Video-Based Human Activity Recognition Using Multilevel Wavelet Decomposition and Stepwise Linear Discriminant Analysis
Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 14; no. 4; pp. 6370 - 6392 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
04.04.2014
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s140406370 |
Cover
Abstract | Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values (i.e., partial F-test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n–fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods. |
---|---|
AbstractList | Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values (i.e., partial F-test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n??fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods.Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values (i.e., partial F-test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n??fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods. Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values (i.e., partial F-test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n??fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods. Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consists of wavelet transform coupled with stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM). Symlet wavelet has been employed in order to extract the features from the activity frames. The most prominent features were selected by proposing a robust technique called stepwise linear discriminant analysis (SWLDA) that focuses on selecting the localized features from the activity frames and discriminating their class based on regression values ( i.e. , partial F -test values). Finally, we applied a well-known sequential classifier called hidden Markov model (HMM) to give the appropriate labels to the activities. In order to validate the performance of the WS-HAR, we utilized two publicly available standard datasets under two different experimental settings, n –fold cross validation scheme based on subjects; and a set of experiments was performed in order to show the effectiveness of each approach. The weighted average recognition rate for the WS-HAR was 97% across the two different datasets that is a significant improvement in classication accuracy compared to the existing well-known statistical and state-of-the-art methods. |
Author | Rana, Md Kim, Eun Siddiqi, Muhammad Ali, Rahman Hong, Een-Kee Lee, Sungyoung |
AuthorAffiliation | 2 Department of Electronics and Radio Engineering, Kyung Hee University, Suwon 446–701, Korea; E-Mails: sohel@khu.ac.kr (M.S.R.); ekhong@khu.ac.kr (E.-K.H.) 3 Department of Electronic Engineering, Kwangwoon University, Seoul 139–701, Korea; E-Mail: eskim@kw.ac.kr 1 Department of Computer Engineering, Kyung Hee University, Suwon 446–701, Korea; E-Mails: siddiqi@oslab.khu.ac.kr (M.H.S.); rahmanali@oslab.khu.ac.kr (R.A.) |
AuthorAffiliation_xml | – name: 3 Department of Electronic Engineering, Kwangwoon University, Seoul 139–701, Korea; E-Mail: eskim@kw.ac.kr – name: 1 Department of Computer Engineering, Kyung Hee University, Suwon 446–701, Korea; E-Mails: siddiqi@oslab.khu.ac.kr (M.H.S.); rahmanali@oslab.khu.ac.kr (R.A.) – name: 2 Department of Electronics and Radio Engineering, Kyung Hee University, Suwon 446–701, Korea; E-Mails: sohel@khu.ac.kr (M.S.R.); ekhong@khu.ac.kr (E.-K.H.) |
Author_xml | – sequence: 1 givenname: Muhammad surname: Siddiqi fullname: Siddiqi, Muhammad – sequence: 2 givenname: Rahman surname: Ali fullname: Ali, Rahman – sequence: 3 givenname: Md surname: Rana fullname: Rana, Md – sequence: 4 givenname: Een-Kee surname: Hong fullname: Hong, Een-Kee – sequence: 5 givenname: Eun surname: Kim fullname: Kim, Eun – sequence: 6 givenname: Sungyoung surname: Lee fullname: Lee, Sungyoung |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24714390$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhgep2A-98QdIwBsRRvM5HzfC2lpbWBHU6mXIJGfWLDPJNsls2X_frNtqWwS9SULynDfnTd7DYs95B0XxnOA3jLX4bSQcc1yxGj8qDginvGwoxXt31vvFYYxLjCljrHlS7FNeE55LD4qr79aAL9-rCAadTaNyaKaTXdu0QV9A-4WzyXqHLqJ1C_RpGpIdYA0D-qHyCAmdZGhc-bjDlDPoa4LVlY2A5taBCujERh3saJ1yCc2cGjbRxqfF414NEZ7dzEfFxemHb8dn5fzzx_Pj2bzUFW5SSUhnOtz1XDeUE94RShmnVdND1dKm7rThPRXMtIwaoVVVC9oaLhqcreOeK3ZUnO90jVdLucp9qLCRXln5a8OHhVQhWT2A7HpTGW005Is4B9FqYiCLcg1AlWiz1rud1mrqRsigS0EN90Tvnzj7Uy78WnJM20rwLPDqRiD4ywlikmN-GxgG5cBPUZJsiom2peQ_UIqxwPkP_42K7IfxuhEZffkAXfop5C_ZUqwWhDZs2-aLuz5_G7xNTQbwDtDBxxigl9omtQ1Atm0HSbDcBlP-CWYuef2g5Fb1L_A1lzbisg |
CitedBy_id | crossref_primary_10_1002_cpe_6870 crossref_primary_10_1016_j_eswa_2017_03_052 crossref_primary_10_1007_s11042_020_08704_0 crossref_primary_10_1155_2019_8590560 crossref_primary_10_1109_ACCESS_2023_3316508 crossref_primary_10_1155_2022_1391906 crossref_primary_10_32604_cmc_2022_024760 crossref_primary_10_1109_ACCESS_2019_2936621 crossref_primary_10_1049_bme2_12066 crossref_primary_10_1155_2014_975317 crossref_primary_10_1109_JSEN_2017_2784425 crossref_primary_10_1109_ACCESS_2019_2950063 crossref_primary_10_1109_ACCESS_2020_3020141 crossref_primary_10_1109_ACCESS_2021_3092403 crossref_primary_10_3233_JIFS_212088 crossref_primary_10_1007_s11042_021_11828_6 crossref_primary_10_1080_10447318_2022_2093445 crossref_primary_10_4236_jdaip_2021_93013 crossref_primary_10_1109_TFUZZ_2022_3152106 crossref_primary_10_1016_j_ins_2023_03_137 crossref_primary_10_1016_j_compeleceng_2016_06_004 crossref_primary_10_35234_fumbd_671403 crossref_primary_10_3390_s19153329 crossref_primary_10_1049_iet_cvi_2015_0087 crossref_primary_10_3390_s16122043 crossref_primary_10_1155_2022_5486004 crossref_primary_10_1155_2015_394083 crossref_primary_10_1007_s11063_020_10400_x crossref_primary_10_3390_en14196384 |
Cites_doi | 10.3390/s130201635 10.1109/TIP.2005.852197 10.1109/34.824819 10.1016/j.patcog.2013.06.006 10.1162/089976600300014980 10.1109/ICTer.2012.6421415 10.1016/j.jneumeth.2007.07.017 10.1109/CVPR.2013.338 10.1109/TPAMI.2011.209 10.1109/34.598228 10.1109/TIP.2014.2302677 10.1007/978-3-642-33374-3_41 10.3844/jcssp.2013.1.15 10.1109/TASE.2013.2256349 10.1016/j.imavis.2013.08.005 10.1007/s10489-008-0159-2 10.1109/TSMCB.2012.2199310 10.1109/ICACCI.2013.6637484 10.1109/ICOSP.2008.4697417 10.1109/CVPR.2007.383512 10.1109/93.998041 10.3390/s130505460 10.1109/ICIAS.2010.5716186 10.1109/CRV.2012.32 10.1007/978-3-319-03844-5_8 10.1109/WACV.2013.6475006 10.1177/1420326X12469734 10.1109/ICIEA.2013.6566433 10.3390/computers2020088 10.1109/IMCCC.2011.95 10.1109/CVPR.2011.5995407 10.1109/CVPR.2009.5206744 10.1016/j.cviu.2006.08.002 10.1145/1922649.1922653 10.1007/978-1-4471-4640-7_10 10.1109/CVPR.2008.4587756 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2014 2014 by the authors; licensee MDPI, Basel, Switzerland. 2014 |
Copyright_xml | – notice: Copyright MDPI AG 2014 – notice: 2014 by the authors; licensee MDPI, Basel, Switzerland. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7SP 7TB 7U5 8FD FR3 L7M 5PM DOA |
DOI | 10.3390/s140406370 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE Solid State and Superconductivity Abstracts Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
EndPage | 6392 |
ExternalDocumentID | oai_doaj_org_article_bfd6dcdce41444e59c1de5ca4cee2a59 PMC4029654 3340043931 24714390 10_3390_s140406370 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 7SP 7TB 7U5 8FD FR3 L7M 5PM |
ID | FETCH-LOGICAL-c608t-11bdb0bf4c82414b12234268fe69287bcd4f253d932d5ca67529d45801420f4a3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:35 EDT 2025 Thu Aug 21 18:01:15 EDT 2025 Fri Sep 05 06:23:43 EDT 2025 Fri Sep 05 10:21:33 EDT 2025 Thu Sep 04 18:48:25 EDT 2025 Fri Jul 25 02:35:37 EDT 2025 Thu Apr 03 07:01:45 EDT 2025 Tue Aug 12 04:01:07 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c608t-11bdb0bf4c82414b12234268fe69287bcd4f253d932d5ca67529d45801420f4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s140406370 |
PMID | 24714390 |
PQID | 1537512834 |
PQPubID | 23500 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bfd6dcdce41444e59c1de5ca4cee2a59 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4029654 proquest_miscellaneous_1692359921 proquest_miscellaneous_1620050390 proquest_miscellaneous_1514434785 proquest_journals_1537512834 pubmed_primary_24714390 crossref_citationtrail_10_3390_s140406370 crossref_primary_10_3390_s140406370 |
PublicationCentury | 2000 |
PublicationDate | 2014-04-04 |
PublicationDateYYYYMMDD | 2014-04-04 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2014 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 ref_13 ref_12 ref_55 ref_54 Sanchis (ref_25) 2013; 13 ref_51 ref_19 ref_18 ref_16 ref_15 Uddin (ref_40) 2010; 33 Moeslund (ref_2) 2006; 104 ref_24 ref_21 ref_20 ref_28 ref_27 Vaswani (ref_1) 2005; 14 Xu (ref_52) 2013; 13 Raja (ref_14) 2013; 9 Baum (ref_32) 1972; 3 Hassner (ref_39) 2012; 34 Takur (ref_48) 2013; 3 Belhumeur (ref_31) 1997; 19 Krusienski (ref_26) 2008; 167 ref_36 Baudat (ref_29) 2000; 12 ref_35 ref_34 ref_33 Hu (ref_11) 2013; 43 ref_30 Aggarwal (ref_9) 2011; 43 ref_38 ref_37 Trabelsi (ref_22) 2013; 10 Gupta (ref_45) 2013; 5 ref_47 Goudelis (ref_43) 2013; 46 ref_46 Everts (ref_49) 2014; 23 Ji (ref_23) 2013; 9 Levine (ref_44) 2013; 31 ref_42 ref_41 Jain (ref_17) 2000; 22 ref_3 ref_8 ref_5 Ke (ref_53) 2013; 2 ref_4 ref_7 ref_6 Uddin (ref_10) 2013; 22 16238065 - IEEE Trans Image Process. 2005 Oct;14(10):1603-16 23353144 - Sensors (Basel). 2013;13(2):1635-50 17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21 22692925 - IEEE Trans Cybern. 2013 Feb;43(1):77-89 11032039 - Neural Comput. 2000 Oct;12(10):2385-404 24577192 - IEEE Trans Image Process. 2014 Apr;23(4):1569-80 23615583 - Sensors (Basel). 2013 Apr 24;13(5):5460-77 22262724 - IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):615-21 |
References_xml | – ident: ref_5 – ident: ref_51 – volume: 13 start-page: 1635 year: 2013 ident: ref_52 article-title: Exploring techniques for vision based human activity recognition: Methods, systems, and evaluation publication-title: Sensors doi: 10.3390/s130201635 – volume: 3 start-page: 1 year: 1972 ident: ref_32 article-title: An equality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes publication-title: Inequalities – volume: 14 start-page: 1603 year: 2005 ident: ref_1 article-title: Shape activity: A continuous-state HMM for moving/deforming shapes with application to abnormal activity detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852197 – volume: 22 start-page: 4 year: 2000 ident: ref_17 article-title: Statistical pattern recognition: A review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.824819 – ident: ref_42 – volume: 46 start-page: 3238 year: 2013 ident: ref_43 article-title: Exploring trace transform for robust human action recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.06.006 – volume: 12 start-page: 2385 year: 2000 ident: ref_29 article-title: Generalized discriminant analysis using a kernel approach publication-title: Neural Comput. doi: 10.1162/089976600300014980 – ident: ref_18 doi: 10.1109/ICTer.2012.6421415 – volume: 167 start-page: 15 year: 2008 ident: ref_26 article-title: Toward enhanced P300 speller performance publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.07.017 – ident: ref_55 doi: 10.1109/CVPR.2013.338 – ident: ref_8 – volume: 34 start-page: 615 year: 2012 ident: ref_39 article-title: The action similarity labeling challenge publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.209 – ident: ref_27 – volume: 9 start-page: 3659 year: 2013 ident: ref_23 article-title: Hidden markov model-based human action recognition using mixed features publication-title: J. Comput. Inf. Syst. – volume: 19 start-page: 711 year: 1997 ident: ref_31 article-title: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598228 – volume: 23 start-page: 1861 year: 2014 ident: ref_49 article-title: Evaluation of color spatio-temporal interest points for human action recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2302677 – ident: ref_38 doi: 10.1007/978-3-642-33374-3_41 – ident: ref_13 – volume: 9 start-page: 1 year: 2013 ident: ref_14 article-title: Optimized local ternary pattern: A new texture model with set of optimal patterns for texture analysis publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2013.1.15 – volume: 10 start-page: 829 year: 2013 ident: ref_22 article-title: An unsupervised approach for automatic activity recognition based on hidden Markov model regression publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2013.2256349 – ident: ref_7 – ident: ref_28 – ident: ref_30 – ident: ref_3 – ident: ref_24 – ident: ref_34 – volume: 31 start-page: 864 year: 2013 ident: ref_44 article-title: Human activity recognition in videos using a single example publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2013.08.005 – volume: 33 start-page: 193 year: 2010 ident: ref_40 article-title: Independent shape component-based human activity recognition via Hidden Markov Model publication-title: Appl. Intell. doi: 10.1007/s10489-008-0159-2 – volume: 43 start-page: 77 year: 2013 ident: ref_11 article-title: Incremental learning for video-based gait recognition with LBP flow publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2199310 – ident: ref_19 doi: 10.1109/ICACCI.2013.6637484 – ident: ref_15 doi: 10.1109/ICOSP.2008.4697417 – ident: ref_21 – volume: 5 start-page: 31 year: 2013 ident: ref_45 article-title: Human activity recognition using gait pattern publication-title: Int. J. Comput. Vis. Image Process. (IJCVIP) – ident: ref_6 doi: 10.1109/CVPR.2007.383512 – ident: ref_4 doi: 10.1109/93.998041 – volume: 13 start-page: 5460 year: 2013 ident: ref_25 article-title: Activity recognition using hybrid generative/discriminative models on home environments using binary sensors publication-title: Sensors doi: 10.3390/s130505460 – ident: ref_16 doi: 10.1109/ICIAS.2010.5716186 – ident: ref_41 doi: 10.1109/CRV.2012.32 – ident: ref_46 doi: 10.1007/978-3-319-03844-5_8 – ident: ref_12 doi: 10.1109/WACV.2013.6475006 – volume: 22 start-page: 289 year: 2013 ident: ref_10 article-title: An indoor human activity recognition system for smart home using local binary pattern features with hidden markov models publication-title: Indoor Built Environ. doi: 10.1177/1420326X12469734 – ident: ref_33 – volume: 3 start-page: 973 year: 2013 ident: ref_48 article-title: Recognition of human actions using motion history information extracted from the compressed publication-title: Int. J. Comput. Vis. Image Process. (IJCVIP) – ident: ref_54 – ident: ref_20 doi: 10.1109/ICIEA.2013.6566433 – volume: 2 start-page: 88 year: 2013 ident: ref_53 article-title: A review on video-based human activity recognition publication-title: Computers doi: 10.3390/computers2020088 – ident: ref_47 doi: 10.1109/IMCCC.2011.95 – ident: ref_50 doi: 10.1109/CVPR.2011.5995407 – ident: ref_36 doi: 10.1109/CVPR.2009.5206744 – volume: 104 start-page: 90 year: 2006 ident: ref_2 article-title: A survey of advances in vision-based human motion capture and analysis publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2006.08.002 – volume: 43 start-page: 16:1 year: 2011 ident: ref_9 article-title: Human activity analysis: A review publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/1922649.1922653 – ident: ref_35 doi: 10.1007/978-1-4471-4640-7_10 – ident: ref_37 doi: 10.1109/CVPR.2008.4587756 – reference: 23615583 - Sensors (Basel). 2013 Apr 24;13(5):5460-77 – reference: 17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21 – reference: 16238065 - IEEE Trans Image Process. 2005 Oct;14(10):1603-16 – reference: 24577192 - IEEE Trans Image Process. 2014 Apr;23(4):1569-80 – reference: 22692925 - IEEE Trans Cybern. 2013 Feb;43(1):77-89 – reference: 22262724 - IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):615-21 – reference: 11032039 - Neural Comput. 2000 Oct;12(10):2385-404 – reference: 23353144 - Sensors (Basel). 2013;13(2):1635-50 |
SSID | ssj0023338 |
Score | 2.309523 |
Snippet | Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6370 |
SubjectTerms | activity recognition Algorithms Databases as Topic Datasets Decomposition Discriminant Analysis Electronic mail systems Frames hidden markov model Human Human Activities Human motion motion Humans Markov Chains Markov models Mathematical models Methods Moving object recognition Pattern recognition Pattern Recognition, Automated - methods Principal Component Analysis Recognition Sensors stepwise linear discriminant analysis Support vector machines Wavelet Wavelet Analysis wavelet decomposition Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQp3Ko2lLapRS5ai8cIhxn7MRHKCCE1B6q0nKL_BV1JZRF7CL-fmfsZLtbIbhwTWajxB573su-vGHsS7BR1A6Zauy8LaAGVThpmwKrlTJV0DIkB75v3_X5JVxcqauVVl-kCcv2wHngDl0XdPDBR0DoD1EZX4aovAXc3aVV6dM9YcRIpgaqVSHzymakFZL6wzmZyGAxppbEK-UnufQ_BC3_V0iulJyzV-zlgBX5Ub7H12wj9m_Y1oqD4Da7_zUNcVYcYy0KPL2Q50c-N4TgP0Zt0KznSRnA09e21yQT4r8tdZxY8JNIovJBucVtHzjpvu6n88iRpuIy4CdT2lmyYoaPHiZv2eXZ6c-v58XQS6HwWjSLoixdcMJ14Bus2eBKhAVYnJsuaoOkyfkAnVRVQDgXcHSRRkgTQJG3jBQd2GqHbfazPr5nPJauM13pRR0VaOuddpUTjQkOa3-oYcIOxiFu_WA0Tv0urlskHDQd7b_pmLDPy9ibbK_xYNQxzdQygiyx0wFMlHZIlPapRJmwvXGe22Gdzlvc72uEPE2Fd_1peRpXGP1tYvs4u6MYvGAFdaMeidEyOesY8VgMgmlljCwn7F1Or-UTSaA-9PTrei3x1h55_Uw__ZPcwEFIoxXsPscYfWAvEBBmZRLssc3F7V38iKBr4fbT-voLTAEvkg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADB6V7QUOFe8GSjUILhyiJhNPkjkg1KWtKiRWqKLQWzSvwEpVUrpb9e9jTx7draq9Jk4kx-OxnXz5PsY-Ou2TwuCk6murYyhAxkboMsZqJVXmcuECA9_3WX56Dt8u5MUWmw3_whCsctgTw0btWkvvyA8wMwssTmUGX67-xaQaRV9XBwkN3UsruM-BYuwR28YtWSYTtj09nv04G0ewDCeyjqQ0w2H_YEHkMlikSap4pSwF9v6HWs77yMmVUnTylO30PSQ_7IL-jG355jl7ssIs-ILd_po738ZTrFGOhxf1_NB2QhH8bMAMtQ0PiAEe_sK9JPgQ_61JiWLJjzyBzXtEF9eN44QHu50vPMfxFdODH81px-mQNHzgNnnJzk-Of349jXuNhdjmSbmM09Q4k5gabIm1HEyK7QIW7bL2ucJhylgHtZCZwzbPSatxvBDKgSTOGZHUoLNXbNK0jd9l3KemVnVqk8JLyLU1uclMUipnsCdwBUTs0_CIK9sTkJMOxmWFgwiFo7oLR8Q-jLZXHe3Gg1ZTitRoQVTZ4UB7_afqM68ytcudxYihewBeKps6j64AtgdCSxWxvSHOVZ-_i-putUXs_XgaM48-p-jGtzdkgzfMoCjlBptcBMYdlWyywSZbKiXSiL3ultfokQDSp6eri7WFt-by-plm_jewhEMiVC7hzWb33rLH2AJ2WCTYY5Pl9Y1_h23W0uz3ufMfYsArQw priority: 102 providerName: ProQuest |
Title | Video-Based Human Activity Recognition Using Multilevel Wavelet Decomposition and Stepwise Linear Discriminant Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24714390 https://www.proquest.com/docview/1537512834 https://www.proquest.com/docview/1514434785 https://www.proquest.com/docview/1620050390 https://www.proquest.com/docview/1692359921 https://pubmed.ncbi.nlm.nih.gov/PMC4029654 https://doaj.org/article/bfd6dcdce41444e59c1de5ca4cee2a59 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9gIHVN6BEi2CCweDvZ71eg8INbShQqJCFYHcrH0ZIkV2m6Rq--87u37QVFHFJQd7bGV3djzfeD9_Q8g7q1wsNFaqrjQqAgE80kzlEWYrLlObMRsU-L4fZ0cT-Dbl0y3S9e9sJ3C5sbTz_aQmi_mHy7Orzxjwn3zFiSX7x6WXiMFUK7B03wn7RJ7CB_1uAkvT0NHaf9QVYUKMG5nSW9euJaag378JdN7mTt5IRuNd8rBFkXS_cfsjsuWqx-TBDW3BJ-Ti18y6OhphlrI0vKqn-6ZpFUFPOtZQXdHAGaDhO9y5JxDR38r3oljRA-fp5i2ni6rKUs8Iu5gtHcUCFgOEHsz8M6fh0tBO3eQpmYwPf345itouC5HJ4nwVJYm2OtYlmBznDnSCgAHTdl66TGI5pY2FkvHUItCz3CgsMJi0wL3qDItLUOkzsl3VlXtBqEt0KcvExMJxyJTRmU51nEurERVYAQPyvpviwrQS5L4TxrzAUsS7o_jnjgF529ueNsIbG61G3lO9hRfLDgfqxZ-ijb1ClzazBj2GwwNwXJrEOhwKIEBgissB2ev8XHQLsMBMIBAM5Sn-6zf9aYw9v6GiKlefexu8YQoi53fYZCxo7sj4LhuE2VxKlgzI82Z59SNi4DvU-6vF2sJbG_L6mWr2N-iEQ8xkxuHlf83kK3IfsWBDSoI9sr1anLvXiLdWekjuianA33z8dUh2RofHP06G4d3FMITZNTMwLh4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAcEN8YCiwCDhys2utd23uoUENapbSNUNVCb-5-GSJVdmlSRfw5fhuzaztNUJVbr_HE0u7s7Lzxvn0D8MFIG2UKK1VbahmyjPFQUZmHmK24SExKjVfgOxylwxP29ZSfrsHf7i6Mo1V2e6LfqE2t3TfyTYzMDJNTnrDPF79D1zXKna52LTRk21rBbHmJsfZix779M8MSbrK1N0B_f6R0d-f4yzBsuwyEOo3yaRjHyqhIlUznmM2YijFhYtrKS5sKLCeUNqykPDEIdAzXEgE2FYZxp7pCo5LJBN97B9aZ-4DSg_X-zujb0bzkS7ACbERRk0REmxMnZoOgwLVGXkiDvlvATRD3f6bmQurbfQgPWsxKtptF9gjWbPUY7i8oGT6B2fexsXXYx5xoiD8YINu6aUxBjjqOUl0Rz1Ag_tbvuaMrkR_Sdb6YkoF15PaWQUZkZYjjn83GE0uwXMZ5JoOx2-Ea5g7ptFSewsmtzPYz6FV1ZV8AsbEqRRnrKLOcpVKrVCUqyoVRiEFMxgL41E1xoVvBc9d347zAwse5o7h2RwDv57YXjczHjVZ956m5hZPm9j_Ulz-LNtILVZrUaPQYDo8xy4WOjcWhMIQjVHIRwEbn56LdLybF9eoO4N38MUa6O76Rla2vnA2-MGFZzlfYpNQr_IholQ2Cei4EjQN43iyv-YgoYhXm_50tLbylIS8_qca_vCo5i6hIOXu5enhv4e7w-PCgONgb7b-Cewg_Gx4U24De9PLKvkaIN1Vv2jgicHbbofsPm8tmVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVkJwQHzjUmARcOBgxV7v2t5DhRrSqKUQVRWF3tz9Mo1U2aVJFfEX-VXMru00QVVuvcZjS7uzs_Mm-_YNwHsjbZQprFRtqWXIMsZDRWUeYrbiIjEpNV6B79so3TtmX074yRr87e7COFpltyf6jdrU2v1H3sPIzDA55QnrlS0t4nAw_HTxO3QdpNxJa9dOQ7ZtFsy2lxtrL3kc2D8zLOcm2_sD9P0HSoe73z_vhW3HgVCnUT4N41gZFamS6RwzG1MxJk9MYXlpU4GlhdKGlZQnBkGP4Voi2KbCMO4UWGhUMpngd-_ARoZZHwvBjf7u6PBoXv4lWA02AqlJIqLexAnbIEBwbZIXUqLvHHAT3P2ftbmQBocP4UGLX8lOs-AewZqtHsP9BVXDJzD7MTa2DvuYHw3xhwRkRzdNKshRx1eqK-LZCsTfAD531CXyU7ouGFMysI7o3rLJiKwMcVy02XhiCZbOOM9kMHa7XcPiIZ2uylM4vpXZfgbrVV3ZF0BsrEpRxjrKLGep1CpViYpyYRTiEZOxAD52U1zoVvzc9eA4L7AIcu4ort0RwLu57UUj-XGjVd95am7hZLr9D_Xlr6KN-kKVJjUaPYbDY8xyoWNjcSgMoQmVXASw1fm5aPeOSXG90gN4O3-MUe-OcmRl6ytngx9MWJbzFTYp9Wo_IlplgwCfC0HjAJ43y2s-Ioq4hfm3s6WFtzTk5SfV-MwrlLOIipSzzdXDewN3MYSLr_ujg5dwD5FoQ4liW7A-vbyyrxDtTdXrNowInN525P4Dbclqmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Video-Based+Human+Activity+Recognition+Using+Multilevel+Wavelet+Decomposition+and+Stepwise+Linear+Discriminant+Analysis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Siddiqi%2C+Muhammad&rft.au=Ali%2C+Rahman&rft.au=Rana%2C+Md&rft.au=Hong%2C+Een-Kee&rft.date=2014-04-04&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=14&rft.issue=4&rft.spage=6370&rft.epage=6392&rft_id=info:doi/10.3390%2Fs140406370&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s140406370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |