Patient similarity and other artificial intelligence machine learning algorithms in clinical decision aid for shared decision-making in the Prevention of Cardiovascular Toxicity (PACT): a feasibility trial design

Background The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular disease. Identifying effective management strategies that can mitigate this risk of cardiovascular complications is vital. Theref...

Full description

Saved in:
Bibliographic Details
Published inCardio-oncology (London, England) Vol. 9; no. 1; pp. 7 - 10
Main Authors Brown, Sherry-Ann, Chung, Brian Y., Doshi, Krishna, Hamid, Abdulaziz, Pederson, Erin, Maddula, Ragasnehith, Hanna, Allen, Choudhuri, Indrajit, Sparapani, Rodney, Bagheri Mohamadi Pour, Mehri, Zhang, Jun, Kothari, Anai N., Collier, Patrick, Caraballo, Pedro, Noseworthy, Peter, Arruda-Olson, Adelaide
Format Journal Article
LanguageEnglish
Published London BioMed Central 23.01.2023
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN2057-3804
2057-3804
DOI10.1186/s40959-022-00151-0

Cover

Abstract Background The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular disease. Identifying effective management strategies that can mitigate this risk of cardiovascular complications is vital. Therefore, developing computer-driven and personalized clinical decision aid interventions that can provide early detection of patients at risk, stratify that risk, and recommend specific cardio-oncology management guidelines and expert consensus recommendations is critically important. Objectives To assess the feasibility, acceptability, and utility of the use of an artificial intelligence (AI)-powered clinical decision aid tool in shared decision making between the cancer survivor patient and the cardiologist regarding prevention of cardiovascular disease. Design This is a single-center, double-arm, open-label, randomized interventional feasibility study. Our cardio-oncology cohort of > 4000 individuals from our Clinical Research Data Warehouse will be queried to identify at least 200 adult cancer survivors who meet the eligibility criteria. Study participants will be randomized into either the Clinical Decision Aid Group (where patients will use the clinical decision aid in addition to current practice) or the Control Group (current practice). The primary endpoint of this study is to assess for each patient encounter whether cardiovascular medications and imaging pursued were consistent with current medical society recommendations. Additionally, the perceptions of using the clinical decision tool will be evaluated based on patient and physician feedback through surveys and focus groups. Summary This trial will determine whether a clinical decision aid tool improves cancer survivors’ medication use and imaging surveillance recommendations aligned with current medical guidelines. Trial registration ClinicalTrials.Gov Identifier: NCT05377320
AbstractList The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular disease. Identifying effective management strategies that can mitigate this risk of cardiovascular complications is vital. Therefore, developing computer-driven and personalized clinical decision aid interventions that can provide early detection of patients at risk, stratify that risk, and recommend specific cardio-oncology management guidelines and expert consensus recommendations is critically important. To assess the feasibility, acceptability, and utility of the use of an artificial intelligence (AI)-powered clinical decision aid tool in shared decision making between the cancer survivor patient and the cardiologist regarding prevention of cardiovascular disease. This is a single-center, double-arm, open-label, randomized interventional feasibility study. Our cardio-oncology cohort of > 4000 individuals from our Clinical Research Data Warehouse will be queried to identify at least 200 adult cancer survivors who meet the eligibility criteria. Study participants will be randomized into either the Clinical Decision Aid Group (where patients will use the clinical decision aid in addition to current practice) or the Control Group (current practice). The primary endpoint of this study is to assess for each patient encounter whether cardiovascular medications and imaging pursued were consistent with current medical society recommendations. Additionally, the perceptions of using the clinical decision tool will be evaluated based on patient and physician feedback through surveys and focus groups. This trial will determine whether a clinical decision aid tool improves cancer survivors' medication use and imaging surveillance recommendations aligned with current medical guidelines. ClinicalTrials.Gov Identifier: NCT05377320.
Background The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular disease. Identifying effective management strategies that can mitigate this risk of cardiovascular complications is vital. Therefore, developing computer-driven and personalized clinical decision aid interventions that can provide early detection of patients at risk, stratify that risk, and recommend specific cardio-oncology management guidelines and expert consensus recommendations is critically important. Objectives To assess the feasibility, acceptability, and utility of the use of an artificial intelligence (AI)-powered clinical decision aid tool in shared decision making between the cancer survivor patient and the cardiologist regarding prevention of cardiovascular disease. Design This is a single-center, double-arm, open-label, randomized interventional feasibility study. Our cardio-oncology cohort of > 4000 individuals from our Clinical Research Data Warehouse will be queried to identify at least 200 adult cancer survivors who meet the eligibility criteria. Study participants will be randomized into either the Clinical Decision Aid Group (where patients will use the clinical decision aid in addition to current practice) or the Control Group (current practice). The primary endpoint of this study is to assess for each patient encounter whether cardiovascular medications and imaging pursued were consistent with current medical society recommendations. Additionally, the perceptions of using the clinical decision tool will be evaluated based on patient and physician feedback through surveys and focus groups. Summary This trial will determine whether a clinical decision aid tool improves cancer survivors’ medication use and imaging surveillance recommendations aligned with current medical guidelines. Trial registration ClinicalTrials.Gov Identifier: NCT05377320
The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular disease. Identifying effective management strategies that can mitigate this risk of cardiovascular complications is vital. Therefore, developing computer-driven and personalized clinical decision aid interventions that can provide early detection of patients at risk, stratify that risk, and recommend specific cardio-oncology management guidelines and expert consensus recommendations is critically important.BACKGROUNDThe many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular disease. Identifying effective management strategies that can mitigate this risk of cardiovascular complications is vital. Therefore, developing computer-driven and personalized clinical decision aid interventions that can provide early detection of patients at risk, stratify that risk, and recommend specific cardio-oncology management guidelines and expert consensus recommendations is critically important.To assess the feasibility, acceptability, and utility of the use of an artificial intelligence (AI)-powered clinical decision aid tool in shared decision making between the cancer survivor patient and the cardiologist regarding prevention of cardiovascular disease.OBJECTIVESTo assess the feasibility, acceptability, and utility of the use of an artificial intelligence (AI)-powered clinical decision aid tool in shared decision making between the cancer survivor patient and the cardiologist regarding prevention of cardiovascular disease.This is a single-center, double-arm, open-label, randomized interventional feasibility study. Our cardio-oncology cohort of > 4000 individuals from our Clinical Research Data Warehouse will be queried to identify at least 200 adult cancer survivors who meet the eligibility criteria. Study participants will be randomized into either the Clinical Decision Aid Group (where patients will use the clinical decision aid in addition to current practice) or the Control Group (current practice). The primary endpoint of this study is to assess for each patient encounter whether cardiovascular medications and imaging pursued were consistent with current medical society recommendations. Additionally, the perceptions of using the clinical decision tool will be evaluated based on patient and physician feedback through surveys and focus groups. This trial will determine whether a clinical decision aid tool improves cancer survivors' medication use and imaging surveillance recommendations aligned with current medical guidelines.DESIGNThis is a single-center, double-arm, open-label, randomized interventional feasibility study. Our cardio-oncology cohort of > 4000 individuals from our Clinical Research Data Warehouse will be queried to identify at least 200 adult cancer survivors who meet the eligibility criteria. Study participants will be randomized into either the Clinical Decision Aid Group (where patients will use the clinical decision aid in addition to current practice) or the Control Group (current practice). The primary endpoint of this study is to assess for each patient encounter whether cardiovascular medications and imaging pursued were consistent with current medical society recommendations. Additionally, the perceptions of using the clinical decision tool will be evaluated based on patient and physician feedback through surveys and focus groups. This trial will determine whether a clinical decision aid tool improves cancer survivors' medication use and imaging surveillance recommendations aligned with current medical guidelines.ClinicalTrials.Gov Identifier: NCT05377320.TRIAL REGISTRATIONClinicalTrials.Gov Identifier: NCT05377320.
Abstract Background The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular disease. Identifying effective management strategies that can mitigate this risk of cardiovascular complications is vital. Therefore, developing computer-driven and personalized clinical decision aid interventions that can provide early detection of patients at risk, stratify that risk, and recommend specific cardio-oncology management guidelines and expert consensus recommendations is critically important. Objectives To assess the feasibility, acceptability, and utility of the use of an artificial intelligence (AI)-powered clinical decision aid tool in shared decision making between the cancer survivor patient and the cardiologist regarding prevention of cardiovascular disease. Design This is a single-center, double-arm, open-label, randomized interventional feasibility study. Our cardio-oncology cohort of > 4000 individuals from our Clinical Research Data Warehouse will be queried to identify at least 200 adult cancer survivors who meet the eligibility criteria. Study participants will be randomized into either the Clinical Decision Aid Group (where patients will use the clinical decision aid in addition to current practice) or the Control Group (current practice). The primary endpoint of this study is to assess for each patient encounter whether cardiovascular medications and imaging pursued were consistent with current medical society recommendations. Additionally, the perceptions of using the clinical decision tool will be evaluated based on patient and physician feedback through surveys and focus groups. Summary This trial will determine whether a clinical decision aid tool improves cancer survivors’ medication use and imaging surveillance recommendations aligned with current medical guidelines. Trial registration ClinicalTrials.Gov Identifier: NCT05377320
BackgroundThe many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular disease. Identifying effective management strategies that can mitigate this risk of cardiovascular complications is vital. Therefore, developing computer-driven and personalized clinical decision aid interventions that can provide early detection of patients at risk, stratify that risk, and recommend specific cardio-oncology management guidelines and expert consensus recommendations is critically important.ObjectivesTo assess the feasibility, acceptability, and utility of the use of an artificial intelligence (AI)-powered clinical decision aid tool in shared decision making between the cancer survivor patient and the cardiologist regarding prevention of cardiovascular disease.DesignThis is a single-center, double-arm, open-label, randomized interventional feasibility study. Our cardio-oncology cohort of > 4000 individuals from our Clinical Research Data Warehouse will be queried to identify at least 200 adult cancer survivors who meet the eligibility criteria. Study participants will be randomized into either the Clinical Decision Aid Group (where patients will use the clinical decision aid in addition to current practice) or the Control Group (current practice). The primary endpoint of this study is to assess for each patient encounter whether cardiovascular medications and imaging pursued were consistent with current medical society recommendations. Additionally, the perceptions of using the clinical decision tool will be evaluated based on patient and physician feedback through surveys and focus groups.SummaryThis trial will determine whether a clinical decision aid tool improves cancer survivors’ medication use and imaging surveillance recommendations aligned with current medical guidelines.Trial registrationClinicalTrials.Gov Identifier: NCT05377320
ArticleNumber 7
Author Bagheri Mohamadi Pour, Mehri
Hamid, Abdulaziz
Noseworthy, Peter
Pederson, Erin
Choudhuri, Indrajit
Collier, Patrick
Sparapani, Rodney
Kothari, Anai N.
Brown, Sherry-Ann
Maddula, Ragasnehith
Arruda-Olson, Adelaide
Hanna, Allen
Chung, Brian Y.
Caraballo, Pedro
Doshi, Krishna
Zhang, Jun
Author_xml – sequence: 1
  givenname: Sherry-Ann
  surname: Brown
  fullname: Brown, Sherry-Ann
  email: shbrown@mcw.edu
  organization: Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, Department of Cardiovascular Medicine, Mayo Clinic
– sequence: 2
  givenname: Brian Y.
  surname: Chung
  fullname: Chung, Brian Y.
  organization: Cancer Center, Medical College of Wisconsin
– sequence: 3
  givenname: Krishna
  surname: Doshi
  fullname: Doshi, Krishna
  organization: Department of Internal Medicine, Advocate Lutheran General Hospital
– sequence: 4
  givenname: Abdulaziz
  surname: Hamid
  fullname: Hamid, Abdulaziz
  organization: Medical College of Wisconsin
– sequence: 5
  givenname: Erin
  surname: Pederson
  fullname: Pederson, Erin
  organization: Medical College of Wisconsin
– sequence: 6
  givenname: Ragasnehith
  surname: Maddula
  fullname: Maddula, Ragasnehith
  organization: Medical College of Wisconsin
– sequence: 7
  givenname: Allen
  surname: Hanna
  fullname: Hanna, Allen
  organization: University of Wisconsin-Milwaukee
– sequence: 8
  givenname: Indrajit
  surname: Choudhuri
  fullname: Choudhuri, Indrajit
  organization: Department of Electrophysiology, Froedtert South
– sequence: 9
  givenname: Rodney
  surname: Sparapani
  fullname: Sparapani, Rodney
  organization: Institute for Health and Equity, Medical College of Wisconsin
– sequence: 10
  givenname: Mehri
  surname: Bagheri Mohamadi Pour
  fullname: Bagheri Mohamadi Pour, Mehri
  organization: Department of Computer Science, University of Wisconsin-Milwaukee
– sequence: 11
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  organization: Department of Computer Science, University of Wisconsin-Milwaukee
– sequence: 12
  givenname: Anai N.
  surname: Kothari
  fullname: Kothari, Anai N.
  organization: Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin
– sequence: 13
  givenname: Patrick
  surname: Collier
  fullname: Collier, Patrick
  organization: Department of Cardiovascular Medicine, Cleveland Clinic
– sequence: 14
  givenname: Pedro
  surname: Caraballo
  fullname: Caraballo, Pedro
  organization: Department of Medicine, Mayo Clinic
– sequence: 15
  givenname: Peter
  surname: Noseworthy
  fullname: Noseworthy, Peter
  organization: Department of Cardiovascular Medicine, Mayo Clinic
– sequence: 16
  givenname: Adelaide
  surname: Arruda-Olson
  fullname: Arruda-Olson, Adelaide
  organization: Department of Cardiovascular Medicine, Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36691060$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFARLaV_gAOyxKUcAk4cexMOSNWKj0qV6KGcrRfnOevi2MXOFvo_-UG87ZbS9lDhi6PnmfF4Js-LnRADFsXLir-tqla9yw3vZFfyui45r2RV8ifFXs3lohQtb3bufO8WBzmfc07QplFKPSt2hVJdxRXfK36fwuwwzCy7yXlIbr5iEAYW5xUmBml21hkHnrkwo_duxGCQTWBWLiDzCCm4MDLwYyTuasoEZMa74AyRBjQuuxgYuIHZmFheQcLhdl5O8H1DJw7dx04TXpKXDSFatoQ0uHgJ2azJGDuLv8gJ2Ts8PVqevXnPgFmE7HrnN9M5uesLsxvDi-KpBZ_x4GbfL759-ni2_FKefP18vDw6KY3ii7kUXSXk0FnZQ2N620uzUEINje2U6VSFEheKCy5bu8Aa6ppOJVjTorFosRJivzje6g4RzvVFchOkKx3B6etBTKPeJGg86r5WgxwqCchNY7CjJWuqyDZVg53oSUtstdbhAq5-gve3ghXXm8r1tnJNPerryjUn1oct62LdTzgYSi-Bv2fl_klwKz3GS921qlNckcDhjUCKP9aYZz25bKhpCBjXWdOjO7EQjZAEff0Aeh7XKVDAhKLVikq2hHp119Gtlb-_HAHaLcCkmHNCq6lV2JROBp1__LX1A-p_RXQTbCZwGDH9s_0I6w9yfBAw
CitedBy_id crossref_primary_10_1021_acs_jmedchem_4c01684
crossref_primary_10_1186_s40959_024_00276_4
crossref_primary_10_3390_children10030574
crossref_primary_10_1007_s11936_024_01059_x
crossref_primary_10_2196_58705
Cites_doi 10.1161/CIRCOUTCOMES.119.005984
10.1200/JCO.2016.70.5400
10.3322/caac.21654
10.1161/CIR.0000000000001032
10.1161/RES.0000000000000473
10.1038/s41591-021-01335-4
10.1016/j.cardfail.2016.03.012
10.1016/j.jacc.2015.04.059
10.1016/j.cardfail.2016.04.019
10.1016/j.jacc.2020.08.079
10.1007/s11912-018-0681-2
10.1161/CIR.0000000000000679
10.1038/nrclinonc.2015.168
10.1016/j.jacc.2019.02.041
10.1371/journal.pmed.1003736
10.1016/j.jaccao.2020.11.003
10.1093/cvr/cvz031
10.3322/caac.21565
10.1161/CIR.0000000000000556
10.1136/jim-2016-000318
10.1016/j.pec.2013.08.005
10.1161/CIRCGENETICS.116.001613
10.1016/j.hfc.2016.12.011
10.1016/j.mayocp.2014.05.013
10.1016/j.pec.2012.06.036
10.1016/j.ahjo.2022.100094
10.1186/bcr2901
10.1161/CIR.0000000000000641
10.1161/JAHA.120.019628
10.1093/eurheartj/ehab674
10.1161/CIRCULATIONAHA.115.020109
10.1016/j.jaccao.2019.09.004
10.1016/j.jaccao.2020.05.010
10.1161/CIR.0000000000000986
10.1016/j.jacc.2018.05.008
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor for the Cardio-Oncology Artificial Intelligence Informatics and Precision Equity (CAIPE) Research Team Investigators
Cardio-Oncology Artificial Intelligence Informatics and Precision Equity (CAIPE) Research Team Investigators
CorporateAuthor_xml – name: for the Cardio-Oncology Artificial Intelligence Informatics and Precision Equity (CAIPE) Research Team Investigators
– name: Cardio-Oncology Artificial Intelligence Informatics and Precision Equity (CAIPE) Research Team Investigators
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s40959-022-00151-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2057-3804
EndPage 10
ExternalDocumentID oai_doaj_org_article_b26d5d15ae0c4ce999952205f414e93b
10.1186/s40959-022-00151-0
PMC9869606
36691060
10_1186_s40959_022_00151_0
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: KL2TR001438
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NIH HHS
  grantid: KL2TR001438
– fundername: NCATS NIH HHS
  grantid: UL1 TR001436
– fundername: NCATS NIH HHS
  grantid: KL2 TR001438
– fundername: ;
  grantid: KL2TR001438
GroupedDBID 0R~
53G
7X7
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABUWG
ACGFS
ADBBV
ADUKV
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
BCNDV
BENPR
BFQNJ
BMC
C6C
CCPQU
EBLON
EBS
EIHBH
FYUFA
GROUPED_DOAJ
HMCUK
IAO
ITC
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PUEGO
ROL
RPM
RSV
SOJ
UKHRP
AAYXX
CITATION
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
AHSBF
EJD
H13
UNPAY
ID FETCH-LOGICAL-c607t-39135d9f5ba4cbfb5c7636d4f96c961e5e7603058f7e2a227635afc8ecfefe133
IEDL.DBID DOA
ISSN 2057-3804
IngestDate Tue Oct 14 19:01:05 EDT 2025
Sun Oct 26 02:41:16 EDT 2025
Tue Sep 30 17:16:20 EDT 2025
Fri Sep 05 12:21:12 EDT 2025
Mon Oct 20 03:06:00 EDT 2025
Mon Jul 21 06:00:18 EDT 2025
Wed Oct 01 03:30:51 EDT 2025
Thu Apr 24 23:05:29 EDT 2025
Sat Sep 06 07:29:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cancer survivors
Machine learning
Cardio-oncology
Cardiotoxicity
Clinical decision aid
Clinical decision support
Artificial intelligence
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-39135d9f5ba4cbfb5c7636d4f96c961e5e7603058f7e2a227635afc8ecfefe133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b26d5d15ae0c4ce999952205f414e93b
PMID 36691060
PQID 2777783158
PQPubID 4514819
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_b26d5d15ae0c4ce999952205f414e93b
unpaywall_primary_10_1186_s40959_022_00151_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9869606
proquest_miscellaneous_2769373435
proquest_journals_2777783158
pubmed_primary_36691060
crossref_citationtrail_10_1186_s40959_022_00151_0
crossref_primary_10_1186_s40959_022_00151_0
springer_journals_10_1186_s40959_022_00151_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-23
PublicationDateYYYYMMDD 2023-01-23
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cardio-oncology (London, England)
PublicationTitleAbbrev Cardio-Oncology
PublicationTitleAlternate Cardiooncology
PublicationYear 2023
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References D Sadler (151_CR6) 2020; 6
Y Koop (151_CR19) 2020; 6
IJ Kullo (151_CR43) 2016; 133
H Jouni (151_CR36) 2017; 65
J Herrmann (151_CR7) 2014; 89
151_CR30
MG Fradley (151_CR25) 2021; 144
SA Brown (151_CR11) 2016; 22
JA Alvarez-Cardona (151_CR13) 2020; 76
SA Brown (151_CR34) 2021; 7
J Herrmann (151_CR28) 2022; 43
U Campia (151_CR26) 2019; 139
G Elwyn (151_CR37) 2013; 90
EJ Chow (151_CR32) 2019; 115
151_CR2
KD Miller (151_CR3) 2019; 69
S Brown (151_CR4) 2021; 7
A Barac (151_CR16) 2015; 65
Y Zhou (151_CR29) 2020; 9
RW Squires (151_CR41) 2018; 20
SS Hayek (151_CR17) 2019; 73
M Tuzovic (151_CR12) 2020; 2
F Légaré (151_CR35) 2010; 5
R Untaru (151_CR20) 2020; 2
D Snipelisky (151_CR8) 2017; 13
SC Gilchrist (151_CR24) 2019; 139
MG Fradley (151_CR5) 2017; 11
VG Zaha (151_CR22) 2021; 144
S Ganatra (151_CR15) 2018; 71
SH Armenian (151_CR21) 2017; 35
X Yao (151_CR44) 2021; 27
LS Mehta (151_CR23) 2018; 137
DJ Lenihan (151_CR14) 2016; 22
A Asnani (151_CR27) 2021; 129
RL Siegel (151_CR1) 2021; 71
SA Brown (151_CR10) 2015; 12
KJ Ruddy (151_CR18) 2020; 13
Y Koop (151_CR40) 2020; 6
G Elwyn (151_CR38) 2013; 93
Y Hou (151_CR42) 2021; 18
JL Patnaik (151_CR31) 2011; 13
DW Sundlöf (151_CR9) 2019; 1
151_CR33
151_CR39
References_xml – volume: 7
  start-page: 2
  issue: 1
  year: 2021
  ident: 151_CR34
  publication-title: Cardiooncology
– volume: 13
  start-page: e005984
  issue: 3
  year: 2020
  ident: 151_CR18
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.119.005984
– volume: 35
  start-page: 893
  issue: 8
  year: 2017
  ident: 151_CR21
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2016.70.5400
– volume: 71
  start-page: 7
  issue: 1
  year: 2021
  ident: 151_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21654
– volume: 144
  start-page: e551
  issue: 25
  year: 2021
  ident: 151_CR22
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000001032
– volume: 7
  start-page: 2
  issue: 1
  year: 2021
  ident: 151_CR4
  publication-title: CardioOncology.
– volume: 129
  start-page: e21
  issue: 1
  year: 2021
  ident: 151_CR27
  publication-title: Circ Res
  doi: 10.1161/RES.0000000000000473
– volume: 6
  start-page: 9
  year: 2020
  ident: 151_CR6
  publication-title: Cardiooncology
– volume: 27
  start-page: 815
  issue: 5
  year: 2021
  ident: 151_CR44
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01335-4
– volume: 5
  start-page: Cd006732
  year: 2010
  ident: 151_CR35
  publication-title: Cochrane Database Syst Rev.
– volume: 6
  start-page: 14
  year: 2020
  ident: 151_CR40
  publication-title: Cardiooncology
– ident: 151_CR33
– volume: 22
  start-page: 465
  issue: 6
  year: 2016
  ident: 151_CR14
  publication-title: J Card Fail
  doi: 10.1016/j.cardfail.2016.03.012
– volume: 65
  start-page: 2739
  issue: 25
  year: 2015
  ident: 151_CR16
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2015.04.059
– volume: 22
  start-page: 934
  issue: 11
  year: 2016
  ident: 151_CR11
  publication-title: J Card Fail
  doi: 10.1016/j.cardfail.2016.04.019
– volume: 76
  start-page: 2267
  issue: 19
  year: 2020
  ident: 151_CR13
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2020.08.079
– volume: 20
  start-page: 27
  issue: 3
  year: 2018
  ident: 151_CR41
  publication-title: Curr Oncol Rep
  doi: 10.1007/s11912-018-0681-2
– volume: 139
  start-page: e997
  issue: 21
  year: 2019
  ident: 151_CR24
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000679
– volume: 12
  start-page: 718
  issue: 12
  year: 2015
  ident: 151_CR10
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2015.168
– volume: 73
  start-page: 2226
  issue: 17
  year: 2019
  ident: 151_CR17
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2019.02.041
– volume: 18
  start-page: e1003736
  issue: 8
  year: 2021
  ident: 151_CR42
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1003736
– volume: 2
  start-page: 795
  issue: 5
  year: 2020
  ident: 151_CR12
  publication-title: JACC Cardio Oncology.
  doi: 10.1016/j.jaccao.2020.11.003
– volume: 115
  start-page: 922
  issue: 5
  year: 2019
  ident: 151_CR32
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvz031
– volume: 69
  start-page: 363
  issue: 5
  year: 2019
  ident: 151_CR3
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21565
– volume: 11
  start-page: 340
  issue: 2
  year: 2017
  ident: 151_CR5
  publication-title: Oncol Rev
– volume: 137
  start-page: e30
  issue: 8
  year: 2018
  ident: 151_CR23
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000556
– volume: 65
  start-page: 681
  issue: 3
  year: 2017
  ident: 151_CR36
  publication-title: J Investig Med
  doi: 10.1136/jim-2016-000318
– volume: 93
  start-page: 265
  issue: 2
  year: 2013
  ident: 151_CR38
  publication-title: Patient Educ Couns
  doi: 10.1016/j.pec.2013.08.005
– ident: 151_CR39
  doi: 10.1161/CIRCGENETICS.116.001613
– volume: 13
  start-page: 347
  issue: 2
  year: 2017
  ident: 151_CR8
  publication-title: Heart Fail Clin
  doi: 10.1016/j.hfc.2016.12.011
– volume: 89
  start-page: 1287
  issue: 9
  year: 2014
  ident: 151_CR7
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2014.05.013
– volume: 90
  start-page: 207
  issue: 2
  year: 2013
  ident: 151_CR37
  publication-title: Patient Educ Couns
  doi: 10.1016/j.pec.2012.06.036
– ident: 151_CR30
  doi: 10.1016/j.ahjo.2022.100094
– volume: 13
  start-page: R64
  issue: 3
  year: 2011
  ident: 151_CR31
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr2901
– volume: 139
  start-page: e579
  issue: 13
  year: 2019
  ident: 151_CR26
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000641
– volume: 9
  start-page: e019628
  issue: 23
  year: 2020
  ident: 151_CR29
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.120.019628
– volume: 43
  start-page: 280
  issue: 4
  year: 2022
  ident: 151_CR28
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehab674
– volume: 133
  start-page: 1181
  issue: 12
  year: 2016
  ident: 151_CR43
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.020109
– volume: 1
  start-page: 310
  issue: 2
  year: 2019
  ident: 151_CR9
  publication-title: JACC Cardio Oncology.
  doi: 10.1016/j.jaccao.2019.09.004
– volume: 2
  start-page: 312
  issue: 2
  year: 2020
  ident: 151_CR20
  publication-title: JACC CardioOncology.
  doi: 10.1016/j.jaccao.2020.05.010
– ident: 151_CR2
– volume: 144
  start-page: e41
  issue: 3
  year: 2021
  ident: 151_CR25
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000986
– volume: 71
  start-page: 2977
  issue: 25
  year: 2018
  ident: 151_CR15
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.05.008
– volume: 6
  start-page: 14
  year: 2020
  ident: 151_CR19
  publication-title: Cardiooncology
SSID ssj0002244666
Score 2.3296516
Snippet Background The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent...
The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular...
BackgroundThe many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent...
Abstract Background The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Algorithms
Artificial intelligence
Breast cancer
Cancer survivors
Cardio-oncology
Cardiology
Cardiotoxicity
Cardiovascular disease
Clinical decision aid
Clinical medicine
Collaboration
Consent
Decision making
Electronic health records
Ethnicity
Feasibility studies
Focus groups
Laboratories
Machine learning
Medicine
Medicine & Public Health
Oncology
Patients
Risk assessment
Shared decision making
Surveillance
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBZdCrs8jN26eeuGBnvYWE1jW5KtwRhtaSmDhTBS6JuRdUkCiZ01CVv_537QzpEvbdgI86MtJcfKl6PvSEffIeSdliaWRiWhtNKFLCt4WHAnQydZ0bcqcnBhtsVAnF-wr5f8cocM2rMwmFbZ-kTvqE2lcY38ME7hypKIZ18WP0KsGoW7q20JDdWUVjCfvcTYHbIbozJWj-wenw6G37tVF5iwGBD29vRMJg6XzK-EYVI78geIrTdmKC_k_y_2-XcSZbeT-oDcW5cLdf1TzWa3JquzR-RhwzLpUQ2Lx2THlk_I3W_NPvpT8ntYy6nS5XQ-hdgWqDhVpaH-OBZFNNXCEnR6S7GTzn3ipaVNpYkxVbMxDNFqMl9CQ9oesqSmqdtD1dRQIMV0OcE09-5-OPclsLAPfB9tVaSgQ-XoyUaCLB1Vv8ASMO_98Ohk9OETVdRZ1eT0XlNfdAQ-GNNQnpGLs9PRyXnY1HcIteinqzCRUcKNdLxQTBeu4BqcnTDMSaGliCy3qUB_lLnUxiqOUTtPOZ1Z7ayzEFzvkV5ZlfYFoagSH0ktdaQ1485kLI50WgDfsbEUhQtI1P6muW7Ez7EGxyz3QVAm8hoHOeAg9zjI-wH52PVZ1NIfW1sfI1S6lijb7W9UV-O88QJ5EQvDTcSV7WumLZBzyfGks2MRszIpArLfAi1vfMkyv0F-QN52j8EL4NaOKm21xjYCeGYC3Dcgz2tcdpYkQgAnFGBhuoHYDVM3n5TTiVcal5nACDcgBy22b8zaNhQHHf7_Y-Rebn_pV-R-DMQSl73iZJ_0Vldr-xqI4Kp40_y7_wDNsV9k
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSDwOiHcDBQ0SBxCNuk5sJ-ZWVlQVEqiHrdRbZDt2d6XdpCK7Kv2f_CDGzoONqCrIMbGTkfPZ_mzPfEPIOyPLRJYqjaWVLma55rHmTsZOMj2xijq8vLfFd3F8yr6e8bNOJsfHwmyf39NcHDQsbFR5n3M_vePS9za5g5OUCAezYjrsp-BUxJCK93Ex11YdzT1Bov86Xvm3e-RwRvqA3NtUF-rqUi2XW9PQ0SPysOOPcNj-8Mfklq2ekLvfuhPyp-TXSSuUCs1itcBVK5JsUFUJIdAKPE5ayQhYbGlxwiq4VFrockicg1qe11h3vmqwIPThk1B2GXlALUpAugvN3DuwD_fjVUhu5evg96DXh8IKtYPpyPUVZvVPtATNe39yOJ19-AQKnFWdt-4VhHQi-GLvYPKMnB59mU2P4y5zQ2zEJFvHqaQpL6XjWjGjneYGhzFRMieFkYJabjPhR5rcZTZRSeJV8ZQzuTXOOovL5udkp6oru0vA679TaaShxjDuypwl1GQamYxNpNAuIrT_p4XpZM19do1lEZY3uShaHBSIgyLgoJhE5ONQ56IV9bix9GcPlaGkF-QONxCnRde_C52IkpeUKzsxzFik3ZL7GGbHKLMy1RHZ64FWdKNEUyQZXnlKeR6Rt8Nj7N_-0EZVtt74MgIZZIqsNiIvWlwOlqRCINsTaGE2QuzI1PGTajEPGuIyF37tGpH9Htt_zLqpKfYH_P9Dy738v7e_IvcTpJB-gytJ98jO-sfGvkbKt9ZvQl__DRszUYw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrsTjwJvdwIKMxAHEptskthNzKxWrFRKrHlq0nCLbsduKNqn60FJ-Jz-IsfOghdUKJHJMxsnEHjvfxDPfIPRK8SzkmYh8rrnxSSKpL6nhvuFEdrQIDBw22uKcnQ3Jxwt6sYc-17kwykVhFrmjbN5U_dneTkWflpkOtpKCXpzMM1NO_ISdLIn7qWXj0y0UADf5BtpnFDB6C-0Pz_vdL7bSHAAUP0o6pM6gubLhzlfKkflfhUD_DKRsdlPvoFvrfC42l2I63fpgnd5Dl_WrlnEqX9vrlWyr77-xQP7_vriP7lYYF3dLo3yA9nT-EN38VO3iP0I_-iWZK15OZhPwrMERwCLPsEsGw9aWS1oLPNniC8UzF_apcVXnYoTFdFRA2_FsCYK4TvHEWVU1CItJhgGS4-XYBtk35_2ZK8Bl28DzcM1hBQ0Kg3s74bl4UHwDTUC91_1ub_DmHRbYaFFFFG-wK3kCN7ZBMI_R8PTDoHfmV9UlfMU68cqPeBDRjBsqBVHSSKpgqWUZMZwpzgJNdczsapiYWIciDC1znzAq0cpoo8G1f4JaeZHrQ4QtR33AFVeBUoSaLCFhoGIJaEuHnEnjoaC2plRV1Ou2Asg0dS5YwtJyuFIYrtQNV9rx0NumzbwkHrlW-r010kbSkoa7E8VilFZrUCpDltEsoEJ3FFEaXANObZ61IQHRPJIeOqpNPK2sbZmGMRxJFNDEQy-by7AG2Y0lketibWUYoNwIkLeHDsoZ0WgSMQaIlIGG8c5c2VF190o-GTuec54w61976LieVb_Uuq4rjpuZ9xc99_TfxJ-h2yHAXPsTLoyOUGu1WOvnAEtX8kW1xvwEoh2NDQ
  priority: 102
  providerName: Unpaywall
Title Patient similarity and other artificial intelligence machine learning algorithms in clinical decision aid for shared decision-making in the Prevention of Cardiovascular Toxicity (PACT): a feasibility trial design
URI https://link.springer.com/article/10.1186/s40959-022-00151-0
https://www.ncbi.nlm.nih.gov/pubmed/36691060
https://www.proquest.com/docview/2777783158
https://www.proquest.com/docview/2769373435
https://pubmed.ncbi.nlm.nih.gov/PMC9869606
https://cardiooncologyjournal.biomedcentral.com/counter/pdf/10.1186/s40959-022-00151-0
https://doaj.org/article/b26d5d15ae0c4ce999952205f414e93b
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2057-3804
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244666
  issn: 2057-3804
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2057-3804
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244666
  issn: 2057-3804
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2057-3804
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244666
  issn: 2057-3804
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2057-3804
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244666
  issn: 2057-3804
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2057-3804
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244666
  issn: 2057-3804
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2057-3804
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244666
  issn: 2057-3804
  databaseCode: AAJSJ
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2057-3804
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002244666
  issn: 2057-3804
  databaseCode: C6C
  dateStart: 20150112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgSFweELdBYFQHiQcQi9YkthPz1lWbpkpUFbTSeIpsx16L2nSirWD_kx_EsXOhFWjwQF4qOXZz4n49-U58_B1CXmtRxKKQSSiMsCHNFAsVsyK0gqqukZHFw2VbDPnZhA7O2flWqS-XE1bJA1cTd6RiXrAiYtJ0NdUG-YxgbnOopRE1IlHO-3YzsRVMffGiLm6dkje7ZDJ-tKL-jZdLXnc8AWPonSeRF-z_E8v8PVmyXTG9R-5sykt59U3O51sPpdMH5H7NJqFX3cVDcsOUj8jtD_V6-WPyY1TJpsJqtphhDIuUG2RZgN92Be7mKwEJmG0pc8LCJ1gaqCtKXICcXyxx7HSxwo7QbKaEoq7PA3JWAJJfWE1dOnvbHi58qSs3Bq8HjVoUDlha6O8kwsJ4-R0tQfPejHr98dv3IMEaWefuXoEvLoJf7NJNnpDJ6cm4fxbWdRxCzbvpOkxElLBCWKYk1coqptGp8YJawbXgkWEm5c7vZDY1sYxjp5Enrc6MtsYaDKL3yV65LM0zAk4NPhJa6EhrymyR0TjSqUJeY2LBlQ1I1Pymua5Fzl2tjXnug52M5xUOcsRB7nGQdwPyrh1zWUl8XNv72EGl7enkuX0DgjavQZv_DbQBOWiAltc-Y5XHKR5ZErEsIK_a0_hvd0s4sjTLjevDkU8myHED8rTCZWtJwjlyP44WpjuI3TF190w5m3pFcZFxF8kG5LDB9i-zrpuKwxb__zBzz__HzL0gd2Okme4lWJwckL311415ibRwrTrkZnqedsitXm_waYCfxyfD0Uds7fN-x3sHbJsMR73PPwGGVWej
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTWLwgLgTGGAkkEAsWpPYTow0oa1s6thWVaiT9pY5vrSV2qQsrUb_HL-CH8RxblsFqnhZHhO7PYk_H3_HPheE3kmufK5E4HLNjUuihLoJNdw1nCQtLTwDl_W26LLOGfl2Ts_X0K86Fsa6VdY6sVDUKpN2j3zHD-GKAo9GX6Y_XFs1yp6u1iU0RFVaQe0WKcaqwI5jvbgCEy7fPfoK4_3e9w8P-u2OW1UZcCVrhTM34F5AFTc0EUQmJqESphxTxHAmOfM01SGzsyIyofaF79sMbsLISEujjfbshigsARskIByMv439g27ve7PLAwskAQOhjtaJ2E5Oip0360Rv-QrY8ksrYlE44F9s92-nzebk9h7anKdTsbgS4_GNxfHwAbpfsVq8V8LwIVrT6SN057Q6t3-MfvfK9K04H01GYEsD9cciVbgI_8IWvWUiCzy6kSEUTwpHT42ryhYDLMYDGJLZcJJDQ1wHdWJV1QnCYqQwkHCcD61bfXPfnRQlt2wf-D9cZ62CDpnB7SWHXNzPfoIkIN6H3l67__EzFthoUfkQL3BR5AR-2Lq9PEFntzLST9F6mqX6OcI2K73HJZeelIQaFRHfk2EC_Er7nCXGQV49prGskq3bmh_juDC6IhaXOIgBB3GBg7jloE9Nn2mZamRl630LlaalTRNe3MguB3GldeLEZ4oqjwrdkkRqMAY4tZHVhnhE8yBx0FYNtLjSXXl8PdMc9LZ5DFrHHiWJVGdz24YBrw2AazvoWYnLRpKAMeCgDCQMlxC7JOryk3Q0LDKb84hZi9pB2zW2r8Va9Sm2G_z_x5d7sfql36DNTv_0JD456h6_RHd9ILV2y80PttD67HKuXwEJnSWvq5mO0cVtK5c_4nKdFA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgSIM9IO4EBhiJBxCL1iS2E_M2CtW4TX3opL1ZvraV2qRaW439T34Qx86FVkwT5DGx06P0s_0d-5zvIPRGc5NyI7OYW-5iUigaK-p47DhRPSsTB5ePtjhhx6fk6xk928jiD9Hu7ZFkndPgVZrK1eHCuHqIF-xwScL2lY9E94s-OMQ30S0Cq5uvYdBn_W6XBRYoAgS9zZa5suvWihSE-69im38HTXYnp3vo9rpcyMsLOZttLE6De-huwyrxUQ2D--iGLR-g3R_NuflD9GtYy6fi5XQ-BV8WqDeWpcEh_Qp79NRCEni6odCJ5yHQ0uKmssQYy9m4gr6T-RIa4japEpumTg-WU4OBBOPlxIe1d_fjeSh55fvA7-FWNQo6VA73twJi8aj6CZaAeW-HR_3Ruw9YYmdlE8N7iUOREXixDzt5hE4Hn0f947ip5xBr1stXccaTjBruqJJEK6eohsmNGeI405wlltqc-fmncLlNZZp6rTzpdGG1s86CM_0Y7ZRVaZ8i7FXhE665TrQm1JmCpInOFSDAppwpF6Gk_U-FbsTOfc2NmQhOT8FEjQMBOBABB6IXofddn0Ut9XFt648eKl1LL9MdblTnY9GMeqFSZqhJqLQ9TbQFMs6pz2x2JCGWZypC-y3QRDN3LEWaw1VkCS0i9Lp7DKPeH-XI0lZr34YBr8yA60boSY3LzpKMMeCADCzMtxC7Zer2k3I6CcrivGDeo43QQYvtP2Zd9ykOOvz_w5d79n9vf4V2h58G4vuXk2_P0Z0UOKbfAUuzfbSzOl_bF8AJV-plGPa_AXsFXMI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWrsTjwJvdwIKMxAHEptskthNzKxWrFRKrHlq0nCLbsduKNqn60FJ-Jz-IsfOghdUKJHJMxsnEHjvfxDPfIPRK8SzkmYh8rrnxSSKpL6nhvuFEdrQIDBw22uKcnQ3Jxwt6sYc-17kwykVhFrmjbN5U_dneTkWflpkOtpKCXpzMM1NO_ISdLIn7qWXj0y0UADf5BtpnFDB6C-0Pz_vdL7bSHAAUP0o6pM6gubLhzlfKkflfhUD_DKRsdlPvoFvrfC42l2I63fpgnd5Dl_WrlnEqX9vrlWyr77-xQP7_vriP7lYYF3dLo3yA9nT-EN38VO3iP0I_-iWZK15OZhPwrMERwCLPsEsGw9aWS1oLPNniC8UzF_apcVXnYoTFdFRA2_FsCYK4TvHEWVU1CItJhgGS4-XYBtk35_2ZK8Bl28DzcM1hBQ0Kg3s74bl4UHwDTUC91_1ub_DmHRbYaFFFFG-wK3kCN7ZBMI_R8PTDoHfmV9UlfMU68cqPeBDRjBsqBVHSSKpgqWUZMZwpzgJNdczsapiYWIciDC1znzAq0cpoo8G1f4JaeZHrQ4QtR33AFVeBUoSaLCFhoGIJaEuHnEnjoaC2plRV1Ou2Asg0dS5YwtJyuFIYrtQNV9rx0NumzbwkHrlW-r010kbSkoa7E8VilFZrUCpDltEsoEJ3FFEaXANObZ61IQHRPJIeOqpNPK2sbZmGMRxJFNDEQy-by7AG2Y0lketibWUYoNwIkLeHDsoZ0WgSMQaIlIGG8c5c2VF190o-GTuec54w61976LieVb_Uuq4rjpuZ9xc99_TfxJ-h2yHAXPsTLoyOUGu1WOvnAEtX8kW1xvwEoh2NDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient+similarity+and+other+artificial+intelligence+machine+learning+algorithms+in+clinical+decision+aid+for+shared+decision-making+in+the+Prevention+of+Cardiovascular+Toxicity+%28PACT%29%3A+a+feasibility+trial+design&rft.jtitle=Cardio-oncology+%28London%2C+England%29&rft.au=Sherry-Ann+Brown&rft.au=Brian+Y.+Chung&rft.au=Krishna+Doshi&rft.au=Abdulaziz+Hamid&rft.date=2023-01-23&rft.pub=BMC&rft.eissn=2057-3804&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1186%2Fs40959-022-00151-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b26d5d15ae0c4ce999952205f414e93b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3804&client=summon