Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity?

Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such...

Full description

Saved in:
Bibliographic Details
Published inDiabetes, obesity & metabolism Vol. 18; no. 9; pp. 855 - 867
Main Authors Prattichizzo, F., Giuliani, A., De Nigris, V., Pujadas, G., Ceka, A., La Sala, L., Genovese, S., Testa, R., Procopio, A. D., Olivieri, F., Ceriello, A.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1462-8902
1463-1326
1463-1326
DOI10.1111/dom.12688

Cover

Abstract Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low‐grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age‐related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes‐associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA‐containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a ‘physiological’ signature capable of preventing or delaying the harmful systemic effects of T2DM.
AbstractList Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a 'physiological' signature capable of preventing or delaying the harmful systemic effects of T2DM.
Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a 'physiological' signature capable of preventing or delaying the harmful systemic effects of T2DM.Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a 'physiological' signature capable of preventing or delaying the harmful systemic effects of T2DM.
Author Procopio, A. D.
Genovese, S.
Olivieri, F.
Ceriello, A.
Prattichizzo, F.
Giuliani, A.
De Nigris, V.
Testa, R.
Pujadas, G.
Ceka, A.
La Sala, L.
AuthorAffiliation 4 Experimental Models in Clinical Pathology INRCA‐IRCCS National Institute Ancona Italy
1 Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona Spain
5 Center of Clinical Pathology and Innovative Therapy, INRCA‐IRCCS National Institute Ancona Italy
3 Department of Cardiovascular and Metabolic Diseases IRCCS Gruppo Multimedica Milan Italy
2 Department of Clinical and Molecular Sciences, DISCLIMO Università Politecnica delle Marche Ancona Italy
AuthorAffiliation_xml – name: 1 Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona Spain
– name: 5 Center of Clinical Pathology and Innovative Therapy, INRCA‐IRCCS National Institute Ancona Italy
– name: 4 Experimental Models in Clinical Pathology INRCA‐IRCCS National Institute Ancona Italy
– name: 3 Department of Cardiovascular and Metabolic Diseases IRCCS Gruppo Multimedica Milan Italy
– name: 2 Department of Clinical and Molecular Sciences, DISCLIMO Università Politecnica delle Marche Ancona Italy
Author_xml – sequence: 1
  givenname: F.
  surname: Prattichizzo
  fullname: Prattichizzo, F.
  email: : Francesco Prattichizzo, PhD, Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Rosselló, 149-153, 08036, Barcelona, Spain., f.prattichizzo@univpm.it
  organization: Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
– sequence: 2
  givenname: A.
  surname: Giuliani
  fullname: Giuliani, A.
  organization: Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
– sequence: 3
  givenname: V.
  surname: De Nigris
  fullname: De Nigris, V.
  organization: Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
– sequence: 4
  givenname: G.
  surname: Pujadas
  fullname: Pujadas, G.
  organization: Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
– sequence: 5
  givenname: A.
  surname: Ceka
  fullname: Ceka, A.
  organization: Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
– sequence: 6
  givenname: L.
  surname: La Sala
  fullname: La Sala, L.
  organization: Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
– sequence: 7
  givenname: S.
  surname: Genovese
  fullname: Genovese, S.
  organization: Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy
– sequence: 8
  givenname: R.
  surname: Testa
  fullname: Testa, R.
  organization: Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
– sequence: 9
  givenname: A. D.
  surname: Procopio
  fullname: Procopio, A. D.
  organization: Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
– sequence: 10
  givenname: F.
  surname: Olivieri
  fullname: Olivieri, F.
  organization: Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
– sequence: 11
  givenname: A.
  surname: Ceriello
  fullname: Ceriello, A.
  organization: Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27161301$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB-w4A-gSGzoIq0fsWOzAJVSCtJMK1ARYmV5HKfj4sTBTkrz73E6MxVUgPDG1vV3jnTuvbtgq_WtAeApggconcPKNwcIM84fgB1UMJIjgtnW7RvnXEC8DXZjvIIQFoSXj8A2LhFDBKId8PXkpg9KG-cGp0LWWB38p7OjmKm2ykxb-X5pnFUuW46dCZdu1MokKGtM48P4MlNZAoLqzNCnqu86H_qhtf34-jF4WCsXzZP1vQc-vzu5OH6fz85PPxwfzXLNIOc5raDmhpGalRgpWquCorLktaYMQVzhYrGAWlSLimhIcFlQUdNapyrmXOCKkz3wauXbDYvGVNq0KZCTXbCNCqP0ysrff1q7lJf-WlIoikKIZPBibRD898HEXjY2Th1RrfFDlIgjWiJIIPwflDDMGZvQ5_fQKz-ENnVCEkhFARkT9F_U5EWFYGiK-OzXiHfZNmNMwOEKSNOLMZhaatur3vopsXUSQTktikyLIm8XJSn27yk2pn9i1-4_rDPj30H59ny-UeQrhY29ublTqPBNspKUVH45O5WCz99cfERzOSM_AWzc23w
CODEN DOMEF6
CitedBy_id crossref_primary_10_1016_j_mito_2022_08_003
crossref_primary_10_1073_pnas_1808855115
crossref_primary_10_2478_fzm_2021_0009
crossref_primary_10_1089_ars_2017_7347
crossref_primary_10_1210_er_2016_1122
crossref_primary_10_1155_2017_2309034
crossref_primary_10_3389_fendo_2019_00451
crossref_primary_10_1007_s00125_021_05539_8
crossref_primary_10_1042_CS20171273
crossref_primary_10_1038_s41419_019_1803_y
crossref_primary_10_3390_cells9030538
crossref_primary_10_1016_j_omtn_2022_12_009
crossref_primary_10_1111_prd_12561
crossref_primary_10_1016_j_metabol_2021_154799
crossref_primary_10_14814_phy2_13647
crossref_primary_10_1016_j_ibneur_2022_12_006
crossref_primary_10_1007_s11892_021_01378_4
crossref_primary_10_3389_fphar_2022_778776
crossref_primary_10_2337_db20_0199
crossref_primary_10_1210_er_2016_1122_2017_1_test
crossref_primary_10_1186_s12933_019_0824_2
crossref_primary_10_2337_dbi16_0041
crossref_primary_10_3390_ijms26031008
crossref_primary_10_3390_antiox10091356
crossref_primary_10_1016_j_bbadis_2018_09_032
crossref_primary_10_1002_clc_24115
crossref_primary_10_1155_2021_7887426
crossref_primary_10_3389_fcvm_2022_879351
crossref_primary_10_1002_iid3_1224
crossref_primary_10_1016_j_biopha_2024_116185
crossref_primary_10_3389_fendo_2020_573032
crossref_primary_10_1186_s12933_022_01597_3
crossref_primary_10_3389_fendo_2020_00254
crossref_primary_10_1016_j_lfs_2018_10_028
crossref_primary_10_1016_j_neuint_2017_01_011
crossref_primary_10_1016_j_mad_2017_02_008
crossref_primary_10_1186_s12933_017_0600_0
crossref_primary_10_1016_j_phrs_2024_107309
crossref_primary_10_1002_jcb_25814
crossref_primary_10_1016_j_mehy_2020_110448
crossref_primary_10_1016_j_hlc_2020_07_015
crossref_primary_10_1161_JAHA_119_014046
crossref_primary_10_1016_j_arr_2017_10_003
crossref_primary_10_1007_s13258_023_01403_8
crossref_primary_10_1096_fj_202402479RRR
crossref_primary_10_1111_andr_12919
crossref_primary_10_1089_ars_2021_0053
crossref_primary_10_3389_fendo_2021_756581
crossref_primary_10_1016_j_esxm_2019_02_001
crossref_primary_10_1155_2021_5593584
Cites_doi 10.1074/jbc.M311786200
10.1186/s13148-015-0083-3
10.1016/j.mad.2012.09.004
10.1038/ncb2784
10.1074/jbc.M110.208066
10.1016/j.mce.2016.03.010
10.1210/en.2015-1063
10.2337/db11-0416
10.2174/1573399810666140515112609
10.1093/gerona/glu057
10.1074/jbc.M114.600775
10.3389/fimmu.2014.00578
10.2337/db09-0881
10.2337/dc13-1847
10.1371/journal.pone.0077251
10.1038/mt.2008.104
10.1161/CIRCULATIONAHA.110.952325
10.1016/j.yjmcc.2013.10.003
10.1016/j.cjca.2014.07.747
10.1007/s00125-015-3510-2
10.1172/JCI64098
10.1016/j.jmb.2013.01.023
10.1007/s00592-014-0617-8
10.1042/CS20130079
10.1007/978-94-007-4525-4_19
10.1186/s13148-015-0090-4
10.3389/fimmu.2014.00370
10.1038/nm.3487
10.2337/db12-1115
10.1111/dom.12302
10.2337/db14-1149
10.1146/annurev-pathol-121808-102144
10.1210/jc.2012-1996
10.1097/MCO.0000000000000066
10.1371/journal.pone.0022839
10.1016/j.yjmcc.2015.04.011
10.1161/CIRCULATIONAHA.115.016382
10.1038/ajh.2010.211
10.3390/ijms150610567
10.1038/ijo.2015.123
10.1172/JCI64365
10.3402/jev.v1i0.18396
10.1038/nrd4275
10.1186/s12933-016-0367-8
10.3892/mmr.2013.1872
10.1093/cvr/cvr024
10.2337/dc07-0318
10.1161/CIRCULATIONAHA.114.009990
10.2337/db12-1648
10.1016/j.yjmcc.2014.05.014
10.2337/db14-1820
10.1056/NEJMoa0804742
10.1038/nature04303
10.1111/cge.12121
10.1016/j.freeradbiomed.2013.06.009
10.1093/eurheartj/ehv599
10.2337/db05-1607
10.1007/s00125-004-1487-3
10.1186/s12964-015-0097-7
10.2337/db08-1666
10.1038/ncomms9024
10.1111/dom.12354
10.1016/j.atherosclerosis.2015.06.031
10.2337/db14-0874
10.1172/JCI76069
10.1038/nature07242
10.1038/nrendo.2010.188
10.1007/978-3-319-09665-0_22
10.1038/ncomms8321
10.1038/nature07511
10.1172/JCI76693
10.1016/j.biocel.2009.09.016
10.1182/blood-2012-01-407106
10.1681/ASN.2015030300
10.1111/j.1463-1326.2010.01199.x
10.1038/nrneph.2015.37
10.1038/nrendo.2013.86
10.1161/CIRCULATIONAHA.113.001720
10.1042/CS20100003
10.1161/CIRCRESAHA.110.226357
10.1681/ASN.2013060640
10.1096/fsb2fj000435fje
10.1371/journal.pone.0017343
10.1042/CS20150427
10.1016/j.ahj.2006.11.005
10.2174/157016112799305076
10.1038/nature15756
10.1111/acel.12075
10.1038/srep20032
10.1111/bph.12496
10.1016/j.yjmcc.2012.04.003
10.1210/me.2015-1206
10.1016/j.molcel.2014.03.029
10.1016/j.molmet.2014.01.007
10.1016/j.diabres.2010.11.030
10.1083/jcb.201211138
10.2337/db08-0063
10.1007/s11010-014-2170-8
10.2337/diabetes.51.4.1157
10.1016/j.jash.2014.03.324
10.1007/s00125-014-3462-y
10.1093/cvr/cvr300
10.1056/NEJMoa1209026
10.1093/cvr/cvt161
10.1016/j.bbrc.2015.09.166
10.1007/s11033-013-2763-4
10.1007/s00592-010-0226-0
10.1016/j.yjmcc.2014.05.001
10.2337/db11-0952
10.1042/CS20140417
10.1073/pnas.1107052108
10.2337/db15-0116
10.3389/fmolb.2015.00011
10.1016/j.tem.2015.09.006
10.1016/j.exger.2014.03.002
10.1159/000366374
10.1159/000364934
10.1038/pr.2014.202
10.1073/pnas.94.8.4171
10.2337/db14-0991
10.1038/ncomms3980
10.2337/db12-0420
10.1016/j.bbrc.2015.05.017
10.1016/j.expneurol.2014.12.018
10.1016/j.vph.2012.05.005
10.1016/j.arr.2015.06.004
10.2337/db13-0800
10.1016/j.tibs.2012.08.003
10.1111/jcmm.12589
10.2174/156652312802083594
10.1016/j.diabres.2014.03.019
10.1210/jc.2013-3843
10.1016/j.canlet.2013.01.028
10.1111/jcmm.12607
10.18632/aging.100693
10.1371/journal.pone.0138849
10.1056/NEJM200202283460912
10.1056/NEJMoa0806470
10.1161/JAHA.114.001249
10.1172/JCI70577
10.1161/JAHA.114.001202
10.1038/nature11450
10.1016/j.cmet.2012.11.003
10.1056/NEJMoa1407963
10.1161/CIRCRESAHA.112.300849
10.18632/aging.100042
10.1016/j.exger.2012.11.017
10.18632/oncotarget.6164
10.18632/oncotarget.5899
10.2337/db11-0478
10.1016/j.yjmcc.2014.12.014
10.1016/j.freeradbiomed.2013.05.033
10.1016/j.yjmcc.2015.01.021
10.1038/nrendo.2014.29
10.1371/journal.pone.0073272
10.1111/acel.12069
10.1007/s00125-015-3600-1
10.1038/cr.2015.39
10.1056/NEJMe0807625
10.1161/HYPERTENSIONAHA.107.099432
ContentType Journal Article
Copyright 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
2016 John Wiley & Sons Ltd
2016. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
– notice: 2016 John Wiley & Sons Ltd
– notice: 2016. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
7X8
5PM
DOI 10.1111/dom.12688
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE
AIDS and Cancer Research Abstracts
AIDS and Cancer Research Abstracts
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Prattichizzo et al
EISSN 1463-1326
EndPage 867
ExternalDocumentID PMC5094499
4156844201
27161301
10_1111_dom_12688
DOM12688
ark_67375_WNG_98MBTQ1M_L
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
29F
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~KM
~WT
24P
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c6088-5d0c8e63f6721a5fa451778fc56102d24bb0c9dbd3c0327459f5fc4bb28892d83
IEDL.DBID DR2
ISSN 1462-8902
1463-1326
IngestDate Thu Aug 21 14:13:06 EDT 2025
Fri Jul 11 06:22:12 EDT 2025
Fri Jul 11 00:48:20 EDT 2025
Fri Jul 25 03:10:26 EDT 2025
Fri Jul 25 05:29:32 EDT 2025
Thu Apr 03 07:10:00 EDT 2025
Tue Jul 01 01:03:00 EDT 2025
Thu Apr 24 23:00:24 EDT 2025
Sun Sep 21 06:14:47 EDT 2025
Sun Sep 21 06:21:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords microRNAs
cardiovascular disease
type 2 diabetes
extracellular vesicles, exosomes
antidiabetic drug
metformin
glycaemic control
metabolic memory
diabetes complications
Language English
License Attribution-NonCommercial
http://creativecommons.org/licenses/by-nc/4.0
2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6088-5d0c8e63f6721a5fa451778fc56102d24bb0c9dbd3c0327459f5fc4bb28892d83
Notes ark:/67375/WNG-98MBTQ1M-L
istex:2D0480F6FEA040C1C7095B2595971D3FD8E7276C
ArticleID:DOM12688
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2959-2658
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.12688
PMID 27161301
PQID 1813599618
PQPubID 1006516
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5094499
proquest_miscellaneous_1815710300
proquest_miscellaneous_1813628660
proquest_journals_3059406695
proquest_journals_1813599618
pubmed_primary_27161301
crossref_citationtrail_10_1111_dom_12688
crossref_primary_10_1111_dom_12688
wiley_primary_10_1111_dom_12688_DOM12688
istex_primary_ark_67375_WNG_98MBTQ1M_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Diabetes, obesity & metabolism
PublicationTitleAlternate Diabetes Obes Metab
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Alexander M, Hu R, Runtsch MC et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 2015; 6: 7321.
Sun K, Chang X, Yin L et al. Expression and DNA methylation status of microRNA-375 in patients with type 2 diabetes mellitus. Mol Med Rep 2014; 9: 967-972.
Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol 2015; 89: 122-135.
Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-1589.
Caporali A, Meloni M, Nailor A et al. p75(NTR)-dependent activation of NF-kB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat Commun 2015; 6: 8024.
Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes 2015; 64: 663-672.
Stocker DJ, Taylor AJ, Langley RW, Jezior MR, Vigersky RA. A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes. Am Heart J 2007; 153: 445.e1-6.
Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 2014; 13: 465-476.
Weilner S, Schraml E, Redl H, Grillari-Voglauer R, Grillari J. Secretion of microvesicular miRNAs in cellular and organismal aging. Exp Gerontol 2013; 48: 626-633.
Karolina DS, Armugam A, Tavintharan S et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 2011; 6: e22839.
Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 2010; 6: 665-675.
Bang C, Batkai S, Dangwal S et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 2014; 124: 2136-2146.
Yang Z, Chen H, Si H et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 2014; 51: 823-831.
Balestrieri ML, Rizzo MR, Barbieri M et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes 2015; 64: 1395-1406.
Xue Y, Wei Z, Ding H et al. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis. Atherosclerosis 2015; 241: 671-681.
Ceriello A, Motz E. Angiotensin-receptor blockers, type 2 diabetes, and renoprotection. N Engl J Med 2002; 346: 705-707.
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200: 373-383.
Turchinovich A, Tonevitsky AG, Cho WC, Burwinkel B. Check and mate to exosomal extracellular miRNA: new lesson from a new approach. Front Mol Biosci 2015; 2: 11.
Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U. Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J 2001; 15: 1101-1103.
Olivieri F, Albertini MC, Orciani M et al. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 2015; 6: 35509-35521.
Lakhter AJ, Sims EK. Emerging roles for extracellular vesicles in diabetes and related metabolic disorders. Mol Endocrinol 2015; 29: 1535-1548.
Prattichizzo F, Giuliani A, Ceka A et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics 2015; 7: 56.
Olivieri F, Lazzarini R, Babini L et al. Anti-inflammatory effect of ubiquinol-10 on young and senescent endothelial cells via miR-146a modulation. Free Radic Biol Med 2013; 63: 410-420.
Arunachalam G, Samuel SM, Marei I, Ding H, Triggle CR. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol 2014; 171: 523-535.
McClelland AD, Herman-Edelstein M, Komers R et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 2015; 129: 1237-1249.
Inukai S, Slack F. MicroRNAs and the genetic network in aging. J Mol Biol 2013; 425: 3601-3608.
Wang C, Wan S, Yang T et al. Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 2016; 6: 20032.
Zhao B, Li H, Liu J et al. MicroRNA-23b targets Ras GTPase-activating protein SH3 domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy. J Am Soc Nephrol 2016; pii: ASN.2015030300. [Epub ahead of print].
Wegner M, Neddermann D, Piorunska-Stolzmann M, Jagodzinski PP. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract 2014; 105: 164-175.
Qin J, Li Y, Cai Z et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60.
Keating ST, El-Osta A. Epigenetic changes in diabetes. Clin Genet 2013; 84: 1-10.
Karolina DS, Tavintharan S, Armugam A et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 2012; 97: E2271-E2276.
Dávalos A, Chroni A. Antisense oligonucleotides, microRNAs, and antibodies. Handb Exp Pharmacol 2015; 224: 649-689.
Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 2012; 93: 583-593.
Saba R, Sorensen DL, Booth SA. MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol 2014; 5: 578.
Feng B, Chen S, McArthur K et al. miR-146a-Mediated extracellular matrix protein production in chronic Diabetes complications. Diabetes 2011; 60: 2975-2984.
Zhang T, Li L, Shang Q, Lv C, Wang C, Su B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun 2015; 463: 60-63.
Alipour MR, Khamaneh AM, Yousefzadeh N, Mohammad-nejad D, Soufi FG. Upregulation of microRNA-146a was not accompanied by downregulation of pro-inflammatory markers in diabetic kidney. Mol Biol Rep 2013; 40: 6477-6483.
Guarner V, Rubio-Ruiz ME. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol 2015; 40: 99-106.
Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013; 62: 194-204.
Acosta JC, Banito A, Wuestefeld T et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15: 978-990.
Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 2012; 53: 64-72.
Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799; 2010: 694-701.
Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 2013; 64: 85-94.
Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 2013; 9: 513-521.
Potus F, Ruffenach G, Dahou A et al. Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 2015; 132: 932-943.
Ceriello A, Esposito K, Piconi L et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008; 57: 1349-1354.
Togliatto G, Dentelli P, Gili M et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond) 2015; 40: 102-111.
Pescador N, Pérez-Barba M, Ibarra JM et al. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One 2013; 8: e77251.
Olivieri F, Mazzanti I, Abbatecola AM et al. Telomere/Telomerase system: a new target of statins pleiotropic effect? Curr Vasc Pharmacol 2012; 10: 216-224.
Robbins GR, Wen H, Ting JP. Inflammasomes and metabolic disorders: old genes in modern diseases. Mol Cell 2014; 54: 297-308.
Luan Y, Zuo L, Zhang S, Wang G, Peng T. MicroRNA-126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS-1). Int J Clin Exp Pathol 2015; 8: 10345-10354.
Shantikumar S, Angelini GD, Emanueli C. Diabetes, microRNAs and exosomes: les liaisons dangereuses. J Mol Cell Cardiol 2014; 74: 196-198.
Ceriello A, Piconi L, Esposito K, Giugliano D. Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type 1 diabetes. Diabetes Care 2007; 30: 1694-1698.
Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing-Implications in hypertension. J Mol Cell Cardiol 2015; 83: 112-121.
Bhaumik D, Scott GK, Schokrpur S et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany, NY) 2009; 1: 402-411.
Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS et al. Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms. Mol Metab 2014; 3: 325-333.
Thum T, Gross C, Fiedler J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980-984.
Fleury A, Martinez MC, Le Lay S. Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol 2014; 5: 370.
Zoungas S, Chalmers J, Neal B et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med 2014; 371: 1392-1406.
Ceolotto G, Papparella I, Bortoluzzi A et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hyp
2010; 12
2013; 4
2010; 107
2013; 65
2016; 427
2013; 62
2011; 60
2013; 61
2015; 265
2013; 368
2013; 64
2015; 77
2013; 63
2013; 128
2013; 123
2014; 25
2014; 371
2012; 16
2013; 121
2013; 8
2014; 130
2012; 12
2012; 10
2012; 97
2013; 9
2014; 20
2015; 89
2012; 133
2010; 119
2015; 83
2012; 490
2015; 132
2014; 16
2014; 15
2008; 359
2014; 13
2013; 113
2014; 17
2010; 5
2011; 123
2010; 6
2014; 126
2014; 99
2014; 10
2014; 124
2015; 58
2015; 125
2006; 55
2013; 84
2004; 47
2015; 241
2013; 100
2008; 57
2015; 527
2008; 52
2015; 128
2012; 37
2015; 129
1799; 2010
2014; 397
2011; 6
2016; 15
2016; 6
2010; 42
2004; 279
2011; 90
2015; 64
2011; 93
2007; 153
2014; 37
2013; 333
2014; 30
2014; 34
2012; 61
2015; 37
2010; 59
2015; 467
2015; 224
2002; 51
2015; 463
2013; 200
2014; 69
2014; 171
2007; 30
2012; 57
2012; 53
2009; 58
2013; 15
2014; 5
1997; 94
2014; 3
2015; 40
2013; 12
2002; 346
2001; 15
2011; 24
2014; 9
2014; 51
2014; 8
2014; 6
2014; 56
2014; 54
2011; 286
2014; 289
2015; 2
2015; 13
2013; 48
2015; 6
2015; 19
2013; 40
2015; 11
2008; 16
2013; 425
2015; 10
2005; 438
2015; 8
2015; 7
2015; 24
2012; 93
2014; 105
2015; 26
2015; 25
2011; 108
2015; 29
2012; 1
2015; 156
2016
2008; 456
2008; 455
2011; 48
2014; 74
2009; 1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
Iorio MV (e_1_2_9_23_1) 1799; 2010
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Carvalho E (e_1_2_9_68_1) 2001; 15
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
Luan Y (e_1_2_9_70_1) 2015; 8
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_161_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
26431329 - Oncotarget. 2015 Nov 3;6(34):35509-21
26553540 - Eur Heart J. 2016 Feb 7;37(6):572-6
25368096 - Diabetes. 2015 Apr;64(4):1370-82
25926893 - Clin Epigenetics. 2015 Apr 24;7:49
23217257 - Cell Metab. 2012 Dec 5;16(6):777-88
24009886 - J Extracell Vesicles. 2012 Apr 16;1:null
26117405 - Atherosclerosis. 2015 Aug;241(2):671-81
24720708 - Diabetes Obes Metab. 2014 Oct;16(10 ):957-62
25931475 - Diabetes. 2015 Sep;64(9):3285-93
25133430 - J Clin Invest. 2014 Sep;124(9):4102-14
25713188 - Diabetes. 2015 Mar;64(3):663-72
16258535 - Nature. 2005 Dec 1;438(7068):685-9
25988178 - Front Mol Biosci. 2015 Apr 13;2:11
26393803 - PLoS One. 2015 Sep 22;10(9):e0138849
22944280 - Trends Biochem Sci. 2012 Nov;37(11):460-5
26498351 - Oncotarget. 2015 Nov 3;6(34):35372-82
24833586 - J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1:S4-9
25523006 - Handb Exp Pharmacol. 2015;224:649-89
20590740 - Diabetes Obes Metab. 2010 Aug;12 (8):641-7
25325735 - Diabetes. 2015 Apr;64(4):1395-406
24927146 - Int J Mol Sci. 2014 Jun 12;15(6):10567-77
25677225 - Diabetologia. 2015 May;58(5):900-11
25349183 - J Am Heart Assoc. 2014 Oct 27;3(6):e001249
23774505 - Cardiovasc Res. 2013 Oct 1;100(1):7-18
24372553 - Br J Pharmacol. 2014 Jan;171(2):523-35
26839366 - J Am Soc Nephrol. 2016 Sep;27(9):2597-608
23398084 - Clin Genet. 2013 Jul;84(1):1-10
23353823 - J Mol Biol. 2013 Oct 9;425(19):3601-8
20651284 - Circ Res. 2010 Sep 17;107(6):810-7
24970784 - Circulation. 2014 Sep 2;130(10 ):837-44
20078217 - Annu Rev Pathol. 2010;5:99-118
24937531 - J Clin Endocrinol Metab. 2014 Sep;99(9):E1681-5
25385173 - Clin Sci (Lond). 2015 Apr;128(8):483-91
24610930 - J Am Soc Nephrol. 2014 Aug;25(8):1710-22
22525256 - J Mol Cell Cardiol. 2012 Jul;53(1):64-72
25389292 - J Biol Chem. 2014 Dec 26;289(52):36031-47
22124463 - Diabetes. 2012 Jan;61(1):217-28
25906755 - Diabetologia. 2015 Aug;58(8):1708-14
19208907 - Diabetes. 2009 May;58(5):1229-36
20524934 - Clin Sci (Lond). 2010 Jul 23;119(9):395-405
24663222 - Nat Rev Endocrinol. 2014 May;10(5):293-302
20086228 - Diabetes. 2010 Apr;59(4):978-86
23629540 - Nat Rev Endocrinol. 2013 Sep;9(9):513-21
26973292 - Mol Cell Endocrinol. 2016 May 15;427:112-23
14976218 - J Biol Chem. 2004 Apr 23;279(17):18091-7
24356509 - Nat Commun. 2013;4:2980
26415649 - Clin Sci (Lond). 2015 Dec;129(12 ):1237-49
21220732 - Circulation. 2011 Jan 25;123(3):282-91
21636785 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10355-60
24749062 - Mol Metab. 2014 Jan 20;3(3):325-33
25136343 - Front Immunol. 2014 Aug 04;5:370
26831044 - Sci Rep. 2016 Feb 01;6:20032
25986735 - Biochem Biophys Res Commun. 2015 Jul 17-24;463(1-2):60-3
24057185 - Mol Biol Rep. 2013 Nov;40(11):6477-83
18504326 - Hypertension. 2008 Jul;52(1):123-9
23496142 - Aging Cell. 2013 Jun;12(3):446-58
23032062 - J Clin Endocrinol Metab. 2012 Dec;97(12):E2271-6
23041385 - Mech Ageing Dev. 2012 Nov-Dec;133(11-12):675-85
20857148 - Acta Diabetol. 2011 Mar;48(1):61-9
18784090 - N Engl J Med. 2008 Oct 9;359(15):1577-89
21613227 - J Biol Chem. 2011 Jul 22;286(29):25586-603
25896391 - J Mol Cell Cardiol. 2015 Jun;83:112-21
15316606 - Diabetologia. 2004 Sep;47(9):1535-40
24607549 - Exp Gerontol. 2014 Aug;56:154-63
23521863 - Aging Cell. 2013 Jun;12(3):489-98
19020323 - N Engl J Med. 2008 Nov 20;359(21):2208-19
23420871 - J Cell Biol. 2013 Feb 18;200(4):373-83
26122028 - Int J Obes (Lond). 2016 Jan;40(1):102-11
22609133 - Vascul Pharmacol. 2012 Nov-Dec;57(5-6):133-8
23454759 - J Clin Invest. 2013 Mar;123(3):966-72
18299315 - Diabetes. 2008 May;57(5):1349-54
25824442 - J Cell Mol Med. 2015 Sep;19(9):2153-61
24204780 - PLoS One. 2013 Oct 15;8(10):e77251
22065734 - Cardiovasc Res. 2012 Mar 15;93(4):583-93
25562527 - Exp Neurol. 2015 Mar;265:84-93
24814876 - Diabetes Res Clin Pract. 2014 Aug;105(2):164-75
21266525 - Cardiovasc Res. 2011 Jun 1;90(3):421-9
24874423 - J Mol Cell Cardiol. 2014 Sep;74:196-8
20493980 - Biochim Biophys Acta. 2010 Oct-Dec;1799(10-12):694-701
23619365 - J Clin Invest. 2013 May;123(5):2143-54
25324472 - Aging (Albany NY). 2014 Sep;6(9):771-87
23283304 - Exp Gerontol. 2013 Jul;48(7):626-33
25825086 - Nat Rev Nephrol. 2015 May;11(5):277-87
25041462 - Diabetes Obes Metab. 2014 Nov;16(11):1165-73
23534542 - N Engl J Med. 2013 May 2;368(18):1685-94
26106186 - Diabetes. 2015 Jul;64(7):2289-98
23023125 - Nature. 2012 Oct 4;490(7418):55-60
26081516 - J Cell Mol Med. 2015 Sep;19(9):2202-14
25655936 - J Mol Cell Cardiol. 2015 Dec;89(Pt B):122-35
23144172 - Blood. 2013 Jan 3;121(1):226-36
11292681 - FASEB J. 2001 Apr;15(6):1101-3
24854413 - Nat Rev Drug Discov. 2014 Jun;13(6):465-76
20148189 - Aging (Albany NY). 2009 Apr;1(4):402-11
26492831 - Trends Endocrinol Metab. 2015 Dec;26(12 ):733-45
24478399 - Diabetes Care. 2014;37(5):1375-83
26617742 - Int J Clin Exp Pathol. 2015 Sep 01;8(9):10345-54
25880779 - Cell Commun Signal. 2015 Mar 19;13:17
9108124 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4171-5
25427542 - Cell Physiol Biochem. 2014;34(5):1733-40
26454169 - Biochem Biophys Res Commun. 2015 Nov 13;467(2):303-9
26162916 - Circulation. 2015 Sep 8;132(10):932-43
21829658 - PLoS One. 2011;6(8):e22839
23352645 - Cancer Lett. 2013 Jun 10;333(2):159-69
18500251 - Mol Ther. 2008 Jul;16(7):1208-16
22427379 - Diabetes. 2012 Jun;61(6):1633-41
23704521 - Diabetes. 2013 Jun;62(6):1800-7
25484882 - Front Immunol. 2014 Nov 21;5:578
27005938 - Cardiovasc Diabetol. 2016 Mar 22;15:49
23150262 - Subcell Biochem. 2013;61:435-54
24981880 - Acta Diabetol. 2014 Oct;51(5):823-31
25481708 - Diabetologia. 2015 Mar;58(3):443-55
21045787 - Nat Rev Endocrinol. 2010 Dec;6(12):665-75
24584117 - Nat Med. 2014 Apr;20(4):368-76
22856601 - Curr Gene Ther. 2012 Aug;12(4):262-74
26524530 - Nature. 2015 Nov 19;527(7578):329-35
23727324 - Free Radic Biol Med. 2013 Oct;63:410-20
25664854 - J Clin Invest. 2015 Mar 2;125(3):1215-27
11873779 - N Engl J Med. 2002 Feb 28;346(9):705-7
23258906 - Diabetes. 2013 Jan;62(1):22-4
23770676 - Nat Cell Biol. 2013 Aug;15(8):978-90
24059587 - Clin Sci (Lond). 2014 Jan;126(2):95-110
24264394 - Diabetes. 2013 Dec;62(12):3968-75
25084986 - Mol Cell Biochem. 2014 Dec;397(1-2):45-51
23697773 - Circ Res. 2013 Jul 19;113(3):266-78
26015812 - Clin Epigenetics. 2015 May 23;7:56
24825548 - J Mol Cell Cardiol. 2014 Sep;74:139-50
24023848 - PLoS One. 2013 Sep 02;8(9):e73272
17456844 - Diabetes Care. 2007 Jul;30(7):1694-8
26197086 - Ageing Res Rev. 2015 Nov;24(Pt A):66-76
11916939 - Diabetes. 2002 Apr;51(4):1157-65
23770198 - Free Radic Biol Med. 2013 Sep;64:85-94
24743145 - J Clin Invest. 2014 May;124(5):2136-46
21885871 - Diabetes. 2011 Nov;60(11):2975-84
18843126 - N Engl J Med. 2008 Oct 9;359(15):1618-20
24161401 - J Mol Cell Cardiol. 2013 Dec;65:127-36
19043405 - Nature. 2008 Dec 18;456(7224):980-4
21146883 - Diabetes Res Clin Pract. 2011 Jul;93(1):56-62
25341516 - Interdiscip Top Gerontol. 2015;40:99-106
21464990 - PLoS One. 2011 Mar 25;6(3):e17343
25418215 - Can J Cardiol. 2014 Dec;30(12):1689-99
25234206 - N Engl J Med. 2014 Oct 9;371(15):1392-406
24794206 - J Am Soc Hypertens. 2014 Jun;8(6):368-75
24828062 - Curr Diabetes Rev. 2014 May;10(3):190-200
24014835 - Circulation. 2013 Oct 29;128(18):2026-38
20966899 - Am J Hypertens. 2011 Feb;24(2):241-6
26084661 - Nat Commun. 2015 Jun 18;6:7321
26393296 - Mol Endocrinol. 2015 Nov;29(11):1535-48
26268439 - Nat Commun. 2015 Aug 13;6:8024
25518011 - Pediatr Res. 2015 Mar;77(3):447-54
24839949 - Curr Opin Clin Nutr Metab Care. 2014 Jul;17(4):338-42
24366165 - Mol Med Rep. 2014 Mar;9(3):967-72
26083874 - Endocrinology. 2015 Sep;156(9):3157-68
24766894 - Mol Cell. 2014 Apr 24;54(2):297-308
16731828 - Diabetes. 2006 Jun;55(6):1660-5
17307426 - Am Heart J. 2007 Mar;153(3):445.e1-6
22022767 - Curr Vasc Pharmacol. 2012 Mar;10(2):216-24
18668037 - Nature. 2008 Sep 4;455(7209):64-71
25828531 - Cell Res. 2015 May;25(5):531-2
23086037 - Diabetes. 2013 Jan;62(1):194-204
19800023 - Int J Biochem Cell Biol. 2010 Aug;42(8):1316-29
25536178 - J Mol Cell Cardiol. 2015 Dec;89(Pt A):42-50
25527624 - J Am Heart Assoc. 2014 Dec;3(6):e001202
References_xml – reference: Stocker DJ, Taylor AJ, Langley RW, Jezior MR, Vigersky RA. A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes. Am Heart J 2007; 153: 445.e1-6.
– reference: Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res 2013; 100: 7-18.
– reference: Caporali A, Meloni M, Völlenkle C et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 2011; 123: 282-291.
– reference: Santovito D, De Nardis V, Marcantonio P et al. Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. J Clin Endocrinol Metab 2014; 99: E1681-E1685.
– reference: Ceriello A, Assaloni R, Da Ros R et al. Effect of irbesartan on nitrotyrosine generation in non-hypertensive diabetic patients. Diabetologia 2004; 47: 1535-1540.
– reference: Togliatto G, Dentelli P, Gili M et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond) 2015; 40: 102-111.
– reference: Arunachalam G, Samuel SM, Marei I, Ding H, Triggle CR. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol 2014; 171: 523-535.
– reference: Reddy MA, Natarajan R. Role of epigenetic mechanisms in the vascular complications of diabetes. Subcell Biochem 2013; 61: 435-454.
– reference: Prattichizzo F, Giuliani A, Ceka A et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics 2015; 7: 56.
– reference: Zampetaki A, Kiechl S, Drozdov I et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107: 810-817.
– reference: Rondinone CM, Wang LM, Lonnroth P, Wesslau C, Pierce JH, Smith U. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein forphosphatidylinositol3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 1997; 94: 4171-4175.
– reference: Zheng Z, Chen H, Li J et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes 2012; 61: 217-228.
– reference: Alexander M, Hu R, Runtsch MC et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 2015; 6: 7321.
– reference: Karolina DS, Armugam A, Tavintharan S et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 2011; 6: e22839.
– reference: Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, Parving HH. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 2002; 51: 1157-1165.
– reference: McClelland AD, Herman-Edelstein M, Komers R et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 2015; 129: 1237-1249.
– reference: Robbins GR, Wen H, Ting JP. Inflammasomes and metabolic disorders: old genes in modern diseases. Mol Cell 2014; 54: 297-308.
– reference: Stoorvogel W. Resolving sorting mechanisms into exosomes. Cell Res 2015; 25: 531-532.
– reference: Lakhter AJ, Sims EK. Emerging roles for extracellular vesicles in diabetes and related metabolic disorders. Mol Endocrinol 2015; 29: 1535-1548.
– reference: Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 2012; 53: 64-72.
– reference: Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013; 62: 194-204.
– reference: Dey N, Das F, Mariappan MM et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem 2011; 286: 25586-25603.
– reference: Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens 2014; 8: 368-375.
– reference: Ortega FJ, Moreno M, Mercader JM et al. Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants. Clin Epigenetics 2015; 7: 49.
– reference: Russell ND, Cooper ME. 50 years forward: mechanisms of hyperglycaemia-driven diabetic complications. Diabetologia 2015; 58: 1708-1714.
– reference: Shen J, Yang X, Xie B et al. MicroRNAs regulate ocular neovascularization. Mol Ther 2008; 16: 1208-1216.
– reference: Santulli G, Wronska A, Uryu K et al. A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. J Clin Invest 2014; 124: 4102-4114.
– reference: Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200: 373-383.
– reference: Ryu HS, Park SY, Ma D, Zhang J, Lee W. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One 2011; 6: e17343.
– reference: Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 2012; 93: 583-593.
– reference: Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 2014; 13: 465-476.
– reference: Pescador N, Pérez-Barba M, Ibarra JM et al. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One 2013; 8: e77251.
– reference: Brasacchio D, Okabe J, Tikelli C et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene activating epigenetic marks that coexist on the lysine tail. Diabetes 2009; 58: 1229-1236.
– reference: Qing S, Yuan S, Yun C et al. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem 2014; 34: 1733-1740.
– reference: Chaturvedi P, Kalani A, Medina I, Familtseva A, Tyagi SC. Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. J Cell Mol Med 2015; 19: 2153-2161.
– reference: Morgan CL, Mukherjee J, Jenkins-Jones S, Holden SE, Currie CJ. Association between first-line monotherapy with sulphonylurea versus metformin and risk of all-cause mortality and cardiovascular events: a retrospective, observational study. Diabetes Obes Metab 2014; 16: 957-962.
– reference: Wegner M, Neddermann D, Piorunska-Stolzmann M, Jagodzinski PP. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract 2014; 105: 164-175.
– reference: Westhoff JH, Hilgers KF, Steinbach MP et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 2008; 52: 123-129.
– reference: Prajapati B, Jena PK, Rajput P, Purandhar K, Seshadri S. Understanding and modulating the Toll like Receptors (TLRs) and NOD like Receptors (NLRs) cross talk in type 2 diabetes. Curr Diabetes Rev 2014; 10: 190-200.
– reference: Halkein J, Tabruyn SP, Ricke-Hoch M et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 2013; 123: 2143-2154.
– reference: Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 2013; 4: 2980.
– reference: Paneni F, Volpe M, Lüscher TF, Cosentino F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes 2013; 62: 1800-1807.
– reference: Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS et al. Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms. Mol Metab 2014; 3: 325-333.
– reference: Forouzandeh F, Salazar G, Patrushev N et al. Metformin beyond diabetes: pleiotropic benefits of metformin in attenuation of atherosclerosis. J Am Heart Assoc 2014; 3: e001202.
– reference: Lanza IR, Zabielski P, Klaus KA et al. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 2012; 16: 777-788.
– reference: Geiger A, Walker A, Nissen E. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice. Biochem Biophys Res Commun 2015; 467: 303-309.
– reference: Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799; 2010: 694-701.
– reference: Liu S, Li W, Xu M, Huang H, Wang J, Chen X. Micro-RNA 21 targets dual specific phosphatase 8 to promote collagen synthesis in high glucose-treated primary cardiac fibroblasts. Can J Cardiol 2014; 30: 1689-1699.
– reference: Bang C, Batkai S, Dangwal S et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 2014; 124: 2136-2146.
– reference: Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol 2014; 10: 293-302.
– reference: Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 2004; 279: 18091-18097.
– reference: Olivieri F, Albertini MC, Orciani M et al. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 2015; 6: 35509-35521.
– reference: Ceriello A, Esposito K, Piconi L et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008; 57: 1349-1354.
– reference: Weilner S, Schraml E, Redl H, Grillari-Voglauer R, Grillari J. Secretion of microvesicular miRNAs in cellular and organismal aging. Exp Gerontol 2013; 48: 626-633.
– reference: Shin JJ, Lee EK, Park TJ, Kim W. Damage-associated molecular patterns and their pathological relevance in diabetes mellitus. Ageing Res Rev 2015; 24: 66-76.
– reference: Noonan JE, Jenkins AJ, Ma JX, Keech AC, Wang JJ, Lamoureux EL. An update on the molecular actions of fenofibrate and its clinical effects on diabetic retinopathy and other microvascular end points in patients with diabetes. Diabetes 2013; 62: 3968-3975.
– reference: Xue Y, Wei Z, Ding H et al. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis. Atherosclerosis 2015; 241: 671-681.
– reference: Guarner V, Rubio-Ruiz ME. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol 2015; 40: 99-106.
– reference: Zhong X, Liao Y, Chen L et al. The microRNAs in the pathogenesis of metabolic memory. Endocrinology 2015; 156: 3157-3168.
– reference: Bijkerk R, van Solingen C, de Boer HC et al. Hematopoietic microRNA-126protects against renal ischemia/reperfusion injury by promoting vascular integrity. J Am Soc Nephrol 2014; 25: 1710-1722.
– reference: Wang WX, Visavadiya NP, Pandya JD, Nelson PT, Sullivan PG, Springer JE. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol 2015; 265: 84-93.
– reference: Zhang T, Li L, Shang Q, Lv C, Wang C, Su B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun 2015; 463: 60-63.
– reference: de Jong OG, Verhaar MC, Chen Y et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012; 1: 18396.
– reference: Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci (Lond) 2010; 119: 395-405.
– reference: Turchinovich A, Tonevitsky AG, Cho WC, Burwinkel B. Check and mate to exosomal extracellular miRNA: new lesson from a new approach. Front Mol Biosci 2015; 2: 11.
– reference: Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U. Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J 2001; 15: 1101-1103.
– reference: Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 2015; 64: 2289-2298.
– reference: Togliatto G, Trombetta A, Dentelli P et al. Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes 2015; 64: 1370-1382.
– reference: Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99-118.
– reference: Balestrieri ML, Rizzo MR, Barbieri M et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes 2015; 64: 1395-1406.
– reference: Leung A, Trac C, Jin W et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 2013; 113: 266-278.
– reference: Ceriello A, Piconi L, Esposito K, Giugliano D. Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type 1 diabetes. Diabetes Care 2007; 30: 1694-1698.
– reference: Pezzolesi MG, Satake E, McDonnell KP, Major M, Smiles AM, Krolewski AS. Circulating TGF-β1-regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes. Diabetes 2015; 64: 3285-3293.
– reference: Jansen F, Yang X, Baumann K et al. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism. J Cell Mol Med 2015; 19: 2202-2214.
– reference: Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res 2011; 90: 421-429.
– reference: Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing-Implications in hypertension. J Mol Cell Cardiol 2015; 83: 112-121.
– reference: Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes 2015; 64: 663-672.
– reference: Yokoi T, Fukuo K, Yasuda O et al. Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells. Diabetes 2006; 55: 1660-1665.
– reference: Hoshino A, Costa-Silva B, Shen TL et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527: 329-335.
– reference: Bannister CA, Holden SE, Jenkins-Jones S et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 2014; 16: 1165-1173.
– reference: Potus F, Ruffenach G, Dahou A et al. Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 2015; 132: 932-943.
– reference: Thum T, Gross C, Fiedler J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980-984.
– reference: Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-1589.
– reference: Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 2015; 58: 443-455.
– reference: Olivieri F, Spazzafumo L, Santini G et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 2012; 133: 675-685.
– reference: Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 2010; 42: 1316-1329.
– reference: Fleury A, Martinez MC, Le Lay S. Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol 2014; 5: 370.
– reference: Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L et al. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell 2013; 12: 446-458.
– reference: Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 2015; 58: 900-911.
– reference: Ceriello A, Motz E. Angiotensin-receptor blockers, type 2 diabetes, and renoprotection. N Engl J Med 2002; 346: 705-707.
– reference: Wang X, Huang W, Liu G et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol 2014; 74: 139-150.
– reference: Qin J, Li Y, Cai Z et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60.
– reference: O'Loughlin AJ, Woffindale CA, Wood MJ. Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther 2012; 12: 262-274.
– reference: Bhaumik D, Scott GK, Schokrpur S et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany, NY) 2009; 1: 402-411.
– reference: Pek SL, Sum CF, Lin MX et al. Circulating and visceral adipose miR-100 is down-regulated in patients with obesity and type 2 diabetes. Mol Cell Endocrinol 2016; 427: 112-123.
– reference: Zoungas S, Chalmers J, Neal B et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med 2014; 371: 1392-1406.
– reference: Shantikumar S, Angelini GD, Emanueli C. Diabetes, microRNAs and exosomes: les liaisons dangereuses. J Mol Cell Cardiol 2014; 74: 196-198.
– reference: Testa R, Genovese S, Ceriello A. Nutritional imbalances linking cellular senescence and type 2 diabetes mellitus. Curr Opin Clin Nutr Metab Care 2014; 17: 338-342.
– reference: Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 2013; 64: 85-94.
– reference: Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol 2015; 89: 122-135.
– reference: Olivieri F, Spazzafumo L, Bonafè M et al. MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications. Oncotarget 2015; 6: 35372-35382.
– reference: Zhao B, Li H, Liu J et al. MicroRNA-23b targets Ras GTPase-activating protein SH3 domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy. J Am Soc Nephrol 2016; pii: ASN.2015030300. [Epub ahead of print].
– reference: Dávalos A, Chroni A. Antisense oligonucleotides, microRNAs, and antibodies. Handb Exp Pharmacol 2015; 224: 649-689.
– reference: Kong L, Zhu J, Han W et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48: 61-69.
– reference: Rong Y, Bao W, Shan Z et al. Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus. PLoS One 2013; 8: e73272.
– reference: Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol 2015; 89: 42-50.
– reference: Yan ST, Li CL, Tian H et al. MiR-199a is overexpressed in plasma of type 2 diabetes patients which contributes to type 2 diabetes by targeting GLUT4. Mol Cell Biochem 2014; 397: 45-51.
– reference: Olivieri F, Lazzarini R, Babini L et al. Anti-inflammatory effect of ubiquinol-10 on young and senescent endothelial cells via miR-146a modulation. Free Radic Biol Med 2013; 63: 410-420.
– reference: Zhou B, Ma R, Si W et al. MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett 2013; 333: 159-169.
– reference: Ling S, Nanhwan M, Qian J et al. Modulation of microRNAs in hypertension-induced arterial remodeling through the β1 and β3-adrenoreceptor pathways. J Mol Cell Cardiol 2013; 65: 127-136.
– reference: Olivieri F, Bonafè M, Spazzafumo L et al. Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging (Albany NY) 2014; 6: 771-787.
– reference: Meigs JB, Shrader P, Sullivan LM et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 2008; 359: 2208-2219.
– reference: Caporali A, Meloni M, Nailor A et al. p75(NTR)-dependent activation of NF-kB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat Commun 2015; 6: 8024.
– reference: Li C, Mpollo MS, Gonsalves CS, Tahara SM, Malik P, Kalra VK. Peroxisome proliferator-activated receptor-α-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1α. J Biol Chem 2014; 289: 36031-36047.
– reference: Luan Y, Zuo L, Zhang S, Wang G, Peng T. MicroRNA-126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS-1). Int J Clin Exp Pathol 2015; 8: 10345-10354.
– reference: Garcia NA, Ontoria-Oviedo I, González-King H, Diez-Juan A, Sepúlveda P. Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS One 2015; 10: e0138849.
– reference: Inukai S, Slack F. MicroRNAs and the genetic network in aging. J Mol Biol 2013; 425: 3601-3608.
– reference: Hartig SM, Hamilton MP, Bader DA, McGuire SE. The miRNA interactome in metabolic homeostasis. Trends Endocrinol Metab 2015; 26: 733-745.
– reference: Hill D, Fisher M. The effect of intensive glycaemic control on cardiovascular outcomes. Diabetes Obes Metab 2010; 12: 641-647.
– reference: Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123: 966-972.
– reference: Keating ST, El-Osta A. Epigenetic changes in diabetes. Clin Genet 2013; 84: 1-10.
– reference: Rippo MR, Olivieri F, Monsurrò V, Prattichizzo F, Albertini MC, Procopio AD. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol 2014; 56: 154-163.
– reference: Janssen HL, Reesink HW, Lawitz EJ et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368: 1685-1694.
– reference: Costantino S, Paneni F, Lüscher TF, Cosentino F. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J 2015; 37: 572-576.
– reference: Guay C, Menoud V, Rome S, Regazzi R. Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal 2015; 13: 17.
– reference: Dregan A, Charlton J, Chowienczyk P, Gulliford MC. Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population-based cohort study. Circulation 2014; 130: 837-844.
– reference: Olivieri F, Mazzanti I, Abbatecola AM et al. Telomere/Telomerase system: a new target of statins pleiotropic effect? Curr Vasc Pharmacol 2012; 10: 216-224.
– reference: Jansen F, Yang X, Proebsting S et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 2014; 3: e001249.
– reference: Chakraborty A, Chowdhury S, Bhattacharyya M. Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res Clin Pract 2011; 93: 56-62.
– reference: Alipour MR, Khamaneh AM, Yousefzadeh N, Mohammad-nejad D, Soufi FG. Upregulation of microRNA-146a was not accompanied by downregulation of pro-inflammatory markers in diabetic kidney. Mol Biol Rep 2013; 40: 6477-6483.
– reference: Ahlqvist E, van Zuydam NR, Groop LC, McCarthy MI. The genetics of diabetic complications. Nat Rev Nephrol 2015; 11: 277-287.
– reference: Liu Y, Gao G, Yang C et al. The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci 2014; 15: 10567-10577.
– reference: Jansen F, Wang H, Przybilla D et al. Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc Diabetol 2016; 15: 49.
– reference: Roggli E, Britan A, Gattesco S et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010; 59: 978-986.
– reference: Ferrante SC, Nadler EP, Pillai DK et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res 2015; 77: 447-454.
– reference: Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455: 64-71.
– reference: Ortega FJ, Mercader JM, Moreno-Navarrete JM et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 2014; 37: 1375-1583.
– reference: Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 2010; 6: 665-675.
– reference: Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 2012; 37: 460-465.
– reference: Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69(Suppl. 1): S4-S9.
– reference: Ceriello A. The emerging challenge in diabetes: the "metabolic memory". Vascul Pharmacol 2012; 57: 133-138.
– reference: Schober A, Nazari-Jahantigh M, Wei Y et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20: 368-376.
– reference: Yang Z, Chen H, Si H et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 2014; 51: 823-831.
– reference: Ceolotto G, Papparella I, Bortoluzzi A et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens 2011; 24: 241-246.
– reference: Leoni G, Neumann PA, Kamaly N et al. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Invest 2015; 125: 1215-1227.
– reference: Satoh M, Takahashi Y, Tabuchi T et al. Circulating Toll-like receptor 4-responsive microRNA panel in patients with coronary artery disease: results from prospective and randomized study of treatment with renin-angiotensin system blockade. Clin Sci (Lond) 2015; 128: 483-491.
– reference: Saba R, Sorensen DL, Booth SA. MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol 2014; 5: 578.
– reference: Acosta JC, Banito A, Wuestefeld T et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15: 978-990.
– reference: Moiseeva O, Deschênes-Simard X, St-Germain E et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kB activation. Aging Cell 2013; 12: 489-498.
– reference: Mocharla P, Briand S, Giannotti G et al. AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 2013; 121: 226-236.
– reference: Chalmers J, Cooper ME. UKPDS and the legacy effect. N Engl J Med 2008; 359: 1618-1620.
– reference: Dixit VD. Nlrp3 inflammasome activation in type 2 diabetes: is it clinically relevant? Diabetes 2013; 62: 22-24.
– reference: Jansen F, Yang X, Hoelscher M et al. Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013; 128: 2026-2038.
– reference: Feng B, Chen S, McArthur K et al. miR-146a-Mediated extracellular matrix protein production in chronic Diabetes complications. Diabetes 2011; 60: 2975-2984.
– reference: Zhou J, Wang KC, Wu W et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A 2011; 108: 10355-10360.
– reference: Wang C, Wan S, Yang T et al. Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 2016; 6: 20032.
– reference: Greco S, Fasanaro P, Castelvecchio S et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 2012; 61: 1633-1641.
– reference: Sun K, Chang X, Yin L et al. Expression and DNA methylation status of microRNA-375 in patients with type 2 diabetes mellitus. Mol Med Rep 2014; 9: 967-972.
– reference: Krützfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438: 685-689.
– reference: Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 2013; 9: 513-521.
– reference: Karolina DS, Tavintharan S, Armugam A et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 2012; 97: E2271-E2276.
– reference: McClelland AD, Kantharidis P. microRNA in the development of diabetic complications. Clin Sci (Lond) 2014; 126: 95-110.
– volume: 62
  start-page: 22
  year: 2013
  end-page: 24
  article-title: Nlrp3 inflammasome activation in type 2 diabetes: is it clinically relevant?
  publication-title: Diabetes
– volume: 62
  start-page: 194
  year: 2013
  end-page: 204
  article-title: Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes
  publication-title: Diabetes
– volume: 130
  start-page: 837
  year: 2014
  end-page: 844
  article-title: Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population‐based cohort study
  publication-title: Circulation
– volume: 24
  start-page: 66
  year: 2015
  end-page: 76
  article-title: Damage‐associated molecular patterns and their pathological relevance in diabetes mellitus
  publication-title: Ageing Res Rev
– volume: 12
  start-page: 489
  year: 2013
  end-page: 498
  article-title: Metformin inhibits the senescence‐associated secretory phenotype by interfering with IKK/NF‐kB activation
  publication-title: Aging Cell
– volume: 108
  start-page: 10355
  year: 2011
  end-page: 10360
  article-title: MicroRNA‐21 targets peroxisome proliferators‐activated receptor‐alpha in an autoregulatory loop to modulate flow‐induced endothelial inflammation
  publication-title: Proc Natl Acad Sci U S A
– volume: 359
  start-page: 1618
  year: 2008
  end-page: 1620
  article-title: UKPDS and the legacy effect
  publication-title: N Engl J Med
– volume: 5
  start-page: 99
  year: 2010
  end-page: 118
  article-title: The senescence‐associated secretory phenotype: the dark side of tumor suppression
  publication-title: Annu Rev Pathol
– volume: 48
  start-page: 61
  year: 2011
  end-page: 69
  article-title: Significance of serum microRNAs in pre‐diabetes and newly diagnosed type 2 diabetes: a clinical study
  publication-title: Acta Diabetol
– volume: 74
  start-page: 139
  year: 2014
  end-page: 150
  article-title: Cardiomyocytes mediate anti‐angiogenesis in type 2 diabetic rats through the exosomal transfer of miR‐320 into endothelial cells
  publication-title: J Mol Cell Cardiol
– volume: 5
  start-page: 370
  year: 2014
  article-title: Extracellular vesicles as therapeutic tools in cardiovascular diseases
  publication-title: Front Immunol
– volume: 59
  start-page: 978
  year: 2010
  end-page: 986
  article-title: Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta‐cells
  publication-title: Diabetes
– volume: 289
  start-page: 36031
  year: 2014
  end-page: 36047
  article-title: Peroxisome proliferator‐activated receptor‐α‐mediated transcription of miR‐199a2 attenuates endothelin‐1 expression via hypoxia‐inducible factor‐1α
  publication-title: J Biol Chem
– volume: 61
  start-page: 217
  year: 2012
  end-page: 228
  article-title: Sirtuin 1‐mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin
  publication-title: Diabetes
– volume: 13
  start-page: 465
  year: 2014
  end-page: 476
  article-title: Targeting inflammation in the treatment of type 2 diabetes: time to start
  publication-title: Nat Rev Drug Discov
– volume: 6
  start-page: 7321
  year: 2015
  article-title: Exosome‐delivered microRNAs modulate the inflammatory response to endotoxin
  publication-title: Nat Commun
– volume: 16
  start-page: 777
  year: 2012
  end-page: 788
  article-title: Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis
  publication-title: Cell Metab
– volume: 58
  start-page: 1708
  year: 2015
  end-page: 1714
  article-title: 50 years forward: mechanisms of hyperglycaemia‐driven diabetic complications
  publication-title: Diabetologia
– volume: 25
  start-page: 1710
  year: 2014
  end-page: 1722
  article-title: Hematopoietic microRNA‐126protects against renal ischemia/reperfusion injury by promoting vascular integrity
  publication-title: J Am Soc Nephrol
– volume: 456
  start-page: 980
  year: 2008
  end-page: 984
  article-title: MicroRNA‐21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
  publication-title: Nature
– volume: 8
  start-page: 10345
  year: 2015
  end-page: 10354
  article-title: MicroRNA‐126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS‐1)
  publication-title: Int J Clin Exp Pathol
– volume: 346
  start-page: 705
  year: 2002
  end-page: 707
  article-title: Angiotensin‐receptor blockers, type 2 diabetes, and renoprotection
  publication-title: N Engl J Med
– volume: 16
  start-page: 957
  year: 2014
  end-page: 962
  article-title: Association between first‐line monotherapy with sulphonylurea versus metformin and risk of all‐cause mortality and cardiovascular events: a retrospective, observational study
  publication-title: Diabetes Obes Metab
– volume: 359
  start-page: 2208
  year: 2008
  end-page: 2219
  article-title: Genotype score in addition to common risk factors for prediction of type 2 diabetes
  publication-title: N Engl J Med
– volume: 9
  start-page: 967
  year: 2014
  end-page: 972
  article-title: Expression and DNA methylation status of microRNA‐375 in patients with type 2 diabetes mellitus
  publication-title: Mol Med Rep
– volume: 265
  start-page: 84
  year: 2015
  end-page: 93
  article-title: Mitochondria‐associated microRNAs in rat hippocampus following traumatic brain injury
  publication-title: Exp Neurol
– volume: 3
  start-page: e001249
  year: 2014
  article-title: MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease
  publication-title: J Am Heart Assoc
– volume: 51
  start-page: 823
  year: 2014
  end-page: 831
  article-title: Serum miR‐23a, a potential biomarker for diagnosis of pre‐diabetes and type 2 diabetes
  publication-title: Acta Diabetol
– volume: 17
  start-page: 338
  year: 2014
  end-page: 342
  article-title: Nutritional imbalances linking cellular senescence and type 2 diabetes mellitus
  publication-title: Curr Opin Clin Nutr Metab Care
– volume: 490
  start-page: 55
  year: 2012
  end-page: 60
  article-title: A metagenome‐wide association study of gut microbiota in type 2 diabetes
  publication-title: Nature
– volume: 77
  start-page: 447
  year: 2015
  end-page: 454
  article-title: Adipocyte‐derived exosomal miRNAs: a novel mechanism for obesity‐related disease
  publication-title: Pediatr Res
– volume: 83
  start-page: 112
  year: 2015
  end-page: 121
  article-title: Vascular biology of ageing‐Implications in hypertension
  publication-title: J Mol Cell Cardiol
– volume: 6
  start-page: e17343
  year: 2011
  article-title: The induction of microRNA targeting IRS‐1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes
  publication-title: PLoS One
– volume: 123
  start-page: 2143
  year: 2013
  end-page: 2154
  article-title: MicroRNA‐146a is a therapeutic target and biomarker for peripartum cardiomyopathy
  publication-title: J Clin Invest
– volume: 333
  start-page: 159
  year: 2013
  end-page: 169
  article-title: MicroRNA‐503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth
  publication-title: Cancer Lett
– volume: 57
  start-page: 133
  year: 2012
  end-page: 138
  article-title: The emerging challenge in diabetes: the "metabolic memory"
  publication-title: Vascul Pharmacol
– volume: 58
  start-page: 443
  year: 2015
  end-page: 455
  article-title: Epigenetic mechanisms in diabetic complications and metabolic memory
  publication-title: Diabetologia
– volume: 4
  start-page: 2980
  year: 2013
  article-title: Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs
  publication-title: Nat Commun
– volume: 24
  start-page: 241
  year: 2011
  end-page: 246
  article-title: Interplay between miR‐155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives
  publication-title: Am J Hypertens
– volume: 58
  start-page: 900
  year: 2015
  end-page: 911
  article-title: Identification of microRNA biomarkers in type 2 diabetes: a meta‐analysis of controlled profiling studies
  publication-title: Diabetologia
– volume: 1
  start-page: 18396
  year: 2012
  article-title: Cellular stress conditions are reflected in the protein and RNA content of endothelial cell‐derived exosomes
  publication-title: J Extracell Vesicles
– volume: 200
  start-page: 373
  year: 2013
  end-page: 383
  article-title: Extracellular vesicles: exosomes, microvesicles, and friends
  publication-title: J Cell Biol
– volume: 34
  start-page: 1733
  year: 2014
  end-page: 1740
  article-title: Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy
  publication-title: Cell Physiol Biochem
– volume: 56
  start-page: 154
  year: 2014
  end-page: 163
  article-title: MitomiRs in human inflamm‐aging: a hypothesis involving miR‐181a, miR‐34a and miR‐146a
  publication-title: Exp Gerontol
– volume: 156
  start-page: 3157
  year: 2015
  end-page: 3168
  article-title: The microRNAs in the pathogenesis of metabolic memory
  publication-title: Endocrinology
– volume: 9
  start-page: 513
  year: 2013
  end-page: 521
  article-title: Circulating microRNAs as novel biomarkers for diabetes mellitus
  publication-title: Nat Rev Endocrinol
– volume: 52
  start-page: 123
  year: 2008
  end-page: 129
  article-title: Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a
  publication-title: Hypertension
– volume: 26
  start-page: 733
  year: 2015
  end-page: 745
  article-title: The miRNA interactome in metabolic homeostasis
  publication-title: Trends Endocrinol Metab
– volume: 97
  start-page: E2271
  year: 2012
  end-page: E2276
  article-title: Circulating miRNA profiles in patients with metabolic syndrome
  publication-title: J Clin Endocrinol Metab
– volume: 64
  start-page: 1370
  year: 2015
  end-page: 1382
  article-title: Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR‐126 expression
  publication-title: Diabetes
– volume: 1
  start-page: 402
  year: 2009
  end-page: 411
  article-title: MicroRNAs miR‐146a/b negatively modulate the senescence‐associated inflammatory mediators IL‐6 and IL‐8
  publication-title: Aging (Albany, NY)
– volume: 37
  start-page: 460
  year: 2012
  end-page: 465
  article-title: Extracellular miRNAs: the mystery of their origin and function
  publication-title: Trends Biochem Sci
– volume: 438
  start-page: 685
  year: 2005
  end-page: 689
  article-title: Silencing of microRNAs in vivo with 'antagomirs'
  publication-title: Nature
– volume: 58
  start-page: 1229
  year: 2009
  end-page: 1236
  article-title: Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene activating epigenetic marks that coexist on the lysine tail
  publication-title: Diabetes
– volume: 126
  start-page: 95
  year: 2014
  end-page: 110
  article-title: microRNA in the development of diabetic complications
  publication-title: Clin Sci (Lond)
– volume: 10
  start-page: 190
  year: 2014
  end-page: 200
  article-title: Understanding and modulating the Toll like Receptors (TLRs) and NOD like Receptors (NLRs) cross talk in type 2 diabetes
  publication-title: Curr Diabetes Rev
– volume: 19
  start-page: 2153
  year: 2015
  end-page: 2161
  article-title: Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise
  publication-title: J Cell Mol Med
– volume: 463
  start-page: 60
  year: 2015
  end-page: 63
  article-title: Circulating miR‐126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals
  publication-title: Biochem Biophys Res Commun
– volume: 30
  start-page: 1689
  year: 2014
  end-page: 1699
  article-title: Micro‐RNA 21 targets dual specific phosphatase 8 to promote collagen synthesis in high glucose‐treated primary cardiac fibroblasts
  publication-title: Can J Cardiol
– volume: 15
  start-page: 49
  year: 2016
  article-title: Vascular endothelial microparticles‐incorporated microRNAs are altered in patients with diabetes mellitus
  publication-title: Cardiovasc Diabetol
– volume: 113
  start-page: 266
  year: 2013
  end-page: 278
  article-title: Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells
  publication-title: Circ Res
– volume: 7
  start-page: 49
  year: 2015
  article-title: Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants
  publication-title: Clin Epigenetics
– volume: 61
  start-page: 1633
  year: 2012
  end-page: 1641
  article-title: MicroRNA dysregulation in diabetic ischemic heart failure patients
  publication-title: Diabetes
– volume: 10
  start-page: 216
  year: 2012
  end-page: 224
  article-title: Telomere/Telomerase system: a new target of statins pleiotropic effect?
  publication-title: Curr Vasc Pharmacol
– volume: 3
  start-page: e001202
  year: 2014
  article-title: Metformin beyond diabetes: pleiotropic benefits of metformin in attenuation of atherosclerosis
  publication-title: J Am Heart Assoc
– volume: 64
  start-page: 85
  year: 2013
  end-page: 94
  article-title: MicroRNAs: potential mediators and biomarkers of diabetic complications
  publication-title: Free Radic Biol Med
– volume: 124
  start-page: 2136
  year: 2014
  end-page: 2146
  article-title: Cardiac fibroblast‐derived microRNA passenger strand‐enriched exosomes mediate cardiomyocyte hypertrophy
  publication-title: J Clin Invest
– volume: 11
  start-page: 277
  year: 2015
  end-page: 287
  article-title: The genetics of diabetic complications
  publication-title: Nat Rev Nephrol
– volume: 105
  start-page: 164
  year: 2014
  end-page: 175
  article-title: Role of epigenetic mechanisms in the development of chronic complications of diabetes
  publication-title: Diabetes Res Clin Pract
– volume: 427
  start-page: 112
  year: 2016
  end-page: 123
  article-title: Circulating and visceral adipose miR‐100 is down‐regulated in patients with obesity and type 2 diabetes
  publication-title: Mol Cell Endocrinol
– volume: 30
  start-page: 1694
  year: 2007
  end-page: 1698
  article-title: Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type 1 diabetes
  publication-title: Diabetes Care
– volume: 425
  start-page: 3601
  year: 2013
  end-page: 3608
  article-title: MicroRNAs and the genetic network in aging
  publication-title: J Mol Biol
– volume: 6
  start-page: 8024
  year: 2015
  article-title: p75(NTR)‐dependent activation of NF‐kB regulates microRNA‐503 transcription and pericyte‐endothelial crosstalk in diabetes after limb ischaemia
  publication-title: Nat Commun
– volume: 48
  start-page: 626
  year: 2013
  end-page: 633
  article-title: Secretion of microvesicular miRNAs in cellular and organismal aging
  publication-title: Exp Gerontol
– volume: 124
  start-page: 4102
  year: 2014
  end-page: 4114
  article-title: A selective microRNA‐based strategy inhibits restenosis while preserving endothelial function
  publication-title: J Clin Invest
– volume: 279
  start-page: 18091
  year: 2004
  end-page: 18097
  article-title: In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions
  publication-title: J Biol Chem
– volume: 125
  start-page: 1215
  year: 2015
  end-page: 1227
  article-title: Annexin A1‐containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair
  publication-title: J Clin Invest
– volume: 64
  start-page: 1395
  year: 2015
  end-page: 1406
  article-title: Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment
  publication-title: Diabetes
– volume: 527
  start-page: 329
  year: 2015
  end-page: 335
  article-title: Tumour exosome integrins determine organotropic metastasis
  publication-title: Nature
– volume: 8
  start-page: e77251
  year: 2013
  article-title: Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers
  publication-title: PLoS One
– volume: 224
  start-page: 649
  year: 2015
  end-page: 689
  article-title: Antisense oligonucleotides, microRNAs, and antibodies
  publication-title: Handb Exp Pharmacol
– volume: 397
  start-page: 45
  year: 2014
  end-page: 51
  article-title: MiR‐199a is overexpressed in plasma of type 2 diabetes patients which contributes to type 2 diabetes by targeting GLUT4
  publication-title: Mol Cell Biochem
– volume: 171
  start-page: 523
  year: 2014
  end-page: 535
  article-title: Metformin modulates hyperglycaemia‐induced endothelial senescence and apoptosis through SIRT1
  publication-title: Br J Pharmacol
– volume: 62
  start-page: 3968
  year: 2013
  end-page: 3975
  article-title: An update on the molecular actions of fenofibrate and its clinical effects on diabetic retinopathy and other microvascular end points in patients with diabetes
  publication-title: Diabetes
– volume: 90
  start-page: 421
  year: 2011
  end-page: 429
  article-title: Epigenetic mechanisms in diabetic vascular complications
  publication-title: Cardiovasc Res
– volume: 63
  start-page: 410
  year: 2013
  end-page: 420
  article-title: Anti‐inflammatory effect of ubiquinol‐10 on young and senescent endothelial cells via miR‐146a modulation
  publication-title: Free Radic Biol Med
– volume: 16
  start-page: 1208
  year: 2008
  end-page: 1216
  article-title: MicroRNAs regulate ocular neovascularization
  publication-title: Mol Ther
– volume: 15
  start-page: 10567
  year: 2014
  end-page: 10577
  article-title: The role of circulating microRNA‐126 (miR‐126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus
  publication-title: Int J Mol Sci
– volume: 64
  start-page: 663
  year: 2015
  end-page: 672
  article-title: Mitochondrial hormesis and diabetic complications
  publication-title: Diabetes
– volume: 65
  start-page: 127
  year: 2013
  end-page: 136
  article-title: Modulation of microRNAs in hypertension‐induced arterial remodeling through the β1 and β3‐adrenoreceptor pathways
  publication-title: J Mol Cell Cardiol
– volume: 455
  start-page: 64
  year: 2008
  end-page: 71
  article-title: The impact of microRNAs on protein output
  publication-title: Nature
– volume: 53
  start-page: 64
  year: 2012
  end-page: 72
  article-title: Downregulation of microRNA‐126 in endothelial progenitor cells from diabetes patients impairs their functional properties, via target gene Spred‐1
  publication-title: J Mol Cell Cardiol
– volume: 54
  start-page: 297
  year: 2014
  end-page: 308
  article-title: Inflammasomes and metabolic disorders: old genes in modern diseases
  publication-title: Mol Cell
– volume: 40
  start-page: 6477
  year: 2013
  end-page: 6483
  article-title: Upregulation of microRNA‐146a was not accompanied by downregulation of pro‐inflammatory markers in diabetic kidney
  publication-title: Mol Biol Rep
– volume: 107
  start-page: 810
  year: 2010
  end-page: 817
  article-title: Plasma microRNA profiling reveals loss of endothelial miR‐126 and other microRNAs in type 2 diabetes
  publication-title: Circ Res
– volume: 37
  start-page: 572
  year: 2015
  end-page: 576
  article-title: MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart
  publication-title: Eur Heart J
– volume: 6
  start-page: 665
  year: 2010
  end-page: 675
  article-title: Epigenetic phenomena linked to diabetic complications
  publication-title: Nat Rev Endocrinol
– volume: 62
  start-page: 1800
  year: 2013
  end-page: 1807
  article-title: SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together
  publication-title: Diabetes
– volume: 99
  start-page: E1681
  year: 2014
  end-page: E1685
  article-title: Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control
  publication-title: J Clin Endocrinol Metab
– volume: 69
  start-page: S4
  year: 2014
  end-page: S9
  article-title: Chronic inflammation (inflammaging) and its potential contribution to age‐associated diseases
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 19
  start-page: 2202
  year: 2015
  end-page: 2214
  article-title: Endothelial microparticles reduce ICAM‐1 expression in a microRNA‐222‐dependent mechanism
  publication-title: J Cell Mol Med
– volume: 93
  start-page: 583
  year: 2012
  end-page: 593
  article-title: Role of microRNAs in diabetes and its cardiovascular complications
  publication-title: Cardiovasc Res
– volume: 10
  start-page: e0138849
  year: 2015
  article-title: Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells
  publication-title: PLoS One
– volume: 2010
  start-page: 694
  year: 1799
  end-page: 701
  article-title: Interplay between microRNAs and the epigenetic machinery: an intricate network
  publication-title: Biochim Biophys Acta
– volume: 12
  start-page: 262
  year: 2012
  end-page: 274
  article-title: Exosomes and the emerging field of exosome‐based gene therapy
  publication-title: Curr Gene Ther
– volume: 368
  start-page: 1685
  year: 2013
  end-page: 1694
  article-title: Treatment of HCV infection by targeting microRNA
  publication-title: N Engl J Med
– volume: 94
  start-page: 4171
  year: 1997
  end-page: 4175
  article-title: Insulin receptor substrate (IRS) 1 is reduced and IRS‐2 is the main docking protein forphosphatidylinositol3‐kinase in adipocytes from subjects with non‐insulin‐dependent diabetes mellitus
  publication-title: Proc Natl Acad Sci U S A
– volume: 61
  start-page: 435
  year: 2013
  end-page: 454
  article-title: Role of epigenetic mechanisms in the vascular complications of diabetes
  publication-title: Subcell Biochem
– volume: 47
  start-page: 1535
  year: 2004
  end-page: 1540
  article-title: Effect of irbesartan on nitrotyrosine generation in non‐hypertensive diabetic patients
  publication-title: Diabetologia
– volume: 128
  start-page: 483
  year: 2015
  end-page: 491
  article-title: Circulating Toll‐like receptor 4‐responsive microRNA panel in patients with coronary artery disease: results from prospective and randomized study of treatment with renin‐angiotensin system blockade
  publication-title: Clin Sci (Lond)
– volume: 6
  start-page: 20032
  year: 2016
  article-title: Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus
  publication-title: Sci Rep
– volume: 153
  start-page: 445.e1‐6
  year: 2007
  article-title: A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes
  publication-title: Am Heart J
– volume: 20
  start-page: 368
  year: 2014
  end-page: 376
  article-title: MicroRNA‐126‐5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1
  publication-title: Nat Med
– volume: 133
  start-page: 675
  year: 2012
  end-page: 685
  article-title: Age‐related differences in the expression of circulating microRNAs: miR‐21 as a new circulating marker of inflammaging
  publication-title: Mech Ageing Dev
– volume: 132
  start-page: 932
  year: 2015
  end-page: 943
  article-title: Downregulation of microRNA‐126 contributes to the failing right ventricle in pulmonary arterial hypertension
  publication-title: Circulation
– volume: 57
  start-page: 1349
  year: 2008
  end-page: 1354
  article-title: Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients
  publication-title: Diabetes
– volume: 359
  start-page: 1577
  year: 2008
  end-page: 1589
  article-title: 10‐year follow‐up of intensive glucose control in type 2 diabetes
  publication-title: N Engl J Med
– volume: 13
  start-page: 17
  year: 2015
  article-title: Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta‐cells
  publication-title: Cell Commun Signal
– volume: 89
  start-page: 122
  year: 2015
  end-page: 135
  article-title: Cellular and molecular biology of aging endothelial cells
  publication-title: J Mol Cell Cardiol
– volume: 3
  start-page: 325
  year: 2014
  end-page: 333
  article-title: Downregulation of IRS‐1 in adipose tissue of offspring of obese mice is programmed cell‐autonomously through post‐transcriptional mechanisms
  publication-title: Mol Metab
– volume: 8
  start-page: 368
  year: 2014
  end-page: 375
  article-title: MicroRNA‐9 and microRNA‐126 expression levels in patients with essential hypertension: potential markers of target‐organ damage
  publication-title: J Am Soc Hypertens
– volume: 42
  start-page: 1316
  year: 2010
  end-page: 1329
  article-title: The complexities of microRNA regulation: mirandering around the rules
  publication-title: Int J Biochem Cell Biol
– volume: 467
  start-page: 303
  year: 2015
  end-page: 309
  article-title: Human fibrocyte‐derived exosomes accelerate wound healing in genetically diabetic mice
  publication-title: Biochem Biophys Res Commun
– volume: 64
  start-page: 3285
  year: 2015
  end-page: 3293
  article-title: Circulating TGF‐β1‐regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes
  publication-title: Diabetes
– volume: 121
  start-page: 226
  year: 2013
  end-page: 236
  article-title: AngiomiR‐126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics
  publication-title: Blood
– volume: 119
  start-page: 395
  year: 2010
  end-page: 405
  article-title: Expression of miR‐146a/b is associated with the Toll‐like receptor 4 signal in coronary artery disease: effect of renin‐angiotensin system blockade and statins on miRNA‐146a/b and Toll‐like receptor 4 levels
  publication-title: Clin Sci (Lond)
– volume: 12
  start-page: 446
  year: 2013
  end-page: 458
  article-title: High levels of oncomiR‐21 contribute to the senescence‐induced growth arrest in normal human cells and its knock‐down increases the replicative lifespan
  publication-title: Aging Cell
– volume: 74
  start-page: 196
  year: 2014
  end-page: 198
  article-title: Diabetes, microRNAs and exosomes: les liaisons dangereuses
  publication-title: J Mol Cell Cardiol
– volume: 12
  start-page: 641
  year: 2010
  end-page: 647
  article-title: The effect of intensive glycaemic control on cardiovascular outcomes
  publication-title: Diabetes Obes Metab
– volume: 89
  start-page: 42
  year: 2015
  end-page: 50
  article-title: Noncoding RNAs in diabetes vascular complications
  publication-title: J Mol Cell Cardiol
– volume: 6
  start-page: 35509
  year: 2015
  end-page: 35521
  article-title: DNA damage response (DDR) and senescence: shuttled inflamma‐miRNAs on the stage of inflamm‐aging
  publication-title: Oncotarget
– volume: 5
  start-page: 578
  year: 2014
  article-title: MicroRNA‐146a: a dominant, negative regulator of the innate immune response
  publication-title: Front Immunol
– year: 2016
  article-title: MicroRNA‐23b targets Ras GTPase‐activating protein SH3 domain‐binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy
  publication-title: J Am Soc Nephrol
– volume: 2
  start-page: 11
  year: 2015
  article-title: Check and mate to exosomal extracellular miRNA: new lesson from a new approach
  publication-title: Front Mol Biosci
– volume: 51
  start-page: 1157
  year: 2002
  end-page: 1165
  article-title: Increased urinary albumin excretion, endothelial dysfunction, and chronic low‐grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death
  publication-title: Diabetes
– volume: 128
  start-page: 2026
  year: 2013
  end-page: 2038
  article-title: Endothelial microparticle‐mediated transfer of microRNA‐126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose‐damaged endothelial microparticles
  publication-title: Circulation
– volume: 8
  start-page: e73272
  year: 2013
  article-title: Increased microRNA‐146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus
  publication-title: PLoS One
– volume: 40
  start-page: 102
  year: 2015
  end-page: 111
  article-title: Obesity reduces the pro‐angiogenic potential of adipose tissue stem cell‐derived extracellular vesicles (EVs) by impairing miR‐126 content: impact on clinical applications
  publication-title: Int J Obes (Lond)
– volume: 93
  start-page: 56
  year: 2011
  end-page: 62
  article-title: Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients
  publication-title: Diabetes Res Clin Pract
– volume: 29
  start-page: 1535
  year: 2015
  end-page: 1548
  article-title: Emerging roles for extracellular vesicles in diabetes and related metabolic disorders
  publication-title: Mol Endocrinol
– volume: 100
  start-page: 7
  year: 2013
  end-page: 18
  article-title: MicroRNA‐containing microvesicles regulating inflammation in association with atherosclerotic disease
  publication-title: Cardiovasc Res
– volume: 37
  start-page: 1375
  year: 2014
  end-page: 1583
  article-title: Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization
  publication-title: Diabetes Care
– volume: 10
  start-page: 293
  year: 2014
  end-page: 302
  article-title: Insulin resistance and hyperglycaemia in cardiovascular disease development
  publication-title: Nat Rev Endocrinol
– volume: 7
  start-page: 56
  year: 2015
  article-title: Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes
  publication-title: Clin Epigenetics
– volume: 6
  start-page: e22839
  year: 2011
  article-title: MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus
  publication-title: PLoS One
– volume: 123
  start-page: 966
  year: 2013
  end-page: 972
  article-title: Cellular senescence and the senescent secretory phenotype: therapeutic opportunities
  publication-title: J Clin Invest
– volume: 55
  start-page: 1660
  year: 2006
  end-page: 1665
  article-title: Apoptosis signal‐regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells
  publication-title: Diabetes
– volume: 25
  start-page: 531
  year: 2015
  end-page: 532
  article-title: Resolving sorting mechanisms into exosomes
  publication-title: Cell Res
– volume: 40
  start-page: 99
  year: 2015
  end-page: 106
  article-title: Low‐grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease
  publication-title: Interdiscip Top Gerontol
– volume: 286
  start-page: 25586
  year: 2011
  end-page: 25603
  article-title: MicroRNA‐21 orchestrates high glucose‐induced signals to TOR complex 1, resulting in renal cell pathology in diabetes
  publication-title: J Biol Chem
– volume: 16
  start-page: 1165
  year: 2014
  end-page: 1173
  article-title: Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non‐diabetic controls
  publication-title: Diabetes Obes Metab
– volume: 15
  start-page: 1101
  year: 2001
  end-page: 1103
  article-title: Insulin resistance with low cellular IRS‐1 expression is also associated with low GLUT4 expression and impaired insulin‐stimulated glucose transport
  publication-title: FASEB J
– volume: 123
  start-page: 282
  year: 2011
  end-page: 291
  article-title: Deregulation of microRNA‐503 contributes to diabetes mellitus‐induced impairment of endothelial function and reparative angiogenesis after limb ischemia
  publication-title: Circulation
– volume: 64
  start-page: 2289
  year: 2015
  end-page: 2298
  article-title: Cellular senescence in type 2 diabetes: a therapeutic opportunity
  publication-title: Diabetes
– volume: 60
  start-page: 2975
  year: 2011
  end-page: 2984
  article-title: miR‐146a‐Mediated extracellular matrix protein production in chronic Diabetes complications
  publication-title: Diabetes
– volume: 6
  start-page: 35372
  year: 2015
  end-page: 35382
  article-title: MiR‐21‐5p and miR‐126a‐3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications
  publication-title: Oncotarget
– volume: 371
  start-page: 1392
  year: 2014
  end-page: 1406
  article-title: Follow‐up of blood‐pressure lowering and glucose control in type 2 diabetes
  publication-title: N Engl J Med
– volume: 84
  start-page: 1
  year: 2013
  end-page: 10
  article-title: Epigenetic changes in diabetes
  publication-title: Clin Genet
– volume: 15
  start-page: 978
  year: 2013
  end-page: 990
  article-title: A complex secretory program orchestrated by the inflammasome controls paracrine senescence
  publication-title: Nat Cell Biol
– volume: 129
  start-page: 1237
  year: 2015
  end-page: 1249
  article-title: miR‐21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7
  publication-title: Clin Sci (Lond)
– volume: 241
  start-page: 671
  year: 2015
  end-page: 681
  article-title: MicroRNA‐19b/221/222 induces endothelial cell dysfunction via suppression of PGC‐1α in the progression of atherosclerosis
  publication-title: Atherosclerosis
– volume: 6
  start-page: 771
  year: 2014
  end-page: 787
  article-title: Age‐ and glycemia‐related miR‐126‐3p levels in plasma and endothelial cells
  publication-title: Aging (Albany NY)
– ident: e_1_2_9_19_1
  doi: 10.1074/jbc.M311786200
– ident: e_1_2_9_152_1
  doi: 10.1186/s13148-015-0083-3
– ident: e_1_2_9_74_1
  doi: 10.1016/j.mad.2012.09.004
– ident: e_1_2_9_31_1
  doi: 10.1038/ncb2784
– ident: e_1_2_9_78_1
  doi: 10.1074/jbc.M110.208066
– ident: e_1_2_9_85_1
  doi: 10.1016/j.mce.2016.03.010
– ident: e_1_2_9_49_1
  doi: 10.1210/en.2015-1063
– ident: e_1_2_9_119_1
  doi: 10.2337/db11-0416
– ident: e_1_2_9_37_1
  doi: 10.2174/1573399810666140515112609
– ident: e_1_2_9_28_1
  doi: 10.1093/gerona/glu057
– ident: e_1_2_9_145_1
  doi: 10.1074/jbc.M114.600775
– ident: e_1_2_9_50_1
  doi: 10.3389/fimmu.2014.00578
– ident: e_1_2_9_104_1
  doi: 10.2337/db09-0881
– ident: e_1_2_9_87_1
  doi: 10.2337/dc13-1847
– ident: e_1_2_9_101_1
  doi: 10.1371/journal.pone.0077251
– ident: e_1_2_9_146_1
  doi: 10.1038/mt.2008.104
– ident: e_1_2_9_102_1
  doi: 10.1161/CIRCULATIONAHA.110.952325
– ident: e_1_2_9_132_1
  doi: 10.1016/j.yjmcc.2013.10.003
– ident: e_1_2_9_82_1
  doi: 10.1016/j.cjca.2014.07.747
– ident: e_1_2_9_44_1
  doi: 10.1007/s00125-015-3510-2
– ident: e_1_2_9_29_1
  doi: 10.1172/JCI64098
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jmb.2013.01.023
– ident: e_1_2_9_84_1
  doi: 10.1007/s00592-014-0617-8
– ident: e_1_2_9_26_1
  doi: 10.1042/CS20130079
– ident: e_1_2_9_20_1
  doi: 10.1007/978-94-007-4525-4_19
– ident: e_1_2_9_52_1
  doi: 10.1186/s13148-015-0090-4
– ident: e_1_2_9_150_1
  doi: 10.3389/fimmu.2014.00370
– volume: 8
  start-page: 10345
  year: 2015
  ident: e_1_2_9_70_1
  article-title: MicroRNA‐126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS‐1)
  publication-title: Int J Clin Exp Pathol
– ident: e_1_2_9_137_1
  doi: 10.1038/nm.3487
– ident: e_1_2_9_36_1
  doi: 10.2337/db12-1115
– ident: e_1_2_9_115_1
  doi: 10.1111/dom.12302
– ident: e_1_2_9_123_1
  doi: 10.2337/db14-1149
– ident: e_1_2_9_30_1
  doi: 10.1146/annurev-pathol-121808-102144
– ident: e_1_2_9_98_1
  doi: 10.1210/jc.2012-1996
– ident: e_1_2_9_32_1
  doi: 10.1097/MCO.0000000000000066
– ident: e_1_2_9_93_1
  doi: 10.1371/journal.pone.0022839
– ident: e_1_2_9_128_1
  doi: 10.1016/j.yjmcc.2015.04.011
– ident: e_1_2_9_138_1
  doi: 10.1161/CIRCULATIONAHA.115.016382
– ident: e_1_2_9_135_1
  doi: 10.1038/ajh.2010.211
– ident: e_1_2_9_90_1
  doi: 10.3390/ijms150610567
– ident: e_1_2_9_65_1
  doi: 10.1038/ijo.2015.123
– ident: e_1_2_9_59_1
  doi: 10.1172/JCI64365
– ident: e_1_2_9_158_1
  doi: 10.3402/jev.v1i0.18396
– ident: e_1_2_9_40_1
  doi: 10.1038/nrd4275
– ident: e_1_2_9_89_1
  doi: 10.1186/s12933-016-0367-8
– ident: e_1_2_9_100_1
  doi: 10.3892/mmr.2013.1872
– ident: e_1_2_9_15_1
  doi: 10.1093/cvr/cvr024
– ident: e_1_2_9_126_1
  doi: 10.2337/dc07-0318
– ident: e_1_2_9_39_1
  doi: 10.1161/CIRCULATIONAHA.114.009990
– ident: e_1_2_9_122_1
  doi: 10.2337/db12-1648
– ident: e_1_2_9_161_1
  doi: 10.1016/j.yjmcc.2014.05.014
– ident: e_1_2_9_6_1
  doi: 10.2337/db14-1820
– ident: e_1_2_9_13_1
  doi: 10.1056/NEJMoa0804742
– ident: e_1_2_9_110_1
  doi: 10.1038/nature04303
– ident: e_1_2_9_21_1
  doi: 10.1111/cge.12121
– ident: e_1_2_9_151_1
  doi: 10.1016/j.freeradbiomed.2013.06.009
– ident: e_1_2_9_106_1
  doi: 10.1093/eurheartj/ehv599
– ident: e_1_2_9_131_1
  doi: 10.2337/db05-1607
– ident: e_1_2_9_139_1
  doi: 10.1007/s00125-004-1487-3
– ident: e_1_2_9_156_1
  doi: 10.1186/s12964-015-0097-7
– ident: e_1_2_9_18_1
  doi: 10.2337/db08-1666
– ident: e_1_2_9_103_1
  doi: 10.1038/ncomms9024
– ident: e_1_2_9_114_1
  doi: 10.1111/dom.12354
– ident: e_1_2_9_124_1
  doi: 10.1016/j.atherosclerosis.2015.06.031
– ident: e_1_2_9_57_1
  doi: 10.2337/db14-0874
– ident: e_1_2_9_109_1
  doi: 10.1172/JCI76069
– ident: e_1_2_9_22_1
  doi: 10.1038/nature07242
– ident: e_1_2_9_16_1
  doi: 10.1038/nrendo.2010.188
– ident: e_1_2_9_47_1
  doi: 10.1007/978-3-319-09665-0_22
– ident: e_1_2_9_60_1
  doi: 10.1038/ncomms8321
– ident: e_1_2_9_80_1
  doi: 10.1038/nature07511
– ident: e_1_2_9_112_1
  doi: 10.1172/JCI76693
– ident: e_1_2_9_24_1
  doi: 10.1016/j.biocel.2009.09.016
– ident: e_1_2_9_159_1
  doi: 10.1182/blood-2012-01-407106
– ident: e_1_2_9_97_1
  doi: 10.1681/ASN.2015030300
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1463-1326.2010.01199.x
– ident: e_1_2_9_14_1
  doi: 10.1038/nrneph.2015.37
– ident: e_1_2_9_25_1
  doi: 10.1038/nrendo.2013.86
– ident: e_1_2_9_63_1
  doi: 10.1161/CIRCULATIONAHA.113.001720
– ident: e_1_2_9_134_1
  doi: 10.1042/CS20100003
– ident: e_1_2_9_62_1
  doi: 10.1161/CIRCRESAHA.110.226357
– ident: e_1_2_9_61_1
  doi: 10.1681/ASN.2013060640
– volume: 15
  start-page: 1101
  year: 2001
  ident: e_1_2_9_68_1
  article-title: Insulin resistance with low cellular IRS‐1 expression is also associated with low GLUT4 expression and impaired insulin‐stimulated glucose transport
  publication-title: FASEB J
  doi: 10.1096/fsb2fj000435fje
– ident: e_1_2_9_66_1
  doi: 10.1371/journal.pone.0017343
– ident: e_1_2_9_77_1
  doi: 10.1042/CS20150427
– ident: e_1_2_9_121_1
  doi: 10.1016/j.ahj.2006.11.005
– ident: e_1_2_9_141_1
  doi: 10.2174/157016112799305076
– ident: e_1_2_9_113_1
  doi: 10.1038/nature15756
– ident: e_1_2_9_118_1
  doi: 10.1111/acel.12075
– ident: e_1_2_9_92_1
  doi: 10.1038/srep20032
– ident: e_1_2_9_116_1
  doi: 10.1111/bph.12496
– ident: e_1_2_9_64_1
  doi: 10.1016/j.yjmcc.2012.04.003
– ident: e_1_2_9_153_1
  doi: 10.1210/me.2015-1206
– ident: e_1_2_9_33_1
  doi: 10.1016/j.molcel.2014.03.029
– ident: e_1_2_9_69_1
  doi: 10.1016/j.molmet.2014.01.007
– ident: e_1_2_9_120_1
  doi: 10.1016/j.diabres.2010.11.030
– ident: e_1_2_9_148_1
  doi: 10.1083/jcb.201211138
– ident: e_1_2_9_10_1
  doi: 10.2337/db08-0063
– volume: 2010
  start-page: 694
  year: 1799
  ident: e_1_2_9_23_1
  article-title: Interplay between microRNAs and the epigenetic machinery: an intricate network
  publication-title: Biochim Biophys Acta
– ident: e_1_2_9_95_1
  doi: 10.1007/s11010-014-2170-8
– ident: e_1_2_9_4_1
  doi: 10.2337/diabetes.51.4.1157
– ident: e_1_2_9_133_1
  doi: 10.1016/j.jash.2014.03.324
– ident: e_1_2_9_12_1
  doi: 10.1007/s00125-014-3462-y
– ident: e_1_2_9_105_1
  doi: 10.1093/cvr/cvr300
– ident: e_1_2_9_108_1
  doi: 10.1056/NEJMoa1209026
– ident: e_1_2_9_154_1
  doi: 10.1093/cvr/cvt161
– ident: e_1_2_9_163_1
  doi: 10.1016/j.bbrc.2015.09.166
– ident: e_1_2_9_53_1
  doi: 10.1007/s11033-013-2763-4
– ident: e_1_2_9_86_1
  doi: 10.1007/s00592-010-0226-0
– ident: e_1_2_9_99_1
  doi: 10.1016/j.yjmcc.2014.05.001
– ident: e_1_2_9_107_1
  doi: 10.2337/db11-0952
– ident: e_1_2_9_140_1
  doi: 10.1042/CS20140417
– ident: e_1_2_9_143_1
  doi: 10.1073/pnas.1107052108
– ident: e_1_2_9_79_1
  doi: 10.2337/db15-0116
– ident: e_1_2_9_149_1
  doi: 10.3389/fmolb.2015.00011
– ident: e_1_2_9_48_1
  doi: 10.1016/j.tem.2015.09.006
– ident: e_1_2_9_55_1
  doi: 10.1016/j.exger.2014.03.002
– ident: e_1_2_9_76_1
  doi: 10.1159/000366374
– ident: e_1_2_9_5_1
  doi: 10.1159/000364934
– ident: e_1_2_9_155_1
  doi: 10.1038/pr.2014.202
– ident: e_1_2_9_67_1
  doi: 10.1073/pnas.94.8.4171
– ident: e_1_2_9_73_1
  doi: 10.2337/db14-0991
– ident: e_1_2_9_157_1
  doi: 10.1038/ncomms3980
– ident: e_1_2_9_34_1
  doi: 10.2337/db12-0420
– ident: e_1_2_9_88_1
  doi: 10.1016/j.bbrc.2015.05.017
– ident: e_1_2_9_56_1
  doi: 10.1016/j.expneurol.2014.12.018
– ident: e_1_2_9_2_1
  doi: 10.1016/j.vph.2012.05.005
– ident: e_1_2_9_35_1
  doi: 10.1016/j.arr.2015.06.004
– ident: e_1_2_9_144_1
  doi: 10.2337/db13-0800
– ident: e_1_2_9_45_1
  doi: 10.1016/j.tibs.2012.08.003
– ident: e_1_2_9_160_1
  doi: 10.1111/jcmm.12589
– ident: e_1_2_9_111_1
  doi: 10.2174/156652312802083594
– ident: e_1_2_9_17_1
  doi: 10.1016/j.diabres.2014.03.019
– ident: e_1_2_9_83_1
  doi: 10.1210/jc.2013-3843
– ident: e_1_2_9_91_1
  doi: 10.1016/j.canlet.2013.01.028
– ident: e_1_2_9_96_1
  doi: 10.1111/jcmm.12607
– ident: e_1_2_9_43_1
  doi: 10.18632/aging.100693
– ident: e_1_2_9_162_1
  doi: 10.1371/journal.pone.0138849
– ident: e_1_2_9_127_1
  doi: 10.1056/NEJM200202283460912
– ident: e_1_2_9_8_1
  doi: 10.1056/NEJMoa0806470
– ident: e_1_2_9_72_1
  doi: 10.1161/JAHA.114.001249
– ident: e_1_2_9_81_1
  doi: 10.1172/JCI70577
– ident: e_1_2_9_117_1
  doi: 10.1161/JAHA.114.001202
– ident: e_1_2_9_38_1
  doi: 10.1038/nature11450
– ident: e_1_2_9_58_1
  doi: 10.1016/j.cmet.2012.11.003
– ident: e_1_2_9_125_1
  doi: 10.1056/NEJMoa1407963
– ident: e_1_2_9_136_1
  doi: 10.1161/CIRCRESAHA.112.300849
– ident: e_1_2_9_142_1
  doi: 10.18632/aging.100042
– ident: e_1_2_9_41_1
  doi: 10.1016/j.exger.2012.11.017
– ident: e_1_2_9_71_1
  doi: 10.18632/oncotarget.6164
– ident: e_1_2_9_42_1
  doi: 10.18632/oncotarget.5899
– ident: e_1_2_9_54_1
  doi: 10.2337/db11-0478
– ident: e_1_2_9_27_1
  doi: 10.1016/j.yjmcc.2014.12.014
– ident: e_1_2_9_51_1
  doi: 10.1016/j.freeradbiomed.2013.05.033
– ident: e_1_2_9_129_1
  doi: 10.1016/j.yjmcc.2015.01.021
– ident: e_1_2_9_3_1
  doi: 10.1038/nrendo.2014.29
– ident: e_1_2_9_94_1
  doi: 10.1371/journal.pone.0073272
– ident: e_1_2_9_75_1
  doi: 10.1111/acel.12069
– ident: e_1_2_9_11_1
  doi: 10.1007/s00125-015-3600-1
– ident: e_1_2_9_147_1
  doi: 10.1038/cr.2015.39
– ident: e_1_2_9_9_1
  doi: 10.1056/NEJMe0807625
– ident: e_1_2_9_130_1
  doi: 10.1161/HYPERTENSIONAHA.107.099432
– reference: 26973292 - Mol Cell Endocrinol. 2016 May 15;427:112-23
– reference: 24009886 - J Extracell Vesicles. 2012 Apr 16;1:null
– reference: 15316606 - Diabetologia. 2004 Sep;47(9):1535-40
– reference: 21613227 - J Biol Chem. 2011 Jul 22;286(29):25586-603
– reference: 23619365 - J Clin Invest. 2013 May;123(5):2143-54
– reference: 26268439 - Nat Commun. 2015 Aug 13;6:8024
– reference: 18299315 - Diabetes. 2008 May;57(5):1349-54
– reference: 23352645 - Cancer Lett. 2013 Jun 10;333(2):159-69
– reference: 25484882 - Front Immunol. 2014 Nov 21;5:578
– reference: 25324472 - Aging (Albany NY). 2014 Sep;6(9):771-87
– reference: 25988178 - Front Mol Biosci. 2015 Apr 13;2:11
– reference: 24743145 - J Clin Invest. 2014 May;124(5):2136-46
– reference: 23258906 - Diabetes. 2013 Jan;62(1):22-4
– reference: 24059587 - Clin Sci (Lond). 2014 Jan;126(2):95-110
– reference: 22065734 - Cardiovasc Res. 2012 Mar 15;93(4):583-93
– reference: 26498351 - Oncotarget. 2015 Nov 3;6(34):35372-82
– reference: 26015812 - Clin Epigenetics. 2015 May 23;7:56
– reference: 20651284 - Circ Res. 2010 Sep 17;107(6):810-7
– reference: 24839949 - Curr Opin Clin Nutr Metab Care. 2014 Jul;17(4):338-42
– reference: 23283304 - Exp Gerontol. 2013 Jul;48(7):626-33
– reference: 25481708 - Diabetologia. 2015 Mar;58(3):443-55
– reference: 23704521 - Diabetes. 2013 Jun;62(6):1800-7
– reference: 23629540 - Nat Rev Endocrinol. 2013 Sep;9(9):513-21
– reference: 24766894 - Mol Cell. 2014 Apr 24;54(2):297-308
– reference: 26524530 - Nature. 2015 Nov 19;527(7578):329-35
– reference: 24970784 - Circulation. 2014 Sep 2;130(10 ):837-44
– reference: 24854413 - Nat Rev Drug Discov. 2014 Jun;13(6):465-76
– reference: 21146883 - Diabetes Res Clin Pract. 2011 Jul;93(1):56-62
– reference: 24366165 - Mol Med Rep. 2014 Mar;9(3):967-72
– reference: 23023125 - Nature. 2012 Oct 4;490(7418):55-60
– reference: 20857148 - Acta Diabetol. 2011 Mar;48(1):61-9
– reference: 27005938 - Cardiovasc Diabetol. 2016 Mar 22;15:49
– reference: 18504326 - Hypertension. 2008 Jul;52(1):123-9
– reference: 21885871 - Diabetes. 2011 Nov;60(11):2975-84
– reference: 24814876 - Diabetes Res Clin Pract. 2014 Aug;105(2):164-75
– reference: 24937531 - J Clin Endocrinol Metab. 2014 Sep;99(9):E1681-5
– reference: 26431329 - Oncotarget. 2015 Nov 3;6(34):35509-21
– reference: 25986735 - Biochem Biophys Res Commun. 2015 Jul 17-24;463(1-2):60-3
– reference: 25136343 - Front Immunol. 2014 Aug 04;5:370
– reference: 26197086 - Ageing Res Rev. 2015 Nov;24(Pt A):66-76
– reference: 26084661 - Nat Commun. 2015 Jun 18;6:7321
– reference: 26117405 - Atherosclerosis. 2015 Aug;241(2):671-81
– reference: 11292681 - FASEB J. 2001 Apr;15(6):1101-3
– reference: 23770198 - Free Radic Biol Med. 2013 Sep;64:85-94
– reference: 23398084 - Clin Genet. 2013 Jul;84(1):1-10
– reference: 24794206 - J Am Soc Hypertens. 2014 Jun;8(6):368-75
– reference: 25427542 - Cell Physiol Biochem. 2014;34(5):1733-40
– reference: 23086037 - Diabetes. 2013 Jan;62(1):194-204
– reference: 25389292 - J Biol Chem. 2014 Dec 26;289(52):36031-47
– reference: 23727324 - Free Radic Biol Med. 2013 Oct;63:410-20
– reference: 24372553 - Br J Pharmacol. 2014 Jan;171(2):523-35
– reference: 26393296 - Mol Endocrinol. 2015 Nov;29(11):1535-48
– reference: 25828531 - Cell Res. 2015 May;25(5):531-2
– reference: 24161401 - J Mol Cell Cardiol. 2013 Dec;65:127-36
– reference: 22525256 - J Mol Cell Cardiol. 2012 Jul;53(1):64-72
– reference: 26454169 - Biochem Biophys Res Commun. 2015 Nov 13;467(2):303-9
– reference: 26162916 - Circulation. 2015 Sep 8;132(10):932-43
– reference: 25562527 - Exp Neurol. 2015 Mar;265:84-93
– reference: 16258535 - Nature. 2005 Dec 1;438(7068):685-9
– reference: 26393803 - PLoS One. 2015 Sep 22;10(9):e0138849
– reference: 25664854 - J Clin Invest. 2015 Mar 2;125(3):1215-27
– reference: 24478399 - Diabetes Care. 2014;37(5):1375-83
– reference: 25931475 - Diabetes. 2015 Sep;64(9):3285-93
– reference: 22124463 - Diabetes. 2012 Jan;61(1):217-28
– reference: 22944280 - Trends Biochem Sci. 2012 Nov;37(11):460-5
– reference: 24874423 - J Mol Cell Cardiol. 2014 Sep;74:196-8
– reference: 23774505 - Cardiovasc Res. 2013 Oct 1;100(1):7-18
– reference: 25368096 - Diabetes. 2015 Apr;64(4):1370-82
– reference: 25041462 - Diabetes Obes Metab. 2014 Nov;16(11):1165-73
– reference: 25713188 - Diabetes. 2015 Mar;64(3):663-72
– reference: 25825086 - Nat Rev Nephrol. 2015 May;11(5):277-87
– reference: 24610930 - J Am Soc Nephrol. 2014 Aug;25(8):1710-22
– reference: 25234206 - N Engl J Med. 2014 Oct 9;371(15):1392-406
– reference: 20078217 - Annu Rev Pathol. 2010;5:99-118
– reference: 26122028 - Int J Obes (Lond). 2016 Jan;40(1):102-11
– reference: 23534542 - N Engl J Med. 2013 May 2;368(18):1685-94
– reference: 22022767 - Curr Vasc Pharmacol. 2012 Mar;10(2):216-24
– reference: 25677225 - Diabetologia. 2015 May;58(5):900-11
– reference: 24749062 - Mol Metab. 2014 Jan 20;3(3):325-33
– reference: 25133430 - J Clin Invest. 2014 Sep;124(9):4102-14
– reference: 25523006 - Handb Exp Pharmacol. 2015;224:649-89
– reference: 23144172 - Blood. 2013 Jan 3;121(1):226-36
– reference: 23217257 - Cell Metab. 2012 Dec 5;16(6):777-88
– reference: 22856601 - Curr Gene Ther. 2012 Aug;12(4):262-74
– reference: 25418215 - Can J Cardiol. 2014 Dec;30(12):1689-99
– reference: 11916939 - Diabetes. 2002 Apr;51(4):1157-65
– reference: 20493980 - Biochim Biophys Acta. 2010 Oct-Dec;1799(10-12):694-701
– reference: 25896391 - J Mol Cell Cardiol. 2015 Jun;83:112-21
– reference: 25518011 - Pediatr Res. 2015 Mar;77(3):447-54
– reference: 19020323 - N Engl J Med. 2008 Nov 20;359(21):2208-19
– reference: 21266525 - Cardiovasc Res. 2011 Jun 1;90(3):421-9
– reference: 26492831 - Trends Endocrinol Metab. 2015 Dec;26(12 ):733-45
– reference: 25536178 - J Mol Cell Cardiol. 2015 Dec;89(Pt A):42-50
– reference: 16731828 - Diabetes. 2006 Jun;55(6):1660-5
– reference: 26083874 - Endocrinology. 2015 Sep;156(9):3157-68
– reference: 25926893 - Clin Epigenetics. 2015 Apr 24;7:49
– reference: 23420871 - J Cell Biol. 2013 Feb 18;200(4):373-83
– reference: 24981880 - Acta Diabetol. 2014 Oct;51(5):823-31
– reference: 25385173 - Clin Sci (Lond). 2015 Apr;128(8):483-91
– reference: 21464990 - PLoS One. 2011 Mar 25;6(3):e17343
– reference: 24584117 - Nat Med. 2014 Apr;20(4):368-76
– reference: 22427379 - Diabetes. 2012 Jun;61(6):1633-41
– reference: 24663222 - Nat Rev Endocrinol. 2014 May;10(5):293-302
– reference: 25084986 - Mol Cell Biochem. 2014 Dec;397(1-2):45-51
– reference: 24014835 - Circulation. 2013 Oct 29;128(18):2026-38
– reference: 18784090 - N Engl J Med. 2008 Oct 9;359(15):1577-89
– reference: 23032062 - J Clin Endocrinol Metab. 2012 Dec;97(12):E2271-6
– reference: 25906755 - Diabetologia. 2015 Aug;58(8):1708-14
– reference: 26081516 - J Cell Mol Med. 2015 Sep;19(9):2202-14
– reference: 21636785 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10355-60
– reference: 23697773 - Circ Res. 2013 Jul 19;113(3):266-78
– reference: 23770676 - Nat Cell Biol. 2013 Aug;15(8):978-90
– reference: 20148189 - Aging (Albany NY). 2009 Apr;1(4):402-11
– reference: 18843126 - N Engl J Med. 2008 Oct 9;359(15):1618-20
– reference: 24825548 - J Mol Cell Cardiol. 2014 Sep;74:139-50
– reference: 23454759 - J Clin Invest. 2013 Mar;123(3):966-72
– reference: 24204780 - PLoS One. 2013 Oct 15;8(10):e77251
– reference: 24023848 - PLoS One. 2013 Sep 02;8(9):e73272
– reference: 25349183 - J Am Heart Assoc. 2014 Oct 27;3(6):e001249
– reference: 21045787 - Nat Rev Endocrinol. 2010 Dec;6(12):665-75
– reference: 26617742 - Int J Clin Exp Pathol. 2015 Sep 01;8(9):10345-54
– reference: 17307426 - Am Heart J. 2007 Mar;153(3):445.e1-6
– reference: 11873779 - N Engl J Med. 2002 Feb 28;346(9):705-7
– reference: 17456844 - Diabetes Care. 2007 Jul;30(7):1694-8
– reference: 19800023 - Int J Biochem Cell Biol. 2010 Aug;42(8):1316-29
– reference: 20966899 - Am J Hypertens. 2011 Feb;24(2):241-6
– reference: 22609133 - Vascul Pharmacol. 2012 Nov-Dec;57(5-6):133-8
– reference: 26553540 - Eur Heart J. 2016 Feb 7;37(6):572-6
– reference: 24057185 - Mol Biol Rep. 2013 Nov;40(11):6477-83
– reference: 23353823 - J Mol Biol. 2013 Oct 9;425(19):3601-8
– reference: 21829658 - PLoS One. 2011;6(8):e22839
– reference: 23150262 - Subcell Biochem. 2013;61:435-54
– reference: 14976218 - J Biol Chem. 2004 Apr 23;279(17):18091-7
– reference: 25824442 - J Cell Mol Med. 2015 Sep;19(9):2153-61
– reference: 9108124 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4171-5
– reference: 26415649 - Clin Sci (Lond). 2015 Dec;129(12 ):1237-49
– reference: 26839366 - J Am Soc Nephrol. 2016 Sep;27(9):2597-608
– reference: 25655936 - J Mol Cell Cardiol. 2015 Dec;89(Pt B):122-35
– reference: 20086228 - Diabetes. 2010 Apr;59(4):978-86
– reference: 18500251 - Mol Ther. 2008 Jul;16(7):1208-16
– reference: 25341516 - Interdiscip Top Gerontol. 2015;40:99-106
– reference: 24828062 - Curr Diabetes Rev. 2014 May;10(3):190-200
– reference: 26106186 - Diabetes. 2015 Jul;64(7):2289-98
– reference: 19043405 - Nature. 2008 Dec 18;456(7224):980-4
– reference: 25880779 - Cell Commun Signal. 2015 Mar 19;13:17
– reference: 26831044 - Sci Rep. 2016 Feb 01;6:20032
– reference: 20524934 - Clin Sci (Lond). 2010 Jul 23;119(9):395-405
– reference: 23521863 - Aging Cell. 2013 Jun;12(3):489-98
– reference: 23041385 - Mech Ageing Dev. 2012 Nov-Dec;133(11-12):675-85
– reference: 18668037 - Nature. 2008 Sep 4;455(7209):64-71
– reference: 24264394 - Diabetes. 2013 Dec;62(12):3968-75
– reference: 24833586 - J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1:S4-9
– reference: 24927146 - Int J Mol Sci. 2014 Jun 12;15(6):10567-77
– reference: 21220732 - Circulation. 2011 Jan 25;123(3):282-91
– reference: 24356509 - Nat Commun. 2013;4:2980
– reference: 24720708 - Diabetes Obes Metab. 2014 Oct;16(10 ):957-62
– reference: 25325735 - Diabetes. 2015 Apr;64(4):1395-406
– reference: 20590740 - Diabetes Obes Metab. 2010 Aug;12 (8):641-7
– reference: 23496142 - Aging Cell. 2013 Jun;12(3):446-58
– reference: 24607549 - Exp Gerontol. 2014 Aug;56:154-63
– reference: 19208907 - Diabetes. 2009 May;58(5):1229-36
– reference: 25527624 - J Am Heart Assoc. 2014 Dec;3(6):e001202
SSID ssj0004387
Score 2.415613
SecondaryResourceType review_article
Snippet Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 855
SubjectTerms Aging
Aging - metabolism
antidiabetic drug
Antidiabetics
cardiovascular disease
Cell interactions
Cellular Senescence
Clinical trials
Diabetes
diabetes complications
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Diabetic Angiopathies - metabolism
Diabetic Angiopathies - physiopathology
Endothelium, Vascular - metabolism
Endothelium, Vascular - physiopathology
Epigenesis, Genetic
Epigenetics
Exosomes
extracellular vesicles
Extracellular Vesicles - metabolism
extracellular vesicles, exosomes
Gene expression
glycaemic control
Humans
Hyperglycemia - metabolism
Hypoglycemic Agents - therapeutic use
Inflammation
metabolic memory
metformin
MicroRNAs
MicroRNAs - metabolism
miRNA
Review
Senescence
type 2 diabetes
Title Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity?
URI https://api.istex.fr/ark:/67375/WNG-98MBTQ1M-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.12688
https://www.ncbi.nlm.nih.gov/pubmed/27161301
https://www.proquest.com/docview/1813599618
https://www.proquest.com/docview/3059406695
https://www.proquest.com/docview/1813628660
https://www.proquest.com/docview/1815710300
https://pubmed.ncbi.nlm.nih.gov/PMC5094499
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbGkBBfYLwXtikghPiSKo7txIEPaLCNCdEC0yaGhBTZjs3Q2nTqi7Ty63fnvNBCQYhvVX2tnPOd81zy3GNCnmqptcu4ClPDs5A7TkOdFDpkMpIucr6qQLZFPzk45u9OxMkaedn0wlT6EO0DN8wMv19jgis9WUjyYjTs0jiR2OhLWYK6-buHP6WjOPOH48FGABmfIYtno2HxtL9cuhddRbderAKav_MlF3GsvxHt3yRfm0uo-Cdn3dlUd82PX9Qd__MaN8iNGqAGO1VE3SJrtrxNrvXqV_B3yJe9C5gdPu9HAmswRELfYX9nEqiyCGxZYEfXAII6OIUKd_xtMDcK-ffBECm98xeBChZavoLROeL_Gewr81d3yfH-3tGbg7A-nyE0CWxOoSgiI23CXAJlpBJOcUHTVDqDmCwuYq51ZLJCF8xEDKpfkTnhDHwbS5nFhWT3yHo5Ku0DEqQqMUJaSRlV3FGuhGXWpCkFfBRZKjrkebNSuanFy_EMjUHeFDHgqty7qkOetKbnlWLHKqNnfrlbCzU-Q4pbKvLP_bd5Jnuvjz7RXv6-QzabeMjr7J7kgIoYytpQuXKYoQYOQLkMpv24HYa0xbVRpR3Nqr_AruAk-quNSPEYOLC5X0VgO98Y6lyAH7RD0qXYbA1QNnx5pPx-6uXDUTIR6lxwqQ-9Pzsp3_3Q8x8e_rvpI3IdIGVSsfA2yfp0PLNbANumeptcifnHbZ-ll3nDP2g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGJgEvaNwLAwxCiJegOLEdByGhARsFmnJRJ8aT5Tj2NtGmU7dK67_nnNxoRUG8RfFxFB37ON9xvvOZkKe5ynOfchMklqcB95wFuSzyIFah8qGvsgpkWwxl_4B_PBSHG-RVWwtT60N0G24YGdV6jQGOG9JLUV5MJy9YJJW6RLa4hNQFdZ35l99VkXF1PB4sBRDzKfJ4tlseT9d15Wu0hY69WAc1_2RMLiPZ6lO0v02uNRiS7taDfp1suPIGuZw1f8lvkh97F9Adt-SRY0onyLn7Ntw9o6YsqCsLLLoaw7yjx5CEzo7GC2uQIk8nyLpdvKSGLlVl0ekpQvQ5hP7i9S1ysL83etsPmiMUAith_QhEEVrlZOwlZHpGeMMFSxLlLcKmqIh4noc2LfIitmEMCapIvfAW7kZKpVGh4ttks5yW7i6hiZFWKKdYzAz3jBvhYmeThAGECR0TPfK8daW2jb44HnMx1m2eAV7Xldd75ElnelqLaqwzelaNR2dhZj-RhZYI_X34XqcqezP6yjI96JGddsB0E4BnGoBLjMozTK1tjlGmBtBWCq_9uGuGyMKxMaWbzutHYOGuDP9pIxI8qQ1s7tRTpHvfCFJRQAisR5KVydMZoLL3akt5clwpfKOqIaSi4NJqmv3dSfrd56y6uPf_po_Ilf4oG-jBh-Gn--QqIEBZk-Z2yOb5bO4eAMo6zx9WwfQLxcYh6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJk28oPFdGMMghHgJimM7ceABDbYyYC0DbWI8WY4_GKJNq26V1v9-d0kaWlEQb1F8jqzznf0753dnQp4VqihCLkyUWZFHIggWFakrIq5iFeJQRRXItuinByfi46k8XSOv57kwdX2I9sANPaNar9HBxy4sOLkbDV-yJFXqGtkQYHdo3ok4-p0Uyavb8WAlAJfPkcazNafxtF2XNqMN1OvlKqT5J2FyEchWO1F3i9xoICTdref8Jlnz5S2y2Wt-kt8m3_cvoTueyCPFlA6Rcve1v3tOTemoLx3mXA3A7OgZxKCTH4OZNciQp0Mk3c5eUUMXkrLoaIwIfQqeP3tzh5x094_fHUTNDQqRTWH5iKSLrfIpDykEekYGIyTLMhUsoqbEJaIoYpu7wnEbc4hPZR5ksPA2USpPnOJ3yXo5Kv19QjOTWqm8YpwZEZgw0nNvs4wBgok9kx3yYq5KbZvy4njLxUDPwwzQuq603iFPW9FxXVNjldDzaj5aCTP5hSS0TOpv_fc6V723x19YTx92yPZ8wnTjf-cacAvHwjNMrWzmWKUGwFYOw37SNoNj4dyY0o-m9ScwbzeN_ykjM7yoDWTu1SbSjjeBSBQAAuuQbMl4WgEs7L3cUv48qwp8Y1FDiERBpZWZ_V1Jeu9zr3p48P-ij8nm0V5XH37of3pIrgP-S2vK3DZZv5hM_SPAWBfFTuVLVxgWISM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+microRNAs+and+endothelial+hyperglycaemic+memory%3A+a+therapeutic+opportunity%3F&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Prattichizzo%2C+F.&rft.au=Giuliani%2C+A.&rft.au=De+Nigris%2C+V.&rft.au=Pujadas%2C+G.&rft.date=2016-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=18&rft.issue=9&rft.spage=855&rft.epage=867&rft_id=info:doi/10.1111%2Fdom.12688&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_98MBTQ1M_L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon