Video-Based Human Activity Recognition Using Multilevel Wavelet Decomposition and Stepwise Linear Discriminant Analysis

Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 14; no. 4; pp. 6370 - 6392
Main Authors Siddiqi, Muhammad, Ali, Rahman, Rana, Md, Hong, Een-Kee, Kim, Eun, Lee, Sungyoung
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.04.2014
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s140406370

Cover

Abstract Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values (i.e., partial F-test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n–fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods.
AbstractList Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values (i.e., partial F-test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n??fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods.Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values (i.e., partial F-test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n??fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods.
Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values (i.e., partial F-test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n??fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods.
Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values ( i.e. , partial F -test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n –fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods.
Author Rana, Md
Kim, Eun
Siddiqi, Muhammad
Ali, Rahman
Hong, Een-Kee
Lee, Sungyoung
AuthorAffiliation 2 Department of Electronics and Radio Engineering, Kyung Hee University, Suwon 446–701, Korea; E-Mails: sohel@khu.ac.kr (M.S.R.); ekhong@khu.ac.kr (E.-K.H.)
3 Department of Electronic Engineering, Kwangwoon University, Seoul 139–701, Korea; E-Mail: eskim@kw.ac.kr
1 Department of Computer Engineering, Kyung Hee University, Suwon 446–701, Korea; E-Mails: siddiqi@oslab.khu.ac.kr (M.H.S.); rahmanali@oslab.khu.ac.kr (R.A.)
AuthorAffiliation_xml – name: 3 Department of Electronic Engineering, Kwangwoon University, Seoul 139–701, Korea; E-Mail: eskim@kw.ac.kr
– name: 1 Department of Computer Engineering, Kyung Hee University, Suwon 446–701, Korea; E-Mails: siddiqi@oslab.khu.ac.kr (M.H.S.); rahmanali@oslab.khu.ac.kr (R.A.)
– name: 2 Department of Electronics and Radio Engineering, Kyung Hee University, Suwon 446–701, Korea; E-Mails: sohel@khu.ac.kr (M.S.R.); ekhong@khu.ac.kr (E.-K.H.)
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Siddiqi
  fullname: Siddiqi, Muhammad
– sequence: 2
  givenname: Rahman
  surname: Ali
  fullname: Ali, Rahman
– sequence: 3
  givenname: Md
  surname: Rana
  fullname: Rana, Md
– sequence: 4
  givenname: Een-Kee
  surname: Hong
  fullname: Hong, Een-Kee
– sequence: 5
  givenname: Eun
  surname: Kim
  fullname: Kim, Eun
– sequence: 6
  givenname: Sungyoung
  surname: Lee
  fullname: Lee, Sungyoung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24714390$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2A-98QdIwBsRRvM5HzfC2lpbWBHU6mXIJGfWLDPJNsls2X_frNtqWwS9SULynDfnTd7DYs95B0XxnOA3jLX4bSQcc1yxGj8qDginvGwoxXt31vvFYYxLjCljrHlS7FNeE55LD4qr79aAL9-rCAadTaNyaKaTXdu0QV9A-4WzyXqHLqJ1C_RpGpIdYA0D-qHyCAmdZGhc-bjDlDPoa4LVlY2A5taBCujERh3saJ1yCc2cGjbRxqfF414NEZ7dzEfFxemHb8dn5fzzx_Pj2bzUFW5SSUhnOtz1XDeUE94RShmnVdND1dKm7rThPRXMtIwaoVVVC9oaLhqcreOeK3ZUnO90jVdLucp9qLCRXln5a8OHhVQhWT2A7HpTGW005Is4B9FqYiCLcg1AlWiz1rud1mrqRsigS0EN90Tvnzj7Uy78WnJM20rwLPDqRiD4ywlikmN-GxgG5cBPUZJsiom2peQ_UIqxwPkP_42K7IfxuhEZffkAXfop5C_ZUqwWhDZs2-aLuz5_G7xNTQbwDtDBxxigl9omtQ1Atm0HSbDcBlP-CWYuef2g5Fb1L_A1lzbisg
CitedBy_id crossref_primary_10_1002_cpe_6870
crossref_primary_10_1016_j_eswa_2017_03_052
crossref_primary_10_1007_s11042_020_08704_0
crossref_primary_10_1155_2019_8590560
crossref_primary_10_1109_ACCESS_2023_3316508
crossref_primary_10_1155_2022_1391906
crossref_primary_10_32604_cmc_2022_024760
crossref_primary_10_1109_ACCESS_2019_2936621
crossref_primary_10_1049_bme2_12066
crossref_primary_10_1155_2014_975317
crossref_primary_10_1109_JSEN_2017_2784425
crossref_primary_10_1109_ACCESS_2019_2950063
crossref_primary_10_1109_ACCESS_2020_3020141
crossref_primary_10_1109_ACCESS_2021_3092403
crossref_primary_10_3233_JIFS_212088
crossref_primary_10_1007_s11042_021_11828_6
crossref_primary_10_1080_10447318_2022_2093445
crossref_primary_10_4236_jdaip_2021_93013
crossref_primary_10_1109_TFUZZ_2022_3152106
crossref_primary_10_1016_j_ins_2023_03_137
crossref_primary_10_1016_j_compeleceng_2016_06_004
crossref_primary_10_35234_fumbd_671403
crossref_primary_10_3390_s19153329
crossref_primary_10_1049_iet_cvi_2015_0087
crossref_primary_10_3390_s16122043
crossref_primary_10_1155_2022_5486004
crossref_primary_10_1155_2015_394083
crossref_primary_10_1007_s11063_020_10400_x
crossref_primary_10_3390_en14196384
Cites_doi 10.3390/s130201635
10.1109/TIP.2005.852197
10.1109/34.824819
10.1016/j.patcog.2013.06.006
10.1162/089976600300014980
10.1109/ICTer.2012.6421415
10.1016/j.jneumeth.2007.07.017
10.1109/CVPR.2013.338
10.1109/TPAMI.2011.209
10.1109/34.598228
10.1109/TIP.2014.2302677
10.1007/978-3-642-33374-3_41
10.3844/jcssp.2013.1.15
10.1109/TASE.2013.2256349
10.1016/j.imavis.2013.08.005
10.1007/s10489-008-0159-2
10.1109/TSMCB.2012.2199310
10.1109/ICACCI.2013.6637484
10.1109/ICOSP.2008.4697417
10.1109/CVPR.2007.383512
10.1109/93.998041
10.3390/s130505460
10.1109/ICIAS.2010.5716186
10.1109/CRV.2012.32
10.1007/978-3-319-03844-5_8
10.1109/WACV.2013.6475006
10.1177/1420326X12469734
10.1109/ICIEA.2013.6566433
10.3390/computers2020088
10.1109/IMCCC.2011.95
10.1109/CVPR.2011.5995407
10.1109/CVPR.2009.5206744
10.1016/j.cviu.2006.08.002
10.1145/1922649.1922653
10.1007/978-1-4471-4640-7_10
10.1109/CVPR.2008.4587756
ContentType Journal Article
Copyright Copyright MDPI AG 2014
2014 by the authors; licensee MDPI, Basel, Switzerland. 2014
Copyright_xml – notice: Copyright MDPI AG 2014
– notice: 2014 by the authors; licensee MDPI, Basel, Switzerland. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
7SP
7TB
7U5
8FD
FR3
L7M
5PM
DOA
DOI 10.3390/s140406370
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database

MEDLINE
Solid State and Superconductivity Abstracts
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
EndPage 6392
ExternalDocumentID oai_doaj_org_article_bfd6dcdce41444e59c1de5ca4cee2a59
PMC4029654
3340043931
24714390
10_3390_s140406370
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
7SP
7TB
7U5
8FD
FR3
L7M
5PM
ID FETCH-LOGICAL-c608t-11bdb0bf4c82414b12234268fe69287bcd4f253d932d5ca67529d45801420f4a3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:35 EDT 2025
Thu Aug 21 18:01:15 EDT 2025
Fri Sep 05 06:23:43 EDT 2025
Fri Sep 05 10:21:33 EDT 2025
Thu Sep 04 18:48:25 EDT 2025
Fri Jul 25 02:35:37 EDT 2025
Thu Apr 03 07:01:45 EDT 2025
Tue Aug 12 04:01:07 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/3.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c608t-11bdb0bf4c82414b12234268fe69287bcd4f253d932d5ca67529d45801420f4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s140406370
PMID 24714390
PQID 1537512834
PQPubID 23500
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_bfd6dcdce41444e59c1de5ca4cee2a59
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4029654
proquest_miscellaneous_1692359921
proquest_miscellaneous_1620050390
proquest_miscellaneous_1514434785
proquest_journals_1537512834
pubmed_primary_24714390
crossref_citationtrail_10_3390_s140406370
crossref_primary_10_3390_s140406370
PublicationCentury 2000
PublicationDate 2014-04-04
PublicationDateYYYYMMDD 2014-04-04
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-04
  day: 04
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2014
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
ref_13
ref_12
ref_55
ref_54
Sanchis (ref_25) 2013; 13
ref_51
ref_19
ref_18
ref_16
ref_15
Uddin (ref_40) 2010; 33
Moeslund (ref_2) 2006; 104
ref_24
ref_21
ref_20
ref_28
ref_27
Vaswani (ref_1) 2005; 14
Xu (ref_52) 2013; 13
Raja (ref_14) 2013; 9
Baum (ref_32) 1972; 3
Hassner (ref_39) 2012; 34
Takur (ref_48) 2013; 3
Belhumeur (ref_31) 1997; 19
Krusienski (ref_26) 2008; 167
ref_36
Baudat (ref_29) 2000; 12
ref_35
ref_34
ref_33
Hu (ref_11) 2013; 43
ref_30
Aggarwal (ref_9) 2011; 43
ref_38
ref_37
Trabelsi (ref_22) 2013; 10
Gupta (ref_45) 2013; 5
ref_47
Goudelis (ref_43) 2013; 46
ref_46
Everts (ref_49) 2014; 23
Ji (ref_23) 2013; 9
Levine (ref_44) 2013; 31
ref_42
ref_41
Jain (ref_17) 2000; 22
ref_3
ref_8
ref_5
Ke (ref_53) 2013; 2
ref_4
ref_7
ref_6
Uddin (ref_10) 2013; 22
16238065 - IEEE Trans Image Process. 2005 Oct;14(10):1603-16
23353144 - Sensors (Basel). 2013;13(2):1635-50
17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21
22692925 - IEEE Trans Cybern. 2013 Feb;43(1):77-89
11032039 - Neural Comput. 2000 Oct;12(10):2385-404
24577192 - IEEE Trans Image Process. 2014 Apr;23(4):1569-80
23615583 - Sensors (Basel). 2013 Apr 24;13(5):5460-77
22262724 - IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):615-21
References_xml – ident: ref_5
– ident: ref_51
– volume: 13
  start-page: 1635
  year: 2013
  ident: ref_52
  article-title: Exploring techniques for vision based human activity recognition: Methods, systems, and evaluation
  publication-title: Sensors
  doi: 10.3390/s130201635
– volume: 3
  start-page: 1
  year: 1972
  ident: ref_32
  article-title: An equality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes
  publication-title: Inequalities
– volume: 14
  start-page: 1603
  year: 2005
  ident: ref_1
  article-title: Shape activity: A continuous-state HMM for moving/deforming shapes with application to abnormal activity detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852197
– volume: 22
  start-page: 4
  year: 2000
  ident: ref_17
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.824819
– ident: ref_42
– volume: 46
  start-page: 3238
  year: 2013
  ident: ref_43
  article-title: Exploring trace transform for robust human action recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.06.006
– volume: 12
  start-page: 2385
  year: 2000
  ident: ref_29
  article-title: Generalized discriminant analysis using a kernel approach
  publication-title: Neural Comput.
  doi: 10.1162/089976600300014980
– ident: ref_18
  doi: 10.1109/ICTer.2012.6421415
– volume: 167
  start-page: 15
  year: 2008
  ident: ref_26
  article-title: Toward enhanced P300 speller performance
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.07.017
– ident: ref_55
  doi: 10.1109/CVPR.2013.338
– ident: ref_8
– volume: 34
  start-page: 615
  year: 2012
  ident: ref_39
  article-title: The action similarity labeling challenge
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.209
– ident: ref_27
– volume: 9
  start-page: 3659
  year: 2013
  ident: ref_23
  article-title: Hidden markov model-based human action recognition using mixed features
  publication-title: J. Comput. Inf. Syst.
– volume: 19
  start-page: 711
  year: 1997
  ident: ref_31
  article-title: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
– volume: 23
  start-page: 1861
  year: 2014
  ident: ref_49
  article-title: Evaluation of color spatio-temporal interest points for human action recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2302677
– ident: ref_38
  doi: 10.1007/978-3-642-33374-3_41
– ident: ref_13
– volume: 9
  start-page: 1
  year: 2013
  ident: ref_14
  article-title: Optimized local ternary pattern: A new texture model with set of optimal patterns for texture analysis
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2013.1.15
– volume: 10
  start-page: 829
  year: 2013
  ident: ref_22
  article-title: An unsupervised approach for automatic activity recognition based on hidden Markov model regression
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2013.2256349
– ident: ref_7
– ident: ref_28
– ident: ref_30
– ident: ref_3
– ident: ref_24
– ident: ref_34
– volume: 31
  start-page: 864
  year: 2013
  ident: ref_44
  article-title: Human activity recognition in videos using a single example
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2013.08.005
– volume: 33
  start-page: 193
  year: 2010
  ident: ref_40
  article-title: Independent shape component-based human activity recognition via Hidden Markov Model
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-008-0159-2
– volume: 43
  start-page: 77
  year: 2013
  ident: ref_11
  article-title: Incremental learning for video-based gait recognition with LBP flow
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2199310
– ident: ref_19
  doi: 10.1109/ICACCI.2013.6637484
– ident: ref_15
  doi: 10.1109/ICOSP.2008.4697417
– ident: ref_21
– volume: 5
  start-page: 31
  year: 2013
  ident: ref_45
  article-title: Human activity recognition using gait pattern
  publication-title: Int. J. Comput. Vis. Image Process. (IJCVIP)
– ident: ref_6
  doi: 10.1109/CVPR.2007.383512
– ident: ref_4
  doi: 10.1109/93.998041
– volume: 13
  start-page: 5460
  year: 2013
  ident: ref_25
  article-title: Activity recognition using hybrid generative/discriminative models on home environments using binary sensors
  publication-title: Sensors
  doi: 10.3390/s130505460
– ident: ref_16
  doi: 10.1109/ICIAS.2010.5716186
– ident: ref_41
  doi: 10.1109/CRV.2012.32
– ident: ref_46
  doi: 10.1007/978-3-319-03844-5_8
– ident: ref_12
  doi: 10.1109/WACV.2013.6475006
– volume: 22
  start-page: 289
  year: 2013
  ident: ref_10
  article-title: An indoor human activity recognition system for smart home using local binary pattern features with hidden markov models
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X12469734
– ident: ref_33
– volume: 3
  start-page: 973
  year: 2013
  ident: ref_48
  article-title: Recognition of human actions using motion history information extracted from the compressed
  publication-title: Int. J. Comput. Vis. Image Process. (IJCVIP)
– ident: ref_54
– ident: ref_20
  doi: 10.1109/ICIEA.2013.6566433
– volume: 2
  start-page: 88
  year: 2013
  ident: ref_53
  article-title: A review on video-based human activity recognition
  publication-title: Computers
  doi: 10.3390/computers2020088
– ident: ref_47
  doi: 10.1109/IMCCC.2011.95
– ident: ref_50
  doi: 10.1109/CVPR.2011.5995407
– ident: ref_36
  doi: 10.1109/CVPR.2009.5206744
– volume: 104
  start-page: 90
  year: 2006
  ident: ref_2
  article-title: A survey of advances in vision-based human motion capture and analysis
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2006.08.002
– volume: 43
  start-page: 16:1
  year: 2011
  ident: ref_9
  article-title: Human activity analysis: A review
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/1922649.1922653
– ident: ref_35
  doi: 10.1007/978-1-4471-4640-7_10
– ident: ref_37
  doi: 10.1109/CVPR.2008.4587756
– reference: 23615583 - Sensors (Basel). 2013 Apr 24;13(5):5460-77
– reference: 17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21
– reference: 16238065 - IEEE Trans Image Process. 2005 Oct;14(10):1603-16
– reference: 24577192 - IEEE Trans Image Process. 2014 Apr;23(4):1569-80
– reference: 22692925 - IEEE Trans Cybern. 2013 Feb;43(1):77-89
– reference: 22262724 - IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):615-21
– reference: 11032039 - Neural Comput. 2000 Oct;12(10):2385-404
– reference: 23353144 - Sensors (Basel). 2013;13(2):1635-50
SSID ssj0023338
Score 2.309523
Snippet Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6370
SubjectTerms activity recognition
Algorithms
Databases as Topic
Datasets
Decomposition
Discriminant Analysis
Electronic mail systems
Frames
hidden markov model
Human
Human Activities
Human motion motion
Humans
Markov Chains
Markov models
Mathematical models
Methods
Moving object recognition
Pattern recognition
Pattern Recognition, Automated - methods
Principal Component Analysis
Recognition
Sensors
stepwise linear discriminant analysis
Support vector machines
Wavelet
Wavelet Analysis
wavelet decomposition
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQp3Ko2lLapRS5ai8cIhxn7MRHKCCE1B6q0nKL_BV1JZRF7CL-fmfsZLtbIbhwTWajxB573su-vGHsS7BR1A6Zauy8LaAGVThpmwKrlTJV0DIkB75v3_X5JVxcqauVVl-kCcv2wHngDl0XdPDBR0DoD1EZX4aovAXc3aVV6dM9YcRIpgaqVSHzymakFZL6wzmZyGAxppbEK-UnufQ_BC3_V0iulJyzV-zlgBX5Ub7H12wj9m_Y1oqD4Da7_zUNcVYcYy0KPL2Q50c-N4TgP0Zt0KznSRnA09e21yQT4r8tdZxY8JNIovJBucVtHzjpvu6n88iRpuIy4CdT2lmyYoaPHiZv2eXZ6c-v58XQS6HwWjSLoixdcMJ14Bus2eBKhAVYnJsuaoOkyfkAnVRVQDgXcHSRRkgTQJG3jBQd2GqHbfazPr5nPJauM13pRR0VaOuddpUTjQkOa3-oYcIOxiFu_WA0Tv0urlskHDQd7b_pmLDPy9ibbK_xYNQxzdQygiyx0wFMlHZIlPapRJmwvXGe22Gdzlvc72uEPE2Fd_1peRpXGP1tYvs4u6MYvGAFdaMeidEyOesY8VgMgmlljCwn7F1Or-UTSaA-9PTrei3x1h55_Uw__ZPcwEFIoxXsPscYfWAvEBBmZRLssc3F7V38iKBr4fbT-voLTAEvkg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADB6V7QUOFe8GSjUILhyiJhNPkjkg1KWtKiRWqKLQWzSvwEpVUrpb9e9jTx7draq9Jk4kx-OxnXz5PsY-Ou2TwuCk6murYyhAxkboMsZqJVXmcuECA9_3WX56Dt8u5MUWmw3_whCsctgTw0btWkvvyA8wMwssTmUGX67-xaQaRV9XBwkN3UsruM-BYuwR28YtWSYTtj09nv04G0ewDCeyjqQ0w2H_YEHkMlikSap4pSwF9v6HWs77yMmVUnTylO30PSQ_7IL-jG355jl7ssIs-ILd_po738ZTrFGOhxf1_NB2QhH8bMAMtQ0PiAEe_sK9JPgQ_61JiWLJjzyBzXtEF9eN44QHu50vPMfxFdODH81px-mQNHzgNnnJzk-Of349jXuNhdjmSbmM09Q4k5gabIm1HEyK7QIW7bL2ucJhylgHtZCZwzbPSatxvBDKgSTOGZHUoLNXbNK0jd9l3KemVnVqk8JLyLU1uclMUipnsCdwBUTs0_CIK9sTkJMOxmWFgwiFo7oLR8Q-jLZXHe3Gg1ZTitRoQVTZ4UB7_afqM68ytcudxYihewBeKps6j64AtgdCSxWxvSHOVZ-_i-putUXs_XgaM48-p-jGtzdkgzfMoCjlBptcBMYdlWyywSZbKiXSiL3ultfokQDSp6eri7WFt-by-plm_jewhEMiVC7hzWb33rLH2AJ2WCTYY5Pl9Y1_h23W0uz3ufMfYsArQw
  priority: 102
  providerName: ProQuest
Title Video-Based Human Activity Recognition Using Multilevel Wavelet Decomposition and Stepwise Linear Discriminant Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/24714390
https://www.proquest.com/docview/1537512834
https://www.proquest.com/docview/1514434785
https://www.proquest.com/docview/1620050390
https://www.proquest.com/docview/1692359921
https://pubmed.ncbi.nlm.nih.gov/PMC4029654
https://doaj.org/article/bfd6dcdce41444e59c1de5ca4cee2a59
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9gIHVN6BEi2CCweDvZ71eg8INbShQqJCFYHcrH0ZIkV2m6Rq--87u37QVFHFJQd7bGV3djzfeD9_Q8g7q1wsNFaqrjQqAgE80kzlEWYrLlObMRsU-L4fZ0cT-Dbl0y3S9e9sJ3C5sbTz_aQmi_mHy7Orzxjwn3zFiSX7x6WXiMFUK7B03wn7RJ7CB_1uAkvT0NHaf9QVYUKMG5nSW9euJaag378JdN7mTt5IRuNd8rBFkXS_cfsjsuWqx-TBDW3BJ-Ti18y6OhphlrI0vKqn-6ZpFUFPOtZQXdHAGaDhO9y5JxDR38r3oljRA-fp5i2ni6rKUs8Iu5gtHcUCFgOEHsz8M6fh0tBO3eQpmYwPf345itouC5HJ4nwVJYm2OtYlmBznDnSCgAHTdl66TGI5pY2FkvHUItCz3CgsMJi0wL3qDItLUOkzsl3VlXtBqEt0KcvExMJxyJTRmU51nEurERVYAQPyvpviwrQS5L4TxrzAUsS7o_jnjgF529ueNsIbG61G3lO9hRfLDgfqxZ-ijb1ClzazBj2GwwNwXJrEOhwKIEBgissB2ev8XHQLsMBMIBAM5Sn-6zf9aYw9v6GiKlefexu8YQoi53fYZCxo7sj4LhuE2VxKlgzI82Z59SNi4DvU-6vF2sJbG_L6mWr2N-iEQ8xkxuHlf83kK3IfsWBDSoI9sr1anLvXiLdWekjuianA33z8dUh2RofHP06G4d3FMITZNTMwLh4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAcEN8YCiwCDhys2utd23uoUENapbSNUNVCb-5-GSJVdmlSRfw5fhuzaztNUJVbr_HE0u7s7Lzxvn0D8MFIG2UKK1VbahmyjPFQUZmHmK24SExKjVfgOxylwxP29ZSfrsHf7i6Mo1V2e6LfqE2t3TfyTYzMDJNTnrDPF79D1zXKna52LTRk21rBbHmJsfZix779M8MSbrK1N0B_f6R0d-f4yzBsuwyEOo3yaRjHyqhIlUznmM2YijFhYtrKS5sKLCeUNqykPDEIdAzXEgE2FYZxp7pCo5LJBN97B9aZ-4DSg_X-zujb0bzkS7ACbERRk0REmxMnZoOgwLVGXkiDvlvATRD3f6bmQurbfQgPWsxKtptF9gjWbPUY7i8oGT6B2fexsXXYx5xoiD8YINu6aUxBjjqOUl0Rz1Ag_tbvuaMrkR_Sdb6YkoF15PaWQUZkZYjjn83GE0uwXMZ5JoOx2-Ea5g7ptFSewsmtzPYz6FV1ZV8AsbEqRRnrKLOcpVKrVCUqyoVRiEFMxgL41E1xoVvBc9d347zAwse5o7h2RwDv57YXjczHjVZ956m5hZPm9j_Ulz-LNtILVZrUaPQYDo8xy4WOjcWhMIQjVHIRwEbn56LdLybF9eoO4N38MUa6O76Rla2vnA2-MGFZzlfYpNQr_IholQ2Cei4EjQN43iyv-YgoYhXm_50tLbylIS8_qca_vCo5i6hIOXu5enhv4e7w-PCgONgb7b-Cewg_Gx4U24De9PLKvkaIN1Vv2jgicHbbofsPm8tmVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVkJwQHzjUmARcOBgxV7v2t5DhRrSqKUQVRWF3tz9Mo1U2aVJFfEX-VXMru00QVVuvcZjS7uzs_Mm-_YNwHsjbZQprFRtqWXIMsZDRWUeYrbiIjEpNV6B79so3TtmX074yRr87e7COFpltyf6jdrU2v1H3sPIzDA55QnrlS0t4nAw_HTxO3QdpNxJa9dOQ7ZtFsy2lxtrL3kc2D8zLOcm2_sD9P0HSoe73z_vhW3HgVCnUT4N41gZFamS6RwzG1MxJk9MYXlpU4GlhdKGlZQnBkGP4Voi2KbCMO4UWGhUMpngd-_ARoZZHwvBjf7u6PBoXv4lWA02AqlJIqLexAnbIEBwbZIXUqLvHHAT3P2ftbmQBocP4UGLX8lOs-AewZqtHsP9BVXDJzD7MTa2DvuYHw3xhwRkRzdNKshRx1eqK-LZCsTfAD531CXyU7ouGFMysI7o3rLJiKwMcVy02XhiCZbOOM9kMHa7XcPiIZ2uylM4vpXZfgbrVV3ZF0BsrEpRxjrKLGep1CpViYpyYRTiEZOxAD52U1zoVvzc9eA4L7AIcu4ort0RwLu57UUj-XGjVd95am7hZLr9D_Xlr6KN-kKVJjUaPYbDY8xyoWNjcSgMoQmVXASw1fm5aPeOSXG90gN4O3-MUe-OcmRl6ytngx9MWJbzFTYp9Wo_IlplgwCfC0HjAJ43y2s-Ioq4hfm3s6WFtzTk5SfV-MwrlLOIipSzzdXDewN3MYSLr_ujg5dwD5FoQ4liW7A-vbyyrxDtTdXrNowInN525P4Dbclqmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Video-Based+Human+Activity+Recognition+Using+Multilevel+Wavelet+Decomposition+and+Stepwise+Linear+Discriminant+Analysis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Siddiqi%2C+Muhammad&rft.au=Ali%2C+Rahman&rft.au=Rana%2C+Md&rft.au=Hong%2C+Een-Kee&rft.date=2014-04-04&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=14&rft.issue=4&rft.spage=6370&rft.epage=6392&rft_id=info:doi/10.3390%2Fs140406370&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s140406370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon