Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity?
Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such...
Saved in:
Published in | Diabetes, obesity & metabolism Vol. 18; no. 9; pp. 855 - 867 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1462-8902 1463-1326 1463-1326 |
DOI | 10.1111/dom.12688 |
Cover
Abstract | Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low‐grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age‐related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes‐associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA‐containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a ‘physiological’ signature capable of preventing or delaying the harmful systemic effects of T2DM. |
---|---|
AbstractList | Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a 'physiological' signature capable of preventing or delaying the harmful systemic effects of T2DM. Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a 'physiological' signature capable of preventing or delaying the harmful systemic effects of T2DM.Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a 'physiological' signature capable of preventing or delaying the harmful systemic effects of T2DM. |
Author | Procopio, A. D. Genovese, S. Olivieri, F. Ceriello, A. Prattichizzo, F. Giuliani, A. De Nigris, V. Testa, R. Pujadas, G. Ceka, A. La Sala, L. |
AuthorAffiliation | 4 Experimental Models in Clinical Pathology INRCA‐IRCCS National Institute Ancona Italy 1 Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona Spain 5 Center of Clinical Pathology and Innovative Therapy, INRCA‐IRCCS National Institute Ancona Italy 3 Department of Cardiovascular and Metabolic Diseases IRCCS Gruppo Multimedica Milan Italy 2 Department of Clinical and Molecular Sciences, DISCLIMO Università Politecnica delle Marche Ancona Italy |
AuthorAffiliation_xml | – name: 1 Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Barcelona Spain – name: 5 Center of Clinical Pathology and Innovative Therapy, INRCA‐IRCCS National Institute Ancona Italy – name: 4 Experimental Models in Clinical Pathology INRCA‐IRCCS National Institute Ancona Italy – name: 3 Department of Cardiovascular and Metabolic Diseases IRCCS Gruppo Multimedica Milan Italy – name: 2 Department of Clinical and Molecular Sciences, DISCLIMO Università Politecnica delle Marche Ancona Italy |
Author_xml | – sequence: 1 givenname: F. surname: Prattichizzo fullname: Prattichizzo, F. email: : Francesco Prattichizzo, PhD, Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Rosselló, 149-153, 08036, Barcelona, Spain., f.prattichizzo@univpm.it organization: Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain – sequence: 2 givenname: A. surname: Giuliani fullname: Giuliani, A. organization: Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy – sequence: 3 givenname: V. surname: De Nigris fullname: De Nigris, V. organization: Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain – sequence: 4 givenname: G. surname: Pujadas fullname: Pujadas, G. organization: Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain – sequence: 5 givenname: A. surname: Ceka fullname: Ceka, A. organization: Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy – sequence: 6 givenname: L. surname: La Sala fullname: La Sala, L. organization: Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy – sequence: 7 givenname: S. surname: Genovese fullname: Genovese, S. organization: Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica, Milan, Italy – sequence: 8 givenname: R. surname: Testa fullname: Testa, R. organization: Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy – sequence: 9 givenname: A. D. surname: Procopio fullname: Procopio, A. D. organization: Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy – sequence: 10 givenname: F. surname: Olivieri fullname: Olivieri, F. organization: Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy – sequence: 11 givenname: A. surname: Ceriello fullname: Ceriello, A. organization: Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27161301$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URB-w4A-gSGzoIq0fsWOzAJVSCtJMK1ARYmV5HKfj4sTBTkrz73E6MxVUgPDG1vV3jnTuvbtgq_WtAeApggconcPKNwcIM84fgB1UMJIjgtnW7RvnXEC8DXZjvIIQFoSXj8A2LhFDBKId8PXkpg9KG-cGp0LWWB38p7OjmKm2ykxb-X5pnFUuW46dCZdu1MokKGtM48P4MlNZAoLqzNCnqu86H_qhtf34-jF4WCsXzZP1vQc-vzu5OH6fz85PPxwfzXLNIOc5raDmhpGalRgpWquCorLktaYMQVzhYrGAWlSLimhIcFlQUdNapyrmXOCKkz3wauXbDYvGVNq0KZCTXbCNCqP0ysrff1q7lJf-WlIoikKIZPBibRD898HEXjY2Th1RrfFDlIgjWiJIIPwflDDMGZvQ5_fQKz-ENnVCEkhFARkT9F_U5EWFYGiK-OzXiHfZNmNMwOEKSNOLMZhaatur3vopsXUSQTktikyLIm8XJSn27yk2pn9i1-4_rDPj30H59ny-UeQrhY29ublTqPBNspKUVH45O5WCz99cfERzOSM_AWzc23w |
CODEN | DOMEF6 |
CitedBy_id | crossref_primary_10_1016_j_mito_2022_08_003 crossref_primary_10_1073_pnas_1808855115 crossref_primary_10_2478_fzm_2021_0009 crossref_primary_10_1089_ars_2017_7347 crossref_primary_10_1210_er_2016_1122 crossref_primary_10_1155_2017_2309034 crossref_primary_10_3389_fendo_2019_00451 crossref_primary_10_1007_s00125_021_05539_8 crossref_primary_10_1042_CS20171273 crossref_primary_10_1038_s41419_019_1803_y crossref_primary_10_3390_cells9030538 crossref_primary_10_1016_j_omtn_2022_12_009 crossref_primary_10_1111_prd_12561 crossref_primary_10_1016_j_metabol_2021_154799 crossref_primary_10_14814_phy2_13647 crossref_primary_10_1016_j_ibneur_2022_12_006 crossref_primary_10_1007_s11892_021_01378_4 crossref_primary_10_3389_fphar_2022_778776 crossref_primary_10_2337_db20_0199 crossref_primary_10_1210_er_2016_1122_2017_1_test crossref_primary_10_1186_s12933_019_0824_2 crossref_primary_10_2337_dbi16_0041 crossref_primary_10_3390_ijms26031008 crossref_primary_10_3390_antiox10091356 crossref_primary_10_1016_j_bbadis_2018_09_032 crossref_primary_10_1002_clc_24115 crossref_primary_10_1155_2021_7887426 crossref_primary_10_3389_fcvm_2022_879351 crossref_primary_10_1002_iid3_1224 crossref_primary_10_1016_j_biopha_2024_116185 crossref_primary_10_3389_fendo_2020_573032 crossref_primary_10_1186_s12933_022_01597_3 crossref_primary_10_3389_fendo_2020_00254 crossref_primary_10_1016_j_lfs_2018_10_028 crossref_primary_10_1016_j_neuint_2017_01_011 crossref_primary_10_1016_j_mad_2017_02_008 crossref_primary_10_1186_s12933_017_0600_0 crossref_primary_10_1016_j_phrs_2024_107309 crossref_primary_10_1002_jcb_25814 crossref_primary_10_1016_j_mehy_2020_110448 crossref_primary_10_1016_j_hlc_2020_07_015 crossref_primary_10_1161_JAHA_119_014046 crossref_primary_10_1016_j_arr_2017_10_003 crossref_primary_10_1007_s13258_023_01403_8 crossref_primary_10_1096_fj_202402479RRR crossref_primary_10_1111_andr_12919 crossref_primary_10_1089_ars_2021_0053 crossref_primary_10_3389_fendo_2021_756581 crossref_primary_10_1016_j_esxm_2019_02_001 crossref_primary_10_1155_2021_5593584 |
Cites_doi | 10.1074/jbc.M311786200 10.1186/s13148-015-0083-3 10.1016/j.mad.2012.09.004 10.1038/ncb2784 10.1074/jbc.M110.208066 10.1016/j.mce.2016.03.010 10.1210/en.2015-1063 10.2337/db11-0416 10.2174/1573399810666140515112609 10.1093/gerona/glu057 10.1074/jbc.M114.600775 10.3389/fimmu.2014.00578 10.2337/db09-0881 10.2337/dc13-1847 10.1371/journal.pone.0077251 10.1038/mt.2008.104 10.1161/CIRCULATIONAHA.110.952325 10.1016/j.yjmcc.2013.10.003 10.1016/j.cjca.2014.07.747 10.1007/s00125-015-3510-2 10.1172/JCI64098 10.1016/j.jmb.2013.01.023 10.1007/s00592-014-0617-8 10.1042/CS20130079 10.1007/978-94-007-4525-4_19 10.1186/s13148-015-0090-4 10.3389/fimmu.2014.00370 10.1038/nm.3487 10.2337/db12-1115 10.1111/dom.12302 10.2337/db14-1149 10.1146/annurev-pathol-121808-102144 10.1210/jc.2012-1996 10.1097/MCO.0000000000000066 10.1371/journal.pone.0022839 10.1016/j.yjmcc.2015.04.011 10.1161/CIRCULATIONAHA.115.016382 10.1038/ajh.2010.211 10.3390/ijms150610567 10.1038/ijo.2015.123 10.1172/JCI64365 10.3402/jev.v1i0.18396 10.1038/nrd4275 10.1186/s12933-016-0367-8 10.3892/mmr.2013.1872 10.1093/cvr/cvr024 10.2337/dc07-0318 10.1161/CIRCULATIONAHA.114.009990 10.2337/db12-1648 10.1016/j.yjmcc.2014.05.014 10.2337/db14-1820 10.1056/NEJMoa0804742 10.1038/nature04303 10.1111/cge.12121 10.1016/j.freeradbiomed.2013.06.009 10.1093/eurheartj/ehv599 10.2337/db05-1607 10.1007/s00125-004-1487-3 10.1186/s12964-015-0097-7 10.2337/db08-1666 10.1038/ncomms9024 10.1111/dom.12354 10.1016/j.atherosclerosis.2015.06.031 10.2337/db14-0874 10.1172/JCI76069 10.1038/nature07242 10.1038/nrendo.2010.188 10.1007/978-3-319-09665-0_22 10.1038/ncomms8321 10.1038/nature07511 10.1172/JCI76693 10.1016/j.biocel.2009.09.016 10.1182/blood-2012-01-407106 10.1681/ASN.2015030300 10.1111/j.1463-1326.2010.01199.x 10.1038/nrneph.2015.37 10.1038/nrendo.2013.86 10.1161/CIRCULATIONAHA.113.001720 10.1042/CS20100003 10.1161/CIRCRESAHA.110.226357 10.1681/ASN.2013060640 10.1096/fsb2fj000435fje 10.1371/journal.pone.0017343 10.1042/CS20150427 10.1016/j.ahj.2006.11.005 10.2174/157016112799305076 10.1038/nature15756 10.1111/acel.12075 10.1038/srep20032 10.1111/bph.12496 10.1016/j.yjmcc.2012.04.003 10.1210/me.2015-1206 10.1016/j.molcel.2014.03.029 10.1016/j.molmet.2014.01.007 10.1016/j.diabres.2010.11.030 10.1083/jcb.201211138 10.2337/db08-0063 10.1007/s11010-014-2170-8 10.2337/diabetes.51.4.1157 10.1016/j.jash.2014.03.324 10.1007/s00125-014-3462-y 10.1093/cvr/cvr300 10.1056/NEJMoa1209026 10.1093/cvr/cvt161 10.1016/j.bbrc.2015.09.166 10.1007/s11033-013-2763-4 10.1007/s00592-010-0226-0 10.1016/j.yjmcc.2014.05.001 10.2337/db11-0952 10.1042/CS20140417 10.1073/pnas.1107052108 10.2337/db15-0116 10.3389/fmolb.2015.00011 10.1016/j.tem.2015.09.006 10.1016/j.exger.2014.03.002 10.1159/000366374 10.1159/000364934 10.1038/pr.2014.202 10.1073/pnas.94.8.4171 10.2337/db14-0991 10.1038/ncomms3980 10.2337/db12-0420 10.1016/j.bbrc.2015.05.017 10.1016/j.expneurol.2014.12.018 10.1016/j.vph.2012.05.005 10.1016/j.arr.2015.06.004 10.2337/db13-0800 10.1016/j.tibs.2012.08.003 10.1111/jcmm.12589 10.2174/156652312802083594 10.1016/j.diabres.2014.03.019 10.1210/jc.2013-3843 10.1016/j.canlet.2013.01.028 10.1111/jcmm.12607 10.18632/aging.100693 10.1371/journal.pone.0138849 10.1056/NEJM200202283460912 10.1056/NEJMoa0806470 10.1161/JAHA.114.001249 10.1172/JCI70577 10.1161/JAHA.114.001202 10.1038/nature11450 10.1016/j.cmet.2012.11.003 10.1056/NEJMoa1407963 10.1161/CIRCRESAHA.112.300849 10.18632/aging.100042 10.1016/j.exger.2012.11.017 10.18632/oncotarget.6164 10.18632/oncotarget.5899 10.2337/db11-0478 10.1016/j.yjmcc.2014.12.014 10.1016/j.freeradbiomed.2013.05.033 10.1016/j.yjmcc.2015.01.021 10.1038/nrendo.2014.29 10.1371/journal.pone.0073272 10.1111/acel.12069 10.1007/s00125-015-3600-1 10.1038/cr.2015.39 10.1056/NEJMe0807625 10.1161/HYPERTENSIONAHA.107.099432 |
ContentType | Journal Article |
Copyright | 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd. 2016 John Wiley & Sons Ltd 2016. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd. – notice: 2016 John Wiley & Sons Ltd – notice: 2016. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 7X8 5PM |
DOI | 10.1111/dom.12688 |
DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE AIDS and Cancer Research Abstracts AIDS and Cancer Research Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Prattichizzo et al |
EISSN | 1463-1326 |
EndPage | 867 |
ExternalDocumentID | PMC5094499 4156844201 27161301 10_1111_dom_12688 DOM12688 ark_67375_WNG_98MBTQ1M_L |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29F 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAKAS AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~KM ~WT 24P AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c6088-5d0c8e63f6721a5fa451778fc56102d24bb0c9dbd3c0327459f5fc4bb28892d83 |
IEDL.DBID | DR2 |
ISSN | 1462-8902 1463-1326 |
IngestDate | Thu Aug 21 14:13:06 EDT 2025 Fri Jul 11 06:22:12 EDT 2025 Fri Jul 11 00:48:20 EDT 2025 Fri Jul 25 03:10:26 EDT 2025 Fri Jul 25 05:29:32 EDT 2025 Thu Apr 03 07:10:00 EDT 2025 Tue Jul 01 01:03:00 EDT 2025 Thu Apr 24 23:00:24 EDT 2025 Sun Sep 21 06:14:47 EDT 2025 Sun Sep 21 06:21:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | microRNAs cardiovascular disease type 2 diabetes extracellular vesicles, exosomes antidiabetic drug metformin glycaemic control metabolic memory diabetes complications |
Language | English |
License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/4.0 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6088-5d0c8e63f6721a5fa451778fc56102d24bb0c9dbd3c0327459f5fc4bb28892d83 |
Notes | ark:/67375/WNG-98MBTQ1M-L istex:2D0480F6FEA040C1C7095B2595971D3FD8E7276C ArticleID:DOM12688 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2959-2658 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.12688 |
PMID | 27161301 |
PQID | 1813599618 |
PQPubID | 1006516 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5094499 proquest_miscellaneous_1815710300 proquest_miscellaneous_1813628660 proquest_journals_3059406695 proquest_journals_1813599618 pubmed_primary_27161301 crossref_citationtrail_10_1111_dom_12688 crossref_primary_10_1111_dom_12688 wiley_primary_10_1111_dom_12688_DOM12688 istex_primary_ark_67375_WNG_98MBTQ1M_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Diabetes, obesity & metabolism |
PublicationTitleAlternate | Diabetes Obes Metab |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Alexander M, Hu R, Runtsch MC et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 2015; 6: 7321. Sun K, Chang X, Yin L et al. Expression and DNA methylation status of microRNA-375 in patients with type 2 diabetes mellitus. Mol Med Rep 2014; 9: 967-972. Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol 2015; 89: 122-135. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-1589. Caporali A, Meloni M, Nailor A et al. p75(NTR)-dependent activation of NF-kB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat Commun 2015; 6: 8024. Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes 2015; 64: 663-672. Stocker DJ, Taylor AJ, Langley RW, Jezior MR, Vigersky RA. A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes. Am Heart J 2007; 153: 445.e1-6. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 2014; 13: 465-476. Weilner S, Schraml E, Redl H, Grillari-Voglauer R, Grillari J. Secretion of microvesicular miRNAs in cellular and organismal aging. Exp Gerontol 2013; 48: 626-633. Karolina DS, Armugam A, Tavintharan S et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 2011; 6: e22839. Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 2010; 6: 665-675. Bang C, Batkai S, Dangwal S et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 2014; 124: 2136-2146. Yang Z, Chen H, Si H et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 2014; 51: 823-831. Balestrieri ML, Rizzo MR, Barbieri M et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes 2015; 64: 1395-1406. Xue Y, Wei Z, Ding H et al. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis. Atherosclerosis 2015; 241: 671-681. Ceriello A, Motz E. Angiotensin-receptor blockers, type 2 diabetes, and renoprotection. N Engl J Med 2002; 346: 705-707. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200: 373-383. Turchinovich A, Tonevitsky AG, Cho WC, Burwinkel B. Check and mate to exosomal extracellular miRNA: new lesson from a new approach. Front Mol Biosci 2015; 2: 11. Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U. Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J 2001; 15: 1101-1103. Olivieri F, Albertini MC, Orciani M et al. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 2015; 6: 35509-35521. Lakhter AJ, Sims EK. Emerging roles for extracellular vesicles in diabetes and related metabolic disorders. Mol Endocrinol 2015; 29: 1535-1548. Prattichizzo F, Giuliani A, Ceka A et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics 2015; 7: 56. Olivieri F, Lazzarini R, Babini L et al. Anti-inflammatory effect of ubiquinol-10 on young and senescent endothelial cells via miR-146a modulation. Free Radic Biol Med 2013; 63: 410-420. Arunachalam G, Samuel SM, Marei I, Ding H, Triggle CR. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol 2014; 171: 523-535. McClelland AD, Herman-Edelstein M, Komers R et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 2015; 129: 1237-1249. Inukai S, Slack F. MicroRNAs and the genetic network in aging. J Mol Biol 2013; 425: 3601-3608. Wang C, Wan S, Yang T et al. Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 2016; 6: 20032. Zhao B, Li H, Liu J et al. MicroRNA-23b targets Ras GTPase-activating protein SH3 domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy. J Am Soc Nephrol 2016; pii: ASN.2015030300. [Epub ahead of print]. Wegner M, Neddermann D, Piorunska-Stolzmann M, Jagodzinski PP. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract 2014; 105: 164-175. Qin J, Li Y, Cai Z et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60. Keating ST, El-Osta A. Epigenetic changes in diabetes. Clin Genet 2013; 84: 1-10. Karolina DS, Tavintharan S, Armugam A et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 2012; 97: E2271-E2276. Dávalos A, Chroni A. Antisense oligonucleotides, microRNAs, and antibodies. Handb Exp Pharmacol 2015; 224: 649-689. Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 2012; 93: 583-593. Saba R, Sorensen DL, Booth SA. MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol 2014; 5: 578. Feng B, Chen S, McArthur K et al. miR-146a-Mediated extracellular matrix protein production in chronic Diabetes complications. Diabetes 2011; 60: 2975-2984. Zhang T, Li L, Shang Q, Lv C, Wang C, Su B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun 2015; 463: 60-63. Alipour MR, Khamaneh AM, Yousefzadeh N, Mohammad-nejad D, Soufi FG. Upregulation of microRNA-146a was not accompanied by downregulation of pro-inflammatory markers in diabetic kidney. Mol Biol Rep 2013; 40: 6477-6483. Guarner V, Rubio-Ruiz ME. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol 2015; 40: 99-106. Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013; 62: 194-204. Acosta JC, Banito A, Wuestefeld T et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15: 978-990. Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 2012; 53: 64-72. Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799; 2010: 694-701. Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 2013; 64: 85-94. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 2013; 9: 513-521. Potus F, Ruffenach G, Dahou A et al. Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 2015; 132: 932-943. Ceriello A, Esposito K, Piconi L et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008; 57: 1349-1354. Togliatto G, Dentelli P, Gili M et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond) 2015; 40: 102-111. Pescador N, Pérez-Barba M, Ibarra JM et al. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One 2013; 8: e77251. Olivieri F, Mazzanti I, Abbatecola AM et al. Telomere/Telomerase system: a new target of statins pleiotropic effect? Curr Vasc Pharmacol 2012; 10: 216-224. Robbins GR, Wen H, Ting JP. Inflammasomes and metabolic disorders: old genes in modern diseases. Mol Cell 2014; 54: 297-308. Luan Y, Zuo L, Zhang S, Wang G, Peng T. MicroRNA-126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS-1). Int J Clin Exp Pathol 2015; 8: 10345-10354. Shantikumar S, Angelini GD, Emanueli C. Diabetes, microRNAs and exosomes: les liaisons dangereuses. J Mol Cell Cardiol 2014; 74: 196-198. Ceriello A, Piconi L, Esposito K, Giugliano D. Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type 1 diabetes. Diabetes Care 2007; 30: 1694-1698. Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing-Implications in hypertension. J Mol Cell Cardiol 2015; 83: 112-121. Bhaumik D, Scott GK, Schokrpur S et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany, NY) 2009; 1: 402-411. Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS et al. Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms. Mol Metab 2014; 3: 325-333. Thum T, Gross C, Fiedler J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980-984. Fleury A, Martinez MC, Le Lay S. Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol 2014; 5: 370. Zoungas S, Chalmers J, Neal B et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med 2014; 371: 1392-1406. Ceolotto G, Papparella I, Bortoluzzi A et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hyp 2010; 12 2013; 4 2010; 107 2013; 65 2016; 427 2013; 62 2011; 60 2013; 61 2015; 265 2013; 368 2013; 64 2015; 77 2013; 63 2013; 128 2013; 123 2014; 25 2014; 371 2012; 16 2013; 121 2013; 8 2014; 130 2012; 12 2012; 10 2012; 97 2013; 9 2014; 20 2015; 89 2012; 133 2010; 119 2015; 83 2012; 490 2015; 132 2014; 16 2014; 15 2008; 359 2014; 13 2013; 113 2014; 17 2010; 5 2011; 123 2010; 6 2014; 126 2014; 99 2014; 10 2014; 124 2015; 58 2015; 125 2006; 55 2013; 84 2004; 47 2015; 241 2013; 100 2008; 57 2015; 527 2008; 52 2015; 128 2012; 37 2015; 129 1799; 2010 2014; 397 2011; 6 2016; 15 2016; 6 2010; 42 2004; 279 2011; 90 2015; 64 2011; 93 2007; 153 2014; 37 2013; 333 2014; 30 2014; 34 2012; 61 2015; 37 2010; 59 2015; 467 2015; 224 2002; 51 2015; 463 2013; 200 2014; 69 2014; 171 2007; 30 2012; 57 2012; 53 2009; 58 2013; 15 2014; 5 1997; 94 2014; 3 2015; 40 2013; 12 2002; 346 2001; 15 2011; 24 2014; 9 2014; 51 2014; 8 2014; 6 2014; 56 2014; 54 2011; 286 2014; 289 2015; 2 2015; 13 2013; 48 2015; 6 2015; 19 2013; 40 2015; 11 2008; 16 2013; 425 2015; 10 2005; 438 2015; 8 2015; 7 2015; 24 2012; 93 2014; 105 2015; 26 2015; 25 2011; 108 2015; 29 2012; 1 2015; 156 2016 2008; 456 2008; 455 2011; 48 2014; 74 2009; 1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 Iorio MV (e_1_2_9_23_1) 1799; 2010 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Carvalho E (e_1_2_9_68_1) 2001; 15 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 Luan Y (e_1_2_9_70_1) 2015; 8 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_161_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 26431329 - Oncotarget. 2015 Nov 3;6(34):35509-21 26553540 - Eur Heart J. 2016 Feb 7;37(6):572-6 25368096 - Diabetes. 2015 Apr;64(4):1370-82 25926893 - Clin Epigenetics. 2015 Apr 24;7:49 23217257 - Cell Metab. 2012 Dec 5;16(6):777-88 24009886 - J Extracell Vesicles. 2012 Apr 16;1:null 26117405 - Atherosclerosis. 2015 Aug;241(2):671-81 24720708 - Diabetes Obes Metab. 2014 Oct;16(10 ):957-62 25931475 - Diabetes. 2015 Sep;64(9):3285-93 25133430 - J Clin Invest. 2014 Sep;124(9):4102-14 25713188 - Diabetes. 2015 Mar;64(3):663-72 16258535 - Nature. 2005 Dec 1;438(7068):685-9 25988178 - Front Mol Biosci. 2015 Apr 13;2:11 26393803 - PLoS One. 2015 Sep 22;10(9):e0138849 22944280 - Trends Biochem Sci. 2012 Nov;37(11):460-5 26498351 - Oncotarget. 2015 Nov 3;6(34):35372-82 24833586 - J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1:S4-9 25523006 - Handb Exp Pharmacol. 2015;224:649-89 20590740 - Diabetes Obes Metab. 2010 Aug;12 (8):641-7 25325735 - Diabetes. 2015 Apr;64(4):1395-406 24927146 - Int J Mol Sci. 2014 Jun 12;15(6):10567-77 25677225 - Diabetologia. 2015 May;58(5):900-11 25349183 - J Am Heart Assoc. 2014 Oct 27;3(6):e001249 23774505 - Cardiovasc Res. 2013 Oct 1;100(1):7-18 24372553 - Br J Pharmacol. 2014 Jan;171(2):523-35 26839366 - J Am Soc Nephrol. 2016 Sep;27(9):2597-608 23398084 - Clin Genet. 2013 Jul;84(1):1-10 23353823 - J Mol Biol. 2013 Oct 9;425(19):3601-8 20651284 - Circ Res. 2010 Sep 17;107(6):810-7 24970784 - Circulation. 2014 Sep 2;130(10 ):837-44 20078217 - Annu Rev Pathol. 2010;5:99-118 24937531 - J Clin Endocrinol Metab. 2014 Sep;99(9):E1681-5 25385173 - Clin Sci (Lond). 2015 Apr;128(8):483-91 24610930 - J Am Soc Nephrol. 2014 Aug;25(8):1710-22 22525256 - J Mol Cell Cardiol. 2012 Jul;53(1):64-72 25389292 - J Biol Chem. 2014 Dec 26;289(52):36031-47 22124463 - Diabetes. 2012 Jan;61(1):217-28 25906755 - Diabetologia. 2015 Aug;58(8):1708-14 19208907 - Diabetes. 2009 May;58(5):1229-36 20524934 - Clin Sci (Lond). 2010 Jul 23;119(9):395-405 24663222 - Nat Rev Endocrinol. 2014 May;10(5):293-302 20086228 - Diabetes. 2010 Apr;59(4):978-86 23629540 - Nat Rev Endocrinol. 2013 Sep;9(9):513-21 26973292 - Mol Cell Endocrinol. 2016 May 15;427:112-23 14976218 - J Biol Chem. 2004 Apr 23;279(17):18091-7 24356509 - Nat Commun. 2013;4:2980 26415649 - Clin Sci (Lond). 2015 Dec;129(12 ):1237-49 21220732 - Circulation. 2011 Jan 25;123(3):282-91 21636785 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10355-60 24749062 - Mol Metab. 2014 Jan 20;3(3):325-33 25136343 - Front Immunol. 2014 Aug 04;5:370 26831044 - Sci Rep. 2016 Feb 01;6:20032 25986735 - Biochem Biophys Res Commun. 2015 Jul 17-24;463(1-2):60-3 24057185 - Mol Biol Rep. 2013 Nov;40(11):6477-83 18504326 - Hypertension. 2008 Jul;52(1):123-9 23496142 - Aging Cell. 2013 Jun;12(3):446-58 23032062 - J Clin Endocrinol Metab. 2012 Dec;97(12):E2271-6 23041385 - Mech Ageing Dev. 2012 Nov-Dec;133(11-12):675-85 20857148 - Acta Diabetol. 2011 Mar;48(1):61-9 18784090 - N Engl J Med. 2008 Oct 9;359(15):1577-89 21613227 - J Biol Chem. 2011 Jul 22;286(29):25586-603 25896391 - J Mol Cell Cardiol. 2015 Jun;83:112-21 15316606 - Diabetologia. 2004 Sep;47(9):1535-40 24607549 - Exp Gerontol. 2014 Aug;56:154-63 23521863 - Aging Cell. 2013 Jun;12(3):489-98 19020323 - N Engl J Med. 2008 Nov 20;359(21):2208-19 23420871 - J Cell Biol. 2013 Feb 18;200(4):373-83 26122028 - Int J Obes (Lond). 2016 Jan;40(1):102-11 22609133 - Vascul Pharmacol. 2012 Nov-Dec;57(5-6):133-8 23454759 - J Clin Invest. 2013 Mar;123(3):966-72 18299315 - Diabetes. 2008 May;57(5):1349-54 25824442 - J Cell Mol Med. 2015 Sep;19(9):2153-61 24204780 - PLoS One. 2013 Oct 15;8(10):e77251 22065734 - Cardiovasc Res. 2012 Mar 15;93(4):583-93 25562527 - Exp Neurol. 2015 Mar;265:84-93 24814876 - Diabetes Res Clin Pract. 2014 Aug;105(2):164-75 21266525 - Cardiovasc Res. 2011 Jun 1;90(3):421-9 24874423 - J Mol Cell Cardiol. 2014 Sep;74:196-8 20493980 - Biochim Biophys Acta. 2010 Oct-Dec;1799(10-12):694-701 23619365 - J Clin Invest. 2013 May;123(5):2143-54 25324472 - Aging (Albany NY). 2014 Sep;6(9):771-87 23283304 - Exp Gerontol. 2013 Jul;48(7):626-33 25825086 - Nat Rev Nephrol. 2015 May;11(5):277-87 25041462 - Diabetes Obes Metab. 2014 Nov;16(11):1165-73 23534542 - N Engl J Med. 2013 May 2;368(18):1685-94 26106186 - Diabetes. 2015 Jul;64(7):2289-98 23023125 - Nature. 2012 Oct 4;490(7418):55-60 26081516 - J Cell Mol Med. 2015 Sep;19(9):2202-14 25655936 - J Mol Cell Cardiol. 2015 Dec;89(Pt B):122-35 23144172 - Blood. 2013 Jan 3;121(1):226-36 11292681 - FASEB J. 2001 Apr;15(6):1101-3 24854413 - Nat Rev Drug Discov. 2014 Jun;13(6):465-76 20148189 - Aging (Albany NY). 2009 Apr;1(4):402-11 26492831 - Trends Endocrinol Metab. 2015 Dec;26(12 ):733-45 24478399 - Diabetes Care. 2014;37(5):1375-83 26617742 - Int J Clin Exp Pathol. 2015 Sep 01;8(9):10345-54 25880779 - Cell Commun Signal. 2015 Mar 19;13:17 9108124 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4171-5 25427542 - Cell Physiol Biochem. 2014;34(5):1733-40 26454169 - Biochem Biophys Res Commun. 2015 Nov 13;467(2):303-9 26162916 - Circulation. 2015 Sep 8;132(10):932-43 21829658 - PLoS One. 2011;6(8):e22839 23352645 - Cancer Lett. 2013 Jun 10;333(2):159-69 18500251 - Mol Ther. 2008 Jul;16(7):1208-16 22427379 - Diabetes. 2012 Jun;61(6):1633-41 23704521 - Diabetes. 2013 Jun;62(6):1800-7 25484882 - Front Immunol. 2014 Nov 21;5:578 27005938 - Cardiovasc Diabetol. 2016 Mar 22;15:49 23150262 - Subcell Biochem. 2013;61:435-54 24981880 - Acta Diabetol. 2014 Oct;51(5):823-31 25481708 - Diabetologia. 2015 Mar;58(3):443-55 21045787 - Nat Rev Endocrinol. 2010 Dec;6(12):665-75 24584117 - Nat Med. 2014 Apr;20(4):368-76 22856601 - Curr Gene Ther. 2012 Aug;12(4):262-74 26524530 - Nature. 2015 Nov 19;527(7578):329-35 23727324 - Free Radic Biol Med. 2013 Oct;63:410-20 25664854 - J Clin Invest. 2015 Mar 2;125(3):1215-27 11873779 - N Engl J Med. 2002 Feb 28;346(9):705-7 23258906 - Diabetes. 2013 Jan;62(1):22-4 23770676 - Nat Cell Biol. 2013 Aug;15(8):978-90 24059587 - Clin Sci (Lond). 2014 Jan;126(2):95-110 24264394 - Diabetes. 2013 Dec;62(12):3968-75 25084986 - Mol Cell Biochem. 2014 Dec;397(1-2):45-51 23697773 - Circ Res. 2013 Jul 19;113(3):266-78 26015812 - Clin Epigenetics. 2015 May 23;7:56 24825548 - J Mol Cell Cardiol. 2014 Sep;74:139-50 24023848 - PLoS One. 2013 Sep 02;8(9):e73272 17456844 - Diabetes Care. 2007 Jul;30(7):1694-8 26197086 - Ageing Res Rev. 2015 Nov;24(Pt A):66-76 11916939 - Diabetes. 2002 Apr;51(4):1157-65 23770198 - Free Radic Biol Med. 2013 Sep;64:85-94 24743145 - J Clin Invest. 2014 May;124(5):2136-46 21885871 - Diabetes. 2011 Nov;60(11):2975-84 18843126 - N Engl J Med. 2008 Oct 9;359(15):1618-20 24161401 - J Mol Cell Cardiol. 2013 Dec;65:127-36 19043405 - Nature. 2008 Dec 18;456(7224):980-4 21146883 - Diabetes Res Clin Pract. 2011 Jul;93(1):56-62 25341516 - Interdiscip Top Gerontol. 2015;40:99-106 21464990 - PLoS One. 2011 Mar 25;6(3):e17343 25418215 - Can J Cardiol. 2014 Dec;30(12):1689-99 25234206 - N Engl J Med. 2014 Oct 9;371(15):1392-406 24794206 - J Am Soc Hypertens. 2014 Jun;8(6):368-75 24828062 - Curr Diabetes Rev. 2014 May;10(3):190-200 24014835 - Circulation. 2013 Oct 29;128(18):2026-38 20966899 - Am J Hypertens. 2011 Feb;24(2):241-6 26084661 - Nat Commun. 2015 Jun 18;6:7321 26393296 - Mol Endocrinol. 2015 Nov;29(11):1535-48 26268439 - Nat Commun. 2015 Aug 13;6:8024 25518011 - Pediatr Res. 2015 Mar;77(3):447-54 24839949 - Curr Opin Clin Nutr Metab Care. 2014 Jul;17(4):338-42 24366165 - Mol Med Rep. 2014 Mar;9(3):967-72 26083874 - Endocrinology. 2015 Sep;156(9):3157-68 24766894 - Mol Cell. 2014 Apr 24;54(2):297-308 16731828 - Diabetes. 2006 Jun;55(6):1660-5 17307426 - Am Heart J. 2007 Mar;153(3):445.e1-6 22022767 - Curr Vasc Pharmacol. 2012 Mar;10(2):216-24 18668037 - Nature. 2008 Sep 4;455(7209):64-71 25828531 - Cell Res. 2015 May;25(5):531-2 23086037 - Diabetes. 2013 Jan;62(1):194-204 19800023 - Int J Biochem Cell Biol. 2010 Aug;42(8):1316-29 25536178 - J Mol Cell Cardiol. 2015 Dec;89(Pt A):42-50 25527624 - J Am Heart Assoc. 2014 Dec;3(6):e001202 |
References_xml | – reference: Stocker DJ, Taylor AJ, Langley RW, Jezior MR, Vigersky RA. A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes. Am Heart J 2007; 153: 445.e1-6. – reference: Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res 2013; 100: 7-18. – reference: Caporali A, Meloni M, Völlenkle C et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 2011; 123: 282-291. – reference: Santovito D, De Nardis V, Marcantonio P et al. Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. J Clin Endocrinol Metab 2014; 99: E1681-E1685. – reference: Ceriello A, Assaloni R, Da Ros R et al. Effect of irbesartan on nitrotyrosine generation in non-hypertensive diabetic patients. Diabetologia 2004; 47: 1535-1540. – reference: Togliatto G, Dentelli P, Gili M et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond) 2015; 40: 102-111. – reference: Arunachalam G, Samuel SM, Marei I, Ding H, Triggle CR. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol 2014; 171: 523-535. – reference: Reddy MA, Natarajan R. Role of epigenetic mechanisms in the vascular complications of diabetes. Subcell Biochem 2013; 61: 435-454. – reference: Prattichizzo F, Giuliani A, Ceka A et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics 2015; 7: 56. – reference: Zampetaki A, Kiechl S, Drozdov I et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107: 810-817. – reference: Rondinone CM, Wang LM, Lonnroth P, Wesslau C, Pierce JH, Smith U. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein forphosphatidylinositol3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 1997; 94: 4171-4175. – reference: Zheng Z, Chen H, Li J et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes 2012; 61: 217-228. – reference: Alexander M, Hu R, Runtsch MC et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 2015; 6: 7321. – reference: Karolina DS, Armugam A, Tavintharan S et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 2011; 6: e22839. – reference: Stehouwer CD, Gall MA, Twisk JW, Knudsen E, Emeis JJ, Parving HH. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 2002; 51: 1157-1165. – reference: McClelland AD, Herman-Edelstein M, Komers R et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 2015; 129: 1237-1249. – reference: Robbins GR, Wen H, Ting JP. Inflammasomes and metabolic disorders: old genes in modern diseases. Mol Cell 2014; 54: 297-308. – reference: Stoorvogel W. Resolving sorting mechanisms into exosomes. Cell Res 2015; 25: 531-532. – reference: Lakhter AJ, Sims EK. Emerging roles for extracellular vesicles in diabetes and related metabolic disorders. Mol Endocrinol 2015; 29: 1535-1548. – reference: Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 2012; 53: 64-72. – reference: Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013; 62: 194-204. – reference: Dey N, Das F, Mariappan MM et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem 2011; 286: 25586-25603. – reference: Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens 2014; 8: 368-375. – reference: Ortega FJ, Moreno M, Mercader JM et al. Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants. Clin Epigenetics 2015; 7: 49. – reference: Russell ND, Cooper ME. 50 years forward: mechanisms of hyperglycaemia-driven diabetic complications. Diabetologia 2015; 58: 1708-1714. – reference: Shen J, Yang X, Xie B et al. MicroRNAs regulate ocular neovascularization. Mol Ther 2008; 16: 1208-1216. – reference: Santulli G, Wronska A, Uryu K et al. A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. J Clin Invest 2014; 124: 4102-4114. – reference: Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013; 200: 373-383. – reference: Ryu HS, Park SY, Ma D, Zhang J, Lee W. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One 2011; 6: e17343. – reference: Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 2012; 93: 583-593. – reference: Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 2014; 13: 465-476. – reference: Pescador N, Pérez-Barba M, Ibarra JM et al. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One 2013; 8: e77251. – reference: Brasacchio D, Okabe J, Tikelli C et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene activating epigenetic marks that coexist on the lysine tail. Diabetes 2009; 58: 1229-1236. – reference: Qing S, Yuan S, Yun C et al. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem 2014; 34: 1733-1740. – reference: Chaturvedi P, Kalani A, Medina I, Familtseva A, Tyagi SC. Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. J Cell Mol Med 2015; 19: 2153-2161. – reference: Morgan CL, Mukherjee J, Jenkins-Jones S, Holden SE, Currie CJ. Association between first-line monotherapy with sulphonylurea versus metformin and risk of all-cause mortality and cardiovascular events: a retrospective, observational study. Diabetes Obes Metab 2014; 16: 957-962. – reference: Wegner M, Neddermann D, Piorunska-Stolzmann M, Jagodzinski PP. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract 2014; 105: 164-175. – reference: Westhoff JH, Hilgers KF, Steinbach MP et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 2008; 52: 123-129. – reference: Prajapati B, Jena PK, Rajput P, Purandhar K, Seshadri S. Understanding and modulating the Toll like Receptors (TLRs) and NOD like Receptors (NLRs) cross talk in type 2 diabetes. Curr Diabetes Rev 2014; 10: 190-200. – reference: Halkein J, Tabruyn SP, Ricke-Hoch M et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 2013; 123: 2143-2154. – reference: Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 2013; 4: 2980. – reference: Paneni F, Volpe M, Lüscher TF, Cosentino F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes 2013; 62: 1800-1807. – reference: Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS et al. Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms. Mol Metab 2014; 3: 325-333. – reference: Forouzandeh F, Salazar G, Patrushev N et al. Metformin beyond diabetes: pleiotropic benefits of metformin in attenuation of atherosclerosis. J Am Heart Assoc 2014; 3: e001202. – reference: Lanza IR, Zabielski P, Klaus KA et al. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 2012; 16: 777-788. – reference: Geiger A, Walker A, Nissen E. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice. Biochem Biophys Res Commun 2015; 467: 303-309. – reference: Iorio MV, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799; 2010: 694-701. – reference: Liu S, Li W, Xu M, Huang H, Wang J, Chen X. Micro-RNA 21 targets dual specific phosphatase 8 to promote collagen synthesis in high glucose-treated primary cardiac fibroblasts. Can J Cardiol 2014; 30: 1689-1699. – reference: Bang C, Batkai S, Dangwal S et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 2014; 124: 2136-2146. – reference: Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol 2014; 10: 293-302. – reference: Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 2004; 279: 18091-18097. – reference: Olivieri F, Albertini MC, Orciani M et al. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 2015; 6: 35509-35521. – reference: Ceriello A, Esposito K, Piconi L et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008; 57: 1349-1354. – reference: Weilner S, Schraml E, Redl H, Grillari-Voglauer R, Grillari J. Secretion of microvesicular miRNAs in cellular and organismal aging. Exp Gerontol 2013; 48: 626-633. – reference: Shin JJ, Lee EK, Park TJ, Kim W. Damage-associated molecular patterns and their pathological relevance in diabetes mellitus. Ageing Res Rev 2015; 24: 66-76. – reference: Noonan JE, Jenkins AJ, Ma JX, Keech AC, Wang JJ, Lamoureux EL. An update on the molecular actions of fenofibrate and its clinical effects on diabetic retinopathy and other microvascular end points in patients with diabetes. Diabetes 2013; 62: 3968-3975. – reference: Xue Y, Wei Z, Ding H et al. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis. Atherosclerosis 2015; 241: 671-681. – reference: Guarner V, Rubio-Ruiz ME. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol 2015; 40: 99-106. – reference: Zhong X, Liao Y, Chen L et al. The microRNAs in the pathogenesis of metabolic memory. Endocrinology 2015; 156: 3157-3168. – reference: Bijkerk R, van Solingen C, de Boer HC et al. Hematopoietic microRNA-126protects against renal ischemia/reperfusion injury by promoting vascular integrity. J Am Soc Nephrol 2014; 25: 1710-1722. – reference: Wang WX, Visavadiya NP, Pandya JD, Nelson PT, Sullivan PG, Springer JE. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Exp Neurol 2015; 265: 84-93. – reference: Zhang T, Li L, Shang Q, Lv C, Wang C, Su B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun 2015; 463: 60-63. – reference: de Jong OG, Verhaar MC, Chen Y et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 2012; 1: 18396. – reference: Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci (Lond) 2010; 119: 395-405. – reference: Turchinovich A, Tonevitsky AG, Cho WC, Burwinkel B. Check and mate to exosomal extracellular miRNA: new lesson from a new approach. Front Mol Biosci 2015; 2: 11. – reference: Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U. Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J 2001; 15: 1101-1103. – reference: Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 2015; 64: 2289-2298. – reference: Togliatto G, Trombetta A, Dentelli P et al. Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes 2015; 64: 1370-1382. – reference: Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99-118. – reference: Balestrieri ML, Rizzo MR, Barbieri M et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes 2015; 64: 1395-1406. – reference: Leung A, Trac C, Jin W et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 2013; 113: 266-278. – reference: Ceriello A, Piconi L, Esposito K, Giugliano D. Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type 1 diabetes. Diabetes Care 2007; 30: 1694-1698. – reference: Pezzolesi MG, Satake E, McDonnell KP, Major M, Smiles AM, Krolewski AS. Circulating TGF-β1-regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes. Diabetes 2015; 64: 3285-3293. – reference: Jansen F, Yang X, Baumann K et al. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism. J Cell Mol Med 2015; 19: 2202-2214. – reference: Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res 2011; 90: 421-429. – reference: Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing-Implications in hypertension. J Mol Cell Cardiol 2015; 83: 112-121. – reference: Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes 2015; 64: 663-672. – reference: Yokoi T, Fukuo K, Yasuda O et al. Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells. Diabetes 2006; 55: 1660-1665. – reference: Hoshino A, Costa-Silva B, Shen TL et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527: 329-335. – reference: Bannister CA, Holden SE, Jenkins-Jones S et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 2014; 16: 1165-1173. – reference: Potus F, Ruffenach G, Dahou A et al. Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 2015; 132: 932-943. – reference: Thum T, Gross C, Fiedler J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980-984. – reference: Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-1589. – reference: Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 2015; 58: 443-455. – reference: Olivieri F, Spazzafumo L, Santini G et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 2012; 133: 675-685. – reference: Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 2010; 42: 1316-1329. – reference: Fleury A, Martinez MC, Le Lay S. Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol 2014; 5: 370. – reference: Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L et al. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell 2013; 12: 446-458. – reference: Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 2015; 58: 900-911. – reference: Ceriello A, Motz E. Angiotensin-receptor blockers, type 2 diabetes, and renoprotection. N Engl J Med 2002; 346: 705-707. – reference: Wang X, Huang W, Liu G et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol 2014; 74: 139-150. – reference: Qin J, Li Y, Cai Z et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60. – reference: O'Loughlin AJ, Woffindale CA, Wood MJ. Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther 2012; 12: 262-274. – reference: Bhaumik D, Scott GK, Schokrpur S et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany, NY) 2009; 1: 402-411. – reference: Pek SL, Sum CF, Lin MX et al. Circulating and visceral adipose miR-100 is down-regulated in patients with obesity and type 2 diabetes. Mol Cell Endocrinol 2016; 427: 112-123. – reference: Zoungas S, Chalmers J, Neal B et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N Engl J Med 2014; 371: 1392-1406. – reference: Shantikumar S, Angelini GD, Emanueli C. Diabetes, microRNAs and exosomes: les liaisons dangereuses. J Mol Cell Cardiol 2014; 74: 196-198. – reference: Testa R, Genovese S, Ceriello A. Nutritional imbalances linking cellular senescence and type 2 diabetes mellitus. Curr Opin Clin Nutr Metab Care 2014; 17: 338-342. – reference: Kato M, Castro NE, Natarajan R. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 2013; 64: 85-94. – reference: Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol 2015; 89: 122-135. – reference: Olivieri F, Spazzafumo L, Bonafè M et al. MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications. Oncotarget 2015; 6: 35372-35382. – reference: Zhao B, Li H, Liu J et al. MicroRNA-23b targets Ras GTPase-activating protein SH3 domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy. J Am Soc Nephrol 2016; pii: ASN.2015030300. [Epub ahead of print]. – reference: Dávalos A, Chroni A. Antisense oligonucleotides, microRNAs, and antibodies. Handb Exp Pharmacol 2015; 224: 649-689. – reference: Kong L, Zhu J, Han W et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48: 61-69. – reference: Rong Y, Bao W, Shan Z et al. Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus. PLoS One 2013; 8: e73272. – reference: Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol 2015; 89: 42-50. – reference: Yan ST, Li CL, Tian H et al. MiR-199a is overexpressed in plasma of type 2 diabetes patients which contributes to type 2 diabetes by targeting GLUT4. Mol Cell Biochem 2014; 397: 45-51. – reference: Olivieri F, Lazzarini R, Babini L et al. Anti-inflammatory effect of ubiquinol-10 on young and senescent endothelial cells via miR-146a modulation. Free Radic Biol Med 2013; 63: 410-420. – reference: Zhou B, Ma R, Si W et al. MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett 2013; 333: 159-169. – reference: Ling S, Nanhwan M, Qian J et al. Modulation of microRNAs in hypertension-induced arterial remodeling through the β1 and β3-adrenoreceptor pathways. J Mol Cell Cardiol 2013; 65: 127-136. – reference: Olivieri F, Bonafè M, Spazzafumo L et al. Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging (Albany NY) 2014; 6: 771-787. – reference: Meigs JB, Shrader P, Sullivan LM et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 2008; 359: 2208-2219. – reference: Caporali A, Meloni M, Nailor A et al. p75(NTR)-dependent activation of NF-kB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nat Commun 2015; 6: 8024. – reference: Li C, Mpollo MS, Gonsalves CS, Tahara SM, Malik P, Kalra VK. Peroxisome proliferator-activated receptor-α-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1α. J Biol Chem 2014; 289: 36031-36047. – reference: Luan Y, Zuo L, Zhang S, Wang G, Peng T. MicroRNA-126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS-1). Int J Clin Exp Pathol 2015; 8: 10345-10354. – reference: Garcia NA, Ontoria-Oviedo I, González-King H, Diez-Juan A, Sepúlveda P. Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS One 2015; 10: e0138849. – reference: Inukai S, Slack F. MicroRNAs and the genetic network in aging. J Mol Biol 2013; 425: 3601-3608. – reference: Hartig SM, Hamilton MP, Bader DA, McGuire SE. The miRNA interactome in metabolic homeostasis. Trends Endocrinol Metab 2015; 26: 733-745. – reference: Hill D, Fisher M. The effect of intensive glycaemic control on cardiovascular outcomes. Diabetes Obes Metab 2010; 12: 641-647. – reference: Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123: 966-972. – reference: Keating ST, El-Osta A. Epigenetic changes in diabetes. Clin Genet 2013; 84: 1-10. – reference: Rippo MR, Olivieri F, Monsurrò V, Prattichizzo F, Albertini MC, Procopio AD. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol 2014; 56: 154-163. – reference: Janssen HL, Reesink HW, Lawitz EJ et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368: 1685-1694. – reference: Costantino S, Paneni F, Lüscher TF, Cosentino F. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J 2015; 37: 572-576. – reference: Guay C, Menoud V, Rome S, Regazzi R. Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal 2015; 13: 17. – reference: Dregan A, Charlton J, Chowienczyk P, Gulliford MC. Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population-based cohort study. Circulation 2014; 130: 837-844. – reference: Olivieri F, Mazzanti I, Abbatecola AM et al. Telomere/Telomerase system: a new target of statins pleiotropic effect? Curr Vasc Pharmacol 2012; 10: 216-224. – reference: Jansen F, Yang X, Proebsting S et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 2014; 3: e001249. – reference: Chakraborty A, Chowdhury S, Bhattacharyya M. Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res Clin Pract 2011; 93: 56-62. – reference: Alipour MR, Khamaneh AM, Yousefzadeh N, Mohammad-nejad D, Soufi FG. Upregulation of microRNA-146a was not accompanied by downregulation of pro-inflammatory markers in diabetic kidney. Mol Biol Rep 2013; 40: 6477-6483. – reference: Ahlqvist E, van Zuydam NR, Groop LC, McCarthy MI. The genetics of diabetic complications. Nat Rev Nephrol 2015; 11: 277-287. – reference: Liu Y, Gao G, Yang C et al. The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci 2014; 15: 10567-10577. – reference: Jansen F, Wang H, Przybilla D et al. Vascular endothelial microparticles-incorporated microRNAs are altered in patients with diabetes mellitus. Cardiovasc Diabetol 2016; 15: 49. – reference: Roggli E, Britan A, Gattesco S et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010; 59: 978-986. – reference: Ferrante SC, Nadler EP, Pillai DK et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res 2015; 77: 447-454. – reference: Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455: 64-71. – reference: Ortega FJ, Mercader JM, Moreno-Navarrete JM et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 2014; 37: 1375-1583. – reference: Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 2010; 6: 665-675. – reference: Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 2012; 37: 460-465. – reference: Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69(Suppl. 1): S4-S9. – reference: Ceriello A. The emerging challenge in diabetes: the "metabolic memory". Vascul Pharmacol 2012; 57: 133-138. – reference: Schober A, Nazari-Jahantigh M, Wei Y et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20: 368-376. – reference: Yang Z, Chen H, Si H et al. Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta Diabetol 2014; 51: 823-831. – reference: Ceolotto G, Papparella I, Bortoluzzi A et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens 2011; 24: 241-246. – reference: Leoni G, Neumann PA, Kamaly N et al. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Invest 2015; 125: 1215-1227. – reference: Satoh M, Takahashi Y, Tabuchi T et al. Circulating Toll-like receptor 4-responsive microRNA panel in patients with coronary artery disease: results from prospective and randomized study of treatment with renin-angiotensin system blockade. Clin Sci (Lond) 2015; 128: 483-491. – reference: Saba R, Sorensen DL, Booth SA. MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol 2014; 5: 578. – reference: Acosta JC, Banito A, Wuestefeld T et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15: 978-990. – reference: Moiseeva O, Deschênes-Simard X, St-Germain E et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kB activation. Aging Cell 2013; 12: 489-498. – reference: Mocharla P, Briand S, Giannotti G et al. AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 2013; 121: 226-236. – reference: Chalmers J, Cooper ME. UKPDS and the legacy effect. N Engl J Med 2008; 359: 1618-1620. – reference: Dixit VD. Nlrp3 inflammasome activation in type 2 diabetes: is it clinically relevant? Diabetes 2013; 62: 22-24. – reference: Jansen F, Yang X, Hoelscher M et al. Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 2013; 128: 2026-2038. – reference: Feng B, Chen S, McArthur K et al. miR-146a-Mediated extracellular matrix protein production in chronic Diabetes complications. Diabetes 2011; 60: 2975-2984. – reference: Zhou J, Wang KC, Wu W et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A 2011; 108: 10355-10360. – reference: Wang C, Wan S, Yang T et al. Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 2016; 6: 20032. – reference: Greco S, Fasanaro P, Castelvecchio S et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 2012; 61: 1633-1641. – reference: Sun K, Chang X, Yin L et al. Expression and DNA methylation status of microRNA-375 in patients with type 2 diabetes mellitus. Mol Med Rep 2014; 9: 967-972. – reference: Krützfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438: 685-689. – reference: Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 2013; 9: 513-521. – reference: Karolina DS, Tavintharan S, Armugam A et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 2012; 97: E2271-E2276. – reference: McClelland AD, Kantharidis P. microRNA in the development of diabetic complications. Clin Sci (Lond) 2014; 126: 95-110. – volume: 62 start-page: 22 year: 2013 end-page: 24 article-title: Nlrp3 inflammasome activation in type 2 diabetes: is it clinically relevant? publication-title: Diabetes – volume: 62 start-page: 194 year: 2013 end-page: 204 article-title: Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes publication-title: Diabetes – volume: 130 start-page: 837 year: 2014 end-page: 844 article-title: Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: a population‐based cohort study publication-title: Circulation – volume: 24 start-page: 66 year: 2015 end-page: 76 article-title: Damage‐associated molecular patterns and their pathological relevance in diabetes mellitus publication-title: Ageing Res Rev – volume: 12 start-page: 489 year: 2013 end-page: 498 article-title: Metformin inhibits the senescence‐associated secretory phenotype by interfering with IKK/NF‐kB activation publication-title: Aging Cell – volume: 108 start-page: 10355 year: 2011 end-page: 10360 article-title: MicroRNA‐21 targets peroxisome proliferators‐activated receptor‐alpha in an autoregulatory loop to modulate flow‐induced endothelial inflammation publication-title: Proc Natl Acad Sci U S A – volume: 359 start-page: 1618 year: 2008 end-page: 1620 article-title: UKPDS and the legacy effect publication-title: N Engl J Med – volume: 5 start-page: 99 year: 2010 end-page: 118 article-title: The senescence‐associated secretory phenotype: the dark side of tumor suppression publication-title: Annu Rev Pathol – volume: 48 start-page: 61 year: 2011 end-page: 69 article-title: Significance of serum microRNAs in pre‐diabetes and newly diagnosed type 2 diabetes: a clinical study publication-title: Acta Diabetol – volume: 74 start-page: 139 year: 2014 end-page: 150 article-title: Cardiomyocytes mediate anti‐angiogenesis in type 2 diabetic rats through the exosomal transfer of miR‐320 into endothelial cells publication-title: J Mol Cell Cardiol – volume: 5 start-page: 370 year: 2014 article-title: Extracellular vesicles as therapeutic tools in cardiovascular diseases publication-title: Front Immunol – volume: 59 start-page: 978 year: 2010 end-page: 986 article-title: Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta‐cells publication-title: Diabetes – volume: 289 start-page: 36031 year: 2014 end-page: 36047 article-title: Peroxisome proliferator‐activated receptor‐α‐mediated transcription of miR‐199a2 attenuates endothelin‐1 expression via hypoxia‐inducible factor‐1α publication-title: J Biol Chem – volume: 61 start-page: 217 year: 2012 end-page: 228 article-title: Sirtuin 1‐mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin publication-title: Diabetes – volume: 13 start-page: 465 year: 2014 end-page: 476 article-title: Targeting inflammation in the treatment of type 2 diabetes: time to start publication-title: Nat Rev Drug Discov – volume: 6 start-page: 7321 year: 2015 article-title: Exosome‐delivered microRNAs modulate the inflammatory response to endotoxin publication-title: Nat Commun – volume: 16 start-page: 777 year: 2012 end-page: 788 article-title: Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis publication-title: Cell Metab – volume: 58 start-page: 1708 year: 2015 end-page: 1714 article-title: 50 years forward: mechanisms of hyperglycaemia‐driven diabetic complications publication-title: Diabetologia – volume: 25 start-page: 1710 year: 2014 end-page: 1722 article-title: Hematopoietic microRNA‐126protects against renal ischemia/reperfusion injury by promoting vascular integrity publication-title: J Am Soc Nephrol – volume: 456 start-page: 980 year: 2008 end-page: 984 article-title: MicroRNA‐21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts publication-title: Nature – volume: 8 start-page: 10345 year: 2015 end-page: 10354 article-title: MicroRNA‐126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS‐1) publication-title: Int J Clin Exp Pathol – volume: 346 start-page: 705 year: 2002 end-page: 707 article-title: Angiotensin‐receptor blockers, type 2 diabetes, and renoprotection publication-title: N Engl J Med – volume: 16 start-page: 957 year: 2014 end-page: 962 article-title: Association between first‐line monotherapy with sulphonylurea versus metformin and risk of all‐cause mortality and cardiovascular events: a retrospective, observational study publication-title: Diabetes Obes Metab – volume: 359 start-page: 2208 year: 2008 end-page: 2219 article-title: Genotype score in addition to common risk factors for prediction of type 2 diabetes publication-title: N Engl J Med – volume: 9 start-page: 967 year: 2014 end-page: 972 article-title: Expression and DNA methylation status of microRNA‐375 in patients with type 2 diabetes mellitus publication-title: Mol Med Rep – volume: 265 start-page: 84 year: 2015 end-page: 93 article-title: Mitochondria‐associated microRNAs in rat hippocampus following traumatic brain injury publication-title: Exp Neurol – volume: 3 start-page: e001249 year: 2014 article-title: MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease publication-title: J Am Heart Assoc – volume: 51 start-page: 823 year: 2014 end-page: 831 article-title: Serum miR‐23a, a potential biomarker for diagnosis of pre‐diabetes and type 2 diabetes publication-title: Acta Diabetol – volume: 17 start-page: 338 year: 2014 end-page: 342 article-title: Nutritional imbalances linking cellular senescence and type 2 diabetes mellitus publication-title: Curr Opin Clin Nutr Metab Care – volume: 490 start-page: 55 year: 2012 end-page: 60 article-title: A metagenome‐wide association study of gut microbiota in type 2 diabetes publication-title: Nature – volume: 77 start-page: 447 year: 2015 end-page: 454 article-title: Adipocyte‐derived exosomal miRNAs: a novel mechanism for obesity‐related disease publication-title: Pediatr Res – volume: 83 start-page: 112 year: 2015 end-page: 121 article-title: Vascular biology of ageing‐Implications in hypertension publication-title: J Mol Cell Cardiol – volume: 6 start-page: e17343 year: 2011 article-title: The induction of microRNA targeting IRS‐1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes publication-title: PLoS One – volume: 123 start-page: 2143 year: 2013 end-page: 2154 article-title: MicroRNA‐146a is a therapeutic target and biomarker for peripartum cardiomyopathy publication-title: J Clin Invest – volume: 333 start-page: 159 year: 2013 end-page: 169 article-title: MicroRNA‐503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth publication-title: Cancer Lett – volume: 57 start-page: 133 year: 2012 end-page: 138 article-title: The emerging challenge in diabetes: the "metabolic memory" publication-title: Vascul Pharmacol – volume: 58 start-page: 443 year: 2015 end-page: 455 article-title: Epigenetic mechanisms in diabetic complications and metabolic memory publication-title: Diabetologia – volume: 4 start-page: 2980 year: 2013 article-title: Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs publication-title: Nat Commun – volume: 24 start-page: 241 year: 2011 end-page: 246 article-title: Interplay between miR‐155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives publication-title: Am J Hypertens – volume: 58 start-page: 900 year: 2015 end-page: 911 article-title: Identification of microRNA biomarkers in type 2 diabetes: a meta‐analysis of controlled profiling studies publication-title: Diabetologia – volume: 1 start-page: 18396 year: 2012 article-title: Cellular stress conditions are reflected in the protein and RNA content of endothelial cell‐derived exosomes publication-title: J Extracell Vesicles – volume: 200 start-page: 373 year: 2013 end-page: 383 article-title: Extracellular vesicles: exosomes, microvesicles, and friends publication-title: J Cell Biol – volume: 34 start-page: 1733 year: 2014 end-page: 1740 article-title: Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy publication-title: Cell Physiol Biochem – volume: 56 start-page: 154 year: 2014 end-page: 163 article-title: MitomiRs in human inflamm‐aging: a hypothesis involving miR‐181a, miR‐34a and miR‐146a publication-title: Exp Gerontol – volume: 156 start-page: 3157 year: 2015 end-page: 3168 article-title: The microRNAs in the pathogenesis of metabolic memory publication-title: Endocrinology – volume: 9 start-page: 513 year: 2013 end-page: 521 article-title: Circulating microRNAs as novel biomarkers for diabetes mellitus publication-title: Nat Rev Endocrinol – volume: 52 start-page: 123 year: 2008 end-page: 129 article-title: Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a publication-title: Hypertension – volume: 26 start-page: 733 year: 2015 end-page: 745 article-title: The miRNA interactome in metabolic homeostasis publication-title: Trends Endocrinol Metab – volume: 97 start-page: E2271 year: 2012 end-page: E2276 article-title: Circulating miRNA profiles in patients with metabolic syndrome publication-title: J Clin Endocrinol Metab – volume: 64 start-page: 1370 year: 2015 end-page: 1382 article-title: Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR‐126 expression publication-title: Diabetes – volume: 1 start-page: 402 year: 2009 end-page: 411 article-title: MicroRNAs miR‐146a/b negatively modulate the senescence‐associated inflammatory mediators IL‐6 and IL‐8 publication-title: Aging (Albany, NY) – volume: 37 start-page: 460 year: 2012 end-page: 465 article-title: Extracellular miRNAs: the mystery of their origin and function publication-title: Trends Biochem Sci – volume: 438 start-page: 685 year: 2005 end-page: 689 article-title: Silencing of microRNAs in vivo with 'antagomirs' publication-title: Nature – volume: 58 start-page: 1229 year: 2009 end-page: 1236 article-title: Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene activating epigenetic marks that coexist on the lysine tail publication-title: Diabetes – volume: 126 start-page: 95 year: 2014 end-page: 110 article-title: microRNA in the development of diabetic complications publication-title: Clin Sci (Lond) – volume: 10 start-page: 190 year: 2014 end-page: 200 article-title: Understanding and modulating the Toll like Receptors (TLRs) and NOD like Receptors (NLRs) cross talk in type 2 diabetes publication-title: Curr Diabetes Rev – volume: 19 start-page: 2153 year: 2015 end-page: 2161 article-title: Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise publication-title: J Cell Mol Med – volume: 463 start-page: 60 year: 2015 end-page: 63 article-title: Circulating miR‐126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals publication-title: Biochem Biophys Res Commun – volume: 30 start-page: 1689 year: 2014 end-page: 1699 article-title: Micro‐RNA 21 targets dual specific phosphatase 8 to promote collagen synthesis in high glucose‐treated primary cardiac fibroblasts publication-title: Can J Cardiol – volume: 15 start-page: 49 year: 2016 article-title: Vascular endothelial microparticles‐incorporated microRNAs are altered in patients with diabetes mellitus publication-title: Cardiovasc Diabetol – volume: 113 start-page: 266 year: 2013 end-page: 278 article-title: Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells publication-title: Circ Res – volume: 7 start-page: 49 year: 2015 article-title: Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants publication-title: Clin Epigenetics – volume: 61 start-page: 1633 year: 2012 end-page: 1641 article-title: MicroRNA dysregulation in diabetic ischemic heart failure patients publication-title: Diabetes – volume: 10 start-page: 216 year: 2012 end-page: 224 article-title: Telomere/Telomerase system: a new target of statins pleiotropic effect? publication-title: Curr Vasc Pharmacol – volume: 3 start-page: e001202 year: 2014 article-title: Metformin beyond diabetes: pleiotropic benefits of metformin in attenuation of atherosclerosis publication-title: J Am Heart Assoc – volume: 64 start-page: 85 year: 2013 end-page: 94 article-title: MicroRNAs: potential mediators and biomarkers of diabetic complications publication-title: Free Radic Biol Med – volume: 124 start-page: 2136 year: 2014 end-page: 2146 article-title: Cardiac fibroblast‐derived microRNA passenger strand‐enriched exosomes mediate cardiomyocyte hypertrophy publication-title: J Clin Invest – volume: 11 start-page: 277 year: 2015 end-page: 287 article-title: The genetics of diabetic complications publication-title: Nat Rev Nephrol – volume: 105 start-page: 164 year: 2014 end-page: 175 article-title: Role of epigenetic mechanisms in the development of chronic complications of diabetes publication-title: Diabetes Res Clin Pract – volume: 427 start-page: 112 year: 2016 end-page: 123 article-title: Circulating and visceral adipose miR‐100 is down‐regulated in patients with obesity and type 2 diabetes publication-title: Mol Cell Endocrinol – volume: 30 start-page: 1694 year: 2007 end-page: 1698 article-title: Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type 1 diabetes publication-title: Diabetes Care – volume: 425 start-page: 3601 year: 2013 end-page: 3608 article-title: MicroRNAs and the genetic network in aging publication-title: J Mol Biol – volume: 6 start-page: 8024 year: 2015 article-title: p75(NTR)‐dependent activation of NF‐kB regulates microRNA‐503 transcription and pericyte‐endothelial crosstalk in diabetes after limb ischaemia publication-title: Nat Commun – volume: 48 start-page: 626 year: 2013 end-page: 633 article-title: Secretion of microvesicular miRNAs in cellular and organismal aging publication-title: Exp Gerontol – volume: 124 start-page: 4102 year: 2014 end-page: 4114 article-title: A selective microRNA‐based strategy inhibits restenosis while preserving endothelial function publication-title: J Clin Invest – volume: 279 start-page: 18091 year: 2004 end-page: 18097 article-title: In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions publication-title: J Biol Chem – volume: 125 start-page: 1215 year: 2015 end-page: 1227 article-title: Annexin A1‐containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair publication-title: J Clin Invest – volume: 64 start-page: 1395 year: 2015 end-page: 1406 article-title: Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment publication-title: Diabetes – volume: 527 start-page: 329 year: 2015 end-page: 335 article-title: Tumour exosome integrins determine organotropic metastasis publication-title: Nature – volume: 8 start-page: e77251 year: 2013 article-title: Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers publication-title: PLoS One – volume: 224 start-page: 649 year: 2015 end-page: 689 article-title: Antisense oligonucleotides, microRNAs, and antibodies publication-title: Handb Exp Pharmacol – volume: 397 start-page: 45 year: 2014 end-page: 51 article-title: MiR‐199a is overexpressed in plasma of type 2 diabetes patients which contributes to type 2 diabetes by targeting GLUT4 publication-title: Mol Cell Biochem – volume: 171 start-page: 523 year: 2014 end-page: 535 article-title: Metformin modulates hyperglycaemia‐induced endothelial senescence and apoptosis through SIRT1 publication-title: Br J Pharmacol – volume: 62 start-page: 3968 year: 2013 end-page: 3975 article-title: An update on the molecular actions of fenofibrate and its clinical effects on diabetic retinopathy and other microvascular end points in patients with diabetes publication-title: Diabetes – volume: 90 start-page: 421 year: 2011 end-page: 429 article-title: Epigenetic mechanisms in diabetic vascular complications publication-title: Cardiovasc Res – volume: 63 start-page: 410 year: 2013 end-page: 420 article-title: Anti‐inflammatory effect of ubiquinol‐10 on young and senescent endothelial cells via miR‐146a modulation publication-title: Free Radic Biol Med – volume: 16 start-page: 1208 year: 2008 end-page: 1216 article-title: MicroRNAs regulate ocular neovascularization publication-title: Mol Ther – volume: 15 start-page: 10567 year: 2014 end-page: 10577 article-title: The role of circulating microRNA‐126 (miR‐126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus publication-title: Int J Mol Sci – volume: 64 start-page: 663 year: 2015 end-page: 672 article-title: Mitochondrial hormesis and diabetic complications publication-title: Diabetes – volume: 65 start-page: 127 year: 2013 end-page: 136 article-title: Modulation of microRNAs in hypertension‐induced arterial remodeling through the β1 and β3‐adrenoreceptor pathways publication-title: J Mol Cell Cardiol – volume: 455 start-page: 64 year: 2008 end-page: 71 article-title: The impact of microRNAs on protein output publication-title: Nature – volume: 53 start-page: 64 year: 2012 end-page: 72 article-title: Downregulation of microRNA‐126 in endothelial progenitor cells from diabetes patients impairs their functional properties, via target gene Spred‐1 publication-title: J Mol Cell Cardiol – volume: 54 start-page: 297 year: 2014 end-page: 308 article-title: Inflammasomes and metabolic disorders: old genes in modern diseases publication-title: Mol Cell – volume: 40 start-page: 6477 year: 2013 end-page: 6483 article-title: Upregulation of microRNA‐146a was not accompanied by downregulation of pro‐inflammatory markers in diabetic kidney publication-title: Mol Biol Rep – volume: 107 start-page: 810 year: 2010 end-page: 817 article-title: Plasma microRNA profiling reveals loss of endothelial miR‐126 and other microRNAs in type 2 diabetes publication-title: Circ Res – volume: 37 start-page: 572 year: 2015 end-page: 576 article-title: MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart publication-title: Eur Heart J – volume: 6 start-page: 665 year: 2010 end-page: 675 article-title: Epigenetic phenomena linked to diabetic complications publication-title: Nat Rev Endocrinol – volume: 62 start-page: 1800 year: 2013 end-page: 1807 article-title: SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together publication-title: Diabetes – volume: 99 start-page: E1681 year: 2014 end-page: E1685 article-title: Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control publication-title: J Clin Endocrinol Metab – volume: 69 start-page: S4 year: 2014 end-page: S9 article-title: Chronic inflammation (inflammaging) and its potential contribution to age‐associated diseases publication-title: J Gerontol A Biol Sci Med Sci – volume: 19 start-page: 2202 year: 2015 end-page: 2214 article-title: Endothelial microparticles reduce ICAM‐1 expression in a microRNA‐222‐dependent mechanism publication-title: J Cell Mol Med – volume: 93 start-page: 583 year: 2012 end-page: 593 article-title: Role of microRNAs in diabetes and its cardiovascular complications publication-title: Cardiovasc Res – volume: 10 start-page: e0138849 year: 2015 article-title: Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells publication-title: PLoS One – volume: 2010 start-page: 694 year: 1799 end-page: 701 article-title: Interplay between microRNAs and the epigenetic machinery: an intricate network publication-title: Biochim Biophys Acta – volume: 12 start-page: 262 year: 2012 end-page: 274 article-title: Exosomes and the emerging field of exosome‐based gene therapy publication-title: Curr Gene Ther – volume: 368 start-page: 1685 year: 2013 end-page: 1694 article-title: Treatment of HCV infection by targeting microRNA publication-title: N Engl J Med – volume: 94 start-page: 4171 year: 1997 end-page: 4175 article-title: Insulin receptor substrate (IRS) 1 is reduced and IRS‐2 is the main docking protein forphosphatidylinositol3‐kinase in adipocytes from subjects with non‐insulin‐dependent diabetes mellitus publication-title: Proc Natl Acad Sci U S A – volume: 61 start-page: 435 year: 2013 end-page: 454 article-title: Role of epigenetic mechanisms in the vascular complications of diabetes publication-title: Subcell Biochem – volume: 47 start-page: 1535 year: 2004 end-page: 1540 article-title: Effect of irbesartan on nitrotyrosine generation in non‐hypertensive diabetic patients publication-title: Diabetologia – volume: 128 start-page: 483 year: 2015 end-page: 491 article-title: Circulating Toll‐like receptor 4‐responsive microRNA panel in patients with coronary artery disease: results from prospective and randomized study of treatment with renin‐angiotensin system blockade publication-title: Clin Sci (Lond) – volume: 6 start-page: 20032 year: 2016 article-title: Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus publication-title: Sci Rep – volume: 153 start-page: 445.e1‐6 year: 2007 article-title: A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes publication-title: Am Heart J – volume: 20 start-page: 368 year: 2014 end-page: 376 article-title: MicroRNA‐126‐5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1 publication-title: Nat Med – volume: 133 start-page: 675 year: 2012 end-page: 685 article-title: Age‐related differences in the expression of circulating microRNAs: miR‐21 as a new circulating marker of inflammaging publication-title: Mech Ageing Dev – volume: 132 start-page: 932 year: 2015 end-page: 943 article-title: Downregulation of microRNA‐126 contributes to the failing right ventricle in pulmonary arterial hypertension publication-title: Circulation – volume: 57 start-page: 1349 year: 2008 end-page: 1354 article-title: Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients publication-title: Diabetes – volume: 359 start-page: 1577 year: 2008 end-page: 1589 article-title: 10‐year follow‐up of intensive glucose control in type 2 diabetes publication-title: N Engl J Med – volume: 13 start-page: 17 year: 2015 article-title: Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta‐cells publication-title: Cell Commun Signal – volume: 89 start-page: 122 year: 2015 end-page: 135 article-title: Cellular and molecular biology of aging endothelial cells publication-title: J Mol Cell Cardiol – volume: 3 start-page: 325 year: 2014 end-page: 333 article-title: Downregulation of IRS‐1 in adipose tissue of offspring of obese mice is programmed cell‐autonomously through post‐transcriptional mechanisms publication-title: Mol Metab – volume: 8 start-page: 368 year: 2014 end-page: 375 article-title: MicroRNA‐9 and microRNA‐126 expression levels in patients with essential hypertension: potential markers of target‐organ damage publication-title: J Am Soc Hypertens – volume: 42 start-page: 1316 year: 2010 end-page: 1329 article-title: The complexities of microRNA regulation: mirandering around the rules publication-title: Int J Biochem Cell Biol – volume: 467 start-page: 303 year: 2015 end-page: 309 article-title: Human fibrocyte‐derived exosomes accelerate wound healing in genetically diabetic mice publication-title: Biochem Biophys Res Commun – volume: 64 start-page: 3285 year: 2015 end-page: 3293 article-title: Circulating TGF‐β1‐regulated miRNAs and the risk of rapid progression to ESRD in type 1 diabetes publication-title: Diabetes – volume: 121 start-page: 226 year: 2013 end-page: 236 article-title: AngiomiR‐126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics publication-title: Blood – volume: 119 start-page: 395 year: 2010 end-page: 405 article-title: Expression of miR‐146a/b is associated with the Toll‐like receptor 4 signal in coronary artery disease: effect of renin‐angiotensin system blockade and statins on miRNA‐146a/b and Toll‐like receptor 4 levels publication-title: Clin Sci (Lond) – volume: 12 start-page: 446 year: 2013 end-page: 458 article-title: High levels of oncomiR‐21 contribute to the senescence‐induced growth arrest in normal human cells and its knock‐down increases the replicative lifespan publication-title: Aging Cell – volume: 74 start-page: 196 year: 2014 end-page: 198 article-title: Diabetes, microRNAs and exosomes: les liaisons dangereuses publication-title: J Mol Cell Cardiol – volume: 12 start-page: 641 year: 2010 end-page: 647 article-title: The effect of intensive glycaemic control on cardiovascular outcomes publication-title: Diabetes Obes Metab – volume: 89 start-page: 42 year: 2015 end-page: 50 article-title: Noncoding RNAs in diabetes vascular complications publication-title: J Mol Cell Cardiol – volume: 6 start-page: 35509 year: 2015 end-page: 35521 article-title: DNA damage response (DDR) and senescence: shuttled inflamma‐miRNAs on the stage of inflamm‐aging publication-title: Oncotarget – volume: 5 start-page: 578 year: 2014 article-title: MicroRNA‐146a: a dominant, negative regulator of the innate immune response publication-title: Front Immunol – year: 2016 article-title: MicroRNA‐23b targets Ras GTPase‐activating protein SH3 domain‐binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy publication-title: J Am Soc Nephrol – volume: 2 start-page: 11 year: 2015 article-title: Check and mate to exosomal extracellular miRNA: new lesson from a new approach publication-title: Front Mol Biosci – volume: 51 start-page: 1157 year: 2002 end-page: 1165 article-title: Increased urinary albumin excretion, endothelial dysfunction, and chronic low‐grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death publication-title: Diabetes – volume: 128 start-page: 2026 year: 2013 end-page: 2038 article-title: Endothelial microparticle‐mediated transfer of microRNA‐126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose‐damaged endothelial microparticles publication-title: Circulation – volume: 8 start-page: e73272 year: 2013 article-title: Increased microRNA‐146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus publication-title: PLoS One – volume: 40 start-page: 102 year: 2015 end-page: 111 article-title: Obesity reduces the pro‐angiogenic potential of adipose tissue stem cell‐derived extracellular vesicles (EVs) by impairing miR‐126 content: impact on clinical applications publication-title: Int J Obes (Lond) – volume: 93 start-page: 56 year: 2011 end-page: 62 article-title: Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients publication-title: Diabetes Res Clin Pract – volume: 29 start-page: 1535 year: 2015 end-page: 1548 article-title: Emerging roles for extracellular vesicles in diabetes and related metabolic disorders publication-title: Mol Endocrinol – volume: 100 start-page: 7 year: 2013 end-page: 18 article-title: MicroRNA‐containing microvesicles regulating inflammation in association with atherosclerotic disease publication-title: Cardiovasc Res – volume: 37 start-page: 1375 year: 2014 end-page: 1583 article-title: Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization publication-title: Diabetes Care – volume: 10 start-page: 293 year: 2014 end-page: 302 article-title: Insulin resistance and hyperglycaemia in cardiovascular disease development publication-title: Nat Rev Endocrinol – volume: 7 start-page: 56 year: 2015 article-title: Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes publication-title: Clin Epigenetics – volume: 6 start-page: e22839 year: 2011 article-title: MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus publication-title: PLoS One – volume: 123 start-page: 966 year: 2013 end-page: 972 article-title: Cellular senescence and the senescent secretory phenotype: therapeutic opportunities publication-title: J Clin Invest – volume: 55 start-page: 1660 year: 2006 end-page: 1665 article-title: Apoptosis signal‐regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells publication-title: Diabetes – volume: 25 start-page: 531 year: 2015 end-page: 532 article-title: Resolving sorting mechanisms into exosomes publication-title: Cell Res – volume: 40 start-page: 99 year: 2015 end-page: 106 article-title: Low‐grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease publication-title: Interdiscip Top Gerontol – volume: 286 start-page: 25586 year: 2011 end-page: 25603 article-title: MicroRNA‐21 orchestrates high glucose‐induced signals to TOR complex 1, resulting in renal cell pathology in diabetes publication-title: J Biol Chem – volume: 16 start-page: 1165 year: 2014 end-page: 1173 article-title: Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non‐diabetic controls publication-title: Diabetes Obes Metab – volume: 15 start-page: 1101 year: 2001 end-page: 1103 article-title: Insulin resistance with low cellular IRS‐1 expression is also associated with low GLUT4 expression and impaired insulin‐stimulated glucose transport publication-title: FASEB J – volume: 123 start-page: 282 year: 2011 end-page: 291 article-title: Deregulation of microRNA‐503 contributes to diabetes mellitus‐induced impairment of endothelial function and reparative angiogenesis after limb ischemia publication-title: Circulation – volume: 64 start-page: 2289 year: 2015 end-page: 2298 article-title: Cellular senescence in type 2 diabetes: a therapeutic opportunity publication-title: Diabetes – volume: 60 start-page: 2975 year: 2011 end-page: 2984 article-title: miR‐146a‐Mediated extracellular matrix protein production in chronic Diabetes complications publication-title: Diabetes – volume: 6 start-page: 35372 year: 2015 end-page: 35382 article-title: MiR‐21‐5p and miR‐126a‐3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications publication-title: Oncotarget – volume: 371 start-page: 1392 year: 2014 end-page: 1406 article-title: Follow‐up of blood‐pressure lowering and glucose control in type 2 diabetes publication-title: N Engl J Med – volume: 84 start-page: 1 year: 2013 end-page: 10 article-title: Epigenetic changes in diabetes publication-title: Clin Genet – volume: 15 start-page: 978 year: 2013 end-page: 990 article-title: A complex secretory program orchestrated by the inflammasome controls paracrine senescence publication-title: Nat Cell Biol – volume: 129 start-page: 1237 year: 2015 end-page: 1249 article-title: miR‐21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7 publication-title: Clin Sci (Lond) – volume: 241 start-page: 671 year: 2015 end-page: 681 article-title: MicroRNA‐19b/221/222 induces endothelial cell dysfunction via suppression of PGC‐1α in the progression of atherosclerosis publication-title: Atherosclerosis – volume: 6 start-page: 771 year: 2014 end-page: 787 article-title: Age‐ and glycemia‐related miR‐126‐3p levels in plasma and endothelial cells publication-title: Aging (Albany NY) – ident: e_1_2_9_19_1 doi: 10.1074/jbc.M311786200 – ident: e_1_2_9_152_1 doi: 10.1186/s13148-015-0083-3 – ident: e_1_2_9_74_1 doi: 10.1016/j.mad.2012.09.004 – ident: e_1_2_9_31_1 doi: 10.1038/ncb2784 – ident: e_1_2_9_78_1 doi: 10.1074/jbc.M110.208066 – ident: e_1_2_9_85_1 doi: 10.1016/j.mce.2016.03.010 – ident: e_1_2_9_49_1 doi: 10.1210/en.2015-1063 – ident: e_1_2_9_119_1 doi: 10.2337/db11-0416 – ident: e_1_2_9_37_1 doi: 10.2174/1573399810666140515112609 – ident: e_1_2_9_28_1 doi: 10.1093/gerona/glu057 – ident: e_1_2_9_145_1 doi: 10.1074/jbc.M114.600775 – ident: e_1_2_9_50_1 doi: 10.3389/fimmu.2014.00578 – ident: e_1_2_9_104_1 doi: 10.2337/db09-0881 – ident: e_1_2_9_87_1 doi: 10.2337/dc13-1847 – ident: e_1_2_9_101_1 doi: 10.1371/journal.pone.0077251 – ident: e_1_2_9_146_1 doi: 10.1038/mt.2008.104 – ident: e_1_2_9_102_1 doi: 10.1161/CIRCULATIONAHA.110.952325 – ident: e_1_2_9_132_1 doi: 10.1016/j.yjmcc.2013.10.003 – ident: e_1_2_9_82_1 doi: 10.1016/j.cjca.2014.07.747 – ident: e_1_2_9_44_1 doi: 10.1007/s00125-015-3510-2 – ident: e_1_2_9_29_1 doi: 10.1172/JCI64098 – ident: e_1_2_9_46_1 doi: 10.1016/j.jmb.2013.01.023 – ident: e_1_2_9_84_1 doi: 10.1007/s00592-014-0617-8 – ident: e_1_2_9_26_1 doi: 10.1042/CS20130079 – ident: e_1_2_9_20_1 doi: 10.1007/978-94-007-4525-4_19 – ident: e_1_2_9_52_1 doi: 10.1186/s13148-015-0090-4 – ident: e_1_2_9_150_1 doi: 10.3389/fimmu.2014.00370 – volume: 8 start-page: 10345 year: 2015 ident: e_1_2_9_70_1 article-title: MicroRNA‐126 acts as a tumor suppressor in glioma cells by targeting insulin receptor substrate 1 (IRS‐1) publication-title: Int J Clin Exp Pathol – ident: e_1_2_9_137_1 doi: 10.1038/nm.3487 – ident: e_1_2_9_36_1 doi: 10.2337/db12-1115 – ident: e_1_2_9_115_1 doi: 10.1111/dom.12302 – ident: e_1_2_9_123_1 doi: 10.2337/db14-1149 – ident: e_1_2_9_30_1 doi: 10.1146/annurev-pathol-121808-102144 – ident: e_1_2_9_98_1 doi: 10.1210/jc.2012-1996 – ident: e_1_2_9_32_1 doi: 10.1097/MCO.0000000000000066 – ident: e_1_2_9_93_1 doi: 10.1371/journal.pone.0022839 – ident: e_1_2_9_128_1 doi: 10.1016/j.yjmcc.2015.04.011 – ident: e_1_2_9_138_1 doi: 10.1161/CIRCULATIONAHA.115.016382 – ident: e_1_2_9_135_1 doi: 10.1038/ajh.2010.211 – ident: e_1_2_9_90_1 doi: 10.3390/ijms150610567 – ident: e_1_2_9_65_1 doi: 10.1038/ijo.2015.123 – ident: e_1_2_9_59_1 doi: 10.1172/JCI64365 – ident: e_1_2_9_158_1 doi: 10.3402/jev.v1i0.18396 – ident: e_1_2_9_40_1 doi: 10.1038/nrd4275 – ident: e_1_2_9_89_1 doi: 10.1186/s12933-016-0367-8 – ident: e_1_2_9_100_1 doi: 10.3892/mmr.2013.1872 – ident: e_1_2_9_15_1 doi: 10.1093/cvr/cvr024 – ident: e_1_2_9_126_1 doi: 10.2337/dc07-0318 – ident: e_1_2_9_39_1 doi: 10.1161/CIRCULATIONAHA.114.009990 – ident: e_1_2_9_122_1 doi: 10.2337/db12-1648 – ident: e_1_2_9_161_1 doi: 10.1016/j.yjmcc.2014.05.014 – ident: e_1_2_9_6_1 doi: 10.2337/db14-1820 – ident: e_1_2_9_13_1 doi: 10.1056/NEJMoa0804742 – ident: e_1_2_9_110_1 doi: 10.1038/nature04303 – ident: e_1_2_9_21_1 doi: 10.1111/cge.12121 – ident: e_1_2_9_151_1 doi: 10.1016/j.freeradbiomed.2013.06.009 – ident: e_1_2_9_106_1 doi: 10.1093/eurheartj/ehv599 – ident: e_1_2_9_131_1 doi: 10.2337/db05-1607 – ident: e_1_2_9_139_1 doi: 10.1007/s00125-004-1487-3 – ident: e_1_2_9_156_1 doi: 10.1186/s12964-015-0097-7 – ident: e_1_2_9_18_1 doi: 10.2337/db08-1666 – ident: e_1_2_9_103_1 doi: 10.1038/ncomms9024 – ident: e_1_2_9_114_1 doi: 10.1111/dom.12354 – ident: e_1_2_9_124_1 doi: 10.1016/j.atherosclerosis.2015.06.031 – ident: e_1_2_9_57_1 doi: 10.2337/db14-0874 – ident: e_1_2_9_109_1 doi: 10.1172/JCI76069 – ident: e_1_2_9_22_1 doi: 10.1038/nature07242 – ident: e_1_2_9_16_1 doi: 10.1038/nrendo.2010.188 – ident: e_1_2_9_47_1 doi: 10.1007/978-3-319-09665-0_22 – ident: e_1_2_9_60_1 doi: 10.1038/ncomms8321 – ident: e_1_2_9_80_1 doi: 10.1038/nature07511 – ident: e_1_2_9_112_1 doi: 10.1172/JCI76693 – ident: e_1_2_9_24_1 doi: 10.1016/j.biocel.2009.09.016 – ident: e_1_2_9_159_1 doi: 10.1182/blood-2012-01-407106 – ident: e_1_2_9_97_1 doi: 10.1681/ASN.2015030300 – ident: e_1_2_9_7_1 doi: 10.1111/j.1463-1326.2010.01199.x – ident: e_1_2_9_14_1 doi: 10.1038/nrneph.2015.37 – ident: e_1_2_9_25_1 doi: 10.1038/nrendo.2013.86 – ident: e_1_2_9_63_1 doi: 10.1161/CIRCULATIONAHA.113.001720 – ident: e_1_2_9_134_1 doi: 10.1042/CS20100003 – ident: e_1_2_9_62_1 doi: 10.1161/CIRCRESAHA.110.226357 – ident: e_1_2_9_61_1 doi: 10.1681/ASN.2013060640 – volume: 15 start-page: 1101 year: 2001 ident: e_1_2_9_68_1 article-title: Insulin resistance with low cellular IRS‐1 expression is also associated with low GLUT4 expression and impaired insulin‐stimulated glucose transport publication-title: FASEB J doi: 10.1096/fsb2fj000435fje – ident: e_1_2_9_66_1 doi: 10.1371/journal.pone.0017343 – ident: e_1_2_9_77_1 doi: 10.1042/CS20150427 – ident: e_1_2_9_121_1 doi: 10.1016/j.ahj.2006.11.005 – ident: e_1_2_9_141_1 doi: 10.2174/157016112799305076 – ident: e_1_2_9_113_1 doi: 10.1038/nature15756 – ident: e_1_2_9_118_1 doi: 10.1111/acel.12075 – ident: e_1_2_9_92_1 doi: 10.1038/srep20032 – ident: e_1_2_9_116_1 doi: 10.1111/bph.12496 – ident: e_1_2_9_64_1 doi: 10.1016/j.yjmcc.2012.04.003 – ident: e_1_2_9_153_1 doi: 10.1210/me.2015-1206 – ident: e_1_2_9_33_1 doi: 10.1016/j.molcel.2014.03.029 – ident: e_1_2_9_69_1 doi: 10.1016/j.molmet.2014.01.007 – ident: e_1_2_9_120_1 doi: 10.1016/j.diabres.2010.11.030 – ident: e_1_2_9_148_1 doi: 10.1083/jcb.201211138 – ident: e_1_2_9_10_1 doi: 10.2337/db08-0063 – volume: 2010 start-page: 694 year: 1799 ident: e_1_2_9_23_1 article-title: Interplay between microRNAs and the epigenetic machinery: an intricate network publication-title: Biochim Biophys Acta – ident: e_1_2_9_95_1 doi: 10.1007/s11010-014-2170-8 – ident: e_1_2_9_4_1 doi: 10.2337/diabetes.51.4.1157 – ident: e_1_2_9_133_1 doi: 10.1016/j.jash.2014.03.324 – ident: e_1_2_9_12_1 doi: 10.1007/s00125-014-3462-y – ident: e_1_2_9_105_1 doi: 10.1093/cvr/cvr300 – ident: e_1_2_9_108_1 doi: 10.1056/NEJMoa1209026 – ident: e_1_2_9_154_1 doi: 10.1093/cvr/cvt161 – ident: e_1_2_9_163_1 doi: 10.1016/j.bbrc.2015.09.166 – ident: e_1_2_9_53_1 doi: 10.1007/s11033-013-2763-4 – ident: e_1_2_9_86_1 doi: 10.1007/s00592-010-0226-0 – ident: e_1_2_9_99_1 doi: 10.1016/j.yjmcc.2014.05.001 – ident: e_1_2_9_107_1 doi: 10.2337/db11-0952 – ident: e_1_2_9_140_1 doi: 10.1042/CS20140417 – ident: e_1_2_9_143_1 doi: 10.1073/pnas.1107052108 – ident: e_1_2_9_79_1 doi: 10.2337/db15-0116 – ident: e_1_2_9_149_1 doi: 10.3389/fmolb.2015.00011 – ident: e_1_2_9_48_1 doi: 10.1016/j.tem.2015.09.006 – ident: e_1_2_9_55_1 doi: 10.1016/j.exger.2014.03.002 – ident: e_1_2_9_76_1 doi: 10.1159/000366374 – ident: e_1_2_9_5_1 doi: 10.1159/000364934 – ident: e_1_2_9_155_1 doi: 10.1038/pr.2014.202 – ident: e_1_2_9_67_1 doi: 10.1073/pnas.94.8.4171 – ident: e_1_2_9_73_1 doi: 10.2337/db14-0991 – ident: e_1_2_9_157_1 doi: 10.1038/ncomms3980 – ident: e_1_2_9_34_1 doi: 10.2337/db12-0420 – ident: e_1_2_9_88_1 doi: 10.1016/j.bbrc.2015.05.017 – ident: e_1_2_9_56_1 doi: 10.1016/j.expneurol.2014.12.018 – ident: e_1_2_9_2_1 doi: 10.1016/j.vph.2012.05.005 – ident: e_1_2_9_35_1 doi: 10.1016/j.arr.2015.06.004 – ident: e_1_2_9_144_1 doi: 10.2337/db13-0800 – ident: e_1_2_9_45_1 doi: 10.1016/j.tibs.2012.08.003 – ident: e_1_2_9_160_1 doi: 10.1111/jcmm.12589 – ident: e_1_2_9_111_1 doi: 10.2174/156652312802083594 – ident: e_1_2_9_17_1 doi: 10.1016/j.diabres.2014.03.019 – ident: e_1_2_9_83_1 doi: 10.1210/jc.2013-3843 – ident: e_1_2_9_91_1 doi: 10.1016/j.canlet.2013.01.028 – ident: e_1_2_9_96_1 doi: 10.1111/jcmm.12607 – ident: e_1_2_9_43_1 doi: 10.18632/aging.100693 – ident: e_1_2_9_162_1 doi: 10.1371/journal.pone.0138849 – ident: e_1_2_9_127_1 doi: 10.1056/NEJM200202283460912 – ident: e_1_2_9_8_1 doi: 10.1056/NEJMoa0806470 – ident: e_1_2_9_72_1 doi: 10.1161/JAHA.114.001249 – ident: e_1_2_9_81_1 doi: 10.1172/JCI70577 – ident: e_1_2_9_117_1 doi: 10.1161/JAHA.114.001202 – ident: e_1_2_9_38_1 doi: 10.1038/nature11450 – ident: e_1_2_9_58_1 doi: 10.1016/j.cmet.2012.11.003 – ident: e_1_2_9_125_1 doi: 10.1056/NEJMoa1407963 – ident: e_1_2_9_136_1 doi: 10.1161/CIRCRESAHA.112.300849 – ident: e_1_2_9_142_1 doi: 10.18632/aging.100042 – ident: e_1_2_9_41_1 doi: 10.1016/j.exger.2012.11.017 – ident: e_1_2_9_71_1 doi: 10.18632/oncotarget.6164 – ident: e_1_2_9_42_1 doi: 10.18632/oncotarget.5899 – ident: e_1_2_9_54_1 doi: 10.2337/db11-0478 – ident: e_1_2_9_27_1 doi: 10.1016/j.yjmcc.2014.12.014 – ident: e_1_2_9_51_1 doi: 10.1016/j.freeradbiomed.2013.05.033 – ident: e_1_2_9_129_1 doi: 10.1016/j.yjmcc.2015.01.021 – ident: e_1_2_9_3_1 doi: 10.1038/nrendo.2014.29 – ident: e_1_2_9_94_1 doi: 10.1371/journal.pone.0073272 – ident: e_1_2_9_75_1 doi: 10.1111/acel.12069 – ident: e_1_2_9_11_1 doi: 10.1007/s00125-015-3600-1 – ident: e_1_2_9_147_1 doi: 10.1038/cr.2015.39 – ident: e_1_2_9_9_1 doi: 10.1056/NEJMe0807625 – ident: e_1_2_9_130_1 doi: 10.1161/HYPERTENSIONAHA.107.099432 – reference: 26973292 - Mol Cell Endocrinol. 2016 May 15;427:112-23 – reference: 24009886 - J Extracell Vesicles. 2012 Apr 16;1:null – reference: 15316606 - Diabetologia. 2004 Sep;47(9):1535-40 – reference: 21613227 - J Biol Chem. 2011 Jul 22;286(29):25586-603 – reference: 23619365 - J Clin Invest. 2013 May;123(5):2143-54 – reference: 26268439 - Nat Commun. 2015 Aug 13;6:8024 – reference: 18299315 - Diabetes. 2008 May;57(5):1349-54 – reference: 23352645 - Cancer Lett. 2013 Jun 10;333(2):159-69 – reference: 25484882 - Front Immunol. 2014 Nov 21;5:578 – reference: 25324472 - Aging (Albany NY). 2014 Sep;6(9):771-87 – reference: 25988178 - Front Mol Biosci. 2015 Apr 13;2:11 – reference: 24743145 - J Clin Invest. 2014 May;124(5):2136-46 – reference: 23258906 - Diabetes. 2013 Jan;62(1):22-4 – reference: 24059587 - Clin Sci (Lond). 2014 Jan;126(2):95-110 – reference: 22065734 - Cardiovasc Res. 2012 Mar 15;93(4):583-93 – reference: 26498351 - Oncotarget. 2015 Nov 3;6(34):35372-82 – reference: 26015812 - Clin Epigenetics. 2015 May 23;7:56 – reference: 20651284 - Circ Res. 2010 Sep 17;107(6):810-7 – reference: 24839949 - Curr Opin Clin Nutr Metab Care. 2014 Jul;17(4):338-42 – reference: 23283304 - Exp Gerontol. 2013 Jul;48(7):626-33 – reference: 25481708 - Diabetologia. 2015 Mar;58(3):443-55 – reference: 23704521 - Diabetes. 2013 Jun;62(6):1800-7 – reference: 23629540 - Nat Rev Endocrinol. 2013 Sep;9(9):513-21 – reference: 24766894 - Mol Cell. 2014 Apr 24;54(2):297-308 – reference: 26524530 - Nature. 2015 Nov 19;527(7578):329-35 – reference: 24970784 - Circulation. 2014 Sep 2;130(10 ):837-44 – reference: 24854413 - Nat Rev Drug Discov. 2014 Jun;13(6):465-76 – reference: 21146883 - Diabetes Res Clin Pract. 2011 Jul;93(1):56-62 – reference: 24366165 - Mol Med Rep. 2014 Mar;9(3):967-72 – reference: 23023125 - Nature. 2012 Oct 4;490(7418):55-60 – reference: 20857148 - Acta Diabetol. 2011 Mar;48(1):61-9 – reference: 27005938 - Cardiovasc Diabetol. 2016 Mar 22;15:49 – reference: 18504326 - Hypertension. 2008 Jul;52(1):123-9 – reference: 21885871 - Diabetes. 2011 Nov;60(11):2975-84 – reference: 24814876 - Diabetes Res Clin Pract. 2014 Aug;105(2):164-75 – reference: 24937531 - J Clin Endocrinol Metab. 2014 Sep;99(9):E1681-5 – reference: 26431329 - Oncotarget. 2015 Nov 3;6(34):35509-21 – reference: 25986735 - Biochem Biophys Res Commun. 2015 Jul 17-24;463(1-2):60-3 – reference: 25136343 - Front Immunol. 2014 Aug 04;5:370 – reference: 26197086 - Ageing Res Rev. 2015 Nov;24(Pt A):66-76 – reference: 26084661 - Nat Commun. 2015 Jun 18;6:7321 – reference: 26117405 - Atherosclerosis. 2015 Aug;241(2):671-81 – reference: 11292681 - FASEB J. 2001 Apr;15(6):1101-3 – reference: 23770198 - Free Radic Biol Med. 2013 Sep;64:85-94 – reference: 23398084 - Clin Genet. 2013 Jul;84(1):1-10 – reference: 24794206 - J Am Soc Hypertens. 2014 Jun;8(6):368-75 – reference: 25427542 - Cell Physiol Biochem. 2014;34(5):1733-40 – reference: 23086037 - Diabetes. 2013 Jan;62(1):194-204 – reference: 25389292 - J Biol Chem. 2014 Dec 26;289(52):36031-47 – reference: 23727324 - Free Radic Biol Med. 2013 Oct;63:410-20 – reference: 24372553 - Br J Pharmacol. 2014 Jan;171(2):523-35 – reference: 26393296 - Mol Endocrinol. 2015 Nov;29(11):1535-48 – reference: 25828531 - Cell Res. 2015 May;25(5):531-2 – reference: 24161401 - J Mol Cell Cardiol. 2013 Dec;65:127-36 – reference: 22525256 - J Mol Cell Cardiol. 2012 Jul;53(1):64-72 – reference: 26454169 - Biochem Biophys Res Commun. 2015 Nov 13;467(2):303-9 – reference: 26162916 - Circulation. 2015 Sep 8;132(10):932-43 – reference: 25562527 - Exp Neurol. 2015 Mar;265:84-93 – reference: 16258535 - Nature. 2005 Dec 1;438(7068):685-9 – reference: 26393803 - PLoS One. 2015 Sep 22;10(9):e0138849 – reference: 25664854 - J Clin Invest. 2015 Mar 2;125(3):1215-27 – reference: 24478399 - Diabetes Care. 2014;37(5):1375-83 – reference: 25931475 - Diabetes. 2015 Sep;64(9):3285-93 – reference: 22124463 - Diabetes. 2012 Jan;61(1):217-28 – reference: 22944280 - Trends Biochem Sci. 2012 Nov;37(11):460-5 – reference: 24874423 - J Mol Cell Cardiol. 2014 Sep;74:196-8 – reference: 23774505 - Cardiovasc Res. 2013 Oct 1;100(1):7-18 – reference: 25368096 - Diabetes. 2015 Apr;64(4):1370-82 – reference: 25041462 - Diabetes Obes Metab. 2014 Nov;16(11):1165-73 – reference: 25713188 - Diabetes. 2015 Mar;64(3):663-72 – reference: 25825086 - Nat Rev Nephrol. 2015 May;11(5):277-87 – reference: 24610930 - J Am Soc Nephrol. 2014 Aug;25(8):1710-22 – reference: 25234206 - N Engl J Med. 2014 Oct 9;371(15):1392-406 – reference: 20078217 - Annu Rev Pathol. 2010;5:99-118 – reference: 26122028 - Int J Obes (Lond). 2016 Jan;40(1):102-11 – reference: 23534542 - N Engl J Med. 2013 May 2;368(18):1685-94 – reference: 22022767 - Curr Vasc Pharmacol. 2012 Mar;10(2):216-24 – reference: 25677225 - Diabetologia. 2015 May;58(5):900-11 – reference: 24749062 - Mol Metab. 2014 Jan 20;3(3):325-33 – reference: 25133430 - J Clin Invest. 2014 Sep;124(9):4102-14 – reference: 25523006 - Handb Exp Pharmacol. 2015;224:649-89 – reference: 23144172 - Blood. 2013 Jan 3;121(1):226-36 – reference: 23217257 - Cell Metab. 2012 Dec 5;16(6):777-88 – reference: 22856601 - Curr Gene Ther. 2012 Aug;12(4):262-74 – reference: 25418215 - Can J Cardiol. 2014 Dec;30(12):1689-99 – reference: 11916939 - Diabetes. 2002 Apr;51(4):1157-65 – reference: 20493980 - Biochim Biophys Acta. 2010 Oct-Dec;1799(10-12):694-701 – reference: 25896391 - J Mol Cell Cardiol. 2015 Jun;83:112-21 – reference: 25518011 - Pediatr Res. 2015 Mar;77(3):447-54 – reference: 19020323 - N Engl J Med. 2008 Nov 20;359(21):2208-19 – reference: 21266525 - Cardiovasc Res. 2011 Jun 1;90(3):421-9 – reference: 26492831 - Trends Endocrinol Metab. 2015 Dec;26(12 ):733-45 – reference: 25536178 - J Mol Cell Cardiol. 2015 Dec;89(Pt A):42-50 – reference: 16731828 - Diabetes. 2006 Jun;55(6):1660-5 – reference: 26083874 - Endocrinology. 2015 Sep;156(9):3157-68 – reference: 25926893 - Clin Epigenetics. 2015 Apr 24;7:49 – reference: 23420871 - J Cell Biol. 2013 Feb 18;200(4):373-83 – reference: 24981880 - Acta Diabetol. 2014 Oct;51(5):823-31 – reference: 25385173 - Clin Sci (Lond). 2015 Apr;128(8):483-91 – reference: 21464990 - PLoS One. 2011 Mar 25;6(3):e17343 – reference: 24584117 - Nat Med. 2014 Apr;20(4):368-76 – reference: 22427379 - Diabetes. 2012 Jun;61(6):1633-41 – reference: 24663222 - Nat Rev Endocrinol. 2014 May;10(5):293-302 – reference: 25084986 - Mol Cell Biochem. 2014 Dec;397(1-2):45-51 – reference: 24014835 - Circulation. 2013 Oct 29;128(18):2026-38 – reference: 18784090 - N Engl J Med. 2008 Oct 9;359(15):1577-89 – reference: 23032062 - J Clin Endocrinol Metab. 2012 Dec;97(12):E2271-6 – reference: 25906755 - Diabetologia. 2015 Aug;58(8):1708-14 – reference: 26081516 - J Cell Mol Med. 2015 Sep;19(9):2202-14 – reference: 21636785 - Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10355-60 – reference: 23697773 - Circ Res. 2013 Jul 19;113(3):266-78 – reference: 23770676 - Nat Cell Biol. 2013 Aug;15(8):978-90 – reference: 20148189 - Aging (Albany NY). 2009 Apr;1(4):402-11 – reference: 18843126 - N Engl J Med. 2008 Oct 9;359(15):1618-20 – reference: 24825548 - J Mol Cell Cardiol. 2014 Sep;74:139-50 – reference: 23454759 - J Clin Invest. 2013 Mar;123(3):966-72 – reference: 24204780 - PLoS One. 2013 Oct 15;8(10):e77251 – reference: 24023848 - PLoS One. 2013 Sep 02;8(9):e73272 – reference: 25349183 - J Am Heart Assoc. 2014 Oct 27;3(6):e001249 – reference: 21045787 - Nat Rev Endocrinol. 2010 Dec;6(12):665-75 – reference: 26617742 - Int J Clin Exp Pathol. 2015 Sep 01;8(9):10345-54 – reference: 17307426 - Am Heart J. 2007 Mar;153(3):445.e1-6 – reference: 11873779 - N Engl J Med. 2002 Feb 28;346(9):705-7 – reference: 17456844 - Diabetes Care. 2007 Jul;30(7):1694-8 – reference: 19800023 - Int J Biochem Cell Biol. 2010 Aug;42(8):1316-29 – reference: 20966899 - Am J Hypertens. 2011 Feb;24(2):241-6 – reference: 22609133 - Vascul Pharmacol. 2012 Nov-Dec;57(5-6):133-8 – reference: 26553540 - Eur Heart J. 2016 Feb 7;37(6):572-6 – reference: 24057185 - Mol Biol Rep. 2013 Nov;40(11):6477-83 – reference: 23353823 - J Mol Biol. 2013 Oct 9;425(19):3601-8 – reference: 21829658 - PLoS One. 2011;6(8):e22839 – reference: 23150262 - Subcell Biochem. 2013;61:435-54 – reference: 14976218 - J Biol Chem. 2004 Apr 23;279(17):18091-7 – reference: 25824442 - J Cell Mol Med. 2015 Sep;19(9):2153-61 – reference: 9108124 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4171-5 – reference: 26415649 - Clin Sci (Lond). 2015 Dec;129(12 ):1237-49 – reference: 26839366 - J Am Soc Nephrol. 2016 Sep;27(9):2597-608 – reference: 25655936 - J Mol Cell Cardiol. 2015 Dec;89(Pt B):122-35 – reference: 20086228 - Diabetes. 2010 Apr;59(4):978-86 – reference: 18500251 - Mol Ther. 2008 Jul;16(7):1208-16 – reference: 25341516 - Interdiscip Top Gerontol. 2015;40:99-106 – reference: 24828062 - Curr Diabetes Rev. 2014 May;10(3):190-200 – reference: 26106186 - Diabetes. 2015 Jul;64(7):2289-98 – reference: 19043405 - Nature. 2008 Dec 18;456(7224):980-4 – reference: 25880779 - Cell Commun Signal. 2015 Mar 19;13:17 – reference: 26831044 - Sci Rep. 2016 Feb 01;6:20032 – reference: 20524934 - Clin Sci (Lond). 2010 Jul 23;119(9):395-405 – reference: 23521863 - Aging Cell. 2013 Jun;12(3):489-98 – reference: 23041385 - Mech Ageing Dev. 2012 Nov-Dec;133(11-12):675-85 – reference: 18668037 - Nature. 2008 Sep 4;455(7209):64-71 – reference: 24264394 - Diabetes. 2013 Dec;62(12):3968-75 – reference: 24833586 - J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1:S4-9 – reference: 24927146 - Int J Mol Sci. 2014 Jun 12;15(6):10567-77 – reference: 21220732 - Circulation. 2011 Jan 25;123(3):282-91 – reference: 24356509 - Nat Commun. 2013;4:2980 – reference: 24720708 - Diabetes Obes Metab. 2014 Oct;16(10 ):957-62 – reference: 25325735 - Diabetes. 2015 Apr;64(4):1395-406 – reference: 20590740 - Diabetes Obes Metab. 2010 Aug;12 (8):641-7 – reference: 23496142 - Aging Cell. 2013 Jun;12(3):446-58 – reference: 24607549 - Exp Gerontol. 2014 Aug;56:154-63 – reference: 19208907 - Diabetes. 2009 May;58(5):1229-36 – reference: 25527624 - J Am Heart Assoc. 2014 Dec;3(6):e001202 |
SSID | ssj0004387 |
Score | 2.415613 |
SecondaryResourceType | review_article |
Snippet | Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients with... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 855 |
SubjectTerms | Aging Aging - metabolism antidiabetic drug Antidiabetics cardiovascular disease Cell interactions Cellular Senescence Clinical trials Diabetes diabetes complications Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Diabetic Angiopathies - metabolism Diabetic Angiopathies - physiopathology Endothelium, Vascular - metabolism Endothelium, Vascular - physiopathology Epigenesis, Genetic Epigenetics Exosomes extracellular vesicles Extracellular Vesicles - metabolism extracellular vesicles, exosomes Gene expression glycaemic control Humans Hyperglycemia - metabolism Hypoglycemic Agents - therapeutic use Inflammation metabolic memory metformin MicroRNAs MicroRNAs - metabolism miRNA Review Senescence type 2 diabetes |
Title | Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity? |
URI | https://api.istex.fr/ark:/67375/WNG-98MBTQ1M-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.12688 https://www.ncbi.nlm.nih.gov/pubmed/27161301 https://www.proquest.com/docview/1813599618 https://www.proquest.com/docview/3059406695 https://www.proquest.com/docview/1813628660 https://www.proquest.com/docview/1815710300 https://pubmed.ncbi.nlm.nih.gov/PMC5094499 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbGkBBfYLwXtikghPiSKo7txIEPaLCNCdEC0yaGhBTZjs3Q2nTqi7Ty63fnvNBCQYhvVX2tnPOd81zy3GNCnmqptcu4ClPDs5A7TkOdFDpkMpIucr6qQLZFPzk45u9OxMkaedn0wlT6EO0DN8wMv19jgis9WUjyYjTs0jiR2OhLWYK6-buHP6WjOPOH48FGABmfIYtno2HxtL9cuhddRbderAKav_MlF3GsvxHt3yRfm0uo-Cdn3dlUd82PX9Qd__MaN8iNGqAGO1VE3SJrtrxNrvXqV_B3yJe9C5gdPu9HAmswRELfYX9nEqiyCGxZYEfXAII6OIUKd_xtMDcK-ffBECm98xeBChZavoLROeL_Gewr81d3yfH-3tGbg7A-nyE0CWxOoSgiI23CXAJlpBJOcUHTVDqDmCwuYq51ZLJCF8xEDKpfkTnhDHwbS5nFhWT3yHo5Ku0DEqQqMUJaSRlV3FGuhGXWpCkFfBRZKjrkebNSuanFy_EMjUHeFDHgqty7qkOetKbnlWLHKqNnfrlbCzU-Q4pbKvLP_bd5Jnuvjz7RXv6-QzabeMjr7J7kgIoYytpQuXKYoQYOQLkMpv24HYa0xbVRpR3Nqr_AruAk-quNSPEYOLC5X0VgO98Y6lyAH7RD0qXYbA1QNnx5pPx-6uXDUTIR6lxwqQ-9Pzsp3_3Q8x8e_rvpI3IdIGVSsfA2yfp0PLNbANumeptcifnHbZ-ll3nDP2g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGJgEvaNwLAwxCiJegOLEdByGhARsFmnJRJ8aT5Tj2NtGmU7dK67_nnNxoRUG8RfFxFB37ON9xvvOZkKe5ynOfchMklqcB95wFuSzyIFah8qGvsgpkWwxl_4B_PBSHG-RVWwtT60N0G24YGdV6jQGOG9JLUV5MJy9YJJW6RLa4hNQFdZ35l99VkXF1PB4sBRDzKfJ4tlseT9d15Wu0hY69WAc1_2RMLiPZ6lO0v02uNRiS7taDfp1suPIGuZw1f8lvkh97F9Adt-SRY0onyLn7Ntw9o6YsqCsLLLoaw7yjx5CEzo7GC2uQIk8nyLpdvKSGLlVl0ekpQvQ5hP7i9S1ysL83etsPmiMUAith_QhEEVrlZOwlZHpGeMMFSxLlLcKmqIh4noc2LfIitmEMCapIvfAW7kZKpVGh4ttks5yW7i6hiZFWKKdYzAz3jBvhYmeThAGECR0TPfK8daW2jb44HnMx1m2eAV7Xldd75ElnelqLaqwzelaNR2dhZj-RhZYI_X34XqcqezP6yjI96JGddsB0E4BnGoBLjMozTK1tjlGmBtBWCq_9uGuGyMKxMaWbzutHYOGuDP9pIxI8qQ1s7tRTpHvfCFJRQAisR5KVydMZoLL3akt5clwpfKOqIaSi4NJqmv3dSfrd56y6uPf_po_Ilf4oG-jBh-Gn--QqIEBZk-Z2yOb5bO4eAMo6zx9WwfQLxcYh6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJk28oPFdGMMghHgJimM7ceABDbYyYC0DbWI8WY4_GKJNq26V1v9-d0kaWlEQb1F8jqzznf0753dnQp4VqihCLkyUWZFHIggWFakrIq5iFeJQRRXItuinByfi46k8XSOv57kwdX2I9sANPaNar9HBxy4sOLkbDV-yJFXqGtkQYHdo3ok4-p0Uyavb8WAlAJfPkcazNafxtF2XNqMN1OvlKqT5J2FyEchWO1F3i9xoICTdref8Jlnz5S2y2Wt-kt8m3_cvoTueyCPFlA6Rcve1v3tOTemoLx3mXA3A7OgZxKCTH4OZNciQp0Mk3c5eUUMXkrLoaIwIfQqeP3tzh5x094_fHUTNDQqRTWH5iKSLrfIpDykEekYGIyTLMhUsoqbEJaIoYpu7wnEbc4hPZR5ksPA2USpPnOJ3yXo5Kv19QjOTWqm8YpwZEZgw0nNvs4wBgok9kx3yYq5KbZvy4njLxUDPwwzQuq603iFPW9FxXVNjldDzaj5aCTP5hSS0TOpv_fc6V723x19YTx92yPZ8wnTjf-cacAvHwjNMrWzmWKUGwFYOw37SNoNj4dyY0o-m9ScwbzeN_ykjM7yoDWTu1SbSjjeBSBQAAuuQbMl4WgEs7L3cUv48qwp8Y1FDiERBpZWZ_V1Jeu9zr3p48P-ij8nm0V5XH37of3pIrgP-S2vK3DZZv5hM_SPAWBfFTuVLVxgWISM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+microRNAs+and+endothelial+hyperglycaemic+memory%3A+a+therapeutic+opportunity%3F&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Prattichizzo%2C+F.&rft.au=Giuliani%2C+A.&rft.au=De+Nigris%2C+V.&rft.au=Pujadas%2C+G.&rft.date=2016-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=18&rft.issue=9&rft.spage=855&rft.epage=867&rft_id=info:doi/10.1111%2Fdom.12688&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_98MBTQ1M_L |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon |