基于Gestalt视觉心理学和最小F-范数的图像显著区域检测和分割
根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法。通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特征对应的显著性区域;通过矩阵的最小F-范数确定符合Gestah视觉心理学的特征图像的合成方案,并利用Gestalt视觉心理学的核心理论来检验和自适应修改组合方案,得到最佳的显著图;利用Otsu法对显著图像进行二值化操作来完成图像的分割。实验结果表明,算法可以从复杂的自然彩色图像申较为完整地提取并分割显著目标,实验结果与MSRA数据库手工分割结果相一致,在满足实时性需求的基础上能比传统方法更加准确、完整地提取图像的显著性区域。...
Saved in:
| Published in | 计算机应用研究 Vol. 34; no. 11; pp. 3504 - 3509 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
延边大学工学院计算机科学与技术学科,吉林延吉133002
2017
延边大学智能信息处理研究室,吉林延吉133002 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-3695 |
| DOI | 10.3969/j.issn.1001-3695.2017.11.068 |
Cover
| Abstract | 根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法。通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特征对应的显著性区域;通过矩阵的最小F-范数确定符合Gestah视觉心理学的特征图像的合成方案,并利用Gestalt视觉心理学的核心理论来检验和自适应修改组合方案,得到最佳的显著图;利用Otsu法对显著图像进行二值化操作来完成图像的分割。实验结果表明,算法可以从复杂的自然彩色图像申较为完整地提取并分割显著目标,实验结果与MSRA数据库手工分割结果相一致,在满足实时性需求的基础上能比传统方法更加准确、完整地提取图像的显著性区域。 |
|---|---|
| AbstractList | 根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法。通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特征对应的显著性区域;通过矩阵的最小F-范数确定符合Gestah视觉心理学的特征图像的合成方案,并利用Gestalt视觉心理学的核心理论来检验和自适应修改组合方案,得到最佳的显著图;利用Otsu法对显著图像进行二值化操作来完成图像的分割。实验结果表明,算法可以从复杂的自然彩色图像申较为完整地提取并分割显著目标,实验结果与MSRA数据库手工分割结果相一致,在满足实时性需求的基础上能比传统方法更加准确、完整地提取图像的显著性区域。 TP391.41; 根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法.通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特征对应的显著性区域;通过矩阵的最小F-范数确定符合Gestalt视觉心理学的特征图像的合成方案,并利用Gestalt视觉心理学的核心理论来检验和自适应修改组合方案,得到最佳的显著图;利用Otsu法对显著图像进行二值化操作来完成图像的分割.实验结果表明,算法可以从复杂的自然彩色图像中较为完整地提取并分割显著目标,实验结果与MSRA数据库手工分割结果相一致,在满足实时性需求的基础上能比传统方法更加准确、完整地提取图像的显著性区域. |
| Abstract_FL | According to Gestalt visual psychology,this paper developed a new image saliency detection method.Firstly,by reducing the contrast of dual opponent colors feature image and luminance feature image,the method suppressed secondary feature of the image and heightened the salient region.Secondly,by minimum F-norm,it determined the combination scheme of feature image according with Gestalt visual psychology.Then,using core theories of Gestalt visual psychology,it examined and adaptively adjusted the combination scheme to get best saliency map.Finally,this method used Otsu method to binary the saliency image and completed salient region segmentation.Simulation experiments show that this method can completely extract salient object in real time from complex natural-color image.Salient region segmentation results are in line with ground-truth data of MSRA database.Compared to traditional methods,integrity and accuracy of segmentation results are more accurate and more complete. |
| Author | 方志明 崔荣一 金璟璇 |
| AuthorAffiliation | 延边大学工学院计算机科学与技术学科,吉林延吉133002 延边大学智能信息处理研究室,吉林延吉133002 |
| AuthorAffiliation_xml | – name: 延边大学工学院计算机科学与技术学科,吉林延吉133002;延边大学智能信息处理研究室,吉林延吉133002 |
| Author_FL | Cui Rongyi Jin Jingxuan Fang Zhiming |
| Author_FL_xml | – sequence: 1 fullname: Fang Zhiming – sequence: 2 fullname: Cui Rongyi – sequence: 3 fullname: Jin Jingxuan |
| Author_xml | – sequence: 1 fullname: 方志明 崔荣一 金璟璇 |
| BookMark | eNo9z09LAkEYBvA5GKTWl4gOXXabcWZnZo8haYEQgXeZ_WcuNpZjxN4EQ5QkK4iiAg9BngIJuniwL9Os-zGyjE4vPPx4Ht4MSMmG9AHYRNDENrW3Q7OmlDQRhMjA1LbMHETMRMiElKdA-j9fBRmlQghJDtkwDQ71aPo1vSr6qiXqrWTcTcZ9_dmZX3f126u-HcTPbT0ZFoxk0InvJvPHC_00051h_DBLbu71YKpHo_ilHX9cLqzudXX_fQ2sBKKu_PW_mwXlwm45v2eUDor7-Z2S4VLIDSQgd7iXoz6mFGNBeSAs6hAXEuR4mHDoMYd5nm9bDAecBdgifuD6AlkMMspxFmwta8-FDISsVsLGWVMuBiuhCqMoCn_-Rwj-0o0ldY8asnpaW-CTZu1YNKMKZZhgSriNvwFyEHkM |
| ClassificationCodes | TP391.41 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1001-3695.2017.11.068 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| DocumentTitleAlternate | Image salient region detection and segmentation based on Gestalt visual psychology and minimum F-norm |
| DocumentTitle_FL | Image salient region detection and segmentation based on Gestalt visual psychology and minimum F-norm |
| EndPage | 3509 |
| ExternalDocumentID | jsjyyyj201711068 673436489 |
| GrantInformation_xml | – fundername: 吉林省科技发展计划资助项目 funderid: (20140101186JC) |
| GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
| ID | FETCH-LOGICAL-c608-1a08b8d26e36633a68fa56b4c041bd3480d7b7dde9573f87f354efcea15707683 |
| ISSN | 1001-3695 |
| IngestDate | Thu May 29 03:54:51 EDT 2025 Wed Feb 14 09:55:52 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Gestalt视觉心理学 feature image 特征图像 图像显著性区域 minimum F-norm Gestalt visual psychology 最小F-范数 image salient region |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c608-1a08b8d26e36633a68fa56b4c041bd3480d7b7dde9573f87f354efcea15707683 |
| Notes | 51-1196/TP image salient region; Gestalt visual psychology; teature image; minimum F-norm According to Gestalt visual psychology, this paper developed a new image saliency detection method. Firstly, by reducing the contrast of dual opponent colors feature image and luminance feature image, the method suppressed seeondal7 featroy of the image and heightened the salient region. Secondly, by minimum F-norm, it determined the combination scheme of feature image according with Gestalt visual psychology. Then, using core theories of Gestalt visual psychology, it examined and adaptively adjusted the combination scheme to get best saliency map. Finally, this method used Otsu method to binary the saliency image and completed salient region segmentation. Simulation experiments show that this method can completely extract salient object in real lime from complex natural-color image. Salient region segmentation results are in line with ground-trnth data of MSRA database. Compared to traditional methods, integrity and accur |
| PageCount | 6 |
| ParticipantIDs | wanfang_journals_jsjyyyj201711068 chongqing_primary_673436489 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | 计算机应用研究 |
| PublicationTitleAlternate | Application Research of Computers |
| PublicationTitle_FL | Application Research of Computers |
| PublicationYear | 2017 |
| Publisher | 延边大学工学院计算机科学与技术学科,吉林延吉133002 延边大学智能信息处理研究室,吉林延吉133002 |
| Publisher_xml | – name: 延边大学智能信息处理研究室,吉林延吉133002 – name: 延边大学工学院计算机科学与技术学科,吉林延吉133002 |
| SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
| Score | 2.086034 |
| Snippet | 根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法。通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特征对应的... TP391.41; 根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法.通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 3504 |
| SubjectTerms | Gestalt视觉心理学 图像显著性区域 最小F-范数 特征图像 |
| Title | 基于Gestalt视觉心理学和最小F-范数的图像显著区域检测和分割 |
| URI | http://lib.cqvip.com/qk/93231X/201711/673436489.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201711068 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1001-3695 databaseCode: ABDBF dateStart: 20130901 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssib025702191 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAcOkHiBe_xVqVCt2TvJpkN5vdY_KaWAQFoUJvj3y9lkd5Vft6aE-FSrFYrAqiqNCDYE9CEbz0UP-MeX0_w5nNvtcgpaiXZbM7OzPZSXYmk90ZQiatJHUzmfBanOT4m9Fq1mLcTGM5MZjj2ruPfsgHD8XMY35_zp0bGh6u7Fpa6SRT6dqJ50r-R6rQBnLFU7L_INkBUmiAOsgXSpAwlH8lYxq6VEU08GnIsZThPVjk48UODSX1PSpFv6IQNIioZDT0qLJ0l0v9aerrinKorNNQUFXHvQ8IDDBRVEME0IPjoFM3IwKgxfW4gAYhVgBARhpG6hZJlU2Vp7vqmkPNqtIwPtNEBA2gN6jQh0tpWAOWA6dqOutbCalvIwNQQeSa3xI5lIpr3jj1pYaxTIsPqAYOSD0IKPdnxKABsuEd3cT1KLieRj5xYqFuQZ-i0sO7QhqOvhNdMZrceE7KI6JmmceNZEyU6T37esA4Vc3zbldWdeaWKZKNhQCX6iTtw5RQWvsgjakBDdw_6E1hqNgygdAf8b2FxzgTXKphMuqgU2mEjPrBdBAdW7VgBFajHDoYQOj4KxJTAIjKso15CUEPDZZt12aeq5MclAYKh84ySIdh8AyZNNzfPY13jD6ysNSefwo2lT7i1m7G7fmKNTZ7gZwzn1ETfvlOXCRDawuXyPl-ipIJo7Euk0fF7sGvg1fmtejtbfb2toqfG0evN4tvX4u3293P68X-TlTrbW903-0ffXxefDosNna6Hw57b94X2wfF7m73y3r3x0uALV5sFlvfr5DZKJytz9RMFpFaKjB0cWzJRGaOyBkY1ywWshm7IuGpxe0kY1xamZd4oOSV67Gm9JrM5XkzzWMbphG-xdlVMtJeaufXyEQaO2meZAkYdJzHwlOZYFnq8iyx08xl6RgZH0xQ40kZLKYxEO8YuW2mrGGWkOVGa7m1urrawkkGIQt5_VQM4-QsQpYOwBtkpPNsJb8JJnEnuWUemd-ilZE8 |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGestalt%E8%A7%86%E8%A7%89%E5%BF%83%E7%90%86%E5%AD%A6%E5%92%8C%E6%9C%80%E5%B0%8FF-%E8%8C%83%E6%95%B0%E7%9A%84%E5%9B%BE%E5%83%8F%E6%98%BE%E8%91%97%E5%8C%BA%E5%9F%9F%E6%A3%80%E6%B5%8B%E5%92%8C%E5%88%86%E5%89%B2&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%96%B9%E5%BF%97%E6%98%8E+%E5%B4%94%E8%8D%A3%E4%B8%80+%E9%87%91%E7%92%9F%E7%92%87&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=11&rft.spage=3504&rft.epage=3509&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.11.068&rft.externalDocID=673436489 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |