A multi-level hypoglycemia early alarm system based on sequence pattern mining

Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glu...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 21; no. 1; pp. 22 - 11
Main Authors Yu, Xia, Ma, Ning, Yang, Tao, Zhang, Yawen, Miao, Qing, Tao, Junjun, Li, Hongru, Li, Yiming, Yang, Yehong
Format Journal Article
LanguageEnglish
Published London BioMed Central 21.01.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-021-01389-x

Cover

Abstract Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Methods Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. Results The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. Conclusions The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention.
AbstractList Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations.BACKGROUNDEarly alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations.Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system.METHODSThrough symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system.The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively.RESULTSThe model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively.The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention.CONCLUSIONSThe proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention.
Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Methods Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. Results The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. Conclusions The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention.
Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention.
Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention.
Abstract Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Methods Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. Results The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. Conclusions The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention.
Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Methods Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. Results The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. Conclusions The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention. Keywords: Hypoglycemia early alarm, Sequential pattern mining, Prefix span, Diabetes mellitus
Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic treatment. In this study, we designed a multi-level hypoglycemia early alarm system to mine potential information in Continuous Glucose Monitoring (CGM) time series and improve the overall alarm performance for different clinical situations. Methods Through symbolizing the historical CGM records, the Prefix Span was adopted to obtain the early alarm/non-alarm frequent sequence libraries of hypoglycemia events. The longest common subsequence was used to remove the common frequent sequence for achieving the hypoglycemia early alarm in different clinical situations. Then, the frequent sequence pattern libraries with different risk thresholds were designed as the core module of the proposed multi-level hypoglycemia early alarm system. Results The model was able to predict hypoglycemia events in the clinical dataset of level-I (sensitivity 85.90%, false-positive 23.86%, miss alarm rate 14.10%, average early alarm time 20.61 min), level-II (sensitivity 80.36%, false-positive 17.37%, miss alarm rate 19.63%, average early alarm time 27.66 min), and level-III (sensitivity 78.07%, false-positive 13.59%, miss alarm rate 21.93%, average early alarm time 33.80 min), respectively. Conclusions The proposed approach could effectively predict hypoglycemia events based on different risk thresholds to meet different prevention and treatment requirements. Moreover, the experimental results confirm the practicality and prospects of the proposed early alarm system, which reflects further significance in personalized medicine for hypoglycemia prevention.
ArticleNumber 22
Audience Academic
Author Li, Hongru
Li, Yiming
Miao, Qing
Yang, Tao
Tao, Junjun
Ma, Ning
Zhang, Yawen
Yu, Xia
Yang, Yehong
Author_xml – sequence: 1
  givenname: Xia
  surname: Yu
  fullname: Yu, Xia
  organization: College of Information Science and Engineering, Northeastern University
– sequence: 2
  givenname: Ning
  surname: Ma
  fullname: Ma, Ning
  organization: College of Information Science and Engineering, Northeastern University
– sequence: 3
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
  organization: College of Information Science and Engineering, Northeastern University
– sequence: 4
  givenname: Yawen
  surname: Zhang
  fullname: Zhang, Yawen
  organization: Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University
– sequence: 5
  givenname: Qing
  surname: Miao
  fullname: Miao, Qing
  organization: Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University
– sequence: 6
  givenname: Junjun
  surname: Tao
  fullname: Tao, Junjun
  organization: Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University
– sequence: 7
  givenname: Hongru
  surname: Li
  fullname: Li, Hongru
  organization: College of Information Science and Engineering, Northeastern University
– sequence: 8
  givenname: Yiming
  surname: Li
  fullname: Li, Yiming
  organization: Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University
– sequence: 9
  givenname: Yehong
  orcidid: 0000-0003-3600-2174
  surname: Yang
  fullname: Yang, Yehong
  email: yehongyang@fudan.edu.cn
  organization: Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33478490$$D View this record in MEDLINE/PubMed
BookMark eNqNkktr3DAUhU1JaR7tH-iiGLrpxqlkyZa0KYTQRyC0m3Yt7sjXEw2yNJXsJP731WSmSSaUUIyxkM859vmujosDHzwWxVtKTimV7cdEa0VpRep8UyZVdfuiOKJc1FWruDh4tD4sjlNaEUKFZM2r4pAxLiRX5Kj4flYOkxtt5fAaXXk1r8PSzQYHCyVCdHMJDuJQpjmNOJQLSNiVwZcJf0_oDZZrGEeMvhyst375unjZg0v4Zvc8KX59-fzz_Ft1-ePrxfnZZWVaIsaK97XqOBLVsobKviP1QoBo5QKbWhLTMAMSCOdEtL1QCNi3PdY1QSW7jgNlJ8XFNrcLsNLraAeIsw5g9d1GiEsNcbTGoRZKcNIC51QAl4LDQhDsgLWoTEcky1lsmzX5Ncw34Nx9ICV6Q1pvSetMWt-R1rfZ9WnrWk-LATuDfozg9n5l_423V3oZrrWQVFElc8CHXUAMmWUa9WCTQefAY5iSrrkkLM-ObNq-fyJdhSn6DDirFFGs5Q17UC0h17a-D_m7ZhOqz9qGNHn8XGTV6T9U-eryzE0-YL3N-3uGd4-L3jf8e4ayQG4FJoaUIvba2BFGGza9rXseYv3E-l_kd_NKWeyXGB9oPOP6A9Yk-b0
CitedBy_id crossref_primary_10_1177_19322968241287773
crossref_primary_10_17352_tcsit_000053
crossref_primary_10_3389_fpubh_2023_1044059
crossref_primary_10_1007_s13246_023_01254_3
Cites_doi 10.2337/dc17-1604
10.1023/A:1009748302351
10.1007/978-1-62703-646-7_1
10.2337/dc20-S006
10.1109/JBHI.2018.2840690
10.1136/amiajnl-2013-002348
10.1016/j.isatra.2018.12.050
10.1109/CompComm.2018.8780656
10.1007/3-540-58338-6_63
10.1109/ICODSE.2017.8285845
10.2337/dc19-0002
10.1177/193229681300700126
10.2174/1389200218666170116105023
10.1186/s12911-019-0943-4
10.1016/j.diabres.2017.08.012
10.1109/WiSPNET.2016.7566371
10.2337/dc09-1487
10.1016/j.jcjd.2017.10.003
10.2337/dc17-1624
10.1089/dia.2008.0032
10.1109/TII.2018.2828856
10.3389/fgene.2017.00104
10.1177/1460458219850682
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12911-021-01389-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health Medical collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Biological Science Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
MEDLINE




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 11
ExternalDocumentID oai_doaj_org_article_797406a4417a4874ab70eda36e9cd083
10.1186/s12911-021-01389-x
PMC7819198
A650500147
33478490
10_1186_s12911_021_01389_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2016YFC1305105
– fundername: National Natural Science Foundation of China
  grantid: 61903071; 61973067; 81670751
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: ;
  grantid: 61903071; 61973067; 81670751
– fundername: ;
  grantid: 2016YFC1305105
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c607t-4f29d4e0963518fd02b7a768be5280c53ca8a044076f79eaef6fe220e98dd4a13
IEDL.DBID UNPAY
ISSN 1472-6947
IngestDate Fri Oct 03 12:45:11 EDT 2025
Sun Oct 26 04:14:39 EDT 2025
Tue Sep 30 15:33:09 EDT 2025
Wed Oct 01 13:48:57 EDT 2025
Tue Oct 07 05:35:58 EDT 2025
Mon Oct 20 22:13:20 EDT 2025
Mon Oct 20 16:45:51 EDT 2025
Thu Jan 02 22:55:46 EST 2025
Wed Oct 01 04:44:17 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Sat Sep 06 07:31:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Prefix span
Hypoglycemia early alarm
Diabetes mellitus
Sequential pattern mining
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-4f29d4e0963518fd02b7a768be5280c53ca8a044076f79eaef6fe220e98dd4a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3600-2174
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-021-01389-x
PMID 33478490
PQID 2490936453
PQPubID 42572
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_797406a4417a4874ab70eda36e9cd083
unpaywall_primary_10_1186_s12911_021_01389_x
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7819198
proquest_miscellaneous_2480394701
proquest_journals_2490936453
gale_infotracmisc_A650500147
gale_infotracacademiconefile_A650500147
pubmed_primary_33478490
crossref_citationtrail_10_1186_s12911_021_01389_x
crossref_primary_10_1186_s12911_021_01389_x
springer_journals_10_1186_s12911_021_01389_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-21
PublicationDateYYYYMMDD 2021-01-21
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References J Yang (1389_CR9) 2019; 23
1389_CR17
1389_CR19
1389_CR1
P Usharani (1389_CR26) 2013; 23
MB Abraham (1389_CR3) 2018; 41
B Buckingham (1389_CR5) 2009; 11
E Dassau (1389_CR6) 2010; 33
1389_CR32
J Vehi (1389_CR10) 2020; 26
H Mannila (1389_CR30) 1997; 1
1389_CR13
1389_CR14
OU Nalbantoglu (1389_CR28) 2014; 1079
1389_CR15
B Sujeong (1389_CR16) 2019; 15
1389_CR27
Z Punthakee (1389_CR31) 2018; 42
AJ Graveling (1389_CR4) 2017; 133
Y Wang (1389_CR8) 2014; 31
W Seo (1389_CR11) 2019; 19
C Flamand (1389_CR18) 2014; 21
AJ Cook (1389_CR2) 2019; 42
T Niyazmand (1389_CR20) 2019; 90
Z Peng (1389_CR29) 2017; 8
M Kheirandish (1389_CR12) 2017; 18
ES Bayrak (1389_CR7) 2013; 7
1389_CR21
1389_CR22
1389_CR23
1389_CR24
1389_CR25
References_xml – volume: 41
  start-page: 303
  year: 2018
  ident: 1389_CR3
  publication-title: Diabetes Care
  doi: 10.2337/dc17-1604
– volume: 1
  start-page: 259
  year: 1997
  ident: 1389_CR30
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1009748302351
– ident: 1389_CR13
– volume: 31
  start-page: 421
  year: 2014
  ident: 1389_CR8
  publication-title: Chin J Health Stat
– volume: 1079
  start-page: 3
  year: 2014
  ident: 1389_CR28
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-646-7_1
– ident: 1389_CR17
– ident: 1389_CR1
  doi: 10.2337/dc20-S006
– volume: 23
  start-page: 1251
  year: 2019
  ident: 1389_CR9
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2840690
– ident: 1389_CR19
– volume: 21
  start-page: e232
  year: 2014
  ident: 1389_CR18
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2013-002348
– volume: 90
  start-page: 287
  year: 2019
  ident: 1389_CR20
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2018.12.050
– volume: 23
  start-page: 21
  year: 2013
  ident: 1389_CR26
  publication-title: Int J Sci Technol Res
– ident: 1389_CR15
  doi: 10.1109/CompComm.2018.8780656
– ident: 1389_CR27
  doi: 10.1007/3-540-58338-6_63
– ident: 1389_CR21
  doi: 10.1109/ICODSE.2017.8285845
– volume: 42
  start-page: 1854
  issue: 10
  year: 2019
  ident: 1389_CR2
  publication-title: Diabetes Care
  doi: 10.2337/dc19-0002
– volume: 7
  start-page: 206
  year: 2013
  ident: 1389_CR7
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/193229681300700126
– volume: 18
  start-page: 157
  year: 2017
  ident: 1389_CR12
  publication-title: Curr Drug Metab
  doi: 10.2174/1389200218666170116105023
– ident: 1389_CR25
– volume: 19
  start-page: 210
  year: 2019
  ident: 1389_CR11
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-019-0943-4
– volume: 133
  start-page: 30
  year: 2017
  ident: 1389_CR4
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2017.08.012
– ident: 1389_CR23
  doi: 10.1109/WiSPNET.2016.7566371
– volume: 33
  start-page: 1249
  year: 2010
  ident: 1389_CR6
  publication-title: Diabetes Care
  doi: 10.2337/dc09-1487
– ident: 1389_CR14
– volume: 42
  start-page: S10
  issue: Suppl 1
  year: 2018
  ident: 1389_CR31
  publication-title: Can J Diabetes
  doi: 10.1016/j.jcjd.2017.10.003
– ident: 1389_CR32
  doi: 10.2337/dc17-1624
– ident: 1389_CR24
– ident: 1389_CR22
– volume: 11
  start-page: 93
  year: 2009
  ident: 1389_CR5
  publication-title: Diabetes Technol Ther
  doi: 10.1089/dia.2008.0032
– volume: 15
  start-page: 922
  year: 2019
  ident: 1389_CR16
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2828856
– volume: 8
  start-page: 104
  year: 2017
  ident: 1389_CR29
  publication-title: Front Genet
  doi: 10.3389/fgene.2017.00104
– volume: 26
  start-page: 703
  year: 2020
  ident: 1389_CR10
  publication-title: Health Informatics J
  doi: 10.1177/1460458219850682
SSID ssj0017835
Score 2.2881258
Snippet Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to...
Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to diabetic...
Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great contribution to...
Abstract Background Early alarm of hypoglycemia, detection of asymptomatic hypoglycemia, and effective control of blood glucose fluctuation make a great...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms Accuracy
Alarm systems
Algorithms
Analysis
Blood Glucose
Blood Glucose Self-Monitoring
Blood sugar monitoring
Care and treatment
Data mining
Dengue fever
Diabetes
Diabetes mellitus
Diabetes Mellitus, Type 1
Diagnosis
Evaluation
Explainable AI in Medical Informatics and Decision Support
Glucose
Glucose monitoring
Health Informatics
Humans
Hyperglycemia
Hypoglycemia
Hypoglycemia - diagnosis
Hypoglycemia early alarm
Information Systems and Communication Service
Machine learning
Management of Computing and Information Systems
Medicine
Medicine & Public Health
modeling
Monitoring, Ambulatory
Pattern analysis
Precision medicine
Prefix span
Prevention
Research Article
Sensitivity
Sequential pattern mining
technology
Thresholds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiHcDBRkJiQO16jgP28cFUVVI7YlKvVmOPaGVdrMruiu6_56ZvNiAVDhwje0k9sxk5rMn3zD2LlRE4mRSUekMRG6UFTaWVkStEGGrUAVP-5CnZ-XJef7lorjYKfVFOWEdPXC3cEcaA15ZeqqU5TG4zn2lJUSflWBDxPiBvr7S2AFM9ecHtJ8x_CJjyqNr9Gq0FagIOqOLFjcTN9Sy9f_5Td5xSr8nTI6npg_YvU2z8tsffj7fcUzHj9jDPqLks24mj9kdaJ6wu6f9mflTdjbjbdagmFN-EL_crpbf5tsAiyvPgeiNuUd0u-AdpzMntxb5suFDkjVftRScDV-0tSSesfPjz18_nYi-ioIIpdRrkdfKxhwQqmRFauooVaU9gowKCmVkKLLgjafC07qstQUPdVmDUhKsiTH3afac7TXLBvYZDzkYX9k0ZF4jrANrayAfD-jywBYxYemwqC70FONU6WLuWqhhStcJwqEgXCsId5OwD-OYVUewcWvvjySrsSeRY7cXUGVcrzLubyqTsPckaUcmjK8XfP8nAk6SyLDcDKPWgrCjTtjBpCeaXpg2D7rietO_dohnpaXDXXzO27GZRlI6WwPLDfUxMrO5lmnCXnSqNU4py3Jt8B4J0xOlm8x52tJcXbbE4JrQtzUJOxzU89dr3bamh6MK_4MIXv4PEbxi91VnjUKlB2xv_X0DrzG6W1dvWkP-CawXRxM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFfx4EL-qq1UiCD7Y0N3sR5IHkau0FKGHiIW-hWySbQt3u2t7h73_3sx-tatw-LpJliQzk8kvmfwG4IPJkcRJRDTnsaOJYJJKm0lqOfMIm5ncaDyHPJllx6fJt7P0bAtm_VsYDKvs18RmobaVwTPyfQ8TPPjOkjT-Uv-imDUKb1f7FBq6S61gPzcUY_dgmyEz1gS2Dw5n338M9wp4ztE_nRHZ_rX3dnhEyBBSe9dNb0buqWHx_3etvuOs_g6kHG5TH8GDVVnr9W89n99xWEdP4HG30yTTVjWewpYrn8H9k-4u_TnMpqSJJqRzjBsiF-u6Op-vjVtcauKQ9phoj3oXpOV6JujuLKlK0gdfk7qh5izJoskx8QJOjw5_fj2mXXYFarKQL2lSMGkT5yFM7GessCHLufbgI3cpE6FJY6OFxoTUPCu4dNoVWeEYC50U1iY6indgUlalewXEJE7oXEYm1tzDPSdl4dD3O-8KnUxtAFE_qcp01OOYAWOuGggiMtUKQnlBqEYQ6iaAT0ObuiXe2Fj7AGU11ETS7OZDdXWuOhtU3GOnMNOYdE17nJbonIfO6jhz0li_FQ3gI0paoWn77hndvVDwg0SSLDX1u9kUMSUPYHdU05ukGRf3uqK6JeFa3SpwAO-HYmyJYW6lq1ZYR4SxTHgYBfCyVa1hSHGccOH_EQAfKd1ozOOS8vKiIQzniMqlCGCvV8_bbm2a071Bhf9DBK83D_oNPGStnVEW7cJkebVyb_1-bpm_64z0D9dBRbg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIvE4IN4ECjISEgdqSJzEjwNCC6KqkLYnVurNchynrZTNLttd0f33zDiPNlBVcI2dhz0zmfns8TeEvHUFkjiphBUy9SxTXDNdCs1KyQFhc1c4i-uQ0yNxOMu-H-fHO6Qvd9RN4Pm10A7rSc1W9YeLn9vPYPCfgsEr8fEcfBYu9HEExuCAGcSUt8BTaSzlMM0udxVwlSOcNpKcCZ3J_hDNtc8YOarA5__3X_uK2_ozpXLYV71H7myapd3-snV9xXUdPCD3u5iTTloleUh2fPOI3J52u-qPydGEhrxCVmMGET3dLhcn9db5-ZmlHgmQqYVJmtOW9Zmi4yvpoqF9GjZdBpLOhs5DtYknZHbw7cfXQ9bVWWBOxHLNsorrMvMAZtI8UVUZ80JagCGFz7mKXZ46qyyWppaiktpbX4nKcx57rcoys0n6lOw2i8Y_J9RlXtlCJy61EoCf17ryGAV4cIpe52VEkn5SjetIyLEWRm0CGFHCtIIwIAgTBGEuIvJ-uGfZUnDc2PsLymroifTZ4cJidWI6azQSUFQsLJZfs4DYMlvI2Jc2FV67EoLSiLxDSRtUO_g8Z7uzCjBIpMsyE4hrc0SXMiJ7o55gnG7c3OuK6XXbAOKNNW7_wnveDM14Jya8NX6xwT4qTkFF4yQiz1rVGoaUpplU8IyIyJHSjcY8bmnOTgN1uER8rlVE9nv1vPysm-Z0f1DhfxDBi_8S2Etyl7dmx3iyR3bXq41_BYHeungdrPc3a9pIhQ
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkXgcEM8SKMhISBxoROIkfhyXiqpCak9U6s1y7AmtlM2u6K5g_z0zTjZsAFVwje0kzsxk_HnG3zD21tdE4qTztFYFpKUWJjVBmjQogQhb-No72oc8PZMn5-Xni-pioMmhszC78ftcyw_X6I9oE08Q6EXnmuJ68TY6KRkDs_JojBjQDsb2UMxfx00cT-Tn__MvvOOGfk-RHOOk99nddbd0m--ubXdc0fFD9mBYQ_JZL_RH7BZ0j9md0yFK_oSdzXjME0xbygjil5vl4mu78TC_chyI0Jg7xLNz3rM4c3JkgS86vk2r5stIutnxeawe8ZSdH3_6cnSSDnUTUi8ztUrLRphQAoKTosp1EzJRK4ewooZK6MxXhXfaUalpJRtlwEEjGxAiA6NDKF1ePGN73aKD54z7ErSrTe4LpxDIgTENkFcHdHJgqpCwfPtRrR9Ixam2RWsjuNDS9oKwKAgbBWF_JOz9OGbZU2rc2PsjyWrsSXTY8QJqiR2syypERZl0VE7NIQIrXa0yCK6QYHzARWbC3pGkLRktvp53w9kDnCTRX9kZrlMrQosqYQeTnmhsftq81RU7GPu1RQSbGQrn4nPejM00khLYOlisqY_OClOqLE_Yfq9a45SKolQa75EwNVG6yZynLd3VZaQCV4S3jU7Y4VY9f73WTd_0cFThfxDBi_-7-0t2T_R2l4r8gO2tvq3hFa7cVvXraLI_AQs1OIQ
  priority: 102
  providerName: Springer Nature
Title A multi-level hypoglycemia early alarm system based on sequence pattern mining
URI https://link.springer.com/article/10.1186/s12911-021-01389-x
https://www.ncbi.nlm.nih.gov/pubmed/33478490
https://www.proquest.com/docview/2490936453
https://www.proquest.com/docview/2480394701
https://pubmed.ncbi.nlm.nih.gov/PMC7819198
https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-021-01389-x
https://doaj.org/article/797406a4417a4874ab70eda36e9cd083
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: NCBI_PubMed Central(免费)
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M48
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELeglXh84P0IjMpISHxg6fK2_bGtNiakVtNEpcKXyHGcbWqaVlsrKH89d86DZqAJJL5YSW23tX3nu7PvfkfIO5UgiBN37YT52g64J2yRRsJOmQcWtqcSJfEccjyJjqfBp1k4qyLrMBYmWSi8VDahOClmmVnIeX83Ej032zc8qPnBKs1KrufRwRUILjzt89A6Bilsg2LZjUJQ0DukO52cDL6YOCPm2ZEIWB0-88eOLRFlkPx_3693BNZ1Z8rmRvU-ubspVnL7Teb5jtA6ekjW9XBLX5V5f7NO-urHNSTI_zwfj8iDSsmlg5IqH5NbunhC7oyra_ynZDKgxpHRztFliZ5vV8uzfKv04kJSjYjLVILBvaAlzDRFSZvSZUFrv2-6MqigBV2Y9BbPyPTo8PPo2K4SO9gqctjaDjJPpIEG68kPXZ6ljpcwCXZPokOPOyr0leQSc2GzKGNCS51FmfY8RwuepoF0_eekUywL_ZJQFWguE-EqXzKwNLUQmUa1Q4MU1iJMLeLWaxmrCvUck2_ksbF-eBSXExXDRMVmouLvFvnQ9FmVmB83th4iiTQtEa_bfLC8PIsr9o8ZmG1OJDHfmwQTMZAJc3Qq_UgLlYIWbJH3SGAxLjSupayCI2CQiM8VD0CRDtGcZRbZa7WE3UC1q2sSjavd6CoGE9sReN8Mv_O2qcae6GFX6OUG23DHB85wXIu8KCm6GZLvB4zDd1iEtWi9NeZ2TXFxbrDKGR4ICG6R_Zorfv2tm-Z0v-Gcv1iCV__W_DW555V8YXvuHumsLzf6DaiW66RHbrMZg5IffeyR7vBwcnIKb6No1DOHNVCOAw7l6fBrr9pWfgLx73jx
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlE4IN4EChgJxIFGTZyH4wNCy6Pa0u6eWmlvxnGcttJusnR31e6f4jcyk1e7IK249Bo_FHuenz2eAXhnUkrilPhuKgLrhgmXrsxi6WaCI8LmJjWaziEHw7h_HP4YRaMN-N2-haGwylYnVoo6Kw2dke8iTEDwHYdR8Hn6y6WqUXS72pbQqNniwC4vELLNPu1_Q_q-53zv-9HXvttUFXBN7Im5G-ZcZqFF1z2I_CTPPJ4KjU53aiOeeCYKjE40FWIWcS6k1TaPc8u5Z2WSZaH2A5z3FtwOA9QlKD9i1AE8n05R2oc5Sbw7Q1tKB5CcADs6Bu7livGragT8awmumcK_wzS7u9p7sLUopnp5ocfja-Zw7wHcb_xY1qsZ7yFs2OIR3Bk0N_WPYdhjVayiO6aoJHa6nJYn46WxkzPNLCVVZhox9YTVmaQZGdOMlQVrQ7vZtEr8WbBJVcHiCRzfyC4_hc2iLOxzYCa0iU6lbwItEExaKXNLnoVFQ2tllDngt5uqTJPYnOprjFUFcJJY1YRQSAhVEUJdOvCxGzOt03qs7f2FaNX1pJTc1Yfy_EQ1Eq4EIjMv1lTSTSMKDHUqPJvpILbSZOjoOvCBKK1IceDvGd28f8BFUgou1UNfOSLEKhzYXumJAm9Wm1teUY3Cmakr8XDgbddMIymIrrDlgvokXiBD4fkOPKtZq1tSEIQiwTkcECtMt7Lm1Zbi7LRKRy4I88vEgZ2WPa9-a92e7nQs_B8keLF-0W9gq380OFSH-8ODl3CX1zLncn8bNufnC_sKPcd5-roSVwY_b1o__AEd3nvl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkQocEM8SKGAkJA7UauI8bB-XhVV5dMWBSr1Zju20lXaTqN0V7L9nJi82gCq4xnYSZ2Yy_jzjbwh5bXMkcZIRy0XsWSK5YsplijnBAWFzm1uD-5DH8-zoJPl0mp5uneJvst37kGR7pgFZmsrVYe2K1sRldngFXgq39jhCYXC5DFaRNxPwbljDYJpNhzgC7mv0R2X-Om7kjhrW_j__zVvO6ffEySF6eofcWpe12Xw3i8WWg5rdI3e7lSWdtKpwn9zw5QOye9zFzh-S-YQ22YNsgXlC9HxTV2eLjfXLC0M90hxTAyh3SVtuZ4ruzdGqpH2yNa0bKs6SLpuaEo_IyezDt-kR66opMJuFYsWSgiuXeIAscRrJwoU8FwbARu5TLkObxtZIgwWoRVYI5Y0vssJzHnolnUtMFD8mO2VV-ieE2sRLk6vIxkYAvPNKFR59vQfX51XqAhL1H1XbjmocK14sdAM5ZKZbQWgQhG4EoX8E5O0wpm6JNq7t_Q5lNfREkuzmQnV5pjub0wKwUpgZLLJmAJclJhehdybOvLIOlp4BeYOS1mjK8HrWdCcSYJJIiqUnsHpNEUOKgOyPeoIJ2nFzryu6-wVcacC1ocIgLzzn1dCMIzGtrfTVGvvIMFaJCKOA7LWqNUwpjhMh4R4BESOlG8153FJenDcE4QJRuJIBOejV89drXfdNDwYV_gcRPP2_u78ku1_fz_SXj_PPz8ht3pog49E-2Vldrv1zWNqt8heN9f4ESv5Dug
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJvHxwPdHYCAjIfHA0iVO4o_HgpgmpFU8UGk8WY7tbFPTtNpaQfnrucsXzUATSLxVjd3G9p3vfvbd7wh5Y3MkcZJxmIvEh6lkKlSOq9AJBgib2dwaPIc8nvCjafrpJDtpM-swFyafW7xUrlNxHFaZmZvZaDsTvay3b_hgZwdLVzRaL_nBJRguPO1jiI7BCofgWO7yDBz0HbI7nXwef63zjAQLuUpFlz7zx44DE1Uz-f--X28ZrKvBlP2N6h1ya10tzeabKcsto3V4j6y64TaxKrPRepWP7I8rTJD_eT7uk7utk0vHjVQ-IDd89ZDcPG6v8R-RyZjWgYxhiSFL9GyzXJyWG-vn54Z6ZFymBgD3nDY00xQtraOLinZx33RZs4JWdF6Xt3hMpocfv3w4CtvCDqHlkViFacGUSz2gpySLZeEilgsDuCf3GZORzRJrpMFa2IIXQnnjC154xiKvpHOpiZMnZKdaVP4ZoTb10uQqtokRgDS9UoVHt8ODFfYqcwGJu7XUtmU9x-Ibpa7Rj-S6mSgNE6XridLfA_Ku77NsOD-ubf0eRaRviXzd9ReLi1Pdqr8WANsibrDemwGImJpcRN6ZhHtlHXjBAXmLAqZxoXEtTZscAYNEfi49Bkc6QzgrArI3aAm7gR0-7kRUt7vRpQaIHSm8b4b_ed0_xp4YYVf5xRrbyCgBzYjigDxtJLofUpKkQsJvBEQMZH0w5uGT6vys5ioXeCCgZED2O6349VrXzel-rzl_sQTP_635C3KbNXoRsniP7Kwu1v4luJar_FW7VfwE2XZxzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-level+hypoglycemia+early+alarm+system+based+on+sequence+pattern+mining&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Yu%2C+Xia&rft.au=Ma%2C+Ning&rft.au=Yang%2C+Tao&rft.au=Zhang%2C+Yawen&rft.date=2021-01-21&rft.issn=1472-6947&rft.eissn=1472-6947&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12911-021-01389-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12911_021_01389_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon