基于Gestalt视觉心理学和最小F-范数的图像显著区域检测和分割

根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法。通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特征对应的显著性区域;通过矩阵的最小F-范数确定符合Gestah视觉心理学的特征图像的合成方案,并利用Gestalt视觉心理学的核心理论来检验和自适应修改组合方案,得到最佳的显著图;利用Otsu法对显著图像进行二值化操作来完成图像的分割。实验结果表明,算法可以从复杂的自然彩色图像申较为完整地提取并分割显著目标,实验结果与MSRA数据库手工分割结果相一致,在满足实时性需求的基础上能比传统方法更加准确、完整地提取图像的显著性区域。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 11; pp. 3504 - 3509
Main Author 方志明 崔荣一 金璟璇
Format Journal Article
LanguageChinese
Published 延边大学工学院计算机科学与技术学科,吉林延吉133002 2017
延边大学智能信息处理研究室,吉林延吉133002
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.11.068

Cover

Abstract 根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法。通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特征对应的显著性区域;通过矩阵的最小F-范数确定符合Gestah视觉心理学的特征图像的合成方案,并利用Gestalt视觉心理学的核心理论来检验和自适应修改组合方案,得到最佳的显著图;利用Otsu法对显著图像进行二值化操作来完成图像的分割。实验结果表明,算法可以从复杂的自然彩色图像申较为完整地提取并分割显著目标,实验结果与MSRA数据库手工分割结果相一致,在满足实时性需求的基础上能比传统方法更加准确、完整地提取图像的显著性区域。
AbstractList 根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法。通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特征对应的显著性区域;通过矩阵的最小F-范数确定符合Gestah视觉心理学的特征图像的合成方案,并利用Gestalt视觉心理学的核心理论来检验和自适应修改组合方案,得到最佳的显著图;利用Otsu法对显著图像进行二值化操作来完成图像的分割。实验结果表明,算法可以从复杂的自然彩色图像申较为完整地提取并分割显著目标,实验结果与MSRA数据库手工分割结果相一致,在满足实时性需求的基础上能比传统方法更加准确、完整地提取图像的显著性区域。
TP391.41; 根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法.通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特征对应的显著性区域;通过矩阵的最小F-范数确定符合Gestalt视觉心理学的特征图像的合成方案,并利用Gestalt视觉心理学的核心理论来检验和自适应修改组合方案,得到最佳的显著图;利用Otsu法对显著图像进行二值化操作来完成图像的分割.实验结果表明,算法可以从复杂的自然彩色图像中较为完整地提取并分割显著目标,实验结果与MSRA数据库手工分割结果相一致,在满足实时性需求的基础上能比传统方法更加准确、完整地提取图像的显著性区域.
Abstract_FL According to Gestalt visual psychology,this paper developed a new image saliency detection method.Firstly,by reducing the contrast of dual opponent colors feature image and luminance feature image,the method suppressed secondary feature of the image and heightened the salient region.Secondly,by minimum F-norm,it determined the combination scheme of feature image according with Gestalt visual psychology.Then,using core theories of Gestalt visual psychology,it examined and adaptively adjusted the combination scheme to get best saliency map.Finally,this method used Otsu method to binary the saliency image and completed salient region segmentation.Simulation experiments show that this method can completely extract salient object in real time from complex natural-color image.Salient region segmentation results are in line with ground-truth data of MSRA database.Compared to traditional methods,integrity and accuracy of segmentation results are more accurate and more complete.
Author 方志明 崔荣一 金璟璇
AuthorAffiliation 延边大学工学院计算机科学与技术学科,吉林延吉133002 延边大学智能信息处理研究室,吉林延吉133002
AuthorAffiliation_xml – name: 延边大学工学院计算机科学与技术学科,吉林延吉133002;延边大学智能信息处理研究室,吉林延吉133002
Author_FL Cui Rongyi
Jin Jingxuan
Fang Zhiming
Author_FL_xml – sequence: 1
  fullname: Fang Zhiming
– sequence: 2
  fullname: Cui Rongyi
– sequence: 3
  fullname: Jin Jingxuan
Author_xml – sequence: 1
  fullname: 方志明 崔荣一 金璟璇
BookMark eNo9z09LAkEYBvA5GKTWl4gOXXabcWZnZo8haYEQgXeZ_WcuNpZjxN4EQ5QkK4iiAg9BngIJuniwL9Os-zGyjE4vPPx4Ht4MSMmG9AHYRNDENrW3Q7OmlDQRhMjA1LbMHETMRMiElKdA-j9fBRmlQghJDtkwDQ71aPo1vSr6qiXqrWTcTcZ9_dmZX3f126u-HcTPbT0ZFoxk0InvJvPHC_00051h_DBLbu71YKpHo_ilHX9cLqzudXX_fQ2sBKKu_PW_mwXlwm45v2eUDor7-Z2S4VLIDSQgd7iXoz6mFGNBeSAs6hAXEuR4mHDoMYd5nm9bDAecBdgifuD6AlkMMspxFmwta8-FDISsVsLGWVMuBiuhCqMoCn_-Rwj-0o0ldY8asnpaW-CTZu1YNKMKZZhgSriNvwFyEHkM
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.11.068
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Image salient region detection and segmentation based on Gestalt visual psychology and minimum F-norm
DocumentTitle_FL Image salient region detection and segmentation based on Gestalt visual psychology and minimum F-norm
EndPage 3509
ExternalDocumentID jsjyyyj201711068
673436489
GrantInformation_xml – fundername: 吉林省科技发展计划资助项目
  funderid: (20140101186JC)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c608-1a08b8d26e36633a68fa56b4c041bd3480d7b7dde9573f87f354efcea15707683
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 09:55:52 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords Gestalt视觉心理学
feature image
特征图像
图像显著性区域
minimum F-norm
Gestalt visual psychology
最小F-范数
image salient region
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c608-1a08b8d26e36633a68fa56b4c041bd3480d7b7dde9573f87f354efcea15707683
Notes 51-1196/TP
image salient region; Gestalt visual psychology; teature image; minimum F-norm
According to Gestalt visual psychology, this paper developed a new image saliency detection method. Firstly, by reducing the contrast of dual opponent colors feature image and luminance feature image, the method suppressed seeondal7 featroy of the image and heightened the salient region. Secondly, by minimum F-norm, it determined the combination scheme of feature image according with Gestalt visual psychology. Then, using core theories of Gestalt visual psychology, it examined and adaptively adjusted the combination scheme to get best saliency map. Finally, this method used Otsu method to binary the saliency image and completed salient region segmentation. Simulation experiments show that this method can completely extract salient object in real lime from complex natural-color image. Salient region segmentation results are in line with ground-trnth data of MSRA database. Compared to traditional methods, integrity and accur
PageCount 6
ParticipantIDs wanfang_journals_jsjyyyj201711068
chongqing_primary_673436489
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 延边大学工学院计算机科学与技术学科,吉林延吉133002
延边大学智能信息处理研究室,吉林延吉133002
Publisher_xml – name: 延边大学智能信息处理研究室,吉林延吉133002
– name: 延边大学工学院计算机科学与技术学科,吉林延吉133002
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.086034
Snippet 根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法。通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特征对应的...
TP391.41; 根据Gestalt视觉心理学说,提出了一种新的图像显著区域检测方法.通过不同程度降低双对立颜色或亮度的特征图像对比度来抑制图像中次要特征对应的区域,增强主要特...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3504
SubjectTerms Gestalt视觉心理学
图像显著性区域
最小F-范数
特征图像
Title 基于Gestalt视觉心理学和最小F-范数的图像显著区域检测和分割
URI http://lib.cqvip.com/qk/93231X/201711/673436489.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201711068
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1001-3695
  databaseCode: ABDBF
  dateStart: 20130901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib025702191
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAcOkHiBe_xVqVCt2TvJpkN5vdY_KaWAQFoUJvj3y9lkd5Vft6aE-FSrFYrAqiqNCDYE9CEbz0UP-MeX0_w5nNvtcgpaiXZbM7OzPZSXYmk90ZQiatJHUzmfBanOT4m9Fq1mLcTGM5MZjj2ruPfsgHD8XMY35_zp0bGh6u7Fpa6SRT6dqJ50r-R6rQBnLFU7L_INkBUmiAOsgXSpAwlH8lYxq6VEU08GnIsZThPVjk48UODSX1PSpFv6IQNIioZDT0qLJ0l0v9aerrinKorNNQUFXHvQ8IDDBRVEME0IPjoFM3IwKgxfW4gAYhVgBARhpG6hZJlU2Vp7vqmkPNqtIwPtNEBA2gN6jQh0tpWAOWA6dqOutbCalvIwNQQeSa3xI5lIpr3jj1pYaxTIsPqAYOSD0IKPdnxKABsuEd3cT1KLieRj5xYqFuQZ-i0sO7QhqOvhNdMZrceE7KI6JmmceNZEyU6T37esA4Vc3zbldWdeaWKZKNhQCX6iTtw5RQWvsgjakBDdw_6E1hqNgygdAf8b2FxzgTXKphMuqgU2mEjPrBdBAdW7VgBFajHDoYQOj4KxJTAIjKso15CUEPDZZt12aeq5MclAYKh84ySIdh8AyZNNzfPY13jD6ysNSefwo2lT7i1m7G7fmKNTZ7gZwzn1ETfvlOXCRDawuXyPl-ipIJo7Euk0fF7sGvg1fmtejtbfb2toqfG0evN4tvX4u3293P68X-TlTrbW903-0ffXxefDosNna6Hw57b94X2wfF7m73y3r3x0uALV5sFlvfr5DZKJytz9RMFpFaKjB0cWzJRGaOyBkY1ywWshm7IuGpxe0kY1xamZd4oOSV67Gm9JrM5XkzzWMbphG-xdlVMtJeaufXyEQaO2meZAkYdJzHwlOZYFnq8iyx08xl6RgZH0xQ40kZLKYxEO8YuW2mrGGWkOVGa7m1urrawkkGIQt5_VQM4-QsQpYOwBtkpPNsJb8JJnEnuWUemd-ilZE8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGestalt%E8%A7%86%E8%A7%89%E5%BF%83%E7%90%86%E5%AD%A6%E5%92%8C%E6%9C%80%E5%B0%8FF-%E8%8C%83%E6%95%B0%E7%9A%84%E5%9B%BE%E5%83%8F%E6%98%BE%E8%91%97%E5%8C%BA%E5%9F%9F%E6%A3%80%E6%B5%8B%E5%92%8C%E5%88%86%E5%89%B2&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%96%B9%E5%BF%97%E6%98%8E+%E5%B4%94%E8%8D%A3%E4%B8%80+%E9%87%91%E7%92%9F%E7%92%87&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=11&rft.spage=3504&rft.epage=3509&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.11.068&rft.externalDocID=673436489
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg