A multi-level hypoglycemia early alarm system based on sequence pattern mining
Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glu...
Saved in:
| Published in | BMC medical informatics and decision making Vol. 21; no. 1; pp. 22 - 11 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
21.01.2021
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1472-6947 1472-6947 |
| DOI | 10.1186/s12911-021-01389-x |
Cover
| Abstract | Background
Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations.
Methods
Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system.
Results
The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively.
Conclusions
The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention. |
|---|---|
| AbstractList | Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations.BACKGROUNDEarly alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations.Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system.METHODSThrough symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system.The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively.RESULTSThe model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively.The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention.CONCLUSIONSThe proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention. Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Methods Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. Results The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. Conclusions The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention. Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention. Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention. Abstract Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Methods Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. Results The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. Conclusions The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention. Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Methods Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. Results The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. Conclusions The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention. Keywords: Hypoglycemia early alarm, Sequential pattern mining, Prefix span, Diabetes mellitus Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Methods Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. Results The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. Conclusions The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention. |
| ArticleNumber | 22 |
| Audience | Academic |
| Author | Li, Hongru Li, Yiming Miao, Qing Yang, Tao Tao, Junjun Ma, Ning Zhang, Yawen Yu, Xia Yang, Yehong |
| Author_xml | – sequence: 1 givenname: Xia surname: Yu fullname: Yu, Xia organization: College of Information Science and Engineering, Northeastern University – sequence: 2 givenname: Ning surname: Ma fullname: Ma, Ning organization: College of Information Science and Engineering, Northeastern University – sequence: 3 givenname: Tao surname: Yang fullname: Yang, Tao organization: College of Information Science and Engineering, Northeastern University – sequence: 4 givenname: Yawen surname: Zhang fullname: Zhang, Yawen organization: Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University – sequence: 5 givenname: Qing surname: Miao fullname: Miao, Qing organization: Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University – sequence: 6 givenname: Junjun surname: Tao fullname: Tao, Junjun organization: Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University – sequence: 7 givenname: Hongru surname: Li fullname: Li, Hongru organization: College of Information Science and Engineering, Northeastern University – sequence: 8 givenname: Yiming surname: Li fullname: Li, Yiming organization: Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University – sequence: 9 givenname: Yehong orcidid: 0000-0003-3600-2174 surname: Yang fullname: Yang, Yehong email: yehongyang@fudan.edu.cn organization: Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33478490$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktr3DAUhU1JaR7tH-iiGLrpxqlkyZa0KYTQRyC0m3Yt7sjXEw2yNJXsJP731WSmSSaUUIyxkM859vmujosDHzwWxVtKTimV7cdEa0VpRep8UyZVdfuiOKJc1FWruDh4tD4sjlNaEUKFZM2r4pAxLiRX5Kj4flYOkxtt5fAaXXk1r8PSzQYHCyVCdHMJDuJQpjmNOJQLSNiVwZcJf0_oDZZrGEeMvhyst375unjZg0v4Zvc8KX59-fzz_Ft1-ePrxfnZZWVaIsaK97XqOBLVsobKviP1QoBo5QKbWhLTMAMSCOdEtL1QCNi3PdY1QSW7jgNlJ8XFNrcLsNLraAeIsw5g9d1GiEsNcbTGoRZKcNIC51QAl4LDQhDsgLWoTEcky1lsmzX5Ncw34Nx9ICV6Q1pvSetMWt-R1rfZ9WnrWk-LATuDfozg9n5l_423V3oZrrWQVFElc8CHXUAMmWUa9WCTQefAY5iSrrkkLM-ObNq-fyJdhSn6DDirFFGs5Q17UC0h17a-D_m7ZhOqz9qGNHn8XGTV6T9U-eryzE0-YL3N-3uGd4-L3jf8e4ayQG4FJoaUIvba2BFGGza9rXseYv3E-l_kd_NKWeyXGB9oPOP6A9Yk-b0 |
| CitedBy_id | crossref_primary_10_1177_19322968241287773 crossref_primary_10_17352_tcsit_000053 crossref_primary_10_3389_fpubh_2023_1044059 crossref_primary_10_1007_s13246_023_01254_3 |
| Cites_doi | 10.2337/dc17-1604 10.1023/A:1009748302351 10.1007/978-1-62703-646-7_1 10.2337/dc20-S006 10.1109/JBHI.2018.2840690 10.1136/amiajnl-2013-002348 10.1016/j.isatra.2018.12.050 10.1109/CompComm.2018.8780656 10.1007/3-540-58338-6_63 10.1109/ICODSE.2017.8285845 10.2337/dc19-0002 10.1177/193229681300700126 10.2174/1389200218666170116105023 10.1186/s12911-019-0943-4 10.1016/j.diabres.2017.08.012 10.1109/WiSPNET.2016.7566371 10.2337/dc09-1487 10.1016/j.jcjd.2017.10.003 10.2337/dc17-1624 10.1089/dia.2008.0032 10.1109/TII.2018.2828856 10.3389/fgene.2017.00104 10.1177/1460458219850682 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88C 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M0T M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12911-021-01389-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health Medical collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Biological Science Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1472-6947 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_797406a4417a4874ab70eda36e9cd083 10.1186/s12911-021-01389-x PMC7819198 A650500147 33478490 10_1186_s12911_021_01389_x |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2016YFC1305105 – fundername: National Natural Science Foundation of China grantid: 61903071; 61973067; 81670751 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: ; grantid: 61903071; 61973067; 81670751 – fundername: ; grantid: 2016YFC1305105 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ITC K6V K7- KQ8 LK8 M0T M1P M48 M7P M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c607t-4f29d4e0963518fd02b7a768be5280c53ca8a044076f79eaef6fe220e98dd4a13 |
| IEDL.DBID | UNPAY |
| ISSN | 1472-6947 |
| IngestDate | Fri Oct 03 12:45:11 EDT 2025 Sun Oct 26 04:14:39 EDT 2025 Tue Sep 30 15:33:09 EDT 2025 Wed Oct 01 13:48:57 EDT 2025 Tue Oct 07 05:35:58 EDT 2025 Mon Oct 20 22:13:20 EDT 2025 Mon Oct 20 16:45:51 EDT 2025 Thu Jan 02 22:55:46 EST 2025 Wed Oct 01 04:44:17 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Sat Sep 06 07:31:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Prefix span Hypoglycemia early alarm Diabetes mellitus Sequential pattern mining |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c607t-4f29d4e0963518fd02b7a768be5280c53ca8a044076f79eaef6fe220e98dd4a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3600-2174 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-021-01389-x |
| PMID | 33478490 |
| PQID | 2490936453 |
| PQPubID | 42572 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_797406a4417a4874ab70eda36e9cd083 unpaywall_primary_10_1186_s12911_021_01389_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_7819198 proquest_miscellaneous_2480394701 proquest_journals_2490936453 gale_infotracmisc_A650500147 gale_infotracacademiconefile_A650500147 pubmed_primary_33478490 crossref_citationtrail_10_1186_s12911_021_01389_x crossref_primary_10_1186_s12911_021_01389_x springer_journals_10_1186_s12911_021_01389_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-21 |
| PublicationDateYYYYMMDD | 2021-01-21 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC medical informatics and decision making |
| PublicationTitleAbbrev | BMC Med Inform Decis Mak |
| PublicationTitleAlternate | BMC Med Inform Decis Mak |
| PublicationYear | 2021 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | J Yang (1389_CR9) 2019; 23 1389_CR17 1389_CR19 1389_CR1 P Usharani (1389_CR26) 2013; 23 MB Abraham (1389_CR3) 2018; 41 B Buckingham (1389_CR5) 2009; 11 E Dassau (1389_CR6) 2010; 33 1389_CR32 J Vehi (1389_CR10) 2020; 26 H Mannila (1389_CR30) 1997; 1 1389_CR13 1389_CR14 OU Nalbantoglu (1389_CR28) 2014; 1079 1389_CR15 B Sujeong (1389_CR16) 2019; 15 1389_CR27 Z Punthakee (1389_CR31) 2018; 42 AJ Graveling (1389_CR4) 2017; 133 Y Wang (1389_CR8) 2014; 31 W Seo (1389_CR11) 2019; 19 C Flamand (1389_CR18) 2014; 21 AJ Cook (1389_CR2) 2019; 42 T Niyazmand (1389_CR20) 2019; 90 Z Peng (1389_CR29) 2017; 8 M Kheirandish (1389_CR12) 2017; 18 ES Bayrak (1389_CR7) 2013; 7 1389_CR21 1389_CR22 1389_CR23 1389_CR24 1389_CR25 |
| References_xml | – volume: 41 start-page: 303 year: 2018 ident: 1389_CR3 publication-title: Diabetes Care doi: 10.2337/dc17-1604 – volume: 1 start-page: 259 year: 1997 ident: 1389_CR30 publication-title: Data Min Knowl Disc doi: 10.1023/A:1009748302351 – ident: 1389_CR13 – volume: 31 start-page: 421 year: 2014 ident: 1389_CR8 publication-title: Chin J Health Stat – volume: 1079 start-page: 3 year: 2014 ident: 1389_CR28 publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-646-7_1 – ident: 1389_CR17 – ident: 1389_CR1 doi: 10.2337/dc20-S006 – volume: 23 start-page: 1251 year: 2019 ident: 1389_CR9 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2840690 – ident: 1389_CR19 – volume: 21 start-page: e232 year: 2014 ident: 1389_CR18 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2013-002348 – volume: 90 start-page: 287 year: 2019 ident: 1389_CR20 publication-title: ISA Trans doi: 10.1016/j.isatra.2018.12.050 – volume: 23 start-page: 21 year: 2013 ident: 1389_CR26 publication-title: Int J Sci Technol Res – ident: 1389_CR15 doi: 10.1109/CompComm.2018.8780656 – ident: 1389_CR27 doi: 10.1007/3-540-58338-6_63 – ident: 1389_CR21 doi: 10.1109/ICODSE.2017.8285845 – volume: 42 start-page: 1854 issue: 10 year: 2019 ident: 1389_CR2 publication-title: Diabetes Care doi: 10.2337/dc19-0002 – volume: 7 start-page: 206 year: 2013 ident: 1389_CR7 publication-title: J Diabetes Sci Technol doi: 10.1177/193229681300700126 – volume: 18 start-page: 157 year: 2017 ident: 1389_CR12 publication-title: Curr Drug Metab doi: 10.2174/1389200218666170116105023 – ident: 1389_CR25 – volume: 19 start-page: 210 year: 2019 ident: 1389_CR11 publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-019-0943-4 – volume: 133 start-page: 30 year: 2017 ident: 1389_CR4 publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2017.08.012 – ident: 1389_CR23 doi: 10.1109/WiSPNET.2016.7566371 – volume: 33 start-page: 1249 year: 2010 ident: 1389_CR6 publication-title: Diabetes Care doi: 10.2337/dc09-1487 – ident: 1389_CR14 – volume: 42 start-page: S10 issue: Suppl 1 year: 2018 ident: 1389_CR31 publication-title: Can J Diabetes doi: 10.1016/j.jcjd.2017.10.003 – ident: 1389_CR32 doi: 10.2337/dc17-1624 – ident: 1389_CR24 – ident: 1389_CR22 – volume: 11 start-page: 93 year: 2009 ident: 1389_CR5 publication-title: Diabetes Technol Ther doi: 10.1089/dia.2008.0032 – volume: 15 start-page: 922 year: 2019 ident: 1389_CR16 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2828856 – volume: 8 start-page: 104 year: 2017 ident: 1389_CR29 publication-title: Front Genet doi: 10.3389/fgene.2017.00104 – volume: 26 start-page: 703 year: 2020 ident: 1389_CR10 publication-title: Health Informatics J doi: 10.1177/1460458219850682 |
| SSID | ssj0017835 |
| Score | 2.2881258 |
| Snippet | Background
Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to... Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic... Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to... Abstract Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22 |
| SubjectTerms | Accuracy Alarm systems Algorithms Analysis Blood Glucose Blood Glucose Self-Monitoring Blood sugar monitoring Care and treatment Data mining Dengue fever Diabetes Diabetes mellitus Diabetes Mellitus, Type 1 Diagnosis Evaluation Explainable AI in Medical Informatics and Decision Support Glucose Glucose monitoring Health Informatics Humans Hyperglycemia Hypoglycemia Hypoglycemia - diagnosis Hypoglycemia early alarm Information Systems and Communication Service Machine learning Management of Computing and Information Systems Medicine Medicine & Public Health modeling Monitoring, Ambulatory Pattern analysis Precision medicine Prefix span Prevention Research Article Sensitivity Sequential pattern mining technology Thresholds |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiHcDBRkJiQO16jgP28cFUVVI7YlKvVmOPaGVdrMruiu6_56ZvNiAVDhwje0k9sxk5rMn3zD2LlRE4mRSUekMRG6UFTaWVkStEGGrUAVP-5CnZ-XJef7lorjYKfVFOWEdPXC3cEcaA15ZeqqU5TG4zn2lJUSflWBDxPiBvr7S2AFM9ecHtJ8x_CJjyqNr9Gq0FagIOqOLFjcTN9Sy9f_5Td5xSr8nTI6npg_YvU2z8tsffj7fcUzHj9jDPqLks24mj9kdaJ6wu6f9mflTdjbjbdagmFN-EL_crpbf5tsAiyvPgeiNuUd0u-AdpzMntxb5suFDkjVftRScDV-0tSSesfPjz18_nYi-ioIIpdRrkdfKxhwQqmRFauooVaU9gowKCmVkKLLgjafC07qstQUPdVmDUhKsiTH3afac7TXLBvYZDzkYX9k0ZF4jrANrayAfD-jywBYxYemwqC70FONU6WLuWqhhStcJwqEgXCsId5OwD-OYVUewcWvvjySrsSeRY7cXUGVcrzLubyqTsPckaUcmjK8XfP8nAk6SyLDcDKPWgrCjTtjBpCeaXpg2D7rietO_dohnpaXDXXzO27GZRlI6WwPLDfUxMrO5lmnCXnSqNU4py3Jt8B4J0xOlm8x52tJcXbbE4JrQtzUJOxzU89dr3bamh6MK_4MIXv4PEbxi91VnjUKlB2xv_X0DrzG6W1dvWkP-CawXRxM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFfx4EL-qq1UiCD7Y0N3sR5IHkau0FKGHiIW-hWySbQt3u2t7h73_3sx-tatw-LpJliQzk8kvmfwG4IPJkcRJRDTnsaOJYJJKm0lqOfMIm5ncaDyHPJllx6fJt7P0bAtm_VsYDKvs18RmobaVwTPyfQ8TPPjOkjT-Uv-imDUKb1f7FBq6S61gPzcUY_dgmyEz1gS2Dw5n338M9wp4ztE_nRHZ_rX3dnhEyBBSe9dNb0buqWHx_3etvuOs_g6kHG5TH8GDVVnr9W89n99xWEdP4HG30yTTVjWewpYrn8H9k-4u_TnMpqSJJqRzjBsiF-u6Op-vjVtcauKQ9phoj3oXpOV6JujuLKlK0gdfk7qh5izJoskx8QJOjw5_fj2mXXYFarKQL2lSMGkT5yFM7GessCHLufbgI3cpE6FJY6OFxoTUPCu4dNoVWeEYC50U1iY6indgUlalewXEJE7oXEYm1tzDPSdl4dD3O-8KnUxtAFE_qcp01OOYAWOuGggiMtUKQnlBqEYQ6iaAT0ObuiXe2Fj7AGU11ETS7OZDdXWuOhtU3GOnMNOYdE17nJbonIfO6jhz0li_FQ3gI0paoWn77hndvVDwg0SSLDX1u9kUMSUPYHdU05ukGRf3uqK6JeFa3SpwAO-HYmyJYW6lq1ZYR4SxTHgYBfCyVa1hSHGccOH_EQAfKd1ozOOS8vKiIQzniMqlCGCvV8_bbm2a071Bhf9DBK83D_oNPGStnVEW7cJkebVyb_1-bpm_64z0D9dBRbg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIvE4IN4ECjISEgdqSJzEjwNCC6KqkLYnVurNchynrZTNLttd0f33zDiPNlBVcI2dhz0zmfns8TeEvHUFkjiphBUy9SxTXDNdCs1KyQFhc1c4i-uQ0yNxOMu-H-fHO6Qvd9RN4Pm10A7rSc1W9YeLn9vPYPCfgsEr8fEcfBYu9HEExuCAGcSUt8BTaSzlMM0udxVwlSOcNpKcCZ3J_hDNtc8YOarA5__3X_uK2_ozpXLYV71H7myapd3-snV9xXUdPCD3u5iTTloleUh2fPOI3J52u-qPydGEhrxCVmMGET3dLhcn9db5-ZmlHgmQqYVJmtOW9Zmi4yvpoqF9GjZdBpLOhs5DtYknZHbw7cfXQ9bVWWBOxHLNsorrMvMAZtI8UVUZ80JagCGFz7mKXZ46qyyWppaiktpbX4nKcx57rcoys0n6lOw2i8Y_J9RlXtlCJy61EoCf17ryGAV4cIpe52VEkn5SjetIyLEWRm0CGFHCtIIwIAgTBGEuIvJ-uGfZUnDc2PsLymroifTZ4cJidWI6azQSUFQsLJZfs4DYMlvI2Jc2FV67EoLSiLxDSRtUO_g8Z7uzCjBIpMsyE4hrc0SXMiJ7o55gnG7c3OuK6XXbAOKNNW7_wnveDM14Jya8NX6xwT4qTkFF4yQiz1rVGoaUpplU8IyIyJHSjcY8bmnOTgN1uER8rlVE9nv1vPysm-Z0f1DhfxDBi_8S2Etyl7dmx3iyR3bXq41_BYHeungdrPc3a9pIhQ priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkXgcEM8SKMhISBxoROIkfhyXiqpCak9U6s1y7AmtlM2u6K5g_z0zTjZsAFVwje0kzsxk_HnG3zD21tdE4qTztFYFpKUWJjVBmjQogQhb-No72oc8PZMn5-Xni-pioMmhszC78ftcyw_X6I9oE08Q6EXnmuJ68TY6KRkDs_JojBjQDsb2UMxfx00cT-Tn__MvvOOGfk-RHOOk99nddbd0m--ubXdc0fFD9mBYQ_JZL_RH7BZ0j9md0yFK_oSdzXjME0xbygjil5vl4mu78TC_chyI0Jg7xLNz3rM4c3JkgS86vk2r5stIutnxeawe8ZSdH3_6cnSSDnUTUi8ztUrLRphQAoKTosp1EzJRK4ewooZK6MxXhXfaUalpJRtlwEEjGxAiA6NDKF1ePGN73aKD54z7ErSrTe4LpxDIgTENkFcHdHJgqpCwfPtRrR9Ixam2RWsjuNDS9oKwKAgbBWF_JOz9OGbZU2rc2PsjyWrsSXTY8QJqiR2syypERZl0VE7NIQIrXa0yCK6QYHzARWbC3pGkLRktvp53w9kDnCTRX9kZrlMrQosqYQeTnmhsftq81RU7GPu1RQSbGQrn4nPejM00khLYOlisqY_OClOqLE_Yfq9a45SKolQa75EwNVG6yZynLd3VZaQCV4S3jU7Y4VY9f73WTd_0cFThfxDBi_-7-0t2T_R2l4r8gO2tvq3hFa7cVvXraLI_AQs1OIQ priority: 102 providerName: Springer Nature |
| Title | A multi-level hypoglycemia early alarm system based on sequence pattern mining |
| URI | https://link.springer.com/article/10.1186/s12911-021-01389-x https://www.ncbi.nlm.nih.gov/pubmed/33478490 https://www.proquest.com/docview/2490936453 https://www.proquest.com/docview/2480394701 https://pubmed.ncbi.nlm.nih.gov/PMC7819198 https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-021-01389-x https://doaj.org/article/797406a4417a4874ab70eda36e9cd083 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: KQ8 dateStart: 20010401 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: NCBI_PubMed Central(免费) customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1472-6947 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: M48 dateStart: 20010401 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: C6C dateStart: 20010112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELeglXh84P0IjMpISHxg6fK2_bGtNiakVtNEpcKXyHGcbWqaVlsrKH89d86DZqAJJL5YSW23tX3nu7PvfkfIO5UgiBN37YT52g64J2yRRsJOmQcWtqcSJfEccjyJjqfBp1k4qyLrMBYmWSi8VDahOClmmVnIeX83Ej032zc8qPnBKs1KrufRwRUILjzt89A6Bilsg2LZjUJQ0DukO52cDL6YOCPm2ZEIWB0-88eOLRFlkPx_3693BNZ1Z8rmRvU-ubspVnL7Teb5jtA6ekjW9XBLX5V5f7NO-urHNSTI_zwfj8iDSsmlg5IqH5NbunhC7oyra_ynZDKgxpHRztFliZ5vV8uzfKv04kJSjYjLVILBvaAlzDRFSZvSZUFrv2-6MqigBV2Y9BbPyPTo8PPo2K4SO9gqctjaDjJPpIEG68kPXZ6ljpcwCXZPokOPOyr0leQSc2GzKGNCS51FmfY8RwuepoF0_eekUywL_ZJQFWguE-EqXzKwNLUQmUa1Q4MU1iJMLeLWaxmrCvUck2_ksbF-eBSXExXDRMVmouLvFvnQ9FmVmB83th4iiTQtEa_bfLC8PIsr9o8ZmG1OJDHfmwQTMZAJc3Qq_UgLlYIWbJH3SGAxLjSupayCI2CQiM8VD0CRDtGcZRbZa7WE3UC1q2sSjavd6CoGE9sReN8Mv_O2qcae6GFX6OUG23DHB85wXIu8KCm6GZLvB4zDd1iEtWi9NeZ2TXFxbrDKGR4ICG6R_Zorfv2tm-Z0v-Gcv1iCV__W_DW555V8YXvuHumsLzf6DaiW66RHbrMZg5IffeyR7vBwcnIKb6No1DOHNVCOAw7l6fBrr9pWfgLx73jx |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlE4IN4EChgJxIFGTZyH4wNCy6Pa0u6eWmlvxnGcttJusnR31e6f4jcyk1e7IK249Bo_FHuenz2eAXhnUkrilPhuKgLrhgmXrsxi6WaCI8LmJjWaziEHw7h_HP4YRaMN-N2-haGwylYnVoo6Kw2dke8iTEDwHYdR8Hn6y6WqUXS72pbQqNniwC4vELLNPu1_Q_q-53zv-9HXvttUFXBN7Im5G-ZcZqFF1z2I_CTPPJ4KjU53aiOeeCYKjE40FWIWcS6k1TaPc8u5Z2WSZaH2A5z3FtwOA9QlKD9i1AE8n05R2oc5Sbw7Q1tKB5CcADs6Bu7livGragT8awmumcK_wzS7u9p7sLUopnp5ocfja-Zw7wHcb_xY1qsZ7yFs2OIR3Bk0N_WPYdhjVayiO6aoJHa6nJYn46WxkzPNLCVVZhox9YTVmaQZGdOMlQVrQ7vZtEr8WbBJVcHiCRzfyC4_hc2iLOxzYCa0iU6lbwItEExaKXNLnoVFQ2tllDngt5uqTJPYnOprjFUFcJJY1YRQSAhVEUJdOvCxGzOt03qs7f2FaNX1pJTc1Yfy_EQ1Eq4EIjMv1lTSTSMKDHUqPJvpILbSZOjoOvCBKK1IceDvGd28f8BFUgou1UNfOSLEKhzYXumJAm9Wm1teUY3Cmakr8XDgbddMIymIrrDlgvokXiBD4fkOPKtZq1tSEIQiwTkcECtMt7Lm1Zbi7LRKRy4I88vEgZ2WPa9-a92e7nQs_B8keLF-0W9gq380OFSH-8ODl3CX1zLncn8bNufnC_sKPcd5-roSVwY_b1o__AEd3nvl |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkQocEM8SKGAkJA7UauI8bB-XhVV5dMWBSr1Zju20lXaTqN0V7L9nJi82gCq4xnYSZ2Yy_jzjbwh5bXMkcZIRy0XsWSK5YsplijnBAWFzm1uD-5DH8-zoJPl0mp5uneJvst37kGR7pgFZmsrVYe2K1sRldngFXgq39jhCYXC5DFaRNxPwbljDYJpNhzgC7mv0R2X-Om7kjhrW_j__zVvO6ffEySF6eofcWpe12Xw3i8WWg5rdI3e7lSWdtKpwn9zw5QOye9zFzh-S-YQ22YNsgXlC9HxTV2eLjfXLC0M90hxTAyh3SVtuZ4ruzdGqpH2yNa0bKs6SLpuaEo_IyezDt-kR66opMJuFYsWSgiuXeIAscRrJwoU8FwbARu5TLkObxtZIgwWoRVYI5Y0vssJzHnolnUtMFD8mO2VV-ieE2sRLk6vIxkYAvPNKFR59vQfX51XqAhL1H1XbjmocK14sdAM5ZKZbQWgQhG4EoX8E5O0wpm6JNq7t_Q5lNfREkuzmQnV5pjub0wKwUpgZLLJmAJclJhehdybOvLIOlp4BeYOS1mjK8HrWdCcSYJJIiqUnsHpNEUOKgOyPeoIJ2nFzryu6-wVcacC1ocIgLzzn1dCMIzGtrfTVGvvIMFaJCKOA7LWqNUwpjhMh4R4BESOlG8153FJenDcE4QJRuJIBOejV89drXfdNDwYV_gcRPP2_u78ku1_fz_SXj_PPz8ht3pog49E-2Vldrv1zWNqt8heN9f4ESv5Dug |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJvHxwPdHYCAjIfHA0iVO4o_HgpgmpFU8UGk8WY7tbFPTtNpaQfnrucsXzUATSLxVjd3G9p3vfvbd7wh5Y3MkcZJxmIvEh6lkKlSOq9AJBgib2dwaPIc8nvCjafrpJDtpM-swFyafW7xUrlNxHFaZmZvZaDsTvay3b_hgZwdLVzRaL_nBJRguPO1jiI7BCofgWO7yDBz0HbI7nXwef63zjAQLuUpFlz7zx44DE1Uz-f--X28ZrKvBlP2N6h1ya10tzeabKcsto3V4j6y64TaxKrPRepWP7I8rTJD_eT7uk7utk0vHjVQ-IDd89ZDcPG6v8R-RyZjWgYxhiSFL9GyzXJyWG-vn54Z6ZFymBgD3nDY00xQtraOLinZx33RZs4JWdF6Xt3hMpocfv3w4CtvCDqHlkViFacGUSz2gpySLZeEilgsDuCf3GZORzRJrpMFa2IIXQnnjC154xiKvpHOpiZMnZKdaVP4ZoTb10uQqtokRgDS9UoVHt8ODFfYqcwGJu7XUtmU9x-Ibpa7Rj-S6mSgNE6XridLfA_Ku77NsOD-ubf0eRaRviXzd9ReLi1Pdqr8WANsibrDemwGImJpcRN6ZhHtlHXjBAXmLAqZxoXEtTZscAYNEfi49Bkc6QzgrArI3aAm7gR0-7kRUt7vRpQaIHSm8b4b_ed0_xp4YYVf5xRrbyCgBzYjigDxtJLofUpKkQsJvBEQMZH0w5uGT6vys5ioXeCCgZED2O6349VrXzel-rzl_sQTP_635C3KbNXoRsniP7Kwu1v4luJar_FW7VfwE2XZxzw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-level+hypoglycemia+early+alarm+system+based+on+sequence+pattern+mining&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Yu%2C+Xia&rft.au=Ma%2C+Ning&rft.au=Yang%2C+Tao&rft.au=Zhang%2C+Yawen&rft.date=2021-01-21&rft.issn=1472-6947&rft.eissn=1472-6947&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12911-021-01389-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12911_021_01389_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon |