSrmav1DTacXTNfRHXK78jlpdyMkd8mOKe6R64NqV_0--fURi-SyWaknS1qqbIInlRdv6VebaGloVVninKHJy6jNQWRUFRnNV3CBUazuMCu2XSlmhVjE0AUFp5hOcLTfLRostTnyEPLCWGaTDLraHF1D5yWOB8UEyCmIT4nNZm1otYf0gJwdHZ71j1lVvoGlwo2XDEQgifw0NFmkRKpyCIa50IKnGEN6oYGvmqsojwS4RL5JTA6hjnGzCMthgxv1kOwWs8I8JjTSaex7EHgZnkG8m2vFVRAaTOkJQk_EDvFqVsm0gjbHChtTaUOcWMgNeyWwV1r2St8hr5o-8w2wx5XUPZSAhhJBue2FWXkuKx2X2s1cE2Q6CYzgWZjEcR55WsdJHOgwMKlDXqL8SBRmGF6qqhMQ8JAIwiW74K15CIfvOmS_RQkqn7abawmUtcZIPwHXFxzIJHHI86YZe2IaXWGAxZbGRww-zyGPNgLbPFIAd4dZ5w6JW6LceuZ2SzH5YgHJPfAzoySBWTqopX47rqsm9aDRjH_gwZP_4thTctMHjce3ZV6wT3aX5co8A_9xqTvkWjSOOmSvdzg8OYVffdHv2HcxHbtcwOdp7zO0j4Yn3U-_AbIobqQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqJwQLwJFDASiAO1mjjOC6lCLbTa0u4KoaL2ZtmxU1Zasss-qPYH8TP4b8x4k2wD0opLb1FsR7ZnPN9MPA9CXgGGiDDWguUAF0yIQjMFKMyE1jzmNip8F-Hd7cWdr-LTeXS-Rn7XsTDoVlnLRCeozTDHf-Q7PANkB3zMsvejHwyrRuHtal1CQ1WlFcyuSzFWBXYc2_klmHCT3aOPQO_XnB8enH7osKrKAMtjP50ymGmW8DyyJlFxrgqw2USsY5GjqRNEFh61UEmRxIDc3Ga2AI3c-ibBqs0p5mICBNgQocjA9tvYP-h9_rJM9gfWVx2pk8Y7EwBXkEsAkwwzu3PGW2joigb8Cw1XsPFvv83m8vYW2ZyVIzW_VIPBFXw8vENuV4ot3Vtw4l2yZst75Ea3urq_T36dYSVe2FLdn9KxMn0Mh568o9-dN6elVfmKC4a4aqhzdGRUlYYWM3jBKJaQGJbLoRRdT1xa0gkFzZv2cbY_XcpZ6hzxwa6GuQz7BoY6R2BLR2OcD_IidKfAo2NstnNLq4uqB-T0Oqj3kKyXw9I-JjTRecoDsO6sMGBUF1oJFUYW_YbCKIhTjwQ1qWRe5U_HMh4D6eyoNJYL8kogr3Tkldwjb5sxo0X2kJW995EDmp6Y-du9GI4vZCVIpPaNb0Ojs9DGwkRZmhZJoHWapaGOQpt75A3yj0T5BNPLVRVmAYvETF9yD1TCAHPu-x7ZavUEuZK3m2sOlJVcm8jlKfTIy6YZR6KvXmmBxK4Px1MYeOTRgmGbJYXwddh14ZG0xcqtNbdbyv43l_U8AGU2yTLYpe2a65fzWrWp283J-A8aPFm96hdks3PaPZEnR73jp-QmhyOO_-OCcIusT8cz-ww01Kl-XskBSuQ1S54_zq6gWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkQocKp4lpYCRkDhQq3k4TsKtLKzKoxWHInqz7NgpkZZkld0F9QfxP5lxHrsBVMEtiu3I9sx4ZuKZbwh5DjqER0JzloO6YJwXminQwoxrHYrQxoXvMrxPTsXxZ_7-PD7fyOJ30e79lWSb04AoTdXycG6KVsRTcbgALQUCDvqGIUR6yOAQvs5Bu2ENg4mYrNH2wP3pU2X-Om6kjhxq_59n84Zy-j1wcrg9vUVurKq5uvyhZrMNBTW9TXY6y5Ietaxwh1yz1V2yfdLdnd8jP79gKVxWN7pc0kaZEvORF6_oNxdOaWlXP-KCoWIz1EUaMqoqQ4sVvGAUazjU1XooxdgPhwu6oGD60hJn-91hvlIXCQ-OLcylLg0MdZG4ls4bnA8yA3SnwCQNNttLS7ubovvkbPr2bHLMuiINLBd-umRA6CwJ89iaRIlcFeDycqEFz9FTDGILj5qrpEgEGD6hzWwBDo31TYJFr8FYekC2qrqyDwlNdJ6GAbhXlhvwagutuIpii4E7URyI1CNBTyqZdwDmWEdjJp0jkwrZklcCeaUjrww98nIYM2_hO67s_Ro5YOiJ0NvuRd1cyE6SpfaNbyOjs8gKbuIsTYsk0DrN0kjHkc098gL5R-IBAdPLVZfnAItEqC15BDZZgKD3vkf2Rz1BsPNxc8-BsjtYFjLMwMAFMzHLPPJsaMaRGCxXWSCx6xMi0l7gkd2WYYclRfB12HXukXTEyqM1j1uq8quDHQ_AmkyyDHbpoOf69byu2tSDQTL-gQZ7__f1p2T705up_Pju9MMjcjMEicf_Y0G0T7aWzco-BotxqZ-4Q-EXlP1iwA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrcTjwLsQKMhISByot3k4TsxtQVQVUisOrVpOVpw4ZcWSXWWzQPk__E9mHCfdFFTBgVsUjyN7Mp5HMvMNIS_AhvBIaM5yMBeM81KzDKww41qHIjRx6dsK74NDsX_M35_GpxvkpKuFaVBDz9x3MNb9Xx6v16LP2lIHbKVg6t1FUbYnPxW7SzBecO7BDDFETg8Z6OZNEYOTPiKbx4cfJh9trVEiWQxKoCuh-ePEgZmyaP6_6-w1o3U5obL_q3qTXF9Vi-z8WzabrRmuvdvke7flNl_l83jV6HH-4xIa5H_gyR1yyzm7dNJK512yYap75NqBe_R98vMEu_Oyea2nDa2zYool0svX9IvN8DTUtbQ4Y2hrC2qTHxnNqoKWK7jBKLaVmFcXUymmo1io0iUFb5xOcdVfLQwttcn5EGvDWubTAqba5GBDFzWuB7cN5BTktsZhc26o-3n1gBztvTt6u89c3wiWCz9tGMieTMI8NkWSiTwrIQrnQgueY_AaxAYuNc-SMhHgi4VGmhJiLOMXCfbhBv9ti4yqeWUeEZroPA0DiPgMLyDQLnXGsyg2mEsUxYFIPRJ0UqJyh6mOrT1mysZWqVAt-xWwX1n2q9Ajr_o5ixZR5ErqNyh8PSWigdsb8_pMOeWitF_4Jiq0jIzgRSzTtEwCrVOZRjqOTO6Rlyi6CnUWLC_PXOkFbBLRv9QE3MQAcfh9j2wPKEHX5MPhTviV03VLFUrwucFzldIjz_thnIn5e5WBV2xpQgT_CzzysD0r_ZYieDpwnXskHZyiwZ6HI9X0k0VCD8DBTaQELu10B-5iXVcxdac_lH_xDh7_G_kTciMEzxe_0wXRNhk19co8Bc-10c-cFvoFLJiT6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole-orbit+radiomics%3A+machine+learning-based+multi-+and+fused-+region+radiomics+signatures+for+intravenous+glucocorticoid+response+prediction+in+thyroid+eye+disease&rft.jtitle=Journal+of+translational+medicine&rft.au=Zhang%2C+Haiyang&rft.au=Jiang%2C+Mengda&rft.au=Chan%2C+Hoi+Chi&rft.au=Zhang%2C+Huijie&rft.date=2024-01-13&rft.issn=1479-5876&rft.eissn=1479-5876&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12967-023-04792-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12967_023_04792_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon