Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental stages in digital panoramic imaging
Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images pe...
Saved in:
| Published in | BMC medical imaging Vol. 22; no. 1; pp. 66 - 13 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
08.04.2022
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2342 1471-2342 |
| DOI | 10.1186/s12880-022-00794-6 |
Cover
| Abstract | Background
This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model.
Methods
A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively.
Results
Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process.
Conclusions
The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future. |
|---|---|
| AbstractList | Abstract Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Results Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. Conclusions The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future. Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 x 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Results Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. Conclusions The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future. Keywords: Deep learning, Tooth segmentation, Premolar, Digital dental panoramic radiographs This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model.BACKGROUNDThis study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model.A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively.METHODSA dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively.Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process.RESULTSImage segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process.The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.CONCLUSIONSThe application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future. Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Results Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. Conclusions The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future. This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future. Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Results Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. Conclusions The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future. This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 x 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future. |
| ArticleNumber | 66 |
| Audience | Academic |
| Author | Yusof, Mohd Yusmiaidil Putera Mohd Ahmad, Rohana Mohammad, Norhasmira Muad, Anuar Mikdad |
| Author_xml | – sequence: 1 givenname: Norhasmira surname: Mohammad fullname: Mohammad, Norhasmira organization: Center for Oral and Maxillofacial Diagnostics and Medicine Studies, Faculty of Dentistry, Universiti Teknologi MARA – sequence: 2 givenname: Anuar Mikdad surname: Muad fullname: Muad, Anuar Mikdad organization: Center for Integrated Systems Engineering and Advanced Technologies (INTEGRA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM) – sequence: 3 givenname: Rohana surname: Ahmad fullname: Ahmad, Rohana organization: Center for Restorative Dentistry Studies, Faculty of Dentistry, Universiti Teknologi MARA – sequence: 4 givenname: Mohd Yusmiaidil Putera Mohd orcidid: 0000-0002-5676-3571 surname: Yusof fullname: Yusof, Mohd Yusmiaidil Putera Mohd email: yusmiaidil@uitm.edu.my organization: Center for Oral and Maxillofacial Diagnostics and Medicine Studies, Faculty of Dentistry, Universiti Teknologi MARA, Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35395737$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstuFDEQHCEQecAPcECWuHCZ4OeMfUGKIh6RInGBs-W12xMHr73Ys4n2zofjzYa8hCLkw1g9VdXuqj7onqecoOveEHxEiBw-VEKlxD2mtMd4VLwfnnX7hI-kp4zT5_fue91BrRcYk1Ey_rLbY4IpMbJxv_t9bO26GLtB2SPjLk2y4JADWKEIpqSQJnQV5nM0Q6q5-JivkEkO_YRiKvK5IBtNrcFvtsgZoEEdXELMqyWk2URUZzNBRSEhF6awraxMysUsg0VhaabGe9W98CZWeH3zPex-fP70_eRrf_bty-nJ8VlvBzzOvbGDkiNbWLsAcCDAW28YFQulODPWj2phOAGKgRhBqSVYUOyVk3RkTjBgh93pTtdlc6FXpbUvG51N0NeFXCZtyhxsBO2YAKFGEHIBnHCrnBsolZ5JzLxSpGmxndY6rczmysR4K0iw3uajd_nolo--zkcPjfVxx1qtF0twtllUTHzwlId_UjjXU77UsvUUrfdh9_5GoORfa6izXoZqIUaTIK-rpgOXUnGiVIO-ewS9yOuSmsENJSgZBefsDjWZNnZIPre-diuqjwfV_B4GThvq6B-odhy0HNta-tDqDwhv7w96O-HfzWsAuQPYkmst4LVtyzGHvJ07xKdNpI-o_-X8TV61gdME5c6NJ1h_ACFtDks |
| CitedBy_id | crossref_primary_10_4103_sjhs_sjhs_124_23 crossref_primary_10_3390_cancers14143554 crossref_primary_10_1186_s12903_024_03928_0 crossref_primary_10_61186_shefa_12_1_67 crossref_primary_10_7759_cureus_70363 crossref_primary_10_5624_isd_20240134 crossref_primary_10_1186_s12880_022_00946_8 crossref_primary_10_1016_j_jfo_2024_104242 crossref_primary_10_1016_j_rsase_2023_101031 crossref_primary_10_1002_cre2_70035 crossref_primary_10_1016_j_engappai_2024_108510 crossref_primary_10_1016_j_mam_2023_101222 crossref_primary_10_1177_17562848231155023 crossref_primary_10_3389_frai_2022_1049584 crossref_primary_10_1016_j_jdent_2025_105560 crossref_primary_10_1016_j_jdent_2023_104651 crossref_primary_10_3390_ijms232416014 crossref_primary_10_1016_j_forsciint_2024_112150 crossref_primary_10_1177_09544119231157137 crossref_primary_10_1016_j_oooo_2023_12_006 crossref_primary_10_3390_ijms232314814 crossref_primary_10_1080_00450618_2024_2324739 crossref_primary_10_1186_s12903_024_04160_6 crossref_primary_10_1007_s00170_023_12854_4 crossref_primary_10_14326_abe_13_134 |
| Cites_doi | 10.1259/dmfr.20180261 10.1111/1556-4029.14182 10.1109/34.57681 10.1016/j.engappai.2017.01.003 10.1016/j.archoralbio.2015.07.017 10.1080/03014467600001671 10.1007/s11042-019-08268-8 10.1088/1742-6596/1502/1/012046 10.1016/j.jflm.2013.03.015 10.1016/j.archoralbio.2018.11.026 10.1016/j.forsciint.2017.08.032 10.2200/S00133ED1V01Y200807IVM009 10.1259/dmfr/19478385 10.1007/s00414-020-02283-3 10.1016/j.fri.2021.200440 10.1016/j.oooo.2019.11.007 10.1016/j.forsciint.2018.10.013 10.1080/13682199.2020.1738741 10.4103/ijfo.ijfo_5_18 10.1007/s00414-019-02206-x 10.1088/1742-6596/1028/1/012102 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12880-022-00794-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database (Proquest) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1471-2342 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_d35e597e58be414c9dd6228f3803f991 10.1186/s12880-022-00794-6 PMC8991580 A699876642 35395737 10_1186_s12880_022_00794_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7RV 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS EMB EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ITC KQ8 LK8 M1P M48 M7P M~E NAPCQ O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM 123 2VQ 4.4 ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c607t-ac69873bccbeede5efcfa325b9943acf79ba41e20e1a522c10520f9d8273d53e3 |
| IEDL.DBID | DOA |
| ISSN | 1471-2342 |
| IngestDate | Tue Oct 14 18:09:02 EDT 2025 Sun Oct 26 03:35:07 EDT 2025 Tue Sep 30 16:44:23 EDT 2025 Thu Sep 04 19:28:40 EDT 2025 Tue Oct 07 05:36:32 EDT 2025 Mon Oct 20 22:03:44 EDT 2025 Mon Oct 20 16:19:57 EDT 2025 Thu Apr 03 07:00:11 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 Wed Oct 01 04:30:33 EDT 2025 Sat Sep 06 07:26:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Premolar Tooth segmentation Digital dental panoramic radiographs |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c607t-ac69873bccbeede5efcfa325b9943acf79ba41e20e1a522c10520f9d8273d53e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5676-3571 |
| OpenAccessLink | https://doaj.org/article/d35e597e58be414c9dd6228f3803f991 |
| PMID | 35395737 |
| PQID | 2652175443 |
| PQPubID | 44833 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d35e597e58be414c9dd6228f3803f991 unpaywall_primary_10_1186_s12880_022_00794_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8991580 proquest_miscellaneous_2648894199 proquest_journals_2652175443 gale_infotracmisc_A699876642 gale_infotracacademiconefile_A699876642 pubmed_primary_35395737 crossref_citationtrail_10_1186_s12880_022_00794_6 crossref_primary_10_1186_s12880_022_00794_6 springer_journals_10_1186_s12880_022_00794_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-08 |
| PublicationDateYYYYMMDD | 2022-04-08 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC medical imaging |
| PublicationTitleAbbrev | BMC Med Imaging |
| PublicationTitleAlternate | BMC Med Imaging |
| PublicationYear | 2022 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | P Payal (794_CR29) 2020; 68 A Demirjian (794_CR5) 1976; 3 R Merdietio Boedi (794_CR15) 2020; 65 GJ George (794_CR3) 2018; 3 G Trakinienė (794_CR24) 2019; 98 J De Tobel (794_CR14) 2017; 35 AM Muad (794_CR8) 2019; 8 TM Tuan (794_CR9) 2017; 59 AF Ismail (794_CR6) 2018; 1028 A Kumar (794_CR10) 2020; 79 J Jayaraman (794_CR22) 2013; 20 C Tafrount (794_CR18) 2019; 294 ST Acton (794_CR25) 2009; 4 AA Amini (794_CR26) 1990; 12 MYP Mohd Yusof (794_CR21) 2017; 280 A Franco (794_CR20) 2020; 134 SM Kahaki (794_CR17) 2019; 32 794_CR12 N Mohammad (794_CR23) 2021; 24 N Banar (794_CR28) 2020; 134 A Panchbhai (794_CR1) 2011; 40 MY Mohd Yusof (794_CR19) 2015; 60 N Mohammad (794_CR13) 2020; 2020 J-H Lee (794_CR16) 2019; 129 794_CR2 Y Fan (794_CR11) 2019; 48 794_CR7 794_CR4 794_CR27 |
| References_xml | – volume: 48 start-page: 20180261 issue: 2 year: 2019 ident: 794_CR11 publication-title: Dentomaxillofacial Radiol doi: 10.1259/dmfr.20180261 – volume: 65 start-page: 481 issue: 2 year: 2020 ident: 794_CR15 publication-title: J Forensic Sci doi: 10.1111/1556-4029.14182 – volume: 32 start-page: 1 year: 2019 ident: 794_CR17 publication-title: Neural Comput Appl – ident: 794_CR12 – volume: 12 start-page: 855 issue: 9 year: 1990 ident: 794_CR26 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.57681 – volume: 59 start-page: 186 year: 2017 ident: 794_CR9 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2017.01.003 – ident: 794_CR27 – volume: 60 start-page: 1571 issue: 10 year: 2015 ident: 794_CR19 publication-title: Arch Oral Biol doi: 10.1016/j.archoralbio.2015.07.017 – volume: 3 start-page: 411 issue: 5 year: 1976 ident: 794_CR5 publication-title: Ann Hum Biol doi: 10.1080/03014467600001671 – volume: 79 start-page: 2745 issue: 3 year: 2020 ident: 794_CR10 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08268-8 – volume: 2020 start-page: 012046 year: 2020 ident: 794_CR13 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1502/1/012046 – volume: 35 start-page: 42 issue: 2 year: 2017 ident: 794_CR14 publication-title: J Forensic Odontostomatol – volume: 20 start-page: 373 issue: 5 year: 2013 ident: 794_CR22 publication-title: J Forensic Leg Med doi: 10.1016/j.jflm.2013.03.015 – volume: 8 start-page: 253 issue: 1 year: 2019 ident: 794_CR8 publication-title: Bull Electric Eng Inf – ident: 794_CR7 – volume: 98 start-page: 220 year: 2019 ident: 794_CR24 publication-title: Arch Oral Biol doi: 10.1016/j.archoralbio.2018.11.026 – volume: 280 start-page: 245-e1 year: 2017 ident: 794_CR21 publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2017.08.032 – volume: 4 start-page: 1 issue: 1 year: 2009 ident: 794_CR25 publication-title: Synth Lect Image Video Multimed Process doi: 10.2200/S00133ED1V01Y200807IVM009 – volume: 40 start-page: 199 issue: 4 year: 2011 ident: 794_CR1 publication-title: Dentomaxillofacial Radiology doi: 10.1259/dmfr/19478385 – volume: 134 start-page: 1 year: 2020 ident: 794_CR28 publication-title: Int J Legal Med doi: 10.1007/s00414-020-02283-3 – volume: 24 start-page: 200440 year: 2021 ident: 794_CR23 publication-title: Forensic Imaging doi: 10.1016/j.fri.2021.200440 – volume: 129 start-page: 635 issue: 6 year: 2019 ident: 794_CR16 publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol doi: 10.1016/j.oooo.2019.11.007 – volume: 294 start-page: 218-e1 year: 2019 ident: 794_CR18 publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2018.10.013 – volume: 68 start-page: 114 issue: 2 year: 2020 ident: 794_CR29 publication-title: Imaging Sci J doi: 10.1080/13682199.2020.1738741 – volume: 3 start-page: 36 issue: 1 year: 2018 ident: 794_CR3 publication-title: Int J Forensic Odontol doi: 10.4103/ijfo.ijfo_5_18 – ident: 794_CR2 – ident: 794_CR4 – volume: 134 start-page: 347 issue: 1 year: 2020 ident: 794_CR20 publication-title: Int J Legal Med doi: 10.1007/s00414-019-02206-x – volume: 1028 start-page: 012102 year: 2018 ident: 794_CR6 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1028/1/012102 |
| SSID | ssj0017834 |
| Score | 2.399796 |
| Snippet | Background
This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular... This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars... Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular... Abstract Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 66 |
| SubjectTerms | Accuracy Age Algorithms Artificial intelligence Artificial neural networks Automation Background noise Bicuspid - growth & development Clustering Deep Learning Developmental stages Digital dental panoramic radiographs Digital imaging Dynamic programming Equipment and supplies Forensic science Humans Image classification Image enhancement Image processing Image Processing, Computer-Assisted - methods Image segmentation Imaging Machine learning Mandible Medical imaging equipment Medicine Medicine & Public Health Methods Model accuracy Morphology Neural networks Neural Networks, Computer Odontology Premolar Premolars Radiology Teeth Tooth segmentation Watersheds |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_nHvjxIH5bPSWC4INXrk2aNHkQ2ZM7DsFFxIN7C2mSrsW9dt0Pjnv3D3eSbbtXhcXXZkKbzmQ-MpPfIPQ2dVxqK9KYpZpAgMJMXOSEx7IkxjrGcqJDtcWEn51nny_YxR6adHdhfFllpxODoraN8WfkR4SDoQlobR_nv2LfNcpnV7sWGrptrWA_BIixW2ifeGSsEdo_Ppl8_dbnFXxbie7qjOBHS9DOIol9RTvYSpnFfGCeAor_v7r6hrH6u5Cyz6beQ3fW9VxfX-nZ7IbBOn2A7reeJh5vROMh2nP1I3T7S5tLf4x-j41ZL7S5xk2Ju1IAbJ2b47aVxBT7U1rsa9ybRTlrrrCuLf7pFnqJwdfFxnveVbgoBUQOSO22BAleDY7n1C1xVWNbTX1zEgyqB0TusjK4ugztkZ6g89OT75_O4rYnQ2x4kq9ibbgUOS2MKcC6OuZKU2pKWCFlRrUpc1noLHUkcakG186kvs6mlFaAm2QZdfQpGtVN7Z4j7JEKuSCOA6MyYvOCF5xrcFBMkTta2gilHSuUaQHLfd-MmQqBi-Bqwz4F7FOBfYpH6H0_Z76B69hJfew53FN6qO3woFlMVbtzlaXMQdTlmChclmZGWssJESUVCS3Bu47QOy8fyisE-Dyj23sNsEgPraXGHCLanEOcF6GDASVsZDMc7iRMtYpkqbZiH6E3_bCf6YvjatesPQ1oYZmlUkbo2UYg-yVR5hOxNI9QPhDVwZqHI3X1I8CMQySeMpFE6LAT6u1n7fqnh73g_wcLXuxe9Et0l4TdmcWJOECj1WLtXoEXuCpet1v7D-aQWgg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKkXgcEG8CBRkJiQNNSezYsQ8ILYiqQionKvVmObazRGyTJbursnd-OGNvkm2gqjhwXY-1ceYbzzfxeAahV6njUluRxizVBAIUZuIiJzyWJTHWMZYTHbItvvCjk-zzKTvdQX27o-4FLi4N7Xw_qZN2dvDzx_o9GPy7YPCCv13AHiuS2Oelg8eTWcyvoevgqaRv5XCcbU8VfFOJ_uLMpfNGzinU8P97p77gqv5MoxzOUm-jm6t6rtfneja74K4O76I7Hc_Ekw0w7qEdV99HN467k_QH6NfEmFWrzRo3Je4TAbB1bo67RhJT7L_RYp_h3rTlrDnHurb4u2v1AgPTxcbz7ipckwIhB6J2m4AEfw20c-oWuKqxraa-NQmGjQcAd1YZXJ2F5kgP0cnhp68fj-KuI0NseJIvY224FDktjCnAtzrmSlNqSlghZUa1KXNZ6Cx1JHGpBmJnUp9lU0orgCRZRh19hHbrpnZPEPZ1CrkgjkPMmRGbF7zgXAM9MUXuaGkjlPaqUKYrV-67ZsxUCFsEVxv1KVCfCupTPEJvhjnzTbGOK6U_eA0Pkr7Qdvihaaeqs1tlKXMQczkmCpelmZHWckJESUVCS-DWEXrt8aE8QOHxjO5uNcAifWEtNeEQz-YcorwI7Y0kwYzNeLhHmOqtQBEO7CqUKIzQy2HYz_SpcbVrVl4G9mCZpVJG6PEGkMOSKPPHsDSPUD6C6mjN45G6-haKjEMcnjKRRGi_B_X2sa56p_sD8P9BBU__hwqeoVsk2HAWJ2IP7S7blXsOTHFZvAjm_xunGmN7 priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgcEG8CBRkJiQONiO3YsY9LRVUhwYlKvVmO7ZSIbXa1D1W988MZe7PpBlAF1_V4N955fZMZzwC8pUFq6xXNBbUMAxTh8rpiMtcNcz4IUTGbqi2-yuOT8vOpOO3b5MS7MLv5e6rkhyXaT1XkseYcvZkuc3kTbqGTkikxKw-HjEEcGLG9FPPXfSPHk_rz_2mFd9zQ7yWSQ570HtxZd3N7eWGn0x1XdPQA7vcYkkw2TH8IN0L3CG5_6bPkj-HnxLn1wrpLMmvINslPfAhz0g-JOCPx_SuJ1euzRTOdXRDbefIjLOySIIolLmLqNl2BQqKApP6quAh_GiHlWViStiO-PYtjRwgaFRSm89aR9jwNPnoCJ0efvh0e5_20hdzJolrl1kmtKl47V6PfDCI0rrGciVrrklvXVLq2JQ2sCNQiaHM0VtA02isEQF7wwJ_CXjfrwnMgsQehVCxIjCdL5qta1lJahB6urgJvfAZ0ywrj-lbkcSLG1KSQREmzYZ9B9pnEPiMzeD_smW8acVxL_TFyeKCMTbTTByhbptdJ47kIGE8FoepQ0tJp7yVjquGq4A3i5gzeRfkwUdXx8ZztbyzgIWPTLDORGKtWEiO4DPZHlKiibry8lTDTm4ilYRKRU2o_mMGbYTnujGVvXZitIw3aV11SrTN4thHI4UhcxBQrrzKoRqI6OvN4pWu_pwbiGGNToYoMDrZCffVY1_2nB4Pg_wMLXvzft7-Euyxpa5kXah_2Vot1eIV4b1W_Tor-C75_TGY priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwELagK3E8cB-BBRkJiQc23cSOHeexIFYrJFY8UGl5inylW7VNqh5aLc_8cMbOsc2CViDxVtXjtjOZGX9Tz4HQ29jyTBoRhyyWBAIUpkOVEh5mBdHGMpYS6bMtTvjxOPl8yk6b8mhXC6MW2l0qL_yInuFuCfrc-214oWeHS1PU5i744Ro8rIhCl5UO512WhPwm2uMMkPkA7Y1Pvo6--wKjNA4JTUhbN_PHjb2zybfw_91R75xUV7Mou6vUu-j2tlzKi3M5n--cVkf30aLls05SmQ23GzXUP660gPxfgniA7jWwFo9qPXyIbtjyEbr1pbm4f4x-jrTewmdd4KrAbd4BNtYucTO3YoLdX8LYJdRXq2JenWNZGjyzK7nGAKyxdjB_6quygMgCqbnMd4KvBpQ7sWs8LbGZTtwkFAx-DvR7MdW44e8JGh99-vbxOGwGQISaR-kmlJpnIqVKawVHuWW20IWkhKksS6jURZopmcSWRDaWgCN17JJ6iswIwGSGUUufokFZlfY5wq4tIhfEcghxE2JSxRXnEtCQVqmlhQlQ3D76XDfd0d2QjnnuoyTB81q8OYg39-LNeYDed3uWdW-Qa6k_OI3qKF1fb_9GtZrkjZvIDWUWQjzLhLJJnOjMGE6IKKiIaAFQPkDvnD7mzvs4DZBNEQUw6fp45SMO4XPKIagM0H6PEryG7i-3Gp03XmudEw5gzndEDNCbbtntdJl4pa22jgZcfpbEWRagZ7UBdCxR5m59aRqgtGcaPZ77K-X0zPc0h7A_ZiIK0EFrRJc_6zqZHnSG9heP4MW_kb9Ed4i3piSMxD4abFZb-wog6Ea9bjzLL7eTf3c priority: 102 providerName: Unpaywall |
| Title | Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental stages in digital panoramic imaging |
| URI | https://link.springer.com/article/10.1186/s12880-022-00794-6 https://www.ncbi.nlm.nih.gov/pubmed/35395737 https://www.proquest.com/docview/2652175443 https://www.proquest.com/docview/2648894199 https://pubmed.ncbi.nlm.nih.gov/PMC8991580 https://bmcmedimaging.biomedcentral.com/track/pdf/10.1186/s12880-022-00794-6 https://doaj.org/article/d35e597e58be414c9dd6228f3803f991 |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: KQ8 dateStart: 20011101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2342 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: M48 dateStart: 20011101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017834 issn: 1471-2342 databaseCode: C6C dateStart: 20010112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbB_t4GPvq5q0rGgz2sJrasvX1mIRmZdBQygLZXowsyZlZ6oR8UPq-P3wn2U7jDbo97EUQ64wt30_3kTvdIfQ-tkwqI-KQxoqAg0J1mHPCQlkQbSylnCifbTFip-P084ROdlp9uZywujxw_eGOTUItGL2WitymcaqlMYwQUSQiSgrpz62TSMjWmWriB659RHtERrDjFUhhEYUucx10okxD1lFDvlr_nzJ5Ryn9njC5jZo-Qg821UJdX6nZbEcxDZ-gx41FiXv1Sp6iO7Z6hu6fNTHz5-hnT-vNUulrPC9wG_LHxtoFblpGTLH7Nxa7XPb5spjNr7CqDP5hl2qFwabF2lnYpT8QBUQWSM1NqhE8GgzMqV3hssKmnLomJBhEDEDrstS4vPRtkF6g8fDky-A0bHovhJpFfB0qzaTgSa51DlrUUlvoQiWE5lKmidIFl7lKY0siGysw4XTs8mkKaQSYQ4YmNtlHe9W8sq8QdhUJmSCWgXeZEsNzljOmwBDRObdJYQIUt6zIdFOY3PXHmGXeQREsq9mXAfsyz76MBejj9p5FXZbjVuq-4_CW0pXU9hcAaFkDtOxvQAvQB4ePzG18eD2tmvMLsEhXQivrMfBcOQN_LkAHHUrYsLo73SIsawTGKiMM7ChfjDBA77bT7k6XBFfZ-cbRgLSVaSxlgF7WgNwuKaEu4JrwAPEOVDtr7s5U5XdfThw87piKKEBHLahvXuu2b3q0Bf4_sOD1_2DBG_SQ-D2chpE4QHvr5ca-BZtwnR-iu3zCYRTDT4foXv9kdH4BvwZscOgFA4xnqYDxov8N5sej897XX_csY3Q |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgcEG8CBYwE4kCjJnbsJAeElke1pY9TK-3NdWxnidgmyz602ju_h9_I2JtkG5BWXHqNJ5t4Z_zNfPF4BqE3oeGp1Enos1ASIChM-VlMuJ_mRGnDWEyky7Y45f3z6NuADbbQ7-YsjE2rbDDRAbWulP1Gvk84OBpXre3j-Kdvu0bZ3dWmhcbKLI7McgGUbfrh8Avo9y0hB1_PPvf9uquAr3gQz3ypOPBsmimVgX8wzOQql5SwLE0jKlUep5mMQkMCE0oITlRoM0XyVCfg6DWjhsLv3kA3IwpYAusnHrQEL7RNK5qDOQnfnwL2J4Fv8-XBE6eRzzvOz_UI-NcTXHGFf6dptnu1d9DOvBzL5UKORlfc4cE9dLeOY3FvZXj30ZYpH6BbJ_VO_UP0q6fUfCLVElc5bhINsDZmjOtGFUNsvwFjm0FfTfJRtcCy1PiHmcgphkgaKxvXF-4YFggZENXrBCd4NIS1QzPFRYl1MbStTzAAGxj0ZaFwcemaLz1C59eim8dou6xK8xRhWweRJ8Rw4LQR0XHGM84lhD8qiw3NtYfCRhVC1eXQbVeOkXC0KOFipT4B6hNOfYJ76H17z3hVDGSj9Cer4VbSFvJ2F6rJUNS4IDRlBjidYUlmojBSqdackCSnSUBziN099M7ah7BwA6-nZH1qAiZpC3eJHge-HHNgkR7a7UgCTKjucGNhooapqVgvKg-9boftnTb1rjTV3MoAxqdRmKYeerIyyHZKlNltXhp7KO6YamfO3ZGy-O6KmAPPD1kSeGivMer1a236T_daw_8PFTzbPOlXaKd_dnIsjg9Pj56j28St1MgPkl20PZvMzQuIN2fZS7fIMbq4blT5A7hzke8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAMeEF-DwAAjIfHAoiVO7NiPpVCNr4kHJu3NcmynRHRJlbaa9s4fztn5WANogtf63Ma9893vcl8IvYotE8rwOKSxIuCgUB3mGWGhKIg2ltKMKJ9tccyOTtKPp_R0q4rfZ7v3Icm2psF1aarWh0tTtFecs8MVaFUehS4THWycSEN2Hd1Iwbq5GQZTNh3iCG6MRF8q89d9I3Pku_b_qZu3jNPviZND9PQ2urmpluriXC0WWwZqdhfd6ZAlnrSicA9ds9V9tPuli50_QD8nWm8apS9wXeA-9I-NtUvcjY6YY_dWFruc9ropFvU5VpXBP2yjVhiwLdYOaZe-MAqILJCay5Qj-GkAmnO7wmWFTTl3w0gwqBoQsbNS4_LMj0N6iE5m779Nj8JuBkOoWZStQ6WZ4FmSa52DNbXUFrpQCaG5EGmidJGJXKWxJZGNFUA5Hbu8mkIYDrDI0MQme2inqiv7GGHXmZBxYhl4mSkxWc5yxhQAEp1nNilMgOKeFVJ3DcrdnIyF9I4KZ7JlnwT2Sc8-yQL0ZtizbNtzXEn91nF4oHSttf0HdTOX3U2VJqEWvCxLeW7TONXCGEYILxIeJQWg6QC9dvIhnQKAx9Oqq2OAQ7pWWnLCwIPNGPh1AdofUcLF1ePlXsJkpzhWkjDAU74pYYBeDstup0uGq2y9cTSgdUUaCxGgR61ADkdKqAu8JlmAspGojs48XqnK776tOHjeMeVRgA56ob58rKv-04NB8P-BBU_-79tfoN2v72by84fjT0_RLeIvbhpGfB_trJuNfQaAcJ0_93f-F6--V5w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwELagK3E8cB-BBRkJiQc23cSOHeexIFYrJFY8UGl5inylW7VNqh5aLc_8cMbOsc2CViDxVtXjtjOZGX9Tz4HQ29jyTBoRhyyWBAIUpkOVEh5mBdHGMpYS6bMtTvjxOPl8yk6b8mhXC6MW2l0qL_yInuFuCfrc-214oWeHS1PU5i744Ro8rIhCl5UO512WhPwm2uMMkPkA7Y1Pvo6--wKjNA4JTUhbN_PHjb2zybfw_91R75xUV7Mou6vUu-j2tlzKi3M5n--cVkf30aLls05SmQ23GzXUP660gPxfgniA7jWwFo9qPXyIbtjyEbr1pbm4f4x-jrTewmdd4KrAbd4BNtYucTO3YoLdX8LYJdRXq2JenWNZGjyzK7nGAKyxdjB_6quygMgCqbnMd4KvBpQ7sWs8LbGZTtwkFAx-DvR7MdW44e8JGh99-vbxOGwGQISaR-kmlJpnIqVKawVHuWW20IWkhKksS6jURZopmcSWRDaWgCN17JJ6iswIwGSGUUufokFZlfY5wq4tIhfEcghxE2JSxRXnEtCQVqmlhQlQ3D76XDfd0d2QjnnuoyTB81q8OYg39-LNeYDed3uWdW-Qa6k_OI3qKF1fb_9GtZrkjZvIDWUWQjzLhLJJnOjMGE6IKKiIaAFQPkDvnD7mzvs4DZBNEQUw6fp45SMO4XPKIagM0H6PEryG7i-3Gp03XmudEw5gzndEDNCbbtntdJl4pa22jgZcfpbEWRagZ7UBdCxR5m59aRqgtGcaPZ77K-X0zPc0h7A_ZiIK0EFrRJc_6zqZHnSG9heP4MW_kb9Ed4i3piSMxD4abFZb-wog6Ea9bjzLL7eTf3c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+advanced+deep+learning+with+tensorflow+and+keras+for+classifying+teeth+developmental+stages+in+digital+panoramic+imaging&rft.jtitle=BMC+medical+imaging&rft.au=Norhasmira+Mohammad&rft.au=Anuar+Mikdad+Muad&rft.au=Rohana+Ahmad&rft.au=Mohd+Yusmiaidil+Putera+Mohd+Yusof&rft.date=2022-04-08&rft.pub=BMC&rft.eissn=1471-2342&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs12880-022-00794-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d35e597e58be414c9dd6228f3803f991 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2342&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2342&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2342&client=summon |