apLCMS—adaptive processing of high-resolution LC/MS data
Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature...
        Saved in:
      
    
          | Published in | Bioinformatics Vol. 25; no. 15; pp. 1930 - 1936 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Oxford University Press
    
        01.08.2009
     Oxford Publishing Limited (England)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1367-4803 1367-4811 1460-2059 1367-4811  | 
| DOI | 10.1093/bioinformatics/btp291 | 
Cover
| Abstract | Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency. Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets. Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS. Contact: tyu8@sph.emory.edu Supplementary information: Supplementary data are available at Bioinformatics online. | 
    
|---|---|
| AbstractList | Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency. Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets. Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS. Contact: tyu8@sph.emory.edu Supplementary information: Supplementary data are available at Bioinformatics online. Motivation: Liquid chromatography-mass spectrometry (LC-MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC-MS data, including noise reduction, feature identification- quantification, feature alignment and computation efficiency.Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC- MS datasets.Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS.Contact: tyu8atsph.emory.eduSupplementary information: Supplementary data are available at Bioinformatics online. Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency. Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets. Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS. Contact: tyu8@sph.emory.edu Supplementary information: Supplementary data are available at Bioinformatics online. Motivation: Liquid chromatography-mass spectrometry (LC MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC MS data, including noise reduction, feature identification quantification, feature alignment and computation efficiency. Result: Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC MS datasets. Availability: The R package apLCMS is available at www.sph.emory.edu/apLCMS. Contact: tyu8@sph.emory.edu Supplementary information: Supplementary data are available at Bioinformatics online. Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency.MOTIVATIONLiquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency.Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets.RESULTHere we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets.The R package apLCMS is available at www.sph.emory.edu/apLCMS.AVAILABILITYThe R package apLCMS is available at www.sph.emory.edu/apLCMS.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples. Significant challenges exist in the analysis of LC/MS data, including noise reduction, feature identification/ quantification, feature alignment and computation efficiency. Here we present a set of algorithms for the processing of high-resolution LC/MS data. The major technical improvements include the adaptive tolerance level searching rather than hard cutoff or binning, the use of non-parametric methods to fine-tune intensity grouping, the use of run filter to better preserve weak signals and the model-based estimation of peak intensities for absolute quantification. The algorithms are implemented in an R package apLCMS, which can efficiently process large LC/ MS datasets. The R package apLCMS is available at www.sph.emory.edu/apLCMS. Supplementary data are available at Bioinformatics online.  | 
    
| Author | Johnson, Jennifer M. Jones, Dean P. Park, Youngja Yu, Tianwei  | 
    
| AuthorAffiliation | 1 Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and 2 Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA | 
    
| AuthorAffiliation_xml | – name: 1 Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and 2 Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA | 
    
| Author_xml | – sequence: 1 givenname: Tianwei surname: Yu fullname: Yu, Tianwei organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA – sequence: 2 givenname: Youngja surname: Park fullname: Park, Youngja organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA – sequence: 3 givenname: Jennifer M. surname: Johnson fullname: Johnson, Jennifer M. organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA – sequence: 4 givenname: Dean P. surname: Jones fullname: Jones, Dean P. organization: Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta and Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21732747$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19414529$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqNkt1qFDEYhgep2B-9BGURrEfj5neSVBDKVq2wRbAKxZOQmflmN3U2GZOZas-8CK_QKzHLLK3tge1RAnmeN8mb7GZbzjvIsqcYvcJI0WlpvXWNDyvT2ypOy74jCj_IdjArUE4QV1tpTguRM4nodrYb4zlCHDPGHmXbWDHMOFE72YHp5rOT0z-_fpvadL29gEkXfAUxWreY-GaytItlHiD6duitd5P5bHpyOqlNbx5nDxvTRniyGfeyL-_efp4d5_OP7z_MDud5VSDZ5xhIQ0VjCK1B0JqC5MBUA9BQwqQEowoEtC4IlxUnwNLZWcklEIHq0siG7mXFmDu4zlz-MG2ru2BXJlxqjPS6DH2zDD2WkcQ3o9gN5QrqClwfzLXsjdU3V5xd6oW_0ERgQmmRAl5uAoL_PkDs9crGCtrWOPBD1IImSghGE7n_X5IyoTDm7E6QoJTHpUrg81vguR-CS0VrrKRAAsn1DZ_9e8PrXjbvm4AXG8DEyrRNMK6y8YojWFAimEgcH7kq-BgDNPeu-PUtr7K9WX-UVKht77TRaPuhu_eG-ajY2MPPK8mEb7oQVHB9fPZVyyNF8KczoY_oX1usA_8 | 
    
| CODEN | BOINFP | 
    
| CitedBy_id | crossref_primary_10_1016_j_jaci_2016_08_018 crossref_primary_10_1093_exposome_osab004 crossref_primary_10_1111_ajt_12631 crossref_primary_10_1016_j_chemosphere_2019_124469 crossref_primary_10_1007_s40726_021_00211_6 crossref_primary_10_1016_j_reprotox_2020_01_001 crossref_primary_10_1093_ije_dyw218 crossref_primary_10_1093_toxsci_kfad112 crossref_primary_10_1186_1471_2105_11_559 crossref_primary_10_1002_oby_22654 crossref_primary_10_1016_j_etap_2024_104567 crossref_primary_10_1371_journal_pone_0072737 crossref_primary_10_1136_bmjdrc_2019_001126 crossref_primary_10_1371_journal_pone_0033020 crossref_primary_10_1021_acs_analchem_0c00338 crossref_primary_10_1093_bioinformatics_btu359 crossref_primary_10_1093_toxsci_kfx189 crossref_primary_10_1146_annurev_nutr_072610_145159 crossref_primary_10_14814_phy2_70093 crossref_primary_10_3389_fimmu_2022_840173 crossref_primary_10_1016_j_tox_2012_02_007 crossref_primary_10_1186_s42523_021_00103_6 crossref_primary_10_1016_j_envint_2022_107159 crossref_primary_10_1038_s41598_020_59104_1 crossref_primary_10_1093_jn_nxab183 crossref_primary_10_1007_s00726_014_1893_x crossref_primary_10_1093_toxsci_kfab051 crossref_primary_10_1186_s13040_019_0191_2 crossref_primary_10_1172_jci_insight_137131 crossref_primary_10_1172_jci_insight_125156 crossref_primary_10_1016_j_envint_2020_106091 crossref_primary_10_1093_icb_icq094 crossref_primary_10_1016_j_clnu_2020_05_041 crossref_primary_10_1371_journal_pone_0142916 crossref_primary_10_2217_epi_2017_0101 crossref_primary_10_1016_j_ecoenv_2016_01_015 crossref_primary_10_1167_iovs_18_25137 crossref_primary_10_2139_ssrn_4075805 crossref_primary_10_1016_j_exger_2016_01_007 crossref_primary_10_1021_ac5040693 crossref_primary_10_1002_hep4_1417 crossref_primary_10_1021_acs_est_3c07515 crossref_primary_10_1007_s11306_019_1630_2 crossref_primary_10_1016_j_envint_2021_106810 crossref_primary_10_1016_j_metabol_2019_154051 crossref_primary_10_1093_toxsci_kfac049 crossref_primary_10_1039_C9AN02032B crossref_primary_10_1038_s41467_021_25698_x crossref_primary_10_1016_j_toxrep_2014_07_006 crossref_primary_10_1021_pr301053d crossref_primary_10_1016_j_scitotenv_2021_151689 crossref_primary_10_1093_bioinformatics_btu705 crossref_primary_10_3390_metabo11080545 crossref_primary_10_1080_15287394_2021_1944945 crossref_primary_10_3389_fcimb_2022_1058926 crossref_primary_10_1016_j_envint_2017_07_019 crossref_primary_10_1016_j_metabol_2017_02_006 crossref_primary_10_1002_jimd_12007 crossref_primary_10_3389_fbioe_2015_00167 crossref_primary_10_1007_s00011_019_01297_x crossref_primary_10_1021_acs_est_0c03476 crossref_primary_10_1074_mcp_M113_031278 crossref_primary_10_1007_s11306_020_01738_3 crossref_primary_10_1016_j_envint_2019_05_066 crossref_primary_10_3390_cancers15123184 crossref_primary_10_1186_s12931_016_0419_3 crossref_primary_10_1021_acs_analchem_7b00947 crossref_primary_10_1021_acs_est_2c03687 crossref_primary_10_3389_fcell_2014_00054 crossref_primary_10_1016_j_reprotox_2019_06_013 crossref_primary_10_1177_10998004221149959 crossref_primary_10_1021_acs_chemrestox_6b00179 crossref_primary_10_1093_bib_bbq019 crossref_primary_10_1016_j_jbc_2024_108074 crossref_primary_10_4049_jimmunol_2200079 crossref_primary_10_1093_toxsci_kfab011 crossref_primary_10_1152_ajpregu_00278_2014 crossref_primary_10_1089_jmf_2016_3874 crossref_primary_10_1002_aur_2311 crossref_primary_10_1002_jpen_2201 crossref_primary_10_1016_j_ajpath_2019_04_013 crossref_primary_10_1093_jn_nxab276 crossref_primary_10_1016_j_envint_2019_04_003 crossref_primary_10_1289_EHP9200 crossref_primary_10_1016_j_parkreldis_2020_11_020 crossref_primary_10_1007_s11306_025_02225_3 crossref_primary_10_1093_gigascience_gix037 crossref_primary_10_1038_ncomms7656 crossref_primary_10_1093_infdis_jiad410 crossref_primary_10_1161_JAHA_120_016055 crossref_primary_10_1016_j_jaci_2013_10_012 crossref_primary_10_3390_metabo12070624 crossref_primary_10_1016_j_chemosphere_2023_137998 crossref_primary_10_1021_acs_jproteome_8b00893 crossref_primary_10_3892_mmr_2017_6530 crossref_primary_10_1016_j_chroma_2022_463194 crossref_primary_10_1016_j_envres_2024_119149 crossref_primary_10_1093_toxsci_kfv198 crossref_primary_10_1016_j_tjnut_2023_12_010 crossref_primary_10_1038_s41531_024_00711_4 crossref_primary_10_1016_j_jpeds_2016_01_026 crossref_primary_10_1038_s41596_022_00710_w crossref_primary_10_1016_j_envres_2022_113805 crossref_primary_10_3389_fmicb_2022_1006946 crossref_primary_10_1002_trc2_12025 crossref_primary_10_1007_s00216_017_0768_x crossref_primary_10_1021_acs_chemrestox_0c00523 crossref_primary_10_1097_JOM_0000000000000773 crossref_primary_10_1007_s11306_023_01974_3 crossref_primary_10_1111_acer_15026 crossref_primary_10_3390_ijms25179509 crossref_primary_10_1016_j_aca_2022_340469 crossref_primary_10_1093_jn_nxaa169 crossref_primary_10_1007_s11306_024_02144_9 crossref_primary_10_1186_s12859_022_04793_w crossref_primary_10_1097_HC9_0000000000000375 crossref_primary_10_1096_fba_2023_00050 crossref_primary_10_1002_ijc_34929 crossref_primary_10_1016_j_jchromb_2014_02_051 crossref_primary_10_3389_fbioe_2015_00087 crossref_primary_10_1016_j_tox_2014_11_001 crossref_primary_10_1021_acs_analchem_3c05540 crossref_primary_10_1111_trf_12884 crossref_primary_10_1016_j_envint_2023_108206 crossref_primary_10_3390_metabo11010044 crossref_primary_10_1371_journal_pone_0205398 crossref_primary_10_1016_j_ecoenv_2022_114125 crossref_primary_10_1007_s40495_017_0107_0 crossref_primary_10_2166_wst_2015_317 crossref_primary_10_1289_EHP8327 crossref_primary_10_1016_j_chemolab_2011_03_008 crossref_primary_10_1074_mcp_M111_015974 crossref_primary_10_1513_AnnalsATS_201710_770WS crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_104453 crossref_primary_10_1186_1471_2105_14_364 crossref_primary_10_1016_j_talanta_2010_10_029 crossref_primary_10_1126_scitranslmed_aaw0285 crossref_primary_10_1038_s41467_021_25840_9 crossref_primary_10_1002_alz_14194 crossref_primary_10_3390_nu12103161 crossref_primary_10_1016_j_ijms_2020_116359 crossref_primary_10_1016_j_envint_2019_02_047 crossref_primary_10_1016_j_toxrep_2015_11_009 crossref_primary_10_1183_13993003_01118_2018 crossref_primary_10_1016_j_chemolab_2011_03_010 crossref_primary_10_1016_j_envres_2022_114319 crossref_primary_10_1016_j_fertnstert_2022_07_023 crossref_primary_10_1212_WNL_0000000000209201 crossref_primary_10_1002_mas_21778 crossref_primary_10_1128_spectrum_02194_22 crossref_primary_10_1016_j_envint_2022_107552 crossref_primary_10_1158_1940_6207_CAPR_21_0555 crossref_primary_10_1016_j_envres_2023_117435 crossref_primary_10_1093_toxsci_kfae040 crossref_primary_10_3892_ijmm_2017_3275 crossref_primary_10_1016_j_freeradbiomed_2018_12_005 crossref_primary_10_1038_s41597_022_01755_y crossref_primary_10_1038_s42255_021_00502_8 crossref_primary_10_1016_j_ijmm_2017_09_002 crossref_primary_10_1109_TCBB_2013_99 crossref_primary_10_1016_j_envpol_2021_118361 crossref_primary_10_1186_s40246_017_0128_0 crossref_primary_10_1289_EHP10873 crossref_primary_10_1016_j_surg_2020_06_010 crossref_primary_10_1007_s11357_019_00114_x crossref_primary_10_1016_j_tox_2024_153772 crossref_primary_10_1016_j_envint_2021_107061 crossref_primary_10_1016_j_reprotox_2025_108866 crossref_primary_10_1093_pnasnexus_pgac050 crossref_primary_10_3390_cells10113141 crossref_primary_10_1016_j_taap_2022_116327 crossref_primary_10_1152_ajplung_00303_2022 crossref_primary_10_1161_JAHA_119_015247 crossref_primary_10_1371_journal_pone_0237579 crossref_primary_10_1249_MSS_0000000000002960 crossref_primary_10_1007_s12561_016_9159_7 crossref_primary_10_1021_ac504711d crossref_primary_10_1371_journal_pone_0315999 crossref_primary_10_1016_j_envint_2020_105957 crossref_primary_10_1186_1471_2105_14_15 crossref_primary_10_1016_j_envint_2018_07_044 crossref_primary_10_1016_j_envres_2021_111907 crossref_primary_10_1016_j_tjnut_2024_11_013 crossref_primary_10_1093_bioinformatics_btx816 crossref_primary_10_1167_iovs_19_27321 crossref_primary_10_1093_humrep_dead189 crossref_primary_10_1007_s11306_021_01860_w crossref_primary_10_3390_ijms24032051 crossref_primary_10_1016_j_nut_2023_112160 crossref_primary_10_1093_jn_nxy036 crossref_primary_10_1038_s41598_020_70850_0 crossref_primary_10_1016_j_envint_2022_107530 crossref_primary_10_1016_j_envres_2023_117776 crossref_primary_10_1016_j_fct_2017_04_020 crossref_primary_10_1007_s11306_023_02074_y crossref_primary_10_1016_j_fct_2018_04_042 crossref_primary_10_1016_j_envint_2021_106666 crossref_primary_10_1016_j_jhazmat_2024_136691 crossref_primary_10_1016_j_bbagen_2018_04_009 crossref_primary_10_1038_srep36490 crossref_primary_10_1039_c0an00333f crossref_primary_10_1007_s11816_021_00703_3 crossref_primary_10_1097_EE9_0000000000000191 crossref_primary_10_3390_antiox12040804 crossref_primary_10_1016_j_jchromb_2016_10_030 crossref_primary_10_1021_acs_est_2c00064 crossref_primary_10_1074_jbc_R113_464131 crossref_primary_10_1111_acel_12215 crossref_primary_10_1016_j_taap_2018_12_001 crossref_primary_10_1093_exposome_osac011 crossref_primary_10_1016_j_foodchem_2018_06_146 crossref_primary_10_1021_acs_analchem_6b01214 crossref_primary_10_1007_s11306_011_0332_1 crossref_primary_10_1038_srep17221 crossref_primary_10_1210_jendso_bvaa127 crossref_primary_10_1016_j_csbj_2015_10_005 crossref_primary_10_1021_acs_jproteome_8b00803 crossref_primary_10_1097_JOM_0000000000001687 crossref_primary_10_1289_EHP12861 crossref_primary_10_1007_s12035_021_02625_1 crossref_primary_10_1186_s12936_015_0651_1 crossref_primary_10_2337_dc14_2033 crossref_primary_10_1161_CIRCRESAHA_121_319817 crossref_primary_10_1136_bmjopen_2017_018753 crossref_primary_10_1126_scitranslmed_abo2750 crossref_primary_10_1016_j_xplc_2021_100238 crossref_primary_10_1093_bioinformatics_btu430 crossref_primary_10_1371_journal_ppat_1009941 crossref_primary_10_1093_bioinformatics_btaa164 crossref_primary_10_1016_j_envint_2021_106964 crossref_primary_10_1016_j_jpba_2017_10_018 crossref_primary_10_1021_acs_est_4c01156 crossref_primary_10_1016_j_etap_2017_12_008 crossref_primary_10_1088_1752_7163_aa863c crossref_primary_10_14814_phy2_12821 crossref_primary_10_1371_journal_pcbi_1003123 crossref_primary_10_1002_jms_1643 crossref_primary_10_1097_MPG_0000000000003693 crossref_primary_10_3390_toxins12100633 crossref_primary_10_18632_aging_103462 crossref_primary_10_1038_ni_3025 crossref_primary_10_1093_aje_kwad122 crossref_primary_10_1039_D1MO00005E crossref_primary_10_1186_s13024_023_00694_5 crossref_primary_10_1007_s11306_024_02219_7 crossref_primary_10_1016_j_tube_2023_102462 crossref_primary_10_1038_s44324_023_00001_2 crossref_primary_10_1371_journal_pone_0182819 crossref_primary_10_1016_j_trac_2020_116063 crossref_primary_10_1021_acs_est_3c04561 crossref_primary_10_3390_metabo13111160 crossref_primary_10_1016_j_cct_2023_107170 crossref_primary_10_1016_j_jprot_2024_105336 crossref_primary_10_3390_biom9050200 crossref_primary_10_3390_metabo11020118 crossref_primary_10_1016_j_cell_2019_08_010 crossref_primary_10_1158_1940_6207_CAPR_20_0014 crossref_primary_10_1016_j_jhazmat_2023_132305 crossref_primary_10_1016_j_trac_2024_117674 crossref_primary_10_1089_aid_2013_0198 crossref_primary_10_1016_j_jcf_2020_05_003 crossref_primary_10_1093_toxsci_kfz028 crossref_primary_10_3390_foods10102388 crossref_primary_10_1016_j_reprotox_2019_05_059 crossref_primary_10_1093_bib_bbad244 crossref_primary_10_1186_s40246_022_00440_w crossref_primary_10_1016_j_envint_2020_106323 crossref_primary_10_1016_j_aca_2019_04_011 crossref_primary_10_1016_j_reprotox_2019_05_058 crossref_primary_10_1038_s41385_018_0125_1 crossref_primary_10_1186_s12859_015_0562_8 crossref_primary_10_1021_acs_est_1c04915 crossref_primary_10_4062_biomolther_2018_175 crossref_primary_10_1073_pnas_2009838117 crossref_primary_10_1093_toxsci_kfu018 crossref_primary_10_3233_JAD_230122  | 
    
| Cites_doi | 10.1093/bioinformatics/btl276 10.1007/978-0-387-21706-2 10.1093/biostatistics/kxl015 10.1002/rcm.600 10.1186/1471-2105-7-530 10.1016/j.chroma.2008.03.033 10.1093/bioinformatics/btk039 10.1021/ac026468x 10.1021/ac034716z 10.1021/ac051437y 10.1021/ac0341618 10.1016/j.chroma.2007.04.021 10.1016/j.jchromb.2007.10.022 10.1186/1471-2105-9-163 10.1186/1471-2105-8-419 10.1021/ac060245f 10.1111/j.1742-4658.2007.05673.x 10.1016/j.chroma.2007.03.081 10.1002/mas.20108 10.1002/bies.20414 10.1093/bioinformatics/btm083 10.1038/nbt0208-162 10.1021/ac050980b  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009 2009 INIST-CNRS The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org  | 
    
| Copyright_xml | – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009 – notice: 2009 INIST-CNRS – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org  | 
    
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/bioinformatics/btp291 | 
    
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | Materials Research Database Computer and Information Systems Abstracts CrossRef MEDLINE - Academic MEDLINE Engineering Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1460-2059 1367-4811  | 
    
| EndPage | 1936 | 
    
| ExternalDocumentID | 10.1093/bioinformatics/btp291 PMC2712336 1800186951 19414529 21732747 10_1093_bioinformatics_btp291 ark_67375_HXZ_8D921RX7_D  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: PHS HHS grantid: 2P30A1050409 – fundername: NCRR NIH HHS grantid: 1UL1RR025008-01 – fundername: NIEHS NIH HHS grantid: 1P01ES016731-01 – fundername: NCATS NIH HHS grantid: UL1 TR000454 – fundername: NCRR NIH HHS grantid: UL1 RR025008 – fundername: NIEHS NIH HHS grantid: P01 ES016731  | 
    
| GroupedDBID | -~X .2P .I3 482 48X 5GY AAMVS ABJNI ABPTD ACGFS ACUFI ADZXQ ALMA_UNASSIGNED_HOLDINGS BSCLL CZ4 EE~ F5P F9B H5~ HAR HW0 IOX KSI KSN NGC Q5Y RD5 ROZ RXO TLC TN5 TOX WH7 ~91 ADRIX BCRHZ KOP ROX --- -E4 .DC 0R~ 1TH 23N 2WC 4.4 53G 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNGD ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUKT ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQPQ AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZFZN AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE CITATION COF CS3 DAKXR DIK DILTD DU5 D~K EBD EBS EJD EMOBN FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 HVGLF HZ~ J21 JXSIZ KAQDR KQ8 M-Z MK~ ML0 N9A NLBLG NMDNZ NOMLY NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PB- PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~KM .-4 .GJ ABEFU AI. AQDSO ATTQO ELUNK IQODW NTWIH O~Y RIG RNI RZF RZO VH1 ZGI ABQTQ CGR CUY CVF ECM EIF M49 NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c608t-1e2f37fa23de73d3e85e49feef32488ea960e3d6258c52e42054b58e270dba8f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1367-4803 1367-4811  | 
    
| IngestDate | Sun Oct 26 04:00:08 EDT 2025 Tue Sep 30 16:51:10 EDT 2025 Fri Sep 05 08:25:28 EDT 2025 Fri Sep 05 12:07:35 EDT 2025 Tue Oct 07 09:44:19 EDT 2025 Mon Oct 06 17:23:07 EDT 2025 Thu Apr 03 07:06:06 EDT 2025 Mon Jul 21 09:14:56 EDT 2025 Wed Oct 01 04:04:49 EDT 2025 Thu Apr 24 22:59:18 EDT 2025 Wed Aug 28 03:24:17 EDT 2024 Sat Sep 20 11:02:04 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 15 | 
    
| Keywords | High resolution Data  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c608t-1e2f37fa23de73d3e85e49feef32488ea960e3d6258c52e42054b58e270dba8f3 | 
    
| Notes | To whom correspondence should be addressed. ArticleID:btp291 ark:/67375/HXZ-8D921RX7-D istex:CAE311883B580B0F5F49D1C03CF4B17C74D70678 Associate Editor: John Quackenbush ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/25/15/1930/48992678/bioinformatics_25_15_1930.pdf | 
    
| PMID | 19414529 | 
    
| PQID | 198707081 | 
    
| PQPubID | 36124 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_bioinformatics_btp291 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2712336 proquest_miscellaneous_733367743 proquest_miscellaneous_34791154 proquest_miscellaneous_20774589 proquest_journals_198707081 pubmed_primary_19414529 pascalfrancis_primary_21732747 crossref_primary_10_1093_bioinformatics_btp291 crossref_citationtrail_10_1093_bioinformatics_btp291 oup_primary_10_1093_bioinformatics_btp291 istex_primary_ark_67375_HXZ_8D921RX7_D  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-08-01 | 
    
| PublicationDateYYYYMMDD | 2009-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford – name: England  | 
    
| PublicationTitle | Bioinformatics | 
    
| PublicationTitleAlternate | Bioinformatics | 
    
| PublicationYear | 2009 | 
    
| Publisher | Oxford University Press Oxford Publishing Limited (England)  | 
    
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England)  | 
    
| References | Nordstrom (2023013112045645300_B14) 2006; 78 Sturm (2023013112045645300_B19) 2008; 9 Katajamaa (2023013112045645300_B9) 2006; 22 Katajamaa (2023013112045645300_B10) 2007; 1158 Venables (2023013112045645300_B21) 2002 Windig (2023013112045645300_B24) 2007; 1158 Lu (2023013112045645300_B12) 2008; 866 Robinson (2023013112045645300_B16) 2007; 8 Wang (2023013112045645300_B22) 2007; 8 Bellew (2023013112045645300_B3) 2006; 22 Nobeli (2023013112045645300_B13) 2006; 28 Baran (2023013112045645300_B2) 2006; 7 Dettmer (2023013112045645300_B5) 2007; 26 Du (2023013112045645300_B6) 2007; 23 Hastings (2023013112045645300_B7) 2002; 16 Idborg-Bjorkman (2023013112045645300_B8) 2003; 75 Lindon (2023013112045645300_B11) 2007; 274 Pyke (2023013112045645300_B15) 1965; 27 Aberg (2023013112045645300_B1) 2008; 1192 Smith (2023013112045645300_B17) 2006; 78 Wang (2023013112045645300_B23) 2003; 75 Tolstikov (2023013112045645300_B20) 2003; 75 Cui (2023013112045645300_B4) 2008; 26 Stolt (2023013112045645300_B18) 2006; 78 17418223 - J Chromatogr A. 2007 Jul 27;1158(1-2):251-7 17496000 - Bioinformatics. 2007 Jun 1;23(11):1394-400 11857732 - Rapid Commun Mass Spectrom. 2002;16(5):462-7 14674459 - Anal Chem. 2003 Sep 15;75(18):4818-26 14640754 - Anal Chem. 2003 Dec 1;75(23):6737-40 14674455 - Anal Chem. 2003 Sep 15;75(18):4784-92 18366760 - BMC Bioinformatics. 2008;9:163 16766559 - Bioinformatics. 2006 Aug 1;22(15):1902-9 17166258 - BMC Bioinformatics. 2006;7:530 17983864 - J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Apr 15;866(1-2):64-76 17963529 - BMC Bioinformatics. 2007;8:419 16615085 - Bioessays. 2006 May;28(5):534-45 16921475 - Mass Spectrom Rev. 2007 Jan-Feb;26(1):51-78 18259166 - Nat Biotechnol. 2008 Feb;26(2):162-4 17298438 - FEBS J. 2007 Mar;274(5):1140-51 16403790 - Bioinformatics. 2006 Mar 1;22(5):634-6 16689529 - Anal Chem. 2006 May 15;78(10):3289-95 16880200 - Biostatistics. 2007 Apr;8(2):357-67 18378252 - J Chromatogr A. 2008 May 23;1192(1):139-46 17466315 - J Chromatogr A. 2007 Jul 27;1158(1-2):318-28 16448051 - Anal Chem. 2006 Feb 1;78(3):779-87 16478086 - Anal Chem. 2006 Feb 15;78(4):975-83  | 
    
| References_xml | – volume: 22 start-page: 1902 year: 2006 ident: 2023013112045645300_B3 article-title: A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl276 – volume-title: Modern Applied Statistics with S year: 2002 ident: 2023013112045645300_B21 doi: 10.1007/978-0-387-21706-2 – volume: 8 start-page: 357 year: 2007 ident: 2023013112045645300_B22 article-title: A statistical method for chromatographic alignment of LC-MS data publication-title: Biostatistics doi: 10.1093/biostatistics/kxl015 – volume: 16 start-page: 462 year: 2002 ident: 2023013112045645300_B7 article-title: New algorithms for processing and peak detection in liquid chromatography/mass spectrometry data publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.600 – volume: 7 start-page: 530 year: 2006 ident: 2023013112045645300_B2 article-title: MathDAMP: a package for differential analysis of metabolite profiles publication-title: BMC bioinformatics doi: 10.1186/1471-2105-7-530 – volume: 1192 start-page: 139 year: 2008 ident: 2023013112045645300_B1 article-title: Feature detection and alignment of hyphenated chromatographic-mass spectrometric data. Extraction of pure ion chromatograms using Kalman tracking publication-title: J. Chromatogr. A. doi: 10.1016/j.chroma.2008.03.033 – volume: 27 start-page: 395 year: 1965 ident: 2023013112045645300_B15 article-title: Spacings publication-title: J. R. Stat. Soc., Series B – volume: 22 start-page: 634 year: 2006 ident: 2023013112045645300_B9 article-title: MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btk039 – volume: 75 start-page: 4818 year: 2003 ident: 2023013112045645300_B23 article-title: Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards publication-title: Anal. Chem. doi: 10.1021/ac026468x – volume: 75 start-page: 6737 year: 2003 ident: 2023013112045645300_B20 article-title: Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics publication-title: Anal. Chem. doi: 10.1021/ac034716z – volume: 78 start-page: 779 year: 2006 ident: 2023013112045645300_B17 article-title: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification publication-title: Anal. Chem. doi: 10.1021/ac051437y – volume: 75 start-page: 4784 year: 2003 ident: 2023013112045645300_B8 article-title: Screening of biomarkers in rat urine using LC/electrospray ionization-MS and two-way data analysis publication-title: Anal. Chem. doi: 10.1021/ac0341618 – volume: 1158 start-page: 318 year: 2007 ident: 2023013112045645300_B10 article-title: Data processing for mass spectrometry-based metabolomics publication-title: J. Chromatogr. A. doi: 10.1016/j.chroma.2007.04.021 – volume: 866 start-page: 64 year: 2008 ident: 2023013112045645300_B12 article-title: LC-MS-based metabonomics analysis publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2007.10.022 – volume: 9 start-page: 163 year: 2008 ident: 2023013112045645300_B19 article-title: OpenMS – an open-source software framework for mass spectrometry publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-163 – volume: 8 start-page: 419 year: 2007 ident: 2023013112045645300_B16 article-title: A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-419 – volume: 78 start-page: 3289 year: 2006 ident: 2023013112045645300_B14 article-title: Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum publication-title: Anal. Chem. doi: 10.1021/ac060245f – volume: 274 start-page: 1140 year: 2007 ident: 2023013112045645300_B11 article-title: Metabonomics in pharmaceutical R&D publication-title: FEBS J. doi: 10.1111/j.1742-4658.2007.05673.x – volume: 1158 start-page: 251 year: 2007 ident: 2023013112045645300_B24 article-title: Chemometric analysis of complex hyphenated data. Improvements of the component detection algorithm publication-title: J. Chromatogr. A. doi: 10.1016/j.chroma.2007.03.081 – volume: 26 start-page: 51 year: 2007 ident: 2023013112045645300_B5 article-title: Mass spectrometry-based metabolomics publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.20108 – volume: 28 start-page: 534 year: 2006 ident: 2023013112045645300_B13 article-title: A bioinformatician's view of the metabolome publication-title: Bioessays doi: 10.1002/bies.20414 – volume: 23 start-page: 1394 year: 2007 ident: 2023013112045645300_B6 article-title: Data reduction of isotope-resolved LC-MS spectra publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm083 – volume: 26 start-page: 162 year: 2008 ident: 2023013112045645300_B4 article-title: Metabolite identification via the Madison Metabolomics Consortium Database publication-title: Nat. Biotechnol. doi: 10.1038/nbt0208-162 – volume: 78 start-page: 975 year: 2006 ident: 2023013112045645300_B18 article-title: Second-order peak detection for multicomponent high-resolution LC/MS data publication-title: Anal. Chem. doi: 10.1021/ac050980b – reference: 18259166 - Nat Biotechnol. 2008 Feb;26(2):162-4 – reference: 16615085 - Bioessays. 2006 May;28(5):534-45 – reference: 18378252 - J Chromatogr A. 2008 May 23;1192(1):139-46 – reference: 16689529 - Anal Chem. 2006 May 15;78(10):3289-95 – reference: 17418223 - J Chromatogr A. 2007 Jul 27;1158(1-2):251-7 – reference: 14640754 - Anal Chem. 2003 Dec 1;75(23):6737-40 – reference: 16403790 - Bioinformatics. 2006 Mar 1;22(5):634-6 – reference: 16880200 - Biostatistics. 2007 Apr;8(2):357-67 – reference: 14674459 - Anal Chem. 2003 Sep 15;75(18):4818-26 – reference: 17963529 - BMC Bioinformatics. 2007;8:419 – reference: 17298438 - FEBS J. 2007 Mar;274(5):1140-51 – reference: 16921475 - Mass Spectrom Rev. 2007 Jan-Feb;26(1):51-78 – reference: 14674455 - Anal Chem. 2003 Sep 15;75(18):4784-92 – reference: 16478086 - Anal Chem. 2006 Feb 15;78(4):975-83 – reference: 17466315 - J Chromatogr A. 2007 Jul 27;1158(1-2):318-28 – reference: 11857732 - Rapid Commun Mass Spectrom. 2002;16(5):462-7 – reference: 16766559 - Bioinformatics. 2006 Aug 1;22(15):1902-9 – reference: 16448051 - Anal Chem. 2006 Feb 1;78(3):779-87 – reference: 17496000 - Bioinformatics. 2007 Jun 1;23(11):1394-400 – reference: 17983864 - J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Apr 15;866(1-2):64-76 – reference: 18366760 - BMC Bioinformatics. 2008;9:163 – reference: 17166258 - BMC Bioinformatics. 2006;7:530  | 
    
| SSID | ssj0051444 ssj0005056  | 
    
| Score | 2.4735794 | 
    
| Snippet | Motivation: Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological... Motivation: Liquid chromatography-mass spectrometry (LC MS) profiling is a promising approach for the quantification of metabolites from complex biological... Liquid chromatography-mass spectrometry (LC/MS) profiling is a promising approach for the quantification of metabolites from complex biological samples.... Motivation: Liquid chromatography-mass spectrometry (LC-MS) profiling is a promising approach for the quantification of metabolites from complex biological...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed pascalfrancis crossref oup istex  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1930 | 
    
| SubjectTerms | Algorithms Bioinformatics Biological and medical sciences Biological samples Chromatography, Liquid - methods Computational Biology Databases, Protein Fundamental and applied biological sciences. Psychology General aspects Liquid chromatography Mass spectrometry Mass Spectrometry - methods Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Metabolites Noise reduction Original Papers Proteome - analysis Proteomics - methods Software  | 
    
| Title | apLCMS—adaptive processing of high-resolution LC/MS data | 
    
| URI | https://api.istex.fr/ark:/67375/HXZ-8D921RX7-D/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/19414529 https://www.proquest.com/docview/198707081 https://www.proquest.com/docview/20774589 https://www.proquest.com/docview/34791154 https://www.proquest.com/docview/733367743 https://pubmed.ncbi.nlm.nih.gov/PMC2712336 https://academic.oup.com/bioinformatics/article-pdf/25/15/1930/48992678/bioinformatics_25_15_1930.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1460-2059 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 1460-2059 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access (Activated by CARLI) customDbUrl: eissn: 1460-2059 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access (Activated by CARLI) customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4811 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61iRBIiPIoYArBB4TEwXG86_XucqvSVhFqCqKNFLhYa3tXVI0cK00E5cSJX8Av5JcwGz8ggYpyQPIhkmcceXZ29hvPC-BZIiMiUVM8qpXxwjSTnjRR5ElpUnucZmwZwR8eRYNR-GrMxhug61oYVWWFd-uShuR0WrUQtW2L_UqeXpEZnzA_wEvSnh-i20DQ7q6Rx4TFAV5I0kWOTWhHDCF7C9qjoze778qaLO6FYjlBufodBHWlj6Trf5_MCyKDlTOsbZfjU10fd7NQ5yhcU07F-BNs_T378voiL9TFRzWZ_HK0HWzB11ooZUbLWXcxT7rp57V-kf9darfhVgWO3d3yOXdgQ-d34Vo5LvPiHrxUxWF_ePz9yzeVqcLaabco6xzw_HWnxrW9l72ZrreTe9j3h8euTYLdhtHB_kl_4FWzH7w06om5F2hiKDeK0ExzmlEtmA6l0dogAhRCK1xGTTP03kTKiA4JQs-ECU14L0uUMPQ-tPJprh-Ci4BPcxFxhQ5zqDlLtDTolBIkDWmqUwfCejXjtGqMbudzTOIyQE_jNfGUSuBAt2Erys4gf2N4vlSVhlrNzmxaHWfxYPw-FnuSBG_HPN5z4AWu41Uf2lnRuIYLXU1qvzg4sFOrYFyZp_PYfmlCWy-Q_WlzF-2KDRapXE8XqAM9dAyYkJdT2Bpk28zJAfcSCk4pbinEqA48KHX-50vJMLAxfwf4ym5oCGzb89U7-emHZftzwhFt0cgBv9k3V5PVo3_m2IEbZfTQJnw-htZ8ttBPEITOkw5snrwedypD8gOboI7i | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRAgkxPthCsUHhMTBcbzr9e5yq1KqCDUVokQKXKy1vSuqRo6VJoJy4sQv4BfyS5jN2oYEKsoByYdInnHk2dnZbzwvgKeZTIhETQmoViaI80IG0iRJIKXJ7XFasFUEf3SYDMfxqwmbbIFuamFUnRXea0oasuNZ3ULUti0Oa3kGVWFCwsIIL0n7YYxuA0G7u0GeEpZGeCFJDzkuQTdhCNk70B0fvt5952qyeBCL1QTl-ncUNZU-km7-fbaoiIzWzrCuXY5PTX3ctUqdonCNm4rxJ9j6e_bllWVZqbOPajr95WjbvwFfG6G4jJaT3nKR9fLPG_0i_7vUbsL1Ghz7u-45t2BLl7fhshuXeXYHXqjqYDA6-v7lmypUZe20X7k6Bzx__Znxbe_lYK6b7eQfDMLRkW-TYO_CeP_l28EwqGc_BHnSF4sg0sRQbhShhea0oFowHUujtUEEKIRWuIyaFui9iZwRHROEnhkTmvB-kSlh6D3olLNSPwAfAZ_mIuEKHeZYc5ZpadApJUga01znHsTNaqZ53RjdzueYpi5AT9MN8Tgl8KDXslWuM8jfGJ6tVKWlVvMTm1bHWTqcvE_FniTRmwlP9zx4jut40YfurGlcy4WuJrVfHDzYblQwrc3TaWq_NKGtF8j-pL2LdsUGi1SpZ0vUgT46BkzI8ylsDbJt5uSBfw4FpxS3FGJUD-47nf_5UjKObMzfA762G1oC2_Z8_U55_GHV_pxwRFs08SBs983FZPXwnzm24aqLHtqEz0fQWcyX-jGC0EW2U5uQH0ddjcY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=apLCMS%E2%80%94adaptive+processing+of+high-resolution+LC%2FMS+data&rft.jtitle=Bioinformatics&rft.au=Yu%2C+Tianwei&rft.au=Park%2C+Youngja&rft.au=Johnson%2C+Jennifer+M.&rft.au=Jones%2C+Dean+P.&rft.date=2009-08-01&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=25&rft.issue=15&rft.spage=1930&rft.epage=1936&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtp291&rft_id=info%3Apmid%2F19414529&rft.externalDocID=PMC2712336 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |