apLCMS—adaptive processing of high-resolution LC/MS data

Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 25; no. 15; pp. 1930 - 1936
Main Authors Yu, Tianwei, Park, Youngja, Johnson, Jennifer M., Jones, Dean P.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.08.2009
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btp291

Cover

Abstract Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency. Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets. Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS. Contact: tyu8@sph.emory.edu Supplementary information: Supplementary data are available at Bioinformatics online.
AbstractList Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency. Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets. Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS. Contact: tyu8@sph.emory.edu Supplementary information: Supplementary data are available at Bioinformatics online.
Motivation: Liquid chromatography-mass spectrometry (LC-MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC-MS data, including noise reduction, feature identification- quantification, feature alignment and computation efficiency.Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC- MS datasets.Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS.Contact: tyu8atsph.emory.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency. Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets. Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS. Contact:  tyu8@sph.emory.edu Supplementary information:  Supplementary data are available at Bioinformatics online.
Motivation: Liquid chromatography-mass spectrometry (LC MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC MS data, including noise reduction, feature identification quantification, feature alignment and computation efficiency. Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC MS datasets. Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS. Contact: tyu8@sph.emory.edu Supplementary information: Supplementary data are available at Bioinformatics online.
Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency.MOTIVATIONLiquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency.Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets.RESULTHere we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets.The R package apLCMS is available at www.sph.emory.edu/apLCMS.AVAILABILITYThe R package apLCMS is available at www.sph.emory.edu/apLCMS.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency. Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets. The R package apLCMS is available at www.sph.emory.edu/apLCMS. Supplementary data are available at Bioinformatics online.
Author Johnson, Jennifer M.
Jones, Dean P.
Park, Youngja
Yu, Tianwei
AuthorAffiliation 1 Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and 2 Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
AuthorAffiliation_xml – name: 1 Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and 2 Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
Author_xml – sequence: 1
  givenname: Tianwei
  surname: Yu
  fullname: Yu, Tianwei
  organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
– sequence: 2
  givenname: Youngja
  surname: Park
  fullname: Park, Youngja
  organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
– sequence: 3
  givenname: Jennifer M.
  surname: Johnson
  fullname: Johnson, Jennifer M.
  organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
– sequence: 4
  givenname: Dean P.
  surname: Jones
  fullname: Jones, Dean P.
  organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21732747$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19414529$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1qFDEYhgep2B-9BGURrEfj5neSVBDKVq2wRbAKxZOQmflmN3U2GZOZas-8CK_QKzHLLK3tge1RAnmeN8mb7GZbzjvIsqcYvcJI0WlpvXWNDyvT2ypOy74jCj_IdjArUE4QV1tpTguRM4nodrYb4zlCHDPGHmXbWDHMOFE72YHp5rOT0z-_fpvadL29gEkXfAUxWreY-GaytItlHiD6duitd5P5bHpyOqlNbx5nDxvTRniyGfeyL-_efp4d5_OP7z_MDud5VSDZ5xhIQ0VjCK1B0JqC5MBUA9BQwqQEowoEtC4IlxUnwNLZWcklEIHq0siG7mXFmDu4zlz-MG2ru2BXJlxqjPS6DH2zDD2WkcQ3o9gN5QrqClwfzLXsjdU3V5xd6oW_0ERgQmmRAl5uAoL_PkDs9crGCtrWOPBD1IImSghGE7n_X5IyoTDm7E6QoJTHpUrg81vguR-CS0VrrKRAAsn1DZ_9e8PrXjbvm4AXG8DEyrRNMK6y8YojWFAimEgcH7kq-BgDNPeu-PUtr7K9WX-UVKht77TRaPuhu_eG-ajY2MPPK8mEb7oQVHB9fPZVyyNF8KczoY_oX1usA_8
CODEN BOINFP
CitedBy_id crossref_primary_10_1016_j_jaci_2016_08_018
crossref_primary_10_1093_exposome_osab004
crossref_primary_10_1111_ajt_12631
crossref_primary_10_1016_j_chemosphere_2019_124469
crossref_primary_10_1007_s40726_021_00211_6
crossref_primary_10_1016_j_reprotox_2020_01_001
crossref_primary_10_1093_ije_dyw218
crossref_primary_10_1093_toxsci_kfad112
crossref_primary_10_1186_1471_2105_11_559
crossref_primary_10_1002_oby_22654
crossref_primary_10_1016_j_etap_2024_104567
crossref_primary_10_1371_journal_pone_0072737
crossref_primary_10_1136_bmjdrc_2019_001126
crossref_primary_10_1371_journal_pone_0033020
crossref_primary_10_1021_acs_analchem_0c00338
crossref_primary_10_1093_bioinformatics_btu359
crossref_primary_10_1093_toxsci_kfx189
crossref_primary_10_1146_annurev_nutr_072610_145159
crossref_primary_10_14814_phy2_70093
crossref_primary_10_3389_fimmu_2022_840173
crossref_primary_10_1016_j_tox_2012_02_007
crossref_primary_10_1186_s42523_021_00103_6
crossref_primary_10_1016_j_envint_2022_107159
crossref_primary_10_1038_s41598_020_59104_1
crossref_primary_10_1093_jn_nxab183
crossref_primary_10_1007_s00726_014_1893_x
crossref_primary_10_1093_toxsci_kfab051
crossref_primary_10_1186_s13040_019_0191_2
crossref_primary_10_1172_jci_insight_137131
crossref_primary_10_1172_jci_insight_125156
crossref_primary_10_1016_j_envint_2020_106091
crossref_primary_10_1093_icb_icq094
crossref_primary_10_1016_j_clnu_2020_05_041
crossref_primary_10_1371_journal_pone_0142916
crossref_primary_10_2217_epi_2017_0101
crossref_primary_10_1016_j_ecoenv_2016_01_015
crossref_primary_10_1167_iovs_18_25137
crossref_primary_10_2139_ssrn_4075805
crossref_primary_10_1016_j_exger_2016_01_007
crossref_primary_10_1021_ac5040693
crossref_primary_10_1002_hep4_1417
crossref_primary_10_1021_acs_est_3c07515
crossref_primary_10_1007_s11306_019_1630_2
crossref_primary_10_1016_j_envint_2021_106810
crossref_primary_10_1016_j_metabol_2019_154051
crossref_primary_10_1093_toxsci_kfac049
crossref_primary_10_1039_C9AN02032B
crossref_primary_10_1038_s41467_021_25698_x
crossref_primary_10_1016_j_toxrep_2014_07_006
crossref_primary_10_1021_pr301053d
crossref_primary_10_1016_j_scitotenv_2021_151689
crossref_primary_10_1093_bioinformatics_btu705
crossref_primary_10_3390_metabo11080545
crossref_primary_10_1080_15287394_2021_1944945
crossref_primary_10_3389_fcimb_2022_1058926
crossref_primary_10_1016_j_envint_2017_07_019
crossref_primary_10_1016_j_metabol_2017_02_006
crossref_primary_10_1002_jimd_12007
crossref_primary_10_3389_fbioe_2015_00167
crossref_primary_10_1007_s00011_019_01297_x
crossref_primary_10_1021_acs_est_0c03476
crossref_primary_10_1074_mcp_M113_031278
crossref_primary_10_1007_s11306_020_01738_3
crossref_primary_10_1016_j_envint_2019_05_066
crossref_primary_10_3390_cancers15123184
crossref_primary_10_1186_s12931_016_0419_3
crossref_primary_10_1021_acs_analchem_7b00947
crossref_primary_10_1021_acs_est_2c03687
crossref_primary_10_3389_fcell_2014_00054
crossref_primary_10_1016_j_reprotox_2019_06_013
crossref_primary_10_1177_10998004221149959
crossref_primary_10_1021_acs_chemrestox_6b00179
crossref_primary_10_1093_bib_bbq019
crossref_primary_10_1016_j_jbc_2024_108074
crossref_primary_10_4049_jimmunol_2200079
crossref_primary_10_1093_toxsci_kfab011
crossref_primary_10_1152_ajpregu_00278_2014
crossref_primary_10_1089_jmf_2016_3874
crossref_primary_10_1002_aur_2311
crossref_primary_10_1002_jpen_2201
crossref_primary_10_1016_j_ajpath_2019_04_013
crossref_primary_10_1093_jn_nxab276
crossref_primary_10_1016_j_envint_2019_04_003
crossref_primary_10_1289_EHP9200
crossref_primary_10_1016_j_parkreldis_2020_11_020
crossref_primary_10_1007_s11306_025_02225_3
crossref_primary_10_1093_gigascience_gix037
crossref_primary_10_1038_ncomms7656
crossref_primary_10_1093_infdis_jiad410
crossref_primary_10_1161_JAHA_120_016055
crossref_primary_10_1016_j_jaci_2013_10_012
crossref_primary_10_3390_metabo12070624
crossref_primary_10_1016_j_chemosphere_2023_137998
crossref_primary_10_1021_acs_jproteome_8b00893
crossref_primary_10_3892_mmr_2017_6530
crossref_primary_10_1016_j_chroma_2022_463194
crossref_primary_10_1016_j_envres_2024_119149
crossref_primary_10_1093_toxsci_kfv198
crossref_primary_10_1016_j_tjnut_2023_12_010
crossref_primary_10_1038_s41531_024_00711_4
crossref_primary_10_1016_j_jpeds_2016_01_026
crossref_primary_10_1038_s41596_022_00710_w
crossref_primary_10_1016_j_envres_2022_113805
crossref_primary_10_3389_fmicb_2022_1006946
crossref_primary_10_1002_trc2_12025
crossref_primary_10_1007_s00216_017_0768_x
crossref_primary_10_1021_acs_chemrestox_0c00523
crossref_primary_10_1097_JOM_0000000000000773
crossref_primary_10_1007_s11306_023_01974_3
crossref_primary_10_1111_acer_15026
crossref_primary_10_3390_ijms25179509
crossref_primary_10_1016_j_aca_2022_340469
crossref_primary_10_1093_jn_nxaa169
crossref_primary_10_1007_s11306_024_02144_9
crossref_primary_10_1186_s12859_022_04793_w
crossref_primary_10_1097_HC9_0000000000000375
crossref_primary_10_1096_fba_2023_00050
crossref_primary_10_1002_ijc_34929
crossref_primary_10_1016_j_jchromb_2014_02_051
crossref_primary_10_3389_fbioe_2015_00087
crossref_primary_10_1016_j_tox_2014_11_001
crossref_primary_10_1021_acs_analchem_3c05540
crossref_primary_10_1111_trf_12884
crossref_primary_10_1016_j_envint_2023_108206
crossref_primary_10_3390_metabo11010044
crossref_primary_10_1371_journal_pone_0205398
crossref_primary_10_1016_j_ecoenv_2022_114125
crossref_primary_10_1007_s40495_017_0107_0
crossref_primary_10_2166_wst_2015_317
crossref_primary_10_1289_EHP8327
crossref_primary_10_1016_j_chemolab_2011_03_008
crossref_primary_10_1074_mcp_M111_015974
crossref_primary_10_1513_AnnalsATS_201710_770WS
crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_104453
crossref_primary_10_1186_1471_2105_14_364
crossref_primary_10_1016_j_talanta_2010_10_029
crossref_primary_10_1126_scitranslmed_aaw0285
crossref_primary_10_1038_s41467_021_25840_9
crossref_primary_10_1002_alz_14194
crossref_primary_10_3390_nu12103161
crossref_primary_10_1016_j_ijms_2020_116359
crossref_primary_10_1016_j_envint_2019_02_047
crossref_primary_10_1016_j_toxrep_2015_11_009
crossref_primary_10_1183_13993003_01118_2018
crossref_primary_10_1016_j_chemolab_2011_03_010
crossref_primary_10_1016_j_envres_2022_114319
crossref_primary_10_1016_j_fertnstert_2022_07_023
crossref_primary_10_1212_WNL_0000000000209201
crossref_primary_10_1002_mas_21778
crossref_primary_10_1128_spectrum_02194_22
crossref_primary_10_1016_j_envint_2022_107552
crossref_primary_10_1158_1940_6207_CAPR_21_0555
crossref_primary_10_1016_j_envres_2023_117435
crossref_primary_10_1093_toxsci_kfae040
crossref_primary_10_3892_ijmm_2017_3275
crossref_primary_10_1016_j_freeradbiomed_2018_12_005
crossref_primary_10_1038_s41597_022_01755_y
crossref_primary_10_1038_s42255_021_00502_8
crossref_primary_10_1016_j_ijmm_2017_09_002
crossref_primary_10_1109_TCBB_2013_99
crossref_primary_10_1016_j_envpol_2021_118361
crossref_primary_10_1186_s40246_017_0128_0
crossref_primary_10_1289_EHP10873
crossref_primary_10_1016_j_surg_2020_06_010
crossref_primary_10_1007_s11357_019_00114_x
crossref_primary_10_1016_j_tox_2024_153772
crossref_primary_10_1016_j_envint_2021_107061
crossref_primary_10_1016_j_reprotox_2025_108866
crossref_primary_10_1093_pnasnexus_pgac050
crossref_primary_10_3390_cells10113141
crossref_primary_10_1016_j_taap_2022_116327
crossref_primary_10_1152_ajplung_00303_2022
crossref_primary_10_1161_JAHA_119_015247
crossref_primary_10_1371_journal_pone_0237579
crossref_primary_10_1249_MSS_0000000000002960
crossref_primary_10_1007_s12561_016_9159_7
crossref_primary_10_1021_ac504711d
crossref_primary_10_1371_journal_pone_0315999
crossref_primary_10_1016_j_envint_2020_105957
crossref_primary_10_1186_1471_2105_14_15
crossref_primary_10_1016_j_envint_2018_07_044
crossref_primary_10_1016_j_envres_2021_111907
crossref_primary_10_1016_j_tjnut_2024_11_013
crossref_primary_10_1093_bioinformatics_btx816
crossref_primary_10_1167_iovs_19_27321
crossref_primary_10_1093_humrep_dead189
crossref_primary_10_1007_s11306_021_01860_w
crossref_primary_10_3390_ijms24032051
crossref_primary_10_1016_j_nut_2023_112160
crossref_primary_10_1093_jn_nxy036
crossref_primary_10_1038_s41598_020_70850_0
crossref_primary_10_1016_j_envint_2022_107530
crossref_primary_10_1016_j_envres_2023_117776
crossref_primary_10_1016_j_fct_2017_04_020
crossref_primary_10_1007_s11306_023_02074_y
crossref_primary_10_1016_j_fct_2018_04_042
crossref_primary_10_1016_j_envint_2021_106666
crossref_primary_10_1016_j_jhazmat_2024_136691
crossref_primary_10_1016_j_bbagen_2018_04_009
crossref_primary_10_1038_srep36490
crossref_primary_10_1039_c0an00333f
crossref_primary_10_1007_s11816_021_00703_3
crossref_primary_10_1097_EE9_0000000000000191
crossref_primary_10_3390_antiox12040804
crossref_primary_10_1016_j_jchromb_2016_10_030
crossref_primary_10_1021_acs_est_2c00064
crossref_primary_10_1074_jbc_R113_464131
crossref_primary_10_1111_acel_12215
crossref_primary_10_1016_j_taap_2018_12_001
crossref_primary_10_1093_exposome_osac011
crossref_primary_10_1016_j_foodchem_2018_06_146
crossref_primary_10_1021_acs_analchem_6b01214
crossref_primary_10_1007_s11306_011_0332_1
crossref_primary_10_1038_srep17221
crossref_primary_10_1210_jendso_bvaa127
crossref_primary_10_1016_j_csbj_2015_10_005
crossref_primary_10_1021_acs_jproteome_8b00803
crossref_primary_10_1097_JOM_0000000000001687
crossref_primary_10_1289_EHP12861
crossref_primary_10_1007_s12035_021_02625_1
crossref_primary_10_1186_s12936_015_0651_1
crossref_primary_10_2337_dc14_2033
crossref_primary_10_1161_CIRCRESAHA_121_319817
crossref_primary_10_1136_bmjopen_2017_018753
crossref_primary_10_1126_scitranslmed_abo2750
crossref_primary_10_1016_j_xplc_2021_100238
crossref_primary_10_1093_bioinformatics_btu430
crossref_primary_10_1371_journal_ppat_1009941
crossref_primary_10_1093_bioinformatics_btaa164
crossref_primary_10_1016_j_envint_2021_106964
crossref_primary_10_1016_j_jpba_2017_10_018
crossref_primary_10_1021_acs_est_4c01156
crossref_primary_10_1016_j_etap_2017_12_008
crossref_primary_10_1088_1752_7163_aa863c
crossref_primary_10_14814_phy2_12821
crossref_primary_10_1371_journal_pcbi_1003123
crossref_primary_10_1002_jms_1643
crossref_primary_10_1097_MPG_0000000000003693
crossref_primary_10_3390_toxins12100633
crossref_primary_10_18632_aging_103462
crossref_primary_10_1038_ni_3025
crossref_primary_10_1093_aje_kwad122
crossref_primary_10_1039_D1MO00005E
crossref_primary_10_1186_s13024_023_00694_5
crossref_primary_10_1007_s11306_024_02219_7
crossref_primary_10_1016_j_tube_2023_102462
crossref_primary_10_1038_s44324_023_00001_2
crossref_primary_10_1371_journal_pone_0182819
crossref_primary_10_1016_j_trac_2020_116063
crossref_primary_10_1021_acs_est_3c04561
crossref_primary_10_3390_metabo13111160
crossref_primary_10_1016_j_cct_2023_107170
crossref_primary_10_1016_j_jprot_2024_105336
crossref_primary_10_3390_biom9050200
crossref_primary_10_3390_metabo11020118
crossref_primary_10_1016_j_cell_2019_08_010
crossref_primary_10_1158_1940_6207_CAPR_20_0014
crossref_primary_10_1016_j_jhazmat_2023_132305
crossref_primary_10_1016_j_trac_2024_117674
crossref_primary_10_1089_aid_2013_0198
crossref_primary_10_1016_j_jcf_2020_05_003
crossref_primary_10_1093_toxsci_kfz028
crossref_primary_10_3390_foods10102388
crossref_primary_10_1016_j_reprotox_2019_05_059
crossref_primary_10_1093_bib_bbad244
crossref_primary_10_1186_s40246_022_00440_w
crossref_primary_10_1016_j_envint_2020_106323
crossref_primary_10_1016_j_aca_2019_04_011
crossref_primary_10_1016_j_reprotox_2019_05_058
crossref_primary_10_1038_s41385_018_0125_1
crossref_primary_10_1186_s12859_015_0562_8
crossref_primary_10_1021_acs_est_1c04915
crossref_primary_10_4062_biomolther_2018_175
crossref_primary_10_1073_pnas_2009838117
crossref_primary_10_1093_toxsci_kfu018
crossref_primary_10_3233_JAD_230122
Cites_doi 10.1093/bioinformatics/btl276
10.1007/978-0-387-21706-2
10.1093/biostatistics/kxl015
10.1002/rcm.600
10.1186/1471-2105-7-530
10.1016/j.chroma.2008.03.033
10.1093/bioinformatics/btk039
10.1021/ac026468x
10.1021/ac034716z
10.1021/ac051437y
10.1021/ac0341618
10.1016/j.chroma.2007.04.021
10.1016/j.jchromb.2007.10.022
10.1186/1471-2105-9-163
10.1186/1471-2105-8-419
10.1021/ac060245f
10.1111/j.1742-4658.2007.05673.x
10.1016/j.chroma.2007.03.081
10.1002/mas.20108
10.1002/bies.20414
10.1093/bioinformatics/btm083
10.1038/nbt0208-162
10.1021/ac050980b
ContentType Journal Article
Copyright The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009
2009 INIST-CNRS
The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Copyright_xml – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009
– notice: 2009 INIST-CNRS
– notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btp291
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Computer and Information Systems Abstracts
CrossRef

MEDLINE - Academic
MEDLINE
Engineering Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1936
ExternalDocumentID 10.1093/bioinformatics/btp291
PMC2712336
1800186951
19414529
21732747
10_1093_bioinformatics_btp291
ark_67375_HXZ_8D921RX7_D
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: PHS HHS
  grantid: 2P30A1050409
– fundername: NCRR NIH HHS
  grantid: 1UL1RR025008-01
– fundername: NIEHS NIH HHS
  grantid: 1P01ES016731-01
– fundername: NCATS NIH HHS
  grantid: UL1 TR000454
– fundername: NCRR NIH HHS
  grantid: UL1 RR025008
– fundername: NIEHS NIH HHS
  grantid: P01 ES016731
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ACUFI
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BSCLL
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KSI
KSN
NGC
Q5Y
RD5
ROZ
RXO
TLC
TN5
TOX
WH7
~91
ADRIX
BCRHZ
KOP
ROX
---
-E4
.DC
0R~
1TH
23N
2WC
4.4
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EJD
EMOBN
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HVGLF
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
.-4
.GJ
ABEFU
AI.
AQDSO
ATTQO
ELUNK
IQODW
NTWIH
O~Y
RIG
RNI
RZF
RZO
VH1
ZGI
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c608t-1e2f37fa23de73d3e85e49feef32488ea960e3d6258c52e42054b58e270dba8f3
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Sun Oct 26 04:00:08 EDT 2025
Tue Sep 30 16:51:10 EDT 2025
Fri Sep 05 08:25:28 EDT 2025
Fri Sep 05 12:07:35 EDT 2025
Tue Oct 07 09:44:19 EDT 2025
Mon Oct 06 17:23:07 EDT 2025
Thu Apr 03 07:06:06 EDT 2025
Mon Jul 21 09:14:56 EDT 2025
Wed Oct 01 04:04:49 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
Wed Aug 28 03:24:17 EDT 2024
Sat Sep 20 11:02:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords High resolution
Data
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-1e2f37fa23de73d3e85e49feef32488ea960e3d6258c52e42054b58e270dba8f3
Notes To whom correspondence should be addressed.
ArticleID:btp291
ark:/67375/HXZ-8D921RX7-D
istex:CAE311883B580B0F5F49D1C03CF4B17C74D70678
Associate Editor: John Quackenbush
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/25/15/1930/48992678/bioinformatics_25_15_1930.pdf
PMID 19414529
PQID 198707081
PQPubID 36124
PageCount 7
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btp291
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2712336
proquest_miscellaneous_733367743
proquest_miscellaneous_34791154
proquest_miscellaneous_20774589
proquest_journals_198707081
pubmed_primary_19414529
pascalfrancis_primary_21732747
crossref_primary_10_1093_bioinformatics_btp291
crossref_citationtrail_10_1093_bioinformatics_btp291
oup_primary_10_1093_bioinformatics_btp291
istex_primary_ark_67375_HXZ_8D921RX7_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2009
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Nordstrom (2023013112045645300_B14) 2006; 78
Sturm (2023013112045645300_B19) 2008; 9
Katajamaa (2023013112045645300_B9) 2006; 22
Katajamaa (2023013112045645300_B10) 2007; 1158
Venables (2023013112045645300_B21) 2002
Windig (2023013112045645300_B24) 2007; 1158
Lu (2023013112045645300_B12) 2008; 866
Robinson (2023013112045645300_B16) 2007; 8
Wang (2023013112045645300_B22) 2007; 8
Bellew (2023013112045645300_B3) 2006; 22
Nobeli (2023013112045645300_B13) 2006; 28
Baran (2023013112045645300_B2) 2006; 7
Dettmer (2023013112045645300_B5) 2007; 26
Du (2023013112045645300_B6) 2007; 23
Hastings (2023013112045645300_B7) 2002; 16
Idborg-Bjorkman (2023013112045645300_B8) 2003; 75
Lindon (2023013112045645300_B11) 2007; 274
Pyke (2023013112045645300_B15) 1965; 27
Aberg (2023013112045645300_B1) 2008; 1192
Smith (2023013112045645300_B17) 2006; 78
Wang (2023013112045645300_B23) 2003; 75
Tolstikov (2023013112045645300_B20) 2003; 75
Cui (2023013112045645300_B4) 2008; 26
Stolt (2023013112045645300_B18) 2006; 78
17418223 - J Chromatogr A. 2007 Jul 27;1158(1-2):251-7
17496000 - Bioinformatics. 2007 Jun 1;23(11):1394-400
11857732 - Rapid Commun Mass Spectrom. 2002;16(5):462-7
14674459 - Anal Chem. 2003 Sep 15;75(18):4818-26
14640754 - Anal Chem. 2003 Dec 1;75(23):6737-40
14674455 - Anal Chem. 2003 Sep 15;75(18):4784-92
18366760 - BMC Bioinformatics. 2008;9:163
16766559 - Bioinformatics. 2006 Aug 1;22(15):1902-9
17166258 - BMC Bioinformatics. 2006;7:530
17983864 - J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Apr 15;866(1-2):64-76
17963529 - BMC Bioinformatics. 2007;8:419
16615085 - Bioessays. 2006 May;28(5):534-45
16921475 - Mass Spectrom Rev. 2007 Jan-Feb;26(1):51-78
18259166 - Nat Biotechnol. 2008 Feb;26(2):162-4
17298438 - FEBS J. 2007 Mar;274(5):1140-51
16403790 - Bioinformatics. 2006 Mar 1;22(5):634-6
16689529 - Anal Chem. 2006 May 15;78(10):3289-95
16880200 - Biostatistics. 2007 Apr;8(2):357-67
18378252 - J Chromatogr A. 2008 May 23;1192(1):139-46
17466315 - J Chromatogr A. 2007 Jul 27;1158(1-2):318-28
16448051 - Anal Chem. 2006 Feb 1;78(3):779-87
16478086 - Anal Chem. 2006 Feb 15;78(4):975-83
References_xml – volume: 22
  start-page: 1902
  year: 2006
  ident: 2023013112045645300_B3
  article-title: A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl276
– volume-title: Modern Applied Statistics with S
  year: 2002
  ident: 2023013112045645300_B21
  doi: 10.1007/978-0-387-21706-2
– volume: 8
  start-page: 357
  year: 2007
  ident: 2023013112045645300_B22
  article-title: A statistical method for chromatographic alignment of LC-MS data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxl015
– volume: 16
  start-page: 462
  year: 2002
  ident: 2023013112045645300_B7
  article-title: New algorithms for processing and peak detection in liquid chromatography/mass spectrometry data
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.600
– volume: 7
  start-page: 530
  year: 2006
  ident: 2023013112045645300_B2
  article-title: MathDAMP: a package for differential analysis of metabolite profiles
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-7-530
– volume: 1192
  start-page: 139
  year: 2008
  ident: 2023013112045645300_B1
  article-title: Feature detection and alignment of hyphenated chromatographic-mass spectrometric data. Extraction of pure ion chromatograms using Kalman tracking
  publication-title: J. Chromatogr. A.
  doi: 10.1016/j.chroma.2008.03.033
– volume: 27
  start-page: 395
  year: 1965
  ident: 2023013112045645300_B15
  article-title: Spacings
  publication-title: J. R. Stat. Soc., Series B
– volume: 22
  start-page: 634
  year: 2006
  ident: 2023013112045645300_B9
  article-title: MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btk039
– volume: 75
  start-page: 4818
  year: 2003
  ident: 2023013112045645300_B23
  article-title: Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards
  publication-title: Anal. Chem.
  doi: 10.1021/ac026468x
– volume: 75
  start-page: 6737
  year: 2003
  ident: 2023013112045645300_B20
  article-title: Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics
  publication-title: Anal. Chem.
  doi: 10.1021/ac034716z
– volume: 78
  start-page: 779
  year: 2006
  ident: 2023013112045645300_B17
  article-title: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification
  publication-title: Anal. Chem.
  doi: 10.1021/ac051437y
– volume: 75
  start-page: 4784
  year: 2003
  ident: 2023013112045645300_B8
  article-title: Screening of biomarkers in rat urine using LC/electrospray ionization-MS and two-way data analysis
  publication-title: Anal. Chem.
  doi: 10.1021/ac0341618
– volume: 1158
  start-page: 318
  year: 2007
  ident: 2023013112045645300_B10
  article-title: Data processing for mass spectrometry-based metabolomics
  publication-title: J. Chromatogr. A.
  doi: 10.1016/j.chroma.2007.04.021
– volume: 866
  start-page: 64
  year: 2008
  ident: 2023013112045645300_B12
  article-title: LC-MS-based metabonomics analysis
  publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2007.10.022
– volume: 9
  start-page: 163
  year: 2008
  ident: 2023013112045645300_B19
  article-title: OpenMS – an open-source software framework for mass spectrometry
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-163
– volume: 8
  start-page: 419
  year: 2007
  ident: 2023013112045645300_B16
  article-title: A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-419
– volume: 78
  start-page: 3289
  year: 2006
  ident: 2023013112045645300_B14
  article-title: Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum
  publication-title: Anal. Chem.
  doi: 10.1021/ac060245f
– volume: 274
  start-page: 1140
  year: 2007
  ident: 2023013112045645300_B11
  article-title: Metabonomics in pharmaceutical R&D
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2007.05673.x
– volume: 1158
  start-page: 251
  year: 2007
  ident: 2023013112045645300_B24
  article-title: Chemometric analysis of complex hyphenated data. Improvements of the component detection algorithm
  publication-title: J. Chromatogr. A.
  doi: 10.1016/j.chroma.2007.03.081
– volume: 26
  start-page: 51
  year: 2007
  ident: 2023013112045645300_B5
  article-title: Mass spectrometry-based metabolomics
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.20108
– volume: 28
  start-page: 534
  year: 2006
  ident: 2023013112045645300_B13
  article-title: A bioinformatician's view of the metabolome
  publication-title: Bioessays
  doi: 10.1002/bies.20414
– volume: 23
  start-page: 1394
  year: 2007
  ident: 2023013112045645300_B6
  article-title: Data reduction of isotope-resolved LC-MS spectra
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm083
– volume: 26
  start-page: 162
  year: 2008
  ident: 2023013112045645300_B4
  article-title: Metabolite identification via the Madison Metabolomics Consortium Database
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0208-162
– volume: 78
  start-page: 975
  year: 2006
  ident: 2023013112045645300_B18
  article-title: Second-order peak detection for multicomponent high-resolution LC/MS data
  publication-title: Anal. Chem.
  doi: 10.1021/ac050980b
– reference: 18259166 - Nat Biotechnol. 2008 Feb;26(2):162-4
– reference: 16615085 - Bioessays. 2006 May;28(5):534-45
– reference: 18378252 - J Chromatogr A. 2008 May 23;1192(1):139-46
– reference: 16689529 - Anal Chem. 2006 May 15;78(10):3289-95
– reference: 17418223 - J Chromatogr A. 2007 Jul 27;1158(1-2):251-7
– reference: 14640754 - Anal Chem. 2003 Dec 1;75(23):6737-40
– reference: 16403790 - Bioinformatics. 2006 Mar 1;22(5):634-6
– reference: 16880200 - Biostatistics. 2007 Apr;8(2):357-67
– reference: 14674459 - Anal Chem. 2003 Sep 15;75(18):4818-26
– reference: 17963529 - BMC Bioinformatics. 2007;8:419
– reference: 17298438 - FEBS J. 2007 Mar;274(5):1140-51
– reference: 16921475 - Mass Spectrom Rev. 2007 Jan-Feb;26(1):51-78
– reference: 14674455 - Anal Chem. 2003 Sep 15;75(18):4784-92
– reference: 16478086 - Anal Chem. 2006 Feb 15;78(4):975-83
– reference: 17466315 - J Chromatogr A. 2007 Jul 27;1158(1-2):318-28
– reference: 11857732 - Rapid Commun Mass Spectrom. 2002;16(5):462-7
– reference: 16766559 - Bioinformatics. 2006 Aug 1;22(15):1902-9
– reference: 16448051 - Anal Chem. 2006 Feb 1;78(3):779-87
– reference: 17496000 - Bioinformatics. 2007 Jun 1;23(11):1394-400
– reference: 17983864 - J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Apr 15;866(1-2):64-76
– reference: 18366760 - BMC Bioinformatics. 2008;9:163
– reference: 17166258 - BMC Bioinformatics. 2006;7:530
SSID ssj0051444
ssj0005056
Score 2.4735794
Snippet Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological...
Motivation: Liquid chromatography-mass spectrometry (LC MS) profiling is a promising approach for the quantification of metabolites from complex biological...
Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples....
Motivation: Liquid chromatography-mass spectrometry (LC-MS) profiling is a promising approach for the quantification of metabolites from complex biological...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1930
SubjectTerms Algorithms
Bioinformatics
Biological and medical sciences
Biological samples
Chromatography, Liquid - methods
Computational Biology
Databases, Protein
Fundamental and applied biological sciences. Psychology
General aspects
Liquid chromatography
Mass spectrometry
Mass Spectrometry - methods
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Metabolites
Noise reduction
Original Papers
Proteome - analysis
Proteomics - methods
Software
Title apLCMS—adaptive processing of high-resolution LC/MS data
URI https://api.istex.fr/ark:/67375/HXZ-8D921RX7-D/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/19414529
https://www.proquest.com/docview/198707081
https://www.proquest.com/docview/20774589
https://www.proquest.com/docview/34791154
https://www.proquest.com/docview/733367743
https://pubmed.ncbi.nlm.nih.gov/PMC2712336
https://academic.oup.com/bioinformatics/article-pdf/25/15/1930/48992678/bioinformatics_25_15_1930.pdf
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61iRBIiPIoYArBB4TEwXG86_XucqvSVhFqCqKNFLhYa3tXVI0cK00E5cSJX8Av5JcwGz8ggYpyQPIhkmcceXZ29hvPC-BZIiMiUVM8qpXxwjSTnjRR5ElpUnucZmwZwR8eRYNR-GrMxhug61oYVWWFd-uShuR0WrUQtW2L_UqeXpEZnzA_wEvSnh-i20DQ7q6Rx4TFAV5I0kWOTWhHDCF7C9qjoze778qaLO6FYjlBufodBHWlj6Trf5_MCyKDlTOsbZfjU10fd7NQ5yhcU07F-BNs_T378voiL9TFRzWZ_HK0HWzB11ooZUbLWXcxT7rp57V-kf9darfhVgWO3d3yOXdgQ-d34Vo5LvPiHrxUxWF_ePz9yzeVqcLaabco6xzw_HWnxrW9l72ZrreTe9j3h8euTYLdhtHB_kl_4FWzH7w06om5F2hiKDeK0ExzmlEtmA6l0dogAhRCK1xGTTP03kTKiA4JQs-ECU14L0uUMPQ-tPJprh-Ci4BPcxFxhQ5zqDlLtDTolBIkDWmqUwfCejXjtGqMbudzTOIyQE_jNfGUSuBAt2Erys4gf2N4vlSVhlrNzmxaHWfxYPw-FnuSBG_HPN5z4AWu41Uf2lnRuIYLXU1qvzg4sFOrYFyZp_PYfmlCWy-Q_WlzF-2KDRapXE8XqAM9dAyYkJdT2Bpk28zJAfcSCk4pbinEqA48KHX-50vJMLAxfwf4ym5oCGzb89U7-emHZftzwhFt0cgBv9k3V5PVo3_m2IEbZfTQJnw-htZ8ttBPEITOkw5snrwedypD8gOboI7i
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRAgkxPthCsUHhMTBcbzr9e5yq1KqCDUVokQKXKy1vSuqRo6VJoJy4sQv4BfyS5jN2oYEKsoByYdInnHk2dnZbzwvgKeZTIhETQmoViaI80IG0iRJIKXJ7XFasFUEf3SYDMfxqwmbbIFuamFUnRXea0oasuNZ3ULUti0Oa3kGVWFCwsIIL0n7YYxuA0G7u0GeEpZGeCFJDzkuQTdhCNk70B0fvt5952qyeBCL1QTl-ncUNZU-km7-fbaoiIzWzrCuXY5PTX3ctUqdonCNm4rxJ9j6e_bllWVZqbOPajr95WjbvwFfG6G4jJaT3nKR9fLPG_0i_7vUbsL1Ghz7u-45t2BLl7fhshuXeXYHXqjqYDA6-v7lmypUZe20X7k6Bzx__Znxbe_lYK6b7eQfDMLRkW-TYO_CeP_l28EwqGc_BHnSF4sg0sRQbhShhea0oFowHUujtUEEKIRWuIyaFui9iZwRHROEnhkTmvB-kSlh6D3olLNSPwAfAZ_mIuEKHeZYc5ZpadApJUga01znHsTNaqZ53RjdzueYpi5AT9MN8Tgl8KDXslWuM8jfGJ6tVKWlVvMTm1bHWTqcvE_FniTRmwlP9zx4jut40YfurGlcy4WuJrVfHDzYblQwrc3TaWq_NKGtF8j-pL2LdsUGi1SpZ0vUgT46BkzI8ylsDbJt5uSBfw4FpxS3FGJUD-47nf_5UjKObMzfA762G1oC2_Z8_U55_GHV_pxwRFs08SBs983FZPXwnzm24aqLHtqEz0fQWcyX-jGC0EW2U5uQH0ddjcY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=apLCMS%E2%80%94adaptive+processing+of+high-resolution+LC%2FMS+data&rft.jtitle=Bioinformatics&rft.au=Yu%2C+Tianwei&rft.au=Park%2C+Youngja&rft.au=Johnson%2C+Jennifer+M.&rft.au=Jones%2C+Dean+P.&rft.date=2009-08-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=25&rft.issue=15&rft.spage=1930&rft.epage=1936&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtp291&rft_id=info%3Apmid%2F19414529&rft.externalDocID=PMC2712336
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon