MicroRNA-532-5p is implicated in the regulation of osteoporosis by forkhead box O1 and osteoblast differentiation
Background MicroRNAs (miRNAs) are critical regulators in osteogenesis and cartilage formation. This study was designed to investigate whether miR-532-5p plays a role in the regulation of osteoporosis. Methods Osteoporotic fractures (OP group, n = 10) or osteoarthritis without osteoporosis (control...
Saved in:
Published in | BMC musculoskeletal disorders Vol. 21; no. 1; pp. 296 - 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
13.05.2020
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2474 1471-2474 |
DOI | 10.1186/s12891-020-03317-y |
Cover
Summary: | Background
MicroRNAs (miRNAs) are critical regulators in osteogenesis and cartilage formation. This study was designed to investigate whether miR-532-5p plays a role in the regulation of osteoporosis.
Methods
Osteoporotic fractures (OP group,
n
= 10) or osteoarthritis without osteoporosis (control group,
n
= 10) were selected as subjects in this study. Quantitative analysis of gene expression was performed by RT-PCR. Western blot was used to determine the expression levels of protein forkhead O1 (FOXO1). Bioinformatics analyses and luciferase reporter assay were used to verify the downstream target of miR-532-5p.
Results
Compared with the non-osteoporotic controls, miR-532-5p was upregulated in osteoporotic samples, and expression of miR-532-5p was downregulated in the osteogenic C2C12 cell model. Overexpression of miR-532-5p resulted in decreased expression levels of key osteoblast markers, including alkaline phosphatase (ALP), osteocalcin (OC), and collagen type I alpha 1 (COL1A1). The inhibitory results of miR-532-5p were reversed. MiR-532-5p contained a putative FOXO1 binding site. Moreover, miR-532-5p inhibited the expression of FOXO1, and overexpression of FOXO1 inhibited the effect of miR-532-5p on osteoblast markers.
Conclusions
MiR-532-5p can provide references to osteoporosis by regulating the expression of FOXO1 and osteoblast differentiation. MiR-532-5p might serve as a therapeutic target for osteoporosis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1471-2474 1471-2474 |
DOI: | 10.1186/s12891-020-03317-y |