Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental stages in digital panoramic imaging

Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images pe...

Full description

Saved in:
Bibliographic Details
Published inBMC medical imaging Vol. 22; no. 1; pp. 66 - 13
Main Authors Mohammad, Norhasmira, Muad, Anuar Mikdad, Ahmad, Rohana, Yusof, Mohd Yusmiaidil Putera Mohd
Format Journal Article
LanguageEnglish
Published London BioMed Central 08.04.2022
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2342
1471-2342
DOI10.1186/s12880-022-00794-6

Cover

Abstract Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Results Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. Conclusions The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.
AbstractList Abstract Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Results Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. Conclusions The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.
Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 x 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Results Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. Conclusions The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future. Keywords: Deep learning, Tooth segmentation, Premolar, Digital dental panoramic radiographs
This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model.BACKGROUNDThis study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model.A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively.METHODSA dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively.Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process.RESULTSImage segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process.The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.CONCLUSIONSThe application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.
Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Results Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. Conclusions The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.
This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.
Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. Methods A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 × 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Results Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. Conclusions The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.
This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars using a Keras-based deep learning convolutional neural networks (DCNN) model. A dataset consisting of 240 images (20 images per stage per sex) of retrospect digital dental panoramic imaging of patients between 5 and 14 years of age was retrieved. In image preprocessing, abounding box with a dimension of 250 x 250 pixels was assigned to the left mandibular first (P1) and second (P2) permanent premolars. The implementation of dynamic programming of active contour (DP-AC) and convolutions neural network on images that require the procedure of image filtration using Python TensorFlow and Keras libraries were performed in image segmentation and classification, respectively. Image segmentation using the DP-AC algorithm enhanced the visibility of the image features in the region of interest while suppressing the image's background noise. The proposed model has an accuracy of 97.74%, 96.63% and 78.13% on the training, validation, and testing set, respectively. In addition, moderate agreement (Kappa value = 0.58) between human observer and computer were identified. Nonetheless, a robust DCNN model was achieved as there is no sign of the model's over-or under-fitting upon the learning process. The application of digital imaging and deep learning techniques used by the DP-AC and convolutions neural network algorithms to segment and identify premolars provides promising results for semi-automated forensic dental staging in the future.
ArticleNumber 66
Audience Academic
Author Yusof, Mohd Yusmiaidil Putera Mohd
Ahmad, Rohana
Mohammad, Norhasmira
Muad, Anuar Mikdad
Author_xml – sequence: 1
  givenname: Norhasmira
  surname: Mohammad
  fullname: Mohammad, Norhasmira
  organization: Center for Oral and Maxillofacial Diagnostics and Medicine Studies, Faculty of Dentistry, Universiti Teknologi MARA
– sequence: 2
  givenname: Anuar Mikdad
  surname: Muad
  fullname: Muad, Anuar Mikdad
  organization: Center for Integrated Systems Engineering and Advanced Technologies (INTEGRA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM)
– sequence: 3
  givenname: Rohana
  surname: Ahmad
  fullname: Ahmad, Rohana
  organization: Center for Restorative Dentistry Studies, Faculty of Dentistry, Universiti Teknologi MARA
– sequence: 4
  givenname: Mohd Yusmiaidil Putera Mohd
  orcidid: 0000-0002-5676-3571
  surname: Yusof
  fullname: Yusof, Mohd Yusmiaidil Putera Mohd
  email: yusmiaidil@uitm.edu.my
  organization: Center for Oral and Maxillofacial Diagnostics and Medicine Studies, Faculty of Dentistry, Universiti Teknologi MARA, Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35395737$$D View this record in MEDLINE/PubMed
BookMark eNqNUstuFDEQHCEQecAPcECWuHCZ4OeMfUGKIh6RInGBs-W12xMHr73Ys4n2zofjzYa8hCLkw1g9VdXuqj7onqecoOveEHxEiBw-VEKlxD2mtMd4VLwfnnX7hI-kp4zT5_fue91BrRcYk1Ey_rLbY4IpMbJxv_t9bO26GLtB2SPjLk2y4JADWKEIpqSQJnQV5nM0Q6q5-JivkEkO_YRiKvK5IBtNrcFvtsgZoEEdXELMqyWk2URUZzNBRSEhF6awraxMysUsg0VhaabGe9W98CZWeH3zPex-fP70_eRrf_bty-nJ8VlvBzzOvbGDkiNbWLsAcCDAW28YFQulODPWj2phOAGKgRhBqSVYUOyVk3RkTjBgh93pTtdlc6FXpbUvG51N0NeFXCZtyhxsBO2YAKFGEHIBnHCrnBsolZ5JzLxSpGmxndY6rczmysR4K0iw3uajd_nolo--zkcPjfVxx1qtF0twtllUTHzwlId_UjjXU77UsvUUrfdh9_5GoORfa6izXoZqIUaTIK-rpgOXUnGiVIO-ewS9yOuSmsENJSgZBefsDjWZNnZIPre-diuqjwfV_B4GThvq6B-odhy0HNta-tDqDwhv7w96O-HfzWsAuQPYkmst4LVtyzGHvJ07xKdNpI-o_-X8TV61gdME5c6NJ1h_ACFtDks
CitedBy_id crossref_primary_10_4103_sjhs_sjhs_124_23
crossref_primary_10_3390_cancers14143554
crossref_primary_10_1186_s12903_024_03928_0
crossref_primary_10_61186_shefa_12_1_67
crossref_primary_10_7759_cureus_70363
crossref_primary_10_5624_isd_20240134
crossref_primary_10_1186_s12880_022_00946_8
crossref_primary_10_1016_j_jfo_2024_104242
crossref_primary_10_1016_j_rsase_2023_101031
crossref_primary_10_1002_cre2_70035
crossref_primary_10_1016_j_engappai_2024_108510
crossref_primary_10_1016_j_mam_2023_101222
crossref_primary_10_1177_17562848231155023
crossref_primary_10_3389_frai_2022_1049584
crossref_primary_10_1016_j_jdent_2025_105560
crossref_primary_10_1016_j_jdent_2023_104651
crossref_primary_10_3390_ijms232416014
crossref_primary_10_1016_j_forsciint_2024_112150
crossref_primary_10_1177_09544119231157137
crossref_primary_10_1016_j_oooo_2023_12_006
crossref_primary_10_3390_ijms232314814
crossref_primary_10_1080_00450618_2024_2324739
crossref_primary_10_1186_s12903_024_04160_6
crossref_primary_10_1007_s00170_023_12854_4
crossref_primary_10_14326_abe_13_134
Cites_doi 10.1259/dmfr.20180261
10.1111/1556-4029.14182
10.1109/34.57681
10.1016/j.engappai.2017.01.003
10.1016/j.archoralbio.2015.07.017
10.1080/03014467600001671
10.1007/s11042-019-08268-8
10.1088/1742-6596/1502/1/012046
10.1016/j.jflm.2013.03.015
10.1016/j.archoralbio.2018.11.026
10.1016/j.forsciint.2017.08.032
10.2200/S00133ED1V01Y200807IVM009
10.1259/dmfr/19478385
10.1007/s00414-020-02283-3
10.1016/j.fri.2021.200440
10.1016/j.oooo.2019.11.007
10.1016/j.forsciint.2018.10.013
10.1080/13682199.2020.1738741
10.4103/ijfo.ijfo_5_18
10.1007/s00414-019-02206-x
10.1088/1742-6596/1028/1/012102
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12880-022-00794-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database (Proquest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2342
EndPage 13
ExternalDocumentID oai_doaj_org_article_d35e597e58be414c9dd6228f3803f991
10.1186/s12880-022-00794-6
PMC8991580
A699876642
35395737
10_1186_s12880_022_00794_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
123
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c607t-ac69873bccbeede5efcfa325b9943acf79ba41e20e1a522c10520f9d8273d53e3
IEDL.DBID DOA
ISSN 1471-2342
IngestDate Tue Oct 14 18:09:02 EDT 2025
Sun Oct 26 03:35:07 EDT 2025
Tue Sep 30 16:44:23 EDT 2025
Thu Sep 04 19:28:40 EDT 2025
Tue Oct 07 05:36:32 EDT 2025
Mon Oct 20 22:03:44 EDT 2025
Mon Oct 20 16:19:57 EDT 2025
Thu Apr 03 07:00:11 EDT 2025
Thu Apr 24 23:09:11 EDT 2025
Wed Oct 01 04:30:33 EDT 2025
Sat Sep 06 07:26:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Premolar
Tooth segmentation
Digital dental panoramic radiographs
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-ac69873bccbeede5efcfa325b9943acf79ba41e20e1a522c10520f9d8273d53e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5676-3571
OpenAccessLink https://doaj.org/article/d35e597e58be414c9dd6228f3803f991
PMID 35395737
PQID 2652175443
PQPubID 44833
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_d35e597e58be414c9dd6228f3803f991
unpaywall_primary_10_1186_s12880_022_00794_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8991580
proquest_miscellaneous_2648894199
proquest_journals_2652175443
gale_infotracmisc_A699876642
gale_infotracacademiconefile_A699876642
pubmed_primary_35395737
crossref_citationtrail_10_1186_s12880_022_00794_6
crossref_primary_10_1186_s12880_022_00794_6
springer_journals_10_1186_s12880_022_00794_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-08
PublicationDateYYYYMMDD 2022-04-08
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical imaging
PublicationTitleAbbrev BMC Med Imaging
PublicationTitleAlternate BMC Med Imaging
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References P Payal (794_CR29) 2020; 68
A Demirjian (794_CR5) 1976; 3
R Merdietio Boedi (794_CR15) 2020; 65
GJ George (794_CR3) 2018; 3
G Trakinienė (794_CR24) 2019; 98
J De Tobel (794_CR14) 2017; 35
AM Muad (794_CR8) 2019; 8
TM Tuan (794_CR9) 2017; 59
AF Ismail (794_CR6) 2018; 1028
A Kumar (794_CR10) 2020; 79
J Jayaraman (794_CR22) 2013; 20
C Tafrount (794_CR18) 2019; 294
ST Acton (794_CR25) 2009; 4
AA Amini (794_CR26) 1990; 12
MYP Mohd Yusof (794_CR21) 2017; 280
A Franco (794_CR20) 2020; 134
SM Kahaki (794_CR17) 2019; 32
794_CR12
N Mohammad (794_CR23) 2021; 24
N Banar (794_CR28) 2020; 134
A Panchbhai (794_CR1) 2011; 40
MY Mohd Yusof (794_CR19) 2015; 60
N Mohammad (794_CR13) 2020; 2020
J-H Lee (794_CR16) 2019; 129
794_CR2
Y Fan (794_CR11) 2019; 48
794_CR7
794_CR4
794_CR27
References_xml – volume: 48
  start-page: 20180261
  issue: 2
  year: 2019
  ident: 794_CR11
  publication-title: Dentomaxillofacial Radiol
  doi: 10.1259/dmfr.20180261
– volume: 65
  start-page: 481
  issue: 2
  year: 2020
  ident: 794_CR15
  publication-title: J Forensic Sci
  doi: 10.1111/1556-4029.14182
– volume: 32
  start-page: 1
  year: 2019
  ident: 794_CR17
  publication-title: Neural Comput Appl
– ident: 794_CR12
– volume: 12
  start-page: 855
  issue: 9
  year: 1990
  ident: 794_CR26
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.57681
– volume: 59
  start-page: 186
  year: 2017
  ident: 794_CR9
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.01.003
– ident: 794_CR27
– volume: 60
  start-page: 1571
  issue: 10
  year: 2015
  ident: 794_CR19
  publication-title: Arch Oral Biol
  doi: 10.1016/j.archoralbio.2015.07.017
– volume: 3
  start-page: 411
  issue: 5
  year: 1976
  ident: 794_CR5
  publication-title: Ann Hum Biol
  doi: 10.1080/03014467600001671
– volume: 79
  start-page: 2745
  issue: 3
  year: 2020
  ident: 794_CR10
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08268-8
– volume: 2020
  start-page: 012046
  year: 2020
  ident: 794_CR13
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1502/1/012046
– volume: 35
  start-page: 42
  issue: 2
  year: 2017
  ident: 794_CR14
  publication-title: J Forensic Odontostomatol
– volume: 20
  start-page: 373
  issue: 5
  year: 2013
  ident: 794_CR22
  publication-title: J Forensic Leg Med
  doi: 10.1016/j.jflm.2013.03.015
– volume: 8
  start-page: 253
  issue: 1
  year: 2019
  ident: 794_CR8
  publication-title: Bull Electric Eng Inf
– ident: 794_CR7
– volume: 98
  start-page: 220
  year: 2019
  ident: 794_CR24
  publication-title: Arch Oral Biol
  doi: 10.1016/j.archoralbio.2018.11.026
– volume: 280
  start-page: 245-e1
  year: 2017
  ident: 794_CR21
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2017.08.032
– volume: 4
  start-page: 1
  issue: 1
  year: 2009
  ident: 794_CR25
  publication-title: Synth Lect Image Video Multimed Process
  doi: 10.2200/S00133ED1V01Y200807IVM009
– volume: 40
  start-page: 199
  issue: 4
  year: 2011
  ident: 794_CR1
  publication-title: Dentomaxillofacial Radiology
  doi: 10.1259/dmfr/19478385
– volume: 134
  start-page: 1
  year: 2020
  ident: 794_CR28
  publication-title: Int J Legal Med
  doi: 10.1007/s00414-020-02283-3
– volume: 24
  start-page: 200440
  year: 2021
  ident: 794_CR23
  publication-title: Forensic Imaging
  doi: 10.1016/j.fri.2021.200440
– volume: 129
  start-page: 635
  issue: 6
  year: 2019
  ident: 794_CR16
  publication-title: Oral Surg Oral Med Oral Pathol Oral Radiol
  doi: 10.1016/j.oooo.2019.11.007
– volume: 294
  start-page: 218-e1
  year: 2019
  ident: 794_CR18
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2018.10.013
– volume: 68
  start-page: 114
  issue: 2
  year: 2020
  ident: 794_CR29
  publication-title: Imaging Sci J
  doi: 10.1080/13682199.2020.1738741
– volume: 3
  start-page: 36
  issue: 1
  year: 2018
  ident: 794_CR3
  publication-title: Int J Forensic Odontol
  doi: 10.4103/ijfo.ijfo_5_18
– ident: 794_CR2
– ident: 794_CR4
– volume: 134
  start-page: 347
  issue: 1
  year: 2020
  ident: 794_CR20
  publication-title: Int J Legal Med
  doi: 10.1007/s00414-019-02206-x
– volume: 1028
  start-page: 012102
  year: 2018
  ident: 794_CR6
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1028/1/012102
SSID ssj0017834
Score 2.399796
Snippet Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular...
This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular premolars...
Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the mandibular...
Abstract Background This study aims to propose the combinations of image processing and machine learning model to segment the maturity development of the...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 66
SubjectTerms Accuracy
Age
Algorithms
Artificial intelligence
Artificial neural networks
Automation
Background noise
Bicuspid - growth & development
Clustering
Deep Learning
Developmental stages
Digital dental panoramic radiographs
Digital imaging
Dynamic programming
Equipment and supplies
Forensic science
Humans
Image classification
Image enhancement
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging
Machine learning
Mandible
Medical imaging equipment
Medicine
Medicine & Public Health
Methods
Model accuracy
Morphology
Neural networks
Neural Networks, Computer
Odontology
Premolar
Premolars
Radiology
Teeth
Tooth segmentation
Watersheds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_nHvjxIH5bPSWC4INXrk2aNHkQ2ZM7DsFFxIN7C2mSrsW9dt0Pjnv3D3eSbbtXhcXXZkKbzmQ-MpPfIPQ2dVxqK9KYpZpAgMJMXOSEx7IkxjrGcqJDtcWEn51nny_YxR6adHdhfFllpxODoraN8WfkR4SDoQlobR_nv2LfNcpnV7sWGrptrWA_BIixW2ifeGSsEdo_Ppl8_dbnFXxbie7qjOBHS9DOIol9RTvYSpnFfGCeAor_v7r6hrH6u5Cyz6beQ3fW9VxfX-nZ7IbBOn2A7reeJh5vROMh2nP1I3T7S5tLf4x-j41ZL7S5xk2Ju1IAbJ2b47aVxBT7U1rsa9ybRTlrrrCuLf7pFnqJwdfFxnveVbgoBUQOSO22BAleDY7n1C1xVWNbTX1zEgyqB0TusjK4ugztkZ6g89OT75_O4rYnQ2x4kq9ibbgUOS2MKcC6OuZKU2pKWCFlRrUpc1noLHUkcakG186kvs6mlFaAm2QZdfQpGtVN7Z4j7JEKuSCOA6MyYvOCF5xrcFBMkTta2gilHSuUaQHLfd-MmQqBi-Bqwz4F7FOBfYpH6H0_Z76B69hJfew53FN6qO3woFlMVbtzlaXMQdTlmChclmZGWssJESUVCS3Bu47QOy8fyisE-Dyj23sNsEgPraXGHCLanEOcF6GDASVsZDMc7iRMtYpkqbZiH6E3_bCf6YvjatesPQ1oYZmlUkbo2UYg-yVR5hOxNI9QPhDVwZqHI3X1I8CMQySeMpFE6LAT6u1n7fqnh73g_wcLXuxe9Et0l4TdmcWJOECj1WLtXoEXuCpet1v7D-aQWgg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKkXgcEG8CBRkJiQNNSezYsQ8ILYiqQionKvVmObazRGyTJbursnd-OGNvkm2gqjhwXY-1ceYbzzfxeAahV6njUluRxizVBAIUZuIiJzyWJTHWMZYTHbItvvCjk-zzKTvdQX27o-4FLi4N7Xw_qZN2dvDzx_o9GPy7YPCCv13AHiuS2Oelg8eTWcyvoevgqaRv5XCcbU8VfFOJ_uLMpfNGzinU8P97p77gqv5MoxzOUm-jm6t6rtfneja74K4O76I7Hc_Ekw0w7qEdV99HN467k_QH6NfEmFWrzRo3Je4TAbB1bo67RhJT7L_RYp_h3rTlrDnHurb4u2v1AgPTxcbz7ipckwIhB6J2m4AEfw20c-oWuKqxraa-NQmGjQcAd1YZXJ2F5kgP0cnhp68fj-KuI0NseJIvY224FDktjCnAtzrmSlNqSlghZUa1KXNZ6Cx1JHGpBmJnUp9lU0orgCRZRh19hHbrpnZPEPZ1CrkgjkPMmRGbF7zgXAM9MUXuaGkjlPaqUKYrV-67ZsxUCFsEVxv1KVCfCupTPEJvhjnzTbGOK6U_eA0Pkr7Qdvihaaeqs1tlKXMQczkmCpelmZHWckJESUVCS-DWEXrt8aE8QOHxjO5uNcAifWEtNeEQz-YcorwI7Y0kwYzNeLhHmOqtQBEO7CqUKIzQy2HYz_SpcbVrVl4G9mCZpVJG6PEGkMOSKPPHsDSPUD6C6mjN45G6-haKjEMcnjKRRGi_B_X2sa56p_sD8P9BBU__hwqeoVsk2HAWJ2IP7S7blXsOTHFZvAjm_xunGmN7
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgcEG8CBRkJiQONiO3YsY9LRVUhwYlKvVmO7ZSIbXa1D1W988MZe7PpBlAF1_V4N955fZMZzwC8pUFq6xXNBbUMAxTh8rpiMtcNcz4IUTGbqi2-yuOT8vOpOO3b5MS7MLv5e6rkhyXaT1XkseYcvZkuc3kTbqGTkikxKw-HjEEcGLG9FPPXfSPHk_rz_2mFd9zQ7yWSQ570HtxZd3N7eWGn0x1XdPQA7vcYkkw2TH8IN0L3CG5_6bPkj-HnxLn1wrpLMmvINslPfAhz0g-JOCPx_SuJ1euzRTOdXRDbefIjLOySIIolLmLqNl2BQqKApP6quAh_GiHlWViStiO-PYtjRwgaFRSm89aR9jwNPnoCJ0efvh0e5_20hdzJolrl1kmtKl47V6PfDCI0rrGciVrrklvXVLq2JQ2sCNQiaHM0VtA02isEQF7wwJ_CXjfrwnMgsQehVCxIjCdL5qta1lJahB6urgJvfAZ0ywrj-lbkcSLG1KSQREmzYZ9B9pnEPiMzeD_smW8acVxL_TFyeKCMTbTTByhbptdJ47kIGE8FoepQ0tJp7yVjquGq4A3i5gzeRfkwUdXx8ZztbyzgIWPTLDORGKtWEiO4DPZHlKiibry8lTDTm4ilYRKRU2o_mMGbYTnujGVvXZitIw3aV11SrTN4thHI4UhcxBQrrzKoRqI6OvN4pWu_pwbiGGNToYoMDrZCffVY1_2nB4Pg_wMLXvzft7-Euyxpa5kXah_2Vot1eIV4b1W_Tor-C75_TGY
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwELagK3E8cB-BBRkJiQc23cSOHeexIFYrJFY8UGl5inylW7VNqh5aLc_8cMbOsc2CViDxVtXjtjOZGX9Tz4HQ29jyTBoRhyyWBAIUpkOVEh5mBdHGMpYS6bMtTvjxOPl8yk6b8mhXC6MW2l0qL_yInuFuCfrc-214oWeHS1PU5i744Ro8rIhCl5UO512WhPwm2uMMkPkA7Y1Pvo6--wKjNA4JTUhbN_PHjb2zybfw_91R75xUV7Mou6vUu-j2tlzKi3M5n--cVkf30aLls05SmQ23GzXUP660gPxfgniA7jWwFo9qPXyIbtjyEbr1pbm4f4x-jrTewmdd4KrAbd4BNtYucTO3YoLdX8LYJdRXq2JenWNZGjyzK7nGAKyxdjB_6quygMgCqbnMd4KvBpQ7sWs8LbGZTtwkFAx-DvR7MdW44e8JGh99-vbxOGwGQISaR-kmlJpnIqVKawVHuWW20IWkhKksS6jURZopmcSWRDaWgCN17JJ6iswIwGSGUUufokFZlfY5wq4tIhfEcghxE2JSxRXnEtCQVqmlhQlQ3D76XDfd0d2QjnnuoyTB81q8OYg39-LNeYDed3uWdW-Qa6k_OI3qKF1fb_9GtZrkjZvIDWUWQjzLhLJJnOjMGE6IKKiIaAFQPkDvnD7mzvs4DZBNEQUw6fp45SMO4XPKIagM0H6PEryG7i-3Gp03XmudEw5gzndEDNCbbtntdJl4pa22jgZcfpbEWRagZ7UBdCxR5m59aRqgtGcaPZ77K-X0zPc0h7A_ZiIK0EFrRJc_6zqZHnSG9heP4MW_kb9Ed4i3piSMxD4abFZb-wog6Ea9bjzLL7eTf3c
  priority: 102
  providerName: Unpaywall
Title Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental stages in digital panoramic imaging
URI https://link.springer.com/article/10.1186/s12880-022-00794-6
https://www.ncbi.nlm.nih.gov/pubmed/35395737
https://www.proquest.com/docview/2652175443
https://www.proquest.com/docview/2648894199
https://pubmed.ncbi.nlm.nih.gov/PMC8991580
https://bmcmedimaging.biomedcentral.com/track/pdf/10.1186/s12880-022-00794-6
https://doaj.org/article/d35e597e58be414c9dd6228f3803f991
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: KQ8
  dateStart: 20011101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: M48
  dateStart: 20011101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017834
  issn: 1471-2342
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbB_t4GPvq5q0rGgz2sJrasvX1mIRmZdBQygLZXowsyZlZ6oR8UPq-P3wn2U7jDbo97EUQ64wt30_3kTvdIfQ-tkwqI-KQxoqAg0J1mHPCQlkQbSylnCifbTFip-P084ROdlp9uZywujxw_eGOTUItGL2WitymcaqlMYwQUSQiSgrpz62TSMjWmWriB659RHtERrDjFUhhEYUucx10okxD1lFDvlr_nzJ5Ryn9njC5jZo-Qg821UJdX6nZbEcxDZ-gx41FiXv1Sp6iO7Z6hu6fNTHz5-hnT-vNUulrPC9wG_LHxtoFblpGTLH7Nxa7XPb5spjNr7CqDP5hl2qFwabF2lnYpT8QBUQWSM1NqhE8GgzMqV3hssKmnLomJBhEDEDrstS4vPRtkF6g8fDky-A0bHovhJpFfB0qzaTgSa51DlrUUlvoQiWE5lKmidIFl7lKY0siGysw4XTs8mkKaQSYQ4YmNtlHe9W8sq8QdhUJmSCWgXeZEsNzljOmwBDRObdJYQIUt6zIdFOY3PXHmGXeQREsq9mXAfsyz76MBejj9p5FXZbjVuq-4_CW0pXU9hcAaFkDtOxvQAvQB4ePzG18eD2tmvMLsEhXQivrMfBcOQN_LkAHHUrYsLo73SIsawTGKiMM7ChfjDBA77bT7k6XBFfZ-cbRgLSVaSxlgF7WgNwuKaEu4JrwAPEOVDtr7s5U5XdfThw87piKKEBHLahvXuu2b3q0Bf4_sOD1_2DBG_SQ-D2chpE4QHvr5ca-BZtwnR-iu3zCYRTDT4foXv9kdH4BvwZscOgFA4xnqYDxov8N5sej897XX_csY3Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgcEG8CBYwE4kCjJnbsJAeElke1pY9TK-3NdWxnidgmyz602ju_h9_I2JtkG5BWXHqNJ5t4Z_zNfPF4BqE3oeGp1Enos1ASIChM-VlMuJ_mRGnDWEyky7Y45f3z6NuADbbQ7-YsjE2rbDDRAbWulP1Gvk84OBpXre3j-Kdvu0bZ3dWmhcbKLI7McgGUbfrh8Avo9y0hB1_PPvf9uquAr3gQz3ypOPBsmimVgX8wzOQql5SwLE0jKlUep5mMQkMCE0oITlRoM0XyVCfg6DWjhsLv3kA3IwpYAusnHrQEL7RNK5qDOQnfnwL2J4Fv8-XBE6eRzzvOz_UI-NcTXHGFf6dptnu1d9DOvBzL5UKORlfc4cE9dLeOY3FvZXj30ZYpH6BbJ_VO_UP0q6fUfCLVElc5bhINsDZmjOtGFUNsvwFjm0FfTfJRtcCy1PiHmcgphkgaKxvXF-4YFggZENXrBCd4NIS1QzPFRYl1MbStTzAAGxj0ZaFwcemaLz1C59eim8dou6xK8xRhWweRJ8Rw4LQR0XHGM84lhD8qiw3NtYfCRhVC1eXQbVeOkXC0KOFipT4B6hNOfYJ76H17z3hVDGSj9Cer4VbSFvJ2F6rJUNS4IDRlBjidYUlmojBSqdackCSnSUBziN099M7ah7BwA6-nZH1qAiZpC3eJHge-HHNgkR7a7UgCTKjucGNhooapqVgvKg-9boftnTb1rjTV3MoAxqdRmKYeerIyyHZKlNltXhp7KO6YamfO3ZGy-O6KmAPPD1kSeGivMer1a236T_daw_8PFTzbPOlXaKd_dnIsjg9Pj56j28St1MgPkl20PZvMzQuIN2fZS7fIMbq4blT5A7hzke8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAMeEF-DwAAjIfHAoiVO7NiPpVCNr4kHJu3NcmynRHRJlbaa9s4fztn5WANogtf63Ma9893vcl8IvYotE8rwOKSxIuCgUB3mGWGhKIg2ltKMKJ9tccyOTtKPp_R0q4rfZ7v3Icm2psF1aarWh0tTtFecs8MVaFUehS4THWycSEN2Hd1Iwbq5GQZTNh3iCG6MRF8q89d9I3Pku_b_qZu3jNPviZND9PQ2urmpluriXC0WWwZqdhfd6ZAlnrSicA9ds9V9tPuli50_QD8nWm8apS9wXeA-9I-NtUvcjY6YY_dWFruc9ropFvU5VpXBP2yjVhiwLdYOaZe-MAqILJCay5Qj-GkAmnO7wmWFTTl3w0gwqBoQsbNS4_LMj0N6iE5m779Nj8JuBkOoWZStQ6WZ4FmSa52DNbXUFrpQCaG5EGmidJGJXKWxJZGNFUA5Hbu8mkIYDrDI0MQme2inqiv7GGHXmZBxYhl4mSkxWc5yxhQAEp1nNilMgOKeFVJ3DcrdnIyF9I4KZ7JlnwT2Sc8-yQL0ZtizbNtzXEn91nF4oHSttf0HdTOX3U2VJqEWvCxLeW7TONXCGEYILxIeJQWg6QC9dvIhnQKAx9Oqq2OAQ7pWWnLCwIPNGPh1AdofUcLF1ePlXsJkpzhWkjDAU74pYYBeDstup0uGq2y9cTSgdUUaCxGgR61ADkdKqAu8JlmAspGojs48XqnK776tOHjeMeVRgA56ob58rKv-04NB8P-BBU_-79tfoN2v72by84fjT0_RLeIvbhpGfB_trJuNfQaAcJ0_93f-F6--V5w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwELagK3E8cB-BBRkJiQc23cSOHeexIFYrJFY8UGl5inylW7VNqh5aLc_8cMbOsc2CViDxVtXjtjOZGX9Tz4HQ29jyTBoRhyyWBAIUpkOVEh5mBdHGMpYS6bMtTvjxOPl8yk6b8mhXC6MW2l0qL_yInuFuCfrc-214oWeHS1PU5i744Ro8rIhCl5UO512WhPwm2uMMkPkA7Y1Pvo6--wKjNA4JTUhbN_PHjb2zybfw_91R75xUV7Mou6vUu-j2tlzKi3M5n--cVkf30aLls05SmQ23GzXUP660gPxfgniA7jWwFo9qPXyIbtjyEbr1pbm4f4x-jrTewmdd4KrAbd4BNtYucTO3YoLdX8LYJdRXq2JenWNZGjyzK7nGAKyxdjB_6quygMgCqbnMd4KvBpQ7sWs8LbGZTtwkFAx-DvR7MdW44e8JGh99-vbxOGwGQISaR-kmlJpnIqVKawVHuWW20IWkhKksS6jURZopmcSWRDaWgCN17JJ6iswIwGSGUUufokFZlfY5wq4tIhfEcghxE2JSxRXnEtCQVqmlhQlQ3D76XDfd0d2QjnnuoyTB81q8OYg39-LNeYDed3uWdW-Qa6k_OI3qKF1fb_9GtZrkjZvIDWUWQjzLhLJJnOjMGE6IKKiIaAFQPkDvnD7mzvs4DZBNEQUw6fp45SMO4XPKIagM0H6PEryG7i-3Gp03XmudEw5gzndEDNCbbtntdJl4pa22jgZcfpbEWRagZ7UBdCxR5m59aRqgtGcaPZ77K-X0zPc0h7A_ZiIK0EFrRJc_6zqZHnSG9heP4MW_kb9Ed4i3piSMxD4abFZb-wog6Ea9bjzLL7eTf3c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+advanced+deep+learning+with+tensorflow+and+keras+for+classifying+teeth+developmental+stages+in+digital+panoramic+imaging&rft.jtitle=BMC+medical+imaging&rft.au=Norhasmira+Mohammad&rft.au=Anuar+Mikdad+Muad&rft.au=Rohana+Ahmad&rft.au=Mohd+Yusmiaidil+Putera+Mohd+Yusof&rft.date=2022-04-08&rft.pub=BMC&rft.eissn=1471-2342&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs12880-022-00794-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d35e597e58be414c9dd6228f3803f991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2342&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2342&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2342&client=summon