CERC: an interactive content extraction, recognition, and construction tool for clinical and biomedical text

Background Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visuali...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 20; no. Suppl 14; pp. 306 - 14
Main Authors Lee, Eva K., Uppal, Karan
Format Journal Article
LanguageEnglish
Published London BioMed Central 15.12.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-020-01330-8

Cover

Abstract Background Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that combines machine learning and visualization techniques with domain knowledge for highlighting and extracting salient information from clinical and biomedical text. Methods A novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extractive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document frequency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT articles and 30 clinical case reports using the ROUGE toolkit. Results The random forests model classified sentences as “good” or “bad” with 87.5% accuracy on the test set. Summarization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when compared to methods based on single indicators such as term frequency distribution, position, eigenvector centrality (LexRank), and random selection, p  < 0.01. The automatic language translator and the customizable information extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision making for direct patient care. Conclusions We have developed a web-based summarization and visualization tool, CERC ( https://newton.isye.gatech.edu/CERC1/ ), for extracting salient information from clinical and biomedical text. The system ranks sentences by relevance and includes features that can facilitate early detection of medical risks in a clinical setting. The interactive interface allows users to filter content and edit/save summaries. The evaluation results on two test corpuses show that the newly developed MINTS algorithm outperforms methods based on single characteristics of importance.
AbstractList Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that combines machine learning and visualization techniques with domain knowledge for highlighting and extracting salient information from clinical and biomedical text. A novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extractive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document frequency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT articles and 30 clinical case reports using the ROUGE toolkit. The random forests model classified sentences as "good" or "bad" with 87.5% accuracy on the test set. Summarization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when compared to methods based on single indicators such as term frequency distribution, position, eigenvector centrality (LexRank), and random selection, p < 0.01. The automatic language translator and the customizable information extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision making for direct patient care. We have developed a web-based summarization and visualization tool, CERC (https://newton.isye.gatech.edu/CERC1/), for extracting salient information from clinical and biomedical text. The system ranks sentences by relevance and includes features that can facilitate early detection of medical risks in a clinical setting. The interactive interface allows users to filter content and edit/save summaries. The evaluation results on two test corpuses show that the newly developed MINTS algorithm outperforms methods based on single characteristics of importance.
Abstract Background Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that combines machine learning and visualization techniques with domain knowledge for highlighting and extracting salient information from clinical and biomedical text. Methods A novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extractive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document frequency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT articles and 30 clinical case reports using the ROUGE toolkit. Results The random forests model classified sentences as “good” or “bad” with 87.5% accuracy on the test set. Summarization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when compared to methods based on single indicators such as term frequency distribution, position, eigenvector centrality (LexRank), and random selection, p < 0.01. The automatic language translator and the customizable information extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision making for direct patient care. Conclusions We have developed a web-based summarization and visualization tool, CERC ( https://newton.isye.gatech.edu/CERC1/ ), for extracting salient information from clinical and biomedical text. The system ranks sentences by relevance and includes features that can facilitate early detection of medical risks in a clinical setting. The interactive interface allows users to filter content and edit/save summaries. The evaluation results on two test corpuses show that the newly developed MINTS algorithm outperforms methods based on single characteristics of importance.
Background Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that combines machine learning and visualization techniques with domain knowledge for highlighting and extracting salient information from clinical and biomedical text. Methods A novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extractive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document frequency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT articles and 30 clinical case reports using the ROUGE toolkit. Results The random forests model classified sentences as “good” or “bad” with 87.5% accuracy on the test set. Summarization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when compared to methods based on single indicators such as term frequency distribution, position, eigenvector centrality (LexRank), and random selection, p  < 0.01. The automatic language translator and the customizable information extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision making for direct patient care. Conclusions We have developed a web-based summarization and visualization tool, CERC ( https://newton.isye.gatech.edu/CERC1/ ), for extracting salient information from clinical and biomedical text. The system ranks sentences by relevance and includes features that can facilitate early detection of medical risks in a clinical setting. The interactive interface allows users to filter content and edit/save summaries. The evaluation results on two test corpuses show that the newly developed MINTS algorithm outperforms methods based on single characteristics of importance.
Background Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that combines machine learning and visualization techniques with domain knowledge for highlighting and extracting salient information from clinical and biomedical text. Methods A novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extractive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document frequency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT articles and 30 clinical case reports using the ROUGE toolkit. Results The random forests model classified sentences as "good" or "bad" with 87.5% accuracy on the test set. Summarization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when compared to methods based on single indicators such as term frequency distribution, position, eigenvector centrality (LexRank), and random selection, p < 0.01. The automatic language translator and the customizable information extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision making for direct patient care. Conclusions We have developed a web-based summarization and visualization tool, CERC ( Keywords: Automatic summarization, Content extraction and recognition, Extractive summarization, Indicative summarization, Sentence extraction and ranking, Extracting salient information, Machine learning, Multiple indicators, Multi indicator text summarization algorithm, Automatic translation, Clinical decision support
Background Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that combines machine learning and visualization techniques with domain knowledge for highlighting and extracting salient information from clinical and biomedical text. Methods A novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extractive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document frequency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT articles and 30 clinical case reports using the ROUGE toolkit. Results The random forests model classified sentences as “good” or “bad” with 87.5% accuracy on the test set. Summarization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when compared to methods based on single indicators such as term frequency distribution, position, eigenvector centrality (LexRank), and random selection, p < 0.01. The automatic language translator and the customizable information extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision making for direct patient care. Conclusions We have developed a web-based summarization and visualization tool, CERC (https://newton.isye.gatech.edu/CERC1/), for extracting salient information from clinical and biomedical text. The system ranks sentences by relevance and includes features that can facilitate early detection of medical risks in a clinical setting. The interactive interface allows users to filter content and edit/save summaries. The evaluation results on two test corpuses show that the newly developed MINTS algorithm outperforms methods based on single characteristics of importance.
Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that combines machine learning and visualization techniques with domain knowledge for highlighting and extracting salient information from clinical and biomedical text.BACKGROUNDAutomated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that combines machine learning and visualization techniques with domain knowledge for highlighting and extracting salient information from clinical and biomedical text.A novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extractive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document frequency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT articles and 30 clinical case reports using the ROUGE toolkit.METHODSA novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extractive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document frequency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT articles and 30 clinical case reports using the ROUGE toolkit.The random forests model classified sentences as "good" or "bad" with 87.5% accuracy on the test set. Summarization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when compared to methods based on single indicators such as term frequency distribution, position, eigenvector centrality (LexRank), and random selection, p < 0.01. The automatic language translator and the customizable information extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision making for direct patient care.RESULTSThe random forests model classified sentences as "good" or "bad" with 87.5% accuracy on the test set. Summarization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when compared to methods based on single indicators such as term frequency distribution, position, eigenvector centrality (LexRank), and random selection, p < 0.01. The automatic language translator and the customizable information extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision making for direct patient care.We have developed a web-based summarization and visualization tool, CERC ( https://newton.isye.gatech.edu/CERC1/ ), for extracting salient information from clinical and biomedical text. The system ranks sentences by relevance and includes features that can facilitate early detection of medical risks in a clinical setting. The interactive interface allows users to filter content and edit/save summaries. The evaluation results on two test corpuses show that the newly developed MINTS algorithm outperforms methods based on single characteristics of importance.CONCLUSIONSWe have developed a web-based summarization and visualization tool, CERC ( https://newton.isye.gatech.edu/CERC1/ ), for extracting salient information from clinical and biomedical text. The system ranks sentences by relevance and includes features that can facilitate early detection of medical risks in a clinical setting. The interactive interface allows users to filter content and edit/save summaries. The evaluation results on two test corpuses show that the newly developed MINTS algorithm outperforms methods based on single characteristics of importance.
Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine. Most existing summarization methods are based on single indicators of relevance, offer limited capabilities for information visualization, and do not account for user specific interests. In this work, we develop an interactive content extraction, recognition, and construction system (CERC) that combines machine learning and visualization techniques with domain knowledge for highlighting and extracting salient information from clinical and biomedical text. A novel sentence-ranking framework multi indicator text summarization, MINTS, is developed for extractive summarization. MINTS uses random forests and multiple indicators of importance for relevance evaluation and ranking of sentences. Indicative summarization is performed using weighted term frequency-inverse document frequency scores of over-represented domain-specific terms. A controlled vocabulary dictionary generated using MeSH, SNOMED-CT, and PubTator is used for determining relevant terms. 35 full-text CRAFT articles were used as the training set. The performance of the MINTS algorithm is evaluated on a test set consisting of the remaining 32 full-text CRAFT articles and 30 clinical case reports using the ROUGE toolkit. The random forests model classified sentences as "good" or "bad" with 87.5% accuracy on the test set. Summarization results from the MINTS algorithm achieved higher ROUGE-1, ROUGE-2, and ROUGE-SU4 scores when compared to methods based on single indicators such as term frequency distribution, position, eigenvector centrality (LexRank), and random selection, p < 0.01. The automatic language translator and the customizable information extraction and pre-processing pipeline for EHR demonstrate that CERC can readily be incorporated within clinical decision support systems to improve quality of care and assist in data-driven and evidence-based informed decision making for direct patient care. We have developed a web-based summarization and visualization tool, CERC ( https://newton.isye.gatech.edu/CERC1/ ), for extracting salient information from clinical and biomedical text. The system ranks sentences by relevance and includes features that can facilitate early detection of medical risks in a clinical setting. The interactive interface allows users to filter content and edit/save summaries. The evaluation results on two test corpuses show that the newly developed MINTS algorithm outperforms methods based on single characteristics of importance.
ArticleNumber 306
Audience Academic
Author Lee, Eva K.
Uppal, Karan
Author_xml – sequence: 1
  givenname: Eva K.
  surname: Lee
  fullname: Lee, Eva K.
  email: evalee-gatech@pm.me
  organization: Center for Operations Research in Medicine and HealthCare, School of Industrial and Systems Engineering, School of Biological Sciences, Georgia Institute of Technology
– sequence: 2
  givenname: Karan
  surname: Uppal
  fullname: Uppal, Karan
  organization: School of Medicine, Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33323109$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wB1igSGxYkGLHiR8sKlWjApUqISFYW45jB4889mA7hf57nGQYOhWqUBbJvf7uiX2OT4sj550qipcQnENI8bsIawZhBWpQAYgQqOiT4gQ2pK4wa8jRve_j4jTGNQCQUNQ-K44RQjWCgJ0UdnX1ZfW-FK40LqkgZDK3qpQ-Fy6V6leaW969LYOSfnBmKYTrJyimMM7LZfLeltqHUlrjjBR2RjrjN6qfy5S1nhdPtbBRvdi9z4pvH66-rj5VN58_Xq8ubyqJAUkVYa1mHWASa4W0YAp2FFPcQKG7ptU1kpqwXvRE97hlFFFJMdaQNgJJSihEZ8X1ott7sebbYDYi3HEvDJ8bPgxchGSkVbzLP6oVEJChvqllz0hWwC2UHQAaAJm10KI1uq24-yms3QtCwKcc-JIDzznwOQdO89TFMrUdu-yAzGYGYQ-2crjizHc--FtOCGJN22SBNzuB4H-MKia-MVEqa4VTfoy8bgjAqK0ByujrB-jaj8FlgycKQkRYxvbUIPKxjdN-inYS5Ze4BS3Irk_7Pv8HlZ9ebUwOXGmT-wcDr-4fdH_CPzcsA3QBZPAxBqW5NElMdyYrG_u4ifWD0f9yfpdXzLAbVPjrxiNTvwHR6gNa
CitedBy_id crossref_primary_10_1016_j_neucom_2024_128280
crossref_primary_10_3390_su15054216
crossref_primary_10_1177_20552076241256732
crossref_primary_10_2196_44639
crossref_primary_10_3390_info13080393
crossref_primary_10_2196_60164
crossref_primary_10_1093_jamia_ocab143
crossref_primary_10_55708_js0107002
crossref_primary_10_1093_bib_bbac497
crossref_primary_10_1109_TVCG_2022_3219762
Cites_doi 10.3322/caac.21492
10.1001/archpedi.156.11.1108
10.1136/amiajnl-2012-001347
10.1111/j.1464-410X.2008.08116.x
10.1093/bioinformatics/btr223
10.1016/j.ijmedinf.2013.08.002
10.2105/AJPH.80.Suppl.11
10.3322/caac.21551
10.1136/amiajnl-2014-002945
10.1007/s11606-008-0875-7
10.1109/BIBM47256.2019.8982971
10.1542/peds.111.1.6
10.1613/jair.1523
10.1161/01.CIR.97.18.1837
10.1016/j.jbi.2008.10.002
10.1111/j.1475-6773.2006.00629.x
10.1108/eb046814
10.1016/j.jbi.2011.03.008
10.1186/1471-2105-14-208
10.2307/1932409.JSTOR1932409
10.1007/s11606-007-0311-4
10.1147/rd.22.0159
10.1186/1471-2105-14-71
10.1177/1077558705275416
10.1001/jama.2011.619
10.1136/bmj.c7126
10.1186/1471-2105-13-161
10.1093/nar/gkt44
10.1136/amiajnl-2011-000375
10.1007/978-1-4614-3223-4_3
10.1023/A:1010933404324
10.1016/j.ijmedinf.2011.02.008
10.1177/0165551508095781
10.1197/jamia.M1201
10.1197/jamia.M3028
10.1093/bib/6.1.57
10.1001/jamainternmed.2014.368.Review
10.1136/amiajnl-2013-001889
10.5220/0008071303100321
10.1023/A:1020125425820
10.1109/2945.981847
10.1007/978-3-319-51469-7_1
10.1046/j.1525-1497.2001.016007468.x
10.3115/1073445.1073465
10.1093/jamia/ocv032
10.1007/s10552-007-9083-8
10.3115/1073083.1073135
10.1007/s11606-007-0361-7
10.1145/1183614.1183701
10.1097/00005650-200201000-00007
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12911-020-01330-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



Publicly Available Content Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 14
ExternalDocumentID oai_doaj_org_article_b9b02e0a193d42cd97878651cb00f00c
10.1186/s12911-020-01330-8
PMC7739454
A650507958
33323109
10_1186_s12911_020_01330_8
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c607t-795f9b09c6fe3fa9e1b868641afb45f23cf79dad7fd659838c866f184a3c87813
IEDL.DBID M48
ISSN 1472-6947
IngestDate Fri Oct 03 12:51:36 EDT 2025
Sun Oct 26 03:29:36 EDT 2025
Tue Sep 30 16:59:07 EDT 2025
Thu Sep 04 20:03:20 EDT 2025
Tue Oct 07 05:31:44 EDT 2025
Mon Oct 20 22:31:07 EDT 2025
Mon Oct 20 16:45:57 EDT 2025
Thu Apr 03 06:57:33 EDT 2025
Wed Oct 01 04:44:17 EDT 2025
Thu Apr 24 23:07:19 EDT 2025
Sat Sep 06 07:31:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 14
Keywords Indicative summarization
Multiple indicators
Multi indicator text summarization algorithm
Automatic translation
Machine learning
Automatic summarization
Sentence extraction and ranking
Clinical decision support
Extractive summarization
Content extraction and recognition
Extracting salient information
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-795f9b09c6fe3fa9e1b868641afb45f23cf79dad7fd659838c866f184a3c87813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12911-020-01330-8
PMID 33323109
PQID 2471137920
PQPubID 42572
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b9b02e0a193d42cd97878651cb00f00c
unpaywall_primary_10_1186_s12911_020_01330_8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7739454
proquest_miscellaneous_2470635203
proquest_journals_2471137920
gale_infotracmisc_A650507958
gale_infotracacademiconefile_A650507958
pubmed_primary_33323109
crossref_citationtrail_10_1186_s12911_020_01330_8
crossref_primary_10_1186_s12911_020_01330_8
springer_journals_10_1186_s12911_020_01330_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-15
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 1330_CR18
D Reichert (1330_CR7) 2010; 2010
JR Herskovic (1330_CR23) 2011; 80
DA Keim (1330_CR26) 2002; 8
X Wang (1330_CR11) 2009; 16
MF Porter (1330_CR30) 1980; 14
H Salmasian (1330_CR12) 2013; 20
EK Lee (1330_CR40) 2011; 2011
JS Hirsch (1330_CR28) 2015; 22
G Duftschmid (1330_CR8) 2013; 82
PW Wilson (1330_CR9) 1998; 97
AJ Jimeno-Yepes (1330_CR22) 2013; 14
EA Jacobs (1330_CR52) 2001; 16
M Gadon (1330_CR56) 2007; 22
M Bada (1330_CR29) 2012; 9
JM Solis (1330_CR49) 1990; 80
HJ Murff (1330_CR10) 2003; 10
LR Dice (1330_CR46) 1945; 26
F Bray (1330_CR59) 2018; 68
F Davidoff (1330_CR1) 2011; 305
MJ Feldman (1330_CR13) 2012; 19
HP Luhn (1330_CR35) 1958; 2
G Del Fiol (1330_CR6) 2014; 174
1330_CR21
LS Karliner (1330_CR50) 2007; 42
1330_CR63
G Erkan (1330_CR37) 2004; 22
1330_CR64
K Roberts (1330_CR15) 2012; 2012
RL Siegel (1330_CR60) 2019; 69
MK Ng (1330_CR62) 2009; 103
1330_CR38
1330_CR39
J Bernstein (1330_CR54) 2002; 4
C Wei (1330_CR34) 2013; 41
NC Facione (1330_CR47) 1999; 26
S Bhattacharya (1330_CR19) 2011; 27
L Breiman (1330_CR36) 2001; 45
K Fiscella (1330_CR48) 2002; 40
JC Feblowitz (1330_CR27) 2011; 44
R Etzioni (1330_CR61) 2008; 19
A Nenkova (1330_CR17) 2012
FB Rogers (1330_CR32) 1963; 51
1330_CR33
(1330_CR14) 1999
1330_CR31
G Flores (1330_CR57) 2005; 62
SR Jonnalagadda (1330_CR24) 2013; 20
R Smith (1330_CR3) 2010; 341
M Fiszman (1330_CR20) 2009; 42
LC Diamond (1330_CR55) 2009; 24
AM Cohen (1330_CR4) 2005; 6
T Sørensen (1330_CR45) 1948; 5
LC Hampers (1330_CR53) 2002; 156
G Flores (1330_CR58) 2003; 111
1330_CR43
1330_CR44
1330_CR41
L Plaza (1330_CR5) 2013; 14
R Pivovarov (1330_CR16) 2015; 22
1330_CR42
D Bawden (1330_CR2) 2008; 35
R Mishra (1330_CR25) 2013; 2013
F Gany (1330_CR51) 2007; 22
References_xml – volume: 68
  start-page: 394
  year: 2018
  ident: 1330_CR59
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21492
– volume: 156
  start-page: 1108
  year: 2002
  ident: 1330_CR53
  publication-title: Arch Pediatr Adolesc Med
  doi: 10.1001/archpedi.156.11.1108
– volume: 20
  start-page: 995
  issue: 5
  year: 2013
  ident: 1330_CR24
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-001347
– volume: 103
  start-page: 872
  year: 2009
  ident: 1330_CR62
  publication-title: BJU international
  doi: 10.1111/j.1464-410X.2008.08116.x
– ident: 1330_CR18
– volume: 27
  start-page: i120
  issue: 13
  year: 2011
  ident: 1330_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr223
– volume: 82
  start-page: 1195
  issue: 12
  year: 2013
  ident: 1330_CR8
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2013.08.002
– volume: 80
  start-page: 11
  issue: Suppl
  year: 1990
  ident: 1330_CR49
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.80.Suppl.11
– volume: 69
  start-page: 7
  year: 2019
  ident: 1330_CR60
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21551
– volume: 5
  start-page: 1
  issue: 4
  year: 1948
  ident: 1330_CR45
  publication-title: Kongelige Danske Videnskabernes Selskab
– volume: 22
  start-page: 263
  issue: 2
  year: 2015
  ident: 1330_CR28
  publication-title: Am Med Inform Assoc
  doi: 10.1136/amiajnl-2014-002945
– ident: 1330_CR38
– volume: 24
  start-page: 256
  issue: 2
  year: 2009
  ident: 1330_CR55
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-008-0875-7
– ident: 1330_CR44
  doi: 10.1109/BIBM47256.2019.8982971
– volume: 111
  start-page: 6
  issue: 1
  year: 2003
  ident: 1330_CR58
  publication-title: Pediatrics
  doi: 10.1542/peds.111.1.6
– volume: 22
  start-page: 457
  year: 2004
  ident: 1330_CR37
  publication-title: J Artif Intell Res.
  doi: 10.1613/jair.1523
– volume: 97
  start-page: 1837
  issue: 18
  year: 1998
  ident: 1330_CR9
  publication-title: Circulation
  doi: 10.1161/01.CIR.97.18.1837
– volume: 42
  start-page: 801
  issue: 5
  year: 2009
  ident: 1330_CR20
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2008.10.002
– ident: 1330_CR31
– volume: 42
  start-page: 727
  issue: 2
  year: 2007
  ident: 1330_CR50
  publication-title: Health Serv Res
  doi: 10.1111/j.1475-6773.2006.00629.x
– volume: 14
  start-page: 130
  issue: 3
  year: 1980
  ident: 1330_CR30
  publication-title: Program
  doi: 10.1108/eb046814
– volume: 44
  start-page: 688
  issue: 4
  year: 2011
  ident: 1330_CR27
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2011.03.008
– volume: 14
  start-page: 208
  year: 2013
  ident: 1330_CR22
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-208
– ident: 1330_CR41
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 1330_CR46
  publication-title: Ecology
  doi: 10.2307/1932409.JSTOR1932409
– volume: 22
  start-page: 341
  issue: 2
  year: 2007
  ident: 1330_CR56
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-007-0311-4
– volume: 2
  start-page: 159
  issue: 2
  year: 1958
  ident: 1330_CR35
  publication-title: IBM J Res Dev
  doi: 10.1147/rd.22.0159
– volume: 14
  start-page: 71
  year: 2013
  ident: 1330_CR5
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-71
– volume: 62
  start-page: 255
  issue: 3
  year: 2005
  ident: 1330_CR57
  publication-title: Medical Care Research and Review
  doi: 10.1177/1077558705275416
– volume: 2010
  start-page: 667
  year: 2010
  ident: 1330_CR7
  publication-title: AMIA Annu Symp Proc
– volume: 2013
  start-page: 987
  year: 2013
  ident: 1330_CR25
  publication-title: AMIA Annu Symp Proc.
– volume: 305
  start-page: 1906
  issue: 18
  year: 2011
  ident: 1330_CR1
  publication-title: JAMA
  doi: 10.1001/jama.2011.619
– volume: 341
  start-page: c7126
  year: 2010
  ident: 1330_CR3
  publication-title: BMJ
  doi: 10.1136/bmj.c7126
– volume: 9
  start-page: 161
  issue: 13
  year: 2012
  ident: 1330_CR29
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-161
– volume: 41
  start-page: W518
  issue: W1
  year: 2013
  ident: 1330_CR34
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt44
– volume: 19
  start-page: 591
  issue: 4
  year: 2012
  ident: 1330_CR13
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2011-000375
– start-page: 43
  volume-title: Mining text data
  year: 2012
  ident: 1330_CR17
  doi: 10.1007/978-1-4614-3223-4_3
– volume: 45
  start-page: 5
  year: 2001
  ident: 1330_CR36
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 1330_CR42
– volume: 80
  start-page: 431
  issue: 6
  year: 2011
  ident: 1330_CR23
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2011.02.008
– volume: 35
  start-page: 180
  issue: 2
  year: 2008
  ident: 1330_CR2
  publication-title: J Inform Sci
  doi: 10.1177/0165551508095781
– volume: 10
  start-page: 339
  issue: 4
  year: 2003
  ident: 1330_CR10
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M1201
– volume: 16
  start-page: 328
  issue: 3
  year: 2009
  ident: 1330_CR11
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M3028
– volume: 6
  start-page: 57
  issue: 1
  year: 2005
  ident: 1330_CR4
  publication-title: Brief Bioinform
  doi: 10.1093/bib/6.1.57
– volume: 174
  start-page: 710
  issue: 5
  year: 2014
  ident: 1330_CR6
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2014.368.Review
– volume: 20
  start-page: e239
  issue: e2
  year: 2013
  ident: 1330_CR12
  publication-title: JAMIA
  doi: 10.1136/amiajnl-2013-001889
– ident: 1330_CR64
  doi: 10.5220/0008071303100321
– volume: 2011
  start-page: 750
  year: 2011
  ident: 1330_CR40
  publication-title: AMIA Annu Symp Proc
– volume: 4
  start-page: 171
  issue: 4
  year: 2002
  ident: 1330_CR54
  publication-title: J Immigr Health
  doi: 10.1023/A:1020125425820
– volume: 8
  start-page: 1
  issue: 1
  year: 2002
  ident: 1330_CR26
  publication-title: IEEE Trans Visual Comput Graphics
  doi: 10.1109/2945.981847
– volume: 51
  start-page: 114
  year: 1963
  ident: 1330_CR32
  publication-title: Bull Med Libr Assoc
– ident: 1330_CR63
  doi: 10.1007/978-3-319-51469-7_1
– volume-title: Advances in automatic text summarization
  year: 1999
  ident: 1330_CR14
– volume: 16
  start-page: 468
  issue: 7
  year: 2001
  ident: 1330_CR52
  publication-title: J Gen Intern Med
  doi: 10.1046/j.1525-1497.2001.016007468.x
– ident: 1330_CR33
– ident: 1330_CR39
  doi: 10.3115/1073445.1073465
– volume: 26
  start-page: 689
  issue: 4
  year: 1999
  ident: 1330_CR47
  publication-title: Oncol Nurs Forum
– volume: 22
  start-page: 938
  year: 2015
  ident: 1330_CR16
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocv032
– volume: 19
  start-page: 175
  year: 2008
  ident: 1330_CR61
  publication-title: Cancer Causes Control
  doi: 10.1007/s10552-007-9083-8
– ident: 1330_CR43
  doi: 10.3115/1073083.1073135
– volume: 22
  start-page: 319
  issue: 2
  year: 2007
  ident: 1330_CR51
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-007-0361-7
– ident: 1330_CR21
  doi: 10.1145/1183614.1183701
– volume: 2012
  start-page: 779
  year: 2012
  ident: 1330_CR15
  publication-title: AMIA Annu Symp Proc
– volume: 40
  start-page: 52
  issue: 1
  year: 2002
  ident: 1330_CR48
  publication-title: Med Care
  doi: 10.1097/00005650-200201000-00007
SSID ssj0017835
Score 2.3449082
Snippet Background Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision...
Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision medicine....
Background Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating precision...
Abstract Background Automated summarization of scientific literature and patient records is essential for enhancing clinical decision-making and facilitating...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 306
SubjectTerms Algorithms
Artificial intelligence
Automatic summarization
Automation
Care and treatment
Case reports
Clinical decision making
Construction
Content extraction and recognition
Decision making
Decision support systems
Decision trees
Dictionaries
Eigenvectors
Extracting salient information
Extractive summarization
Finite element method
Frequency distribution
Health aspects
Health Informatics
Humans
Indicative summarization
Indicators
Information overload
Information processing
Information retrieval
Information Storage and Retrieval
Information Systems and Communication Service
Learning algorithms
Machine Learning
Management of Computing and Information Systems
Medical Subject Headings
Medicine
Medicine & Public Health
Mesh generation
Natural Language Processing
Patients
Position indicators
Precision medicine
Ranking
Recognition
Scientific visualization
Semantic relations
Semantics
Sentence extraction and ranking
Sentences
Test sets
Toolkits
Visualization
Vocabulary, Controlled
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kBx8H8Z3RKCMIHtwhM_1ub3FJCEI8iIHcmn6isMwGs0nw31s1L3cUogePM13DTHd9Xf3VdFU1IW-iBFbsk6uEb3LFHdhBz72pImOOOpq4cZg7fPJJHp_yj2fibOuoL4wJ68sD9wO3742vaaodEI3IaYjg9SgtRYMny-e6Dmh9a21GZ2rYP8D_GWOKjJb7F7Cq4a9AikFY4MFXerYMddX6_7TJW4vS7wGT067pPXLnsj13P67darW1MB09IPcHRlke9D15SG6l9hG5fTLsmT8mq-Xh5-X70rUllobokqKuUokh6vCaEmzz9z63YVFOwUR44dqIQlN92XKzXq9KoLjlmEzZifTp-90lxpA8IadHh1-Wx9VwxkIVZK02lTIiwwibIHNi2ZnUeC215I3LnotMWcjKRBdVjlIYzXTQUmZwCx0LoIiGPSU77bpNu6RUlJrsKWPR1zyCwqJQiYPLE4JQjPuCNOOQ2zAUIMdzMFa2c0S0tL2aLKjJdmqyuiDvpmfO-_IbN0p_QE1Oklg6u7sBgLIDoOzfAFWQt4gDixMcNeCGPAXoJJbKsgfAaYFEGwGv25tJwsQM8-YRSXYwDBeWAhlomDK0LsjrqRmfxGC3Nq0vOxkgjoLWrCDPeuBNXWKMISM3BVEzSM76PG9pv33tyoYrxQwXvCCLEby_PuumMV1MAP8HFTz_Hyp4Qe5SnKsNrRqxR3YA6eklcL-Nf9VN85_RplGD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEF_qFXx8EN9Gq0QQ_GBDk32vINIeV4rQQ4qFflv2kVThSM72qvjfO5NXewqHH5OdkExmdnZmd-Y3hLyNErxiX7pM-KLKuAM76Lk3WWTMUUdLbhzWDh_P5dEp_3wmzrbIfKiFwbTKwSa2hjo2AffI9yhY0YIpQ_NPyx8Zdo3C09WhhYbrWyvEjy3E2C2yTREZa0K2D2bzLyfjuQLucwylM1ruXcJqh1uEFJOzILLP9Nry1KL4_2urbyxWfydSjqep98idq3rpfv9yi8WNBevwAbnfe5rpfqcaD8lWWT8it4_7s_THZDGdnUw_pK5OETKiLZb6WaaYug6vScFmX3Q1D7vpmGSEF66OSDTizqarplmk4PqmQ5FlS9KV9beXmFvyhJwezr5Oj7K-90IWZK5WmTKiMj43QVYlq5wpC6-llrxwleeioixUykQXVRWlMJrpoKWsIFx0LGilC_aUTOqmLp-TVFFqKk8Ziz7n0RUmClVyCIVCEIpxn5Bi-OU29MDk2B9jYdsARUvbicmCmGwrJqsT8n58ZtnBcmykPkBJjpQIqd3eaC7ObT9DrQd2aZnD97HIaYgQXistRRHAMFV5HhLyDvXA4sRHCbi-fgGYRAgtuw--LjjXRsDrdtYoYcKG9eFBk2xvMC7ttXon5M04jE9iElxdNlctDTiUguYsIc86xRtZYoyhp24SotZUco3n9ZH6-7cWTlwpZrjgCdkdlPf6szb9091Rwf9DBC82M_2S3KU4CwuaFWKHTECHy1fg7a38634K_wEypE_c
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1ba9UwOOgEnQ_i3eqUCoIPnmJzT3ybh40hzAdxsLeQKwqlZ7izif_eL2lPPVUZ-tjmS9vku_e7BKFXQYBV7KJtuMOpYRbkoGNON4FSSyyJTNtcO3z8URydsA-n_HRsk5NrYbbj91iJt-egj_JPPJLTp8D3btR1dAOUlCiBWbGcIgb5D8amKOav82aKp_Tn_1MKb6mh31MkpzjpbXTroj-zP77brttSRYd30Z3Rhqz3B6TfQ9difx_dPB6j5A9Qtzz4tHxX277OzSBKGdRlrHNSOrymBmn8bahmWNRT-lC-sH3IQFNH2Xq9WnU1GLX1pnyygAwF--UyZ408RCeHB5-XR814qkLjRSvXjdQ8addqL1KkyeqInRJKMGyTYzwR6pPUwQaZguBaUeWVEAkcQUu9kgrTR2inX_XxCaolITo5QmlwLQsW68BlZODkeM8lZa5CeLPlxo8tx_PJF50procSZkCTATSZgiajKvRmmnM2NNy4Evp9xuQEmZtllxtAQ2bkPeNguSS28H00MOIDOM5SCY49iJzUtr5CrzMdmMzSGQN2rEyARebmWGYfrFgwmzWH1-3NIIEV_Xx4Q0lmFAXnhoD6x1Rq0lbo5TScZ-b0tj6uLgoMmIqctLRCjwfCm5ZEKc02uK6QnJHkbM3zkf7rl9IoXEqqGWcVWmyI99dnXbWni4nA_wEFT__v6c_QLslciUmD-R7aAZqOz8GuW7sXhaF_AsDzQhw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagk7g8cB0QGChISDywdInt2DFvpdo0IW1CiErjyfIlBtQsrbYWBL-eY-dCM9AEEm9Nfaz4cq7x-Y4RemEZeMW6VEmuM5dQBXpQUy0SS4jCCpdUKI8dPjpmhzP69iQ_aZF1HgujT40_VA5QHOtvmTlV8_EmEr0K6ht-mPne0rpG6gu2dw6Gy3_twz7PCoL0pLiKtlgODvoIbc2O300-BpwRxwkTlHfwmT92HJioUMn_d329YbAuJlP2J6o30fV1vVTfv6mq2jBaB7fRqptuk6syH69Xemx-XKgE-Z_X4w661Tq58aThyrvoSlnfQ9eO2mP8-6ia7r-fvo5VHftqFQGn9bWMfdY8vCwGc3HWwC124z6_yT-o2nqivuRtvFosqhjGHHf4zkDSjDs8-rSWbTQ72P8wPUzaax8Sw1K-SrjIndCpMMyVxClRZrpgBaOZcprmDhPjuLDKcmdhfwtSmIIxB5GqIqbgRUYeoFG9qMtHKOYYC6cxIVan1KpM2JyXFKIwY3JOqI5Q1u20NG1NdH81RyVDbFQw2SyjhGWUYRllEaFXfZ9lUxHkUuo3noF6Sl_NO_yxOPskW-UgNUwXlymMj1iKjYXInhcszwzoRJemJkIvPftJzwZ-B1QLnYBJ-updcgJuNvj1IofX7QwoQVeYYXPHwLLVVecSg3-SES5wGqHnfbPv6fPv6nKxDjTgy-Y4JRF62PB7PyVCiA8SRIT4QBIGcx621F8-h0rmnBNBcxqh3U5mfg3rsjXd7eXqL7bg8b-RP0E3sJeaDCdZvoNGwNPlU3A8V_pZq0h-An0Mexg
  priority: 102
  providerName: Unpaywall
Title CERC: an interactive content extraction, recognition, and construction tool for clinical and biomedical text
URI https://link.springer.com/article/10.1186/s12911-020-01330-8
https://www.ncbi.nlm.nih.gov/pubmed/33323109
https://www.proquest.com/docview/2471137920
https://www.proquest.com/docview/2470635203
https://pubmed.ncbi.nlm.nih.gov/PMC7739454
https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-020-01330-8
https://doaj.org/article/b9b02e0a193d42cd97878651cb00f00c
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M48
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1rixMxMNwDfHwQ366eZQXBD3Z1N8-NINKW1kNoOYqF6peQ7EOFZdvr9dT7906yj7vVo_hlIZvZRzIzmZlkHgi9TDloxSbTATNRHlAN66ChRgYpIRprnFGpbezwdMaPF_TTki33UONuW0_g2bWmna0ntdgUb36fXnwAhn_vGD7mb89AZtmNPmxdrMA-B6yuTwNbWMoewNZVNvbRIQgvaas7TOnlQYPd-Ghiaa59VUdeubT-_y7eV6TX356V7fHqbXTzvFzri1-6KK5IsMlddKdWPf1BRSv30F5W3kc3pvXh-gNUjMbz0Ttfl77NIeGip35mvvVlh8_4sIhvqiCIvt96HdmGLlML1Cai9berVeGDLuw3UZcOpIrzd03rbPIQLSbjz6PjoC7GECQ8FNtASJZLE8qE5xnJtcwiE_OY00jnhrIckyQXMtWpyFPOZEziJOY8B_tRkyQWcUQeoYNyVWZPkC8wlrnBhKQmpKmOZMpERsE2ShImCDUeipopV0mdqdwWzCiUs1hirio0KUCTcmhSsYdet8-sqzwdO6GHFpMtpM2x7W6sNt9UzbLKwHBxFsL_kZTiJAV7W8ScRQmsVHkYJh56ZelAWdq0GNB1QAMM0ubUUgNQfkHblgw-d9SBBA5Out0NJamGARQGrSEiQuLQQy_abvuk9Yors9W5gwENk-GQeOhxRXjtkAghVnWXHhIdkuyMudtT_vju8osLQSRl1EP9hngvf2vXnPZbAv8PFDzdPehn6Ba2XBjhIGJH6ABoOHsO6t_W9NC-WAq4xpOPPXQ4HM9O5tAa8VHPbaj0HIPDdT78Cv2L2cngyx_wKVv3
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFSKROGA2DEUMBKIA7Fqz4xnQUKohFYpbXpArZTbMJsBKbJDk1L1p_hG3nhrA1LEpUdnnmM_v33mLQi9cgy8YuN1kpusSKgGPWiokYkjRGONPZU61A6PD9nomH6e5JM19LurhQlplZ1OrBW1q2zYI9_CoEUzwiVOP8x-JmFqVDhd7UZoNGyx78_PIGSbv9_7BPR9jfHuztFwlLRTBRLLUr5IuMwLaVJpWeFJoaXPjGCC0UwXhuYFJrbg0mnHC8dyKYiwgrECAiFNrOAiI_C_19B1SkCXgPzwSR_gZWEXpSvMEWxrDrY0bEDikPpFSJqIJeNXzwj41xJcMoV_p2n2Z7W30MZpOdPnZ3o6vWQOd--g260fG283jHcXrfnyHroxbk_q76PpcOfL8F2syzg0pKhLsX75OCTGw2NisAgnTUXFIO5TmMKFLl0A6rvaxouqmsbgWMddCWcN0jQNqC9D5soDdHwlNHiI1suq9I9RzDGWhcGEOJNSpzPpcu4pBFrW5pxQE6Gs--TKtm3Pw_SNqarDH8FUQyYFZFI1mZSI0Nv-nlnT9GMl9MdAyR4yNOyuf6hOvqlW_pUBdLFP4f2Io9g6CN65YHlmQe0VaWoj9CbwgQpqJVBAt9URgGRo0KW2wZMG113m8LjNJUhQB3Z5ueMk1aqjuboQngi97JfDnSHFrvTVaQ0D7mqOUxKhRw3j9SgRQkIcICPEl1hyCefllfLH97pZOedE0pxGaNAx78Vrrfqmg57B_4MET1Yj_QJtjI7GB-pg73D_KbqJg0RmOMnyTbQO_OyfgV-5MM9rYY7R16vWHn8AMlWGZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3ZbtQw0IIilfKAuFoCBYKExAMbNfFt3srSVTlaIUSlvlk-YkBaZVftFsTfM3YONoAqeEw8TjyZO54ZI_TMc_CKbW0KZqtQUAN60FKrCk-IwQbXVJlYO3x0zA9P6NtTdrpWxZ-y3fstybamIXZpalZ7Sx9aEZd87xysVPy1h2NSFUTkhbyKrlGwbvEMgymfDvsI8b9GXyrz13kjc5S69v-pm9eM0--Jk8Pu6Q10_aJZmh_fzXy-ZqBmt9DNzrPM91tWuI2u1M0dtHnU7Z3fRfPpwcfpy9w0eWwRkYqjvtV5h3cOOvqsrXGY5ENSUbwwjY9AQ5_ZfLVYzHNwdfO-qDKBtGX86TLmktxDJ7ODT9PDojtroXC8FKtCKBaULZXjoSbBqLqykktOKxMsZQETF4TyxovgOVOSSCc5DxAeGuKkkBXZRhvNoqnvo1xgrILFhHhbUm8q5ZmoKYQ-zjFBqM1Q1X9y7bpG5PE8jLlOAYnkuiWTBjLpRCYtM_RimLNs23BcCv0qUnKAjC20043F2WfdSaS2gC6uS1gf8RQ7D-G0kJxVDhRRKEuXoeeRD3QU9EgB09UrAJKxZZbeB98WnGnF4HW7I0gQUDce7jlJdwriXGNwCioiFC4z9HQYjjNj0ltTLy4SDDiQDJckQzst4w0oEUKiZ64yJEYsOcJ5PNJ8_ZLahwtBFGU0Q5OeeX8t67JvOhkY_B9I8OD_nv4EbX54PdPv3xy_e4i2cBTQChcV20UbwN71I3D8VvZxku2fgORNUg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagk7g8cB0QGChISDywdInt2DFvpdo0IW1CiErjyfIlBtQsrbYWBL-eY-dCM9AEEm9Nfaz4cq7x-Y4RemEZeMW6VEmuM5dQBXpQUy0SS4jCCpdUKI8dPjpmhzP69iQ_aZF1HgujT40_VA5QHOtvmTlV8_EmEr0K6ht-mPne0rpG6gu2dw6Gy3_twz7PCoL0pLiKtlgODvoIbc2O300-BpwRxwkTlHfwmT92HJioUMn_d329YbAuJlP2J6o30fV1vVTfv6mq2jBaB7fRqptuk6syH69Xemx-XKgE-Z_X4w661Tq58aThyrvoSlnfQ9eO2mP8-6ia7r-fvo5VHftqFQGn9bWMfdY8vCwGc3HWwC124z6_yT-o2nqivuRtvFosqhjGHHf4zkDSjDs8-rSWbTQ72P8wPUzaax8Sw1K-SrjIndCpMMyVxClRZrpgBaOZcprmDhPjuLDKcmdhfwtSmIIxB5GqIqbgRUYeoFG9qMtHKOYYC6cxIVan1KpM2JyXFKIwY3JOqI5Q1u20NG1NdH81RyVDbFQw2SyjhGWUYRllEaFXfZ9lUxHkUuo3noF6Sl_NO_yxOPskW-UgNUwXlymMj1iKjYXInhcszwzoRJemJkIvPftJzwZ-B1QLnYBJ-updcgJuNvj1IofX7QwoQVeYYXPHwLLVVecSg3-SES5wGqHnfbPv6fPv6nKxDjTgy-Y4JRF62PB7PyVCiA8SRIT4QBIGcx621F8-h0rmnBNBcxqh3U5mfg3rsjXd7eXqL7bg8b-RP0E3sJeaDCdZvoNGwNPlU3A8V_pZq0h-An0Mexg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CERC%3A+an+interactive+content+extraction%2C+recognition%2C+and+construction+tool+for+clinical+and+biomedical+text&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Lee%2C+Eva+K&rft.au=Uppal%2C+Karan&rft.date=2020-12-15&rft.pub=Springer+Nature+B.V&rft.eissn=1472-6947&rft.volume=20&rft.spage=1&rft_id=info:doi/10.1186%2Fs12911-020-01330-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon