Cerebrovascular amyloid Angiopathy in bioengineered vessels is reduced by high-density lipoprotein particles enriched in Apolipoprotein E
Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood....
Saved in:
Published in | Molecular neurodegeneration Vol. 15; no. 1; pp. 23 - 21 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
25.03.2020
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1750-1326 1750-1326 |
DOI | 10.1186/s13024-020-00366-8 |
Cover
Abstract | Background
Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood.
Methods
Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding.
Results
We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE.
Conclusion
The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD. |
---|---|
AbstractList | Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (A[beta]) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces A[beta] deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular A[beta] accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents A[beta]-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering A[beta] binding to collagen-I, ii) forming a complex with A[beta] that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating A[beta] uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to A[beta] and shed new light on a potential role of peripherally-acting apoE in AD. Keywords: Alzheimer's disease, Cerebrovasculature, High-density lipoprotein (HDL), Cerebral amyloid angiopathy (CAA), Endothelial inflammation, Apolipoprotein (apo)E, Tissue engineering Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD. Abstract Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD. Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD. Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD. Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (A[beta]) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces A[beta] deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. We demonstrate that HDL reduces vascular A[beta] accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents A[beta]-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering A[beta] binding to collagen-I, ii) forming a complex with A[beta] that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating A[beta] uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to A[beta] and shed new light on a potential role of peripherally-acting apoE in AD. Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood.BACKGROUNDSeveral lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood.Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding.METHODSHere we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding.We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE.RESULTSWe demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE.The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.CONCLUSIONThe findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD. |
ArticleNumber | 23 |
Audience | Academic |
Author | Cashman, Neil R. Silverman, Judith M. Martin, Emma M. Button, Emily B. Gilmour, Megan Boyce, Guilaine Agbay, Andrew Caffrey, Tara M. Robert, Jerome McAlary, Luke Gidden, Zoe Wellington, Cheryl L. Clark, Amanda |
Author_xml | – sequence: 1 givenname: Jerome orcidid: 0000-0002-2847-9362 surname: Robert fullname: Robert, Jerome email: jrme.robert@gmail.com organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Present address: Institute of Clinical Chemistry, University Hospital Zurich – sequence: 2 givenname: Emily B. surname: Button fullname: Button, Emily B. organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia – sequence: 3 givenname: Emma M. surname: Martin fullname: Martin, Emma M. organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia – sequence: 4 givenname: Luke surname: McAlary fullname: McAlary, Luke organization: Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Department of Physics and Astronomy, University of British Columbia – sequence: 5 givenname: Zoe surname: Gidden fullname: Gidden, Zoe organization: Djavad Mowafaghian Centre for Brain Health, University of British Columbia – sequence: 6 givenname: Megan surname: Gilmour fullname: Gilmour, Megan organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia – sequence: 7 givenname: Guilaine surname: Boyce fullname: Boyce, Guilaine organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia – sequence: 8 givenname: Tara M. surname: Caffrey fullname: Caffrey, Tara M. organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia – sequence: 9 givenname: Andrew surname: Agbay fullname: Agbay, Andrew organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia – sequence: 10 givenname: Amanda surname: Clark fullname: Clark, Amanda organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia – sequence: 11 givenname: Judith M. surname: Silverman fullname: Silverman, Judith M. organization: Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Department of Neurology, University of British Columbia – sequence: 12 givenname: Neil R. surname: Cashman fullname: Cashman, Neil R. organization: Department of Neurology, University of British Columbia – sequence: 13 givenname: Cheryl L. surname: Wellington fullname: Wellington, Cheryl L. organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, School of Biomedical Engineering, University of British Columbia, International Collaboration on Repair Discoveries, University of British Columbia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32213187$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNURH_gBVigSGzYpPjfzgZpNCpQqRIbWFuOc5PxKGMHO6k0j8Bb4-lM6UyFqiySnHzn2Nc5l8WZDx6K4j1G1xgr8TlhigirEEEVQlSISr0qLrDkqMKUiLOj5_PiMqU1QkwixN8U55QQTLGSF8WfJURoYrg3yc6DiaXZbIfg2nLhexdGM622pfNl4wJkwUOm2_IeUoIhlS6V-XW2WWq25cr1q6oFn9y0LQc3hjGGCbJ5NHFydoBUgo_OrjKe1cUYjqGbt8XrzgwJ3h3uV8Wvrzc_l9-rux_fbpeLu8oKJKcKSwkUgNfEio4xJjmrhWmMbC1iHFvGmbKcCymJZKJVjSQKU8UtqknHmppeFbf73DaYtR6j25i41cE4_SCE2OvDfjU1tKG4I5ZixlCHa9Y2HClO85IYOpuzvuyzxrnZQGvBT9EMJ6GnX7xb6T7ca4lqWguRAz4dAmL4PUOa9MYlC8NgPIQ5aUIVI5ggtNv3x2foOszR56PKVI05JpThJ6o3eQDnu5DXtbtQvRD5jwuKEcnU9X-ofLWwcTa3rHNZPzF8OB7034SPRcqA2gM2hpQidNq6yUwu7OZ2g8ZI7zqr953VubP6obNaZSt5Zn1Mf9FE96aUYd9DfDqNF1x_ARc4_cU |
CitedBy_id | crossref_primary_10_1016_j_atherosclerosis_2024_118560 crossref_primary_10_3390_biomedicines9010072 crossref_primary_10_1186_s13195_021_00793_9 crossref_primary_10_1016_j_jconrel_2021_08_018 crossref_primary_10_1186_s13024_023_00671_y crossref_primary_10_3390_biom10091276 crossref_primary_10_1016_j_tem_2023_05_002 crossref_primary_10_1002_alz_12649 crossref_primary_10_1186_s13195_022_01028_1 crossref_primary_10_3389_fphys_2021_700847 crossref_primary_10_1177_0271678X21992638 crossref_primary_10_4103_1673_5374_310671 crossref_primary_10_1073_pnas_2304213120 crossref_primary_10_1186_s13024_022_00560_w crossref_primary_10_1186_s13024_022_00574_4 crossref_primary_10_1016_j_neuroscience_2023_01_032 crossref_primary_10_3389_fnagi_2023_1134399 crossref_primary_10_3390_ijms21103435 crossref_primary_10_1177_13872877241305806 crossref_primary_10_1186_s12987_024_00580_2 crossref_primary_10_3390_cells10051041 |
Cites_doi | 10.1016/j.celrep.2012.09.018 10.1016/j.scr.2014.10.001 10.1161/CIRCRESAHA.108.190587 10.1016/j.neurobiolaging.2014.07.020 10.1016/S0006-8993(99)02471-3 10.1038/s41591-018-0297-y 10.1016/S0197-4580(99)00103-7 10.1093/gerona/glq026 10.1097/MOL.0000000000000604 10.1186/s13195-019-0497-9 10.1126/science.1161591 10.3988/jcn.2011.7.1.1 10.1074/jbc.M110.127829 10.1186/s40478-018-0511-7 10.1194/jlr.C500022-JLR200 10.1161/JAHA.114.001156 10.1371/journal.pone.0079821 10.1016/S0014-5793(03)00261-8 10.1016/S0002-9440(10)63399-8 10.1523/JNEUROSCI.3987-12.2012 10.1016/S0022-2275(20)39811-4 10.1161/JAHA.118.009730 10.1016/j.neuron.2005.06.030 10.1161/CIRCRESAHA.111.258673 10.1016/j.bbadis.2015.10.005 10.1074/jbc.M116.739250 10.1016/S0022-2275(20)31599-6 10.1172/JCI115288 10.1002/ana.24326 10.1194/jlr.M081851 10.1073/pnas.1005888107 10.1021/acs.jproteome.5b00213 10.1016/j.cmet.2014.01.003 10.1016/j.biopsych.2017.03.003 10.1016/j.jalz.2017.05.006 10.1038/sj.jcbfm.9600419 10.1016/j.jacl.2017.11.003 10.1161/CIRCULATIONAHA.106.686477 10.1161/ATVBAHA.111.237693 10.3233/JAD-142862 10.1038/nm890 10.1021/bi002186k 10.1161/STROKEAHA.111.000719 10.1111/nan.12556 10.1111/j.0033-0124.1950.24_14.x 10.3389/fneur.2019.00187 10.1074/jbc.M110.127738 10.1186/s13024-017-0201-0 10.1016/j.jamda.2017.11.017 10.7554/eLife.29595 10.1038/ncb1819 10.1016/j.neurobiolaging.2017.08.028 10.1016/S0140-6736(16)00557-2 10.1186/s12916-014-0206-2 10.1016/0009-8981(85)90068-3 10.1172/jci.insight.124620 10.3233/JAD-140111 10.1111/nan.12342 10.1038/s41582-019-0295-9 10.1161/ATVBAHA.113.301363 10.1038/359325a0 10.1016/S0065-3233(05)70009-7 10.1038/s41582-019-0205-1 10.1016/j.jalz.2018.07.222 10.1016/S0022-510X(02)00288-5 10.3233/JAD-2012-129021 10.3233/JAD-2012-121336 10.1016/j.bbadis.2015.08.024 10.1371/journal.pone.0041636 10.1016/j.scr.2012.11.005 10.1503/cmaj.180066 10.1038/jcbfm.2013.76 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13024-020-00366-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1750-1326 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_3a3b31f2c31440f194db508534961efc PMC7093966 A618763102 32213187 10_1186_s13024_020_00366_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: Cure Alzheimer's Fund grantid: . funderid: http://dx.doi.org/10.13039/100007625 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: http://dx.doi.org/10.13039/501100000038 – fundername: Weston Brain Institute grantid: RR182093; RR150048 funderid: http://dx.doi.org/10.13039/100012479 – fundername: ; – fundername: ; grantid: . – fundername: ; grantid: RR182093; RR150048 |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABIVO ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO IHR INH INR IPY ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW ~8M AAYXX ALIPV CITATION -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7TK 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c607t-177e3ee592c6f44475496aba7dc0451c4548c556772746d8b7281385c092f4b93 |
IEDL.DBID | 7X7 |
ISSN | 1750-1326 |
IngestDate | Wed Aug 27 01:23:29 EDT 2025 Thu Aug 21 18:12:33 EDT 2025 Thu Sep 04 19:42:21 EDT 2025 Fri Jul 25 22:45:41 EDT 2025 Tue Jun 17 21:02:16 EDT 2025 Tue Jun 10 20:46:26 EDT 2025 Thu Jan 02 22:56:54 EST 2025 Tue Jul 01 01:59:04 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Sat Sep 06 07:29:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cerebral amyloid angiopathy (CAA) High-density lipoprotein (HDL) Alzheimer’s disease Tissue engineering Apolipoprotein (apo)E Cerebrovasculature Endothelial inflammation |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c607t-177e3ee592c6f44475496aba7dc0451c4548c556772746d8b7281385c092f4b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2847-9362 |
OpenAccessLink | https://www.proquest.com/docview/2391512341?pq-origsite=%requestingapplication% |
PMID | 32213187 |
PQID | 2391512341 |
PQPubID | 55149 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3a3b31f2c31440f194db508534961efc pubmedcentral_primary_oai_pubmedcentral_nih_gov_7093966 proquest_miscellaneous_2384212009 proquest_journals_2391512341 gale_infotracmisc_A618763102 gale_infotracacademiconefile_A618763102 pubmed_primary_32213187 crossref_citationtrail_10_1186_s13024_020_00366_8 crossref_primary_10_1186_s13024_020_00366_8 springer_journals_10_1186_s13024_020_00366_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-25 |
PublicationDateYYYYMMDD | 2020-03-25 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Molecular neurodegeneration |
PublicationTitleAbbrev | Mol Neurodegeneration |
PublicationTitleAlternate | Mol Neurodegener |
PublicationYear | 2020 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | JH Lawson (366_CR58) 2016; 387 P Seubert (366_CR74) 1992; 359 TL Lewis (366_CR26) 2010; 285 MF Linton (366_CR54) 1991; 88 A Merched (366_CR20) 2000; 21 THT Vu (366_CR12) 2019; 8 GS Getz (366_CR30) 2012; 32 S Stukas (366_CR16) 2014; 19 366_CR25 EB Button (366_CR15) 2019; 30 C Reitz (366_CR21) 2010; 67 KH Weisgraber (366_CR33) 1980; 21 I Lefterov (366_CR22) 2010; 285 J Robert (366_CR27) 2015; 1862 BB Brodsky (366_CR53) 2005; 70 KL Rasmussen (366_CR61) 2018; 190 J Richiardi (366_CR59) 2015; 36 S Fernández-de Retana (366_CR28) 2017; 60 D Naish (366_CR51) 2009; 227 LM Wilson (366_CR66) 2006; 47 ECK Tan (366_CR13) 2018; 19 A Manousopoulou (366_CR45) 2017; 43 Y Qi (366_CR67) 2018; 12 G Zuliani (366_CR19) 2010; 65 S Stukas (366_CR47) 2014; 3 A Keable (366_CR70) 2016; 1862 K Takamatsu (366_CR71) 2014; 13 KL Rasmussen (366_CR62) 2015; 77 J Sevigny (366_CR3) 2016; 537 A Solomon (366_CR14) 2012; 3 CY Santos (366_CR11) 2017; 7 J Robert (366_CR32) 2017; 12 D Laurin (366_CR6) 2007; 116 D Kothapalli (366_CR52) 2012; 2 J Robert (366_CR35) 2013; 33 J Fan (366_CR38) 2018; 59 RP Koldamova (366_CR43) 2001; 40 N Zhao (366_CR34) 2018; 83 RD Bell (366_CR9) 2007; 27 C Mineo (366_CR17) 2012; 111 D Cox (366_CR39) 2016; 291 J Robert (366_CR31) 2017; 6 366_CR4 J Robert (366_CR37) 2013; 8 S-K Herukka (366_CR75) 2015; 46 KL Rasmussen (366_CR60) 2017; 14 MD Sweeney (366_CR10) 2019; 15 366_CR2 WAW Ruzali (366_CR56) 2013; 33 C-C Wu (366_CR68) 2013; 44 G Datta (366_CR77) 2001; 42 M Burwinkel (366_CR50) 2018; 6 P Christina (366_CR1) 2018 K Hultman (366_CR65) 2013; 33 EB Button (366_CR23) 2019; 11 AM Fagan (366_CR24) 2004; 165 L Rohrer (366_CR42) 2009; 104 JC Di Francesco (366_CR5) 2015; 6 A Biffi (366_CR7) 2011; 7 366_CR44 E Koren (366_CR76) 1985; 147 RD Bell (366_CR57) 2009; 11 SM Gordon (366_CR29) 2015; 14 J Attems (366_CR40) 2014; 12 T Kanekiyo (366_CR48) 2012; 32 CA Hawkes (366_CR63) 2012; 7 AM Morton (366_CR36) 2019; 4 H Akiyama (366_CR69) 2000; 858 DA Nation (366_CR8) 2019; 25 SM Sacre (366_CR18) 2003; 540 R Deane (366_CR49) 2003; 9 DL Brody (366_CR73) 2008; 321 S Salloway (366_CR64) 2002; 204 J Camacho (366_CR46) 2019; 10 K Thanopoulou (366_CR55) 2010; 107 X Xu (366_CR72) 2013; 10 E McGowan (366_CR41) 2005; 47 |
References_xml | – volume: 2 start-page: 1259 year: 2012 ident: 366_CR52 publication-title: Cell Rep doi: 10.1016/j.celrep.2012.09.018 – volume: 13 start-page: 442 year: 2014 ident: 366_CR71 publication-title: Stem Cell Res doi: 10.1016/j.scr.2014.10.001 – volume: 104 start-page: 1142 year: 2009 ident: 366_CR42 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.108.190587 – volume: 36 start-page: 33 year: 2015 ident: 366_CR59 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2014.07.020 – volume: 858 start-page: 172 year: 2000 ident: 366_CR69 publication-title: Brain Res doi: 10.1016/S0006-8993(99)02471-3 – volume: 537 start-page: 50 year: 2016 ident: 366_CR3 publication-title: Nat Publ Group – volume: 25 start-page: 270 year: 2019 ident: 366_CR8 publication-title: Nat Med doi: 10.1038/s41591-018-0297-y – volume: 21 start-page: 27 year: 2000 ident: 366_CR20 publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(99)00103-7 – volume: 65 start-page: 559 year: 2010 ident: 366_CR19 publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/glq026 – volume: 30 start-page: 224 year: 2019 ident: 366_CR15 publication-title: Curr Opin Lipidol doi: 10.1097/MOL.0000000000000604 – volume: 11 start-page: 1 year: 2019 ident: 366_CR23 publication-title: Alzheimers Res Ther doi: 10.1186/s13195-019-0497-9 – volume: 321 start-page: 1221 year: 2008 ident: 366_CR73 publication-title: Science (New York, NY) doi: 10.1126/science.1161591 – volume: 7 start-page: 1 year: 2011 ident: 366_CR7 publication-title: J Clin Neurol doi: 10.3988/jcn.2011.7.1.1 – volume: 285 start-page: 36958 year: 2010 ident: 366_CR26 publication-title: J Biol Chem doi: 10.1074/jbc.M110.127829 – volume: 6 start-page: 23 year: 2018 ident: 366_CR50 publication-title: Acta Neuropathol Commun doi: 10.1186/s40478-018-0511-7 – volume: 47 start-page: 755 year: 2006 ident: 366_CR66 publication-title: J Lipid Res doi: 10.1194/jlr.C500022-JLR200 – volume: 3 start-page: e001156 year: 2014 ident: 366_CR47 publication-title: J Am Heart Assoc doi: 10.1161/JAHA.114.001156 – volume: 8 start-page: e79821 year: 2013 ident: 366_CR37 publication-title: PLoS One doi: 10.1371/journal.pone.0079821 – volume: 540 start-page: 181 year: 2003 ident: 366_CR18 publication-title: FEBS Lett doi: 10.1016/S0014-5793(03)00261-8 – volume: 165 start-page: 1413 year: 2004 ident: 366_CR24 publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)63399-8 – volume: 32 start-page: 16458 year: 2012 ident: 366_CR48 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3987-12.2012 – volume: 21 start-page: 316 year: 1980 ident: 366_CR33 publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)39811-4 – volume: 8 start-page: e009730 year: 2019 ident: 366_CR12 publication-title: J Am Heart Assoc doi: 10.1161/JAHA.118.009730 – volume: 47 start-page: 191 year: 2005 ident: 366_CR41 publication-title: Neuron doi: 10.1016/j.neuron.2005.06.030 – volume: 111 start-page: 1079 year: 2012 ident: 366_CR17 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.111.258673 – volume: 1862 start-page: 1027 year: 2015 ident: 366_CR27 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2015.10.005 – volume: 291 start-page: 22618 year: 2016 ident: 366_CR39 publication-title: J Biol Chem doi: 10.1074/jbc.M116.739250 – volume: 42 start-page: 1096 year: 2001 ident: 366_CR77 publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)31599-6 – volume: 88 start-page: 270 year: 1991 ident: 366_CR54 publication-title: J Clin Invest doi: 10.1172/JCI115288 – volume: 77 start-page: 301 year: 2015 ident: 366_CR62 publication-title: Ann Neurol doi: 10.1002/ana.24326 – volume: 59 start-page: 830 year: 2018 ident: 366_CR38 publication-title: J Lipid Res doi: 10.1194/jlr.M081851 – volume: 107 start-page: 20816 year: 2010 ident: 366_CR55 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1005888107 – volume: 14 start-page: 2686 year: 2015 ident: 366_CR29 publication-title: J Proteome Res doi: 10.1021/acs.jproteome.5b00213 – volume: 19 start-page: 574 year: 2014 ident: 366_CR16 publication-title: Cell Metab doi: 10.1016/j.cmet.2014.01.003 – volume: 83 start-page: 347 year: 2018 ident: 366_CR34 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2017.03.003 – volume: 14 start-page: 71 year: 2017 ident: 366_CR60 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2017.05.006 – volume: 27 start-page: 909 year: 2007 ident: 366_CR9 publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600419 – volume: 12 start-page: 89 year: 2018 ident: 366_CR67 publication-title: J Clin Lipidol doi: 10.1016/j.jacl.2017.11.003 – volume: 116 start-page: 2269 year: 2007 ident: 366_CR6 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.686477 – volume: 32 start-page: 1104 year: 2012 ident: 366_CR30 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.111.237693 – volume: 46 start-page: 261 year: 2015 ident: 366_CR75 publication-title: J Alzheimers Dis doi: 10.3233/JAD-142862 – volume: 9 start-page: 907 year: 2003 ident: 366_CR49 publication-title: Nat Med doi: 10.1038/nm890 – volume: 40 start-page: 3553 year: 2001 ident: 366_CR43 publication-title: Biochemistry doi: 10.1021/bi002186k – volume: 44 start-page: 1402 year: 2013 ident: 366_CR68 publication-title: Stroke doi: 10.1161/STROKEAHA.111.000719 – ident: 366_CR25 doi: 10.1111/nan.12556 – start-page: 1 volume-title: World Alzheimer’s report 2018. Alzheimer’s disease internations: world alzheimer report 2018 year: 2018 ident: 366_CR1 doi: 10.1111/j.0033-0124.1950.24_14.x – volume: 10 start-page: 1 year: 2019 ident: 366_CR46 publication-title: Front Neurol doi: 10.3389/fneur.2019.00187 – volume: 67 start-page: 1491 year: 2010 ident: 366_CR21 publication-title: Arch Neurol – volume: 7 start-page: 69 year: 2017 ident: 366_CR11 publication-title: Alzheimers Dement – volume: 227 start-page: 422 year: 2009 ident: 366_CR51 publication-title: Science (New York, NY) – volume: 285 start-page: 36945 year: 2010 ident: 366_CR22 publication-title: J Biol Chem doi: 10.1074/jbc.M110.127738 – volume: 12 start-page: 60 year: 2017 ident: 366_CR32 publication-title: Mol Neurodegener doi: 10.1186/s13024-017-0201-0 – volume: 19 start-page: 577 year: 2018 ident: 366_CR13 publication-title: J Am Med Dir Assoc doi: 10.1016/j.jamda.2017.11.017 – volume: 6 start-page: e29595 year: 2017 ident: 366_CR31 publication-title: eLife doi: 10.7554/eLife.29595 – volume: 11 start-page: 143 year: 2009 ident: 366_CR57 publication-title: Nat Cell Biol doi: 10.1038/ncb1819 – volume: 60 start-page: 116 year: 2017 ident: 366_CR28 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2017.08.028 – volume: 387 start-page: 2026 year: 2016 ident: 366_CR58 publication-title: Lancet doi: 10.1016/S0140-6736(16)00557-2 – volume: 12 start-page: 206 year: 2014 ident: 366_CR40 publication-title: BMC Med doi: 10.1186/s12916-014-0206-2 – volume: 147 start-page: 85 year: 1985 ident: 366_CR76 publication-title: Clin Chim Acta doi: 10.1016/0009-8981(85)90068-3 – volume: 4 start-page: 1 year: 2019 ident: 366_CR36 publication-title: JCI Insight doi: 10.1172/jci.insight.124620 – ident: 366_CR44 doi: 10.3233/JAD-140111 – volume: 43 start-page: 492 year: 2017 ident: 366_CR45 publication-title: Neuropathol Appl Neurobiol doi: 10.1111/nan.12342 – ident: 366_CR4 doi: 10.1038/s41582-019-0295-9 – volume: 33 start-page: 2699 year: 2013 ident: 366_CR35 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.113.301363 – volume: 359 start-page: 325 year: 1992 ident: 366_CR74 publication-title: Nature doi: 10.1038/359325a0 – volume: 70 start-page: 301 year: 2005 ident: 366_CR53 publication-title: Adv Protein Chem doi: 10.1016/S0065-3233(05)70009-7 – ident: 366_CR2 doi: 10.1038/s41582-019-0205-1 – volume: 15 start-page: 158 year: 2019 ident: 366_CR10 publication-title: Alzheimer’s Dementia doi: 10.1016/j.jalz.2018.07.222 – volume: 204 start-page: 183 year: 2002 ident: 366_CR64 publication-title: J Neurol Sci doi: 10.1016/S0022-510X(02)00288-5 – volume: 3 start-page: 465 year: 2012 ident: 366_CR14 publication-title: Adv Alzheimers Dis doi: 10.3233/JAD-2012-129021 – volume: 6 start-page: 4 year: 2015 ident: 366_CR5 publication-title: Front Neurol – volume: 33 start-page: 95 year: 2013 ident: 366_CR56 publication-title: J Alzheimers Dis doi: 10.3233/JAD-2012-121336 – volume: 1862 start-page: 1037 year: 2016 ident: 366_CR70 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbadis.2015.08.024 – volume: 7 start-page: e41636 year: 2012 ident: 366_CR63 publication-title: PLoS One doi: 10.1371/journal.pone.0041636 – volume: 10 start-page: 213 year: 2013 ident: 366_CR72 publication-title: Stem Cell Res doi: 10.1016/j.scr.2012.11.005 – volume: 190 start-page: E1033 year: 2018 ident: 366_CR61 publication-title: Can Med Assoc J doi: 10.1503/cmaj.180066 – volume: 33 start-page: 1251 year: 2013 ident: 366_CR65 publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2013.76 |
SSID | ssj0047005 |
Score | 2.36445 |
Snippet | Background
Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ)... Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition... Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid... Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (A[beta])... Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ)... Abstract Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23 |
SubjectTerms | Advertising executives Alzheimer's disease Apolipoprotein (apo)E Apolipoprotein E Apolipoproteins Apolipoproteins E - metabolism Biomedical and Life Sciences Biomedicine Brain research Cells, Cultured Cerebral amyloid angiopathy Cerebral amyloid angiopathy (CAA) Cerebral Amyloid Angiopathy - metabolism Cerebrovasculature Cholesterol Cholesterol, HDL - metabolism Collagen Disease Diseases EDTA Endothelial inflammation Endothelium Growth factors High density lipoprotein High-density lipoprotein (HDL) Humans Immunotherapy Inflammation Low density lipoprotein receptors Molecular Medicine Monocytes Neurodegenerative diseases Neurology Neurosciences Novels Organ Culture Techniques Pathogenesis Protein binding Proteins Research Article Scavenger receptors Smooth muscle Tissue Engineering Veins & arteries β-Amyloid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT70goAVCC3IlBAewGseJ7RzTqlWFBCcq9WbFjgORtslqd4u0j9C37ozz06YIuKC92eOVPTMez8Tjbwh5n2vtFPyYTG3OUvBIWW5Fwnidc6sxDqrxofDXb_LiMv1ylV09KPWFOWE9PHDPuGNRCit4nTiB15A1xNyVBaciQ6Bz7muH1jfO4zGY6m1wqkC5xicyWh6v8XouZRgqIQCLZHp2DAW0_t9t8oND6XHC5KNb03AYnT8jTwcvkhb97J-TJ759QfaKFiLo6y39QENeZ_hgvkduT_0KAt8p55SW1xCkNxUt2h9NhxWJt7RpqW06P2AT-or-QkjxxZo2a7pCcFdosluK2MaswpT3zZYummUXUB5g8HLMr6OgjphcWuFfFlgB4p7obJ9cnp99P71gQwEG5mSsNowr5YX3WZ44WacIDQhML22pKoewNC6FcMdlmQQPXaWy0lYlmguduThPapC9eEl22q71rwmtrFZaOO4TFYpca4u1d1VZQ7ONuYsIH-Vh3IBOjkUyFiZEKVqaXoYGZGiCDI2OyKdpzLLH5vgr9QmKeaJEXO3QANpmBi6Zf2lbRD6ikhjc_TA9Vw6PGGCRiKNlCskR4g-8togczihh17p596hmZrAaa5MgWj-4EimPyNHUjSMxE6713Q3SaLzEB9c4Iq96rZyWBMaZg41WEVEzfZ2ted7TNj8DpriKcwGRb0Q-j5p9P60_8_TN_-DpAdlNws4ULMkOyc5mdePfgqe3se_Cpr4D9klMqg priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELfGeOEFAeNPYCAjIXgAQx07tvOAUJk2TUjwRKW9WbHjbJG6pLQdoh-Bb82dm2RkjKlv9rmyfXf2Xe78O0Je5cZ4DT-mpMuZBIuU5U6kjFc5dwb9oAofCn_9po5n8stJdrJD-nJH3QaurnXtsJ7UbDl__-vH5hMo_Meo8EZ9WGHwTTJ0hBBeRTFzi9yO8SJM5ZNDVEFqELn-4cy140aXU8Tw__ek_uuquppGeSWWGq-oo3vkbmdb0ulWGO6TndA8IHvTBvzq8w19TWO2Z_yMvkd-H4QluMNDJiotzsF1r0s6bU7rFusUb2jdUFe3oUMsDCX9iUDj8xWtV3SJkK_Q5DYUEY9ZiYnw6w2d14s2Yj_A4EWfdUdBSDHltMS_nGJdiEuiw4dkdnT4_eCYdWUZmFcTvWZc6yBCyPLUq0oiYKDMVeEKXXoEq_ESnCCfZQrsdi1VaZxODRcm85M8rUAixCOy27RNeEJo6Yw2wvOQ6lj62jisyKuLCprdhPuE8J4f1neY5Vg6Y26j72KU3fLQAg9t5KE1CXk7jFlsETtupP6MbB4oEW07NrTLU9vtkhWFcIJXqRcYCq94LksHhm2GYPs8VDDNNygkFqUUpueL7mkDLBLRtexUcQT-A1suIfsjStBlP-7uxcz2qmBTxPAHA0PyhLwcunEk5sc1ob1AGoOhfTCYE_J4K5XDkuDI5nBy64TokbyO1jzuaeqziDSuJ7kAfzgh73rJvpzW__f06c2reEbupFHnBEuzfbK7Xl6E52DZrd2LqK5_AFdOR_0 priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLggSnkEWmQkBAewWMeO7RzDqlWFBCcq9WbFjgORtslqd1tpf0L_NTPeJG3KQ0K52ePIzozHM5nxN4S8zY3xGh6mpMuZBIuU5U6kjNc5dwb9oBovCn_9pk7P5Jfz7LyHycG7MLfj99yoT2sMrEmGTg5Cpyhm7pMHGTSiNM_VfNC6UoM4DZdi_jhucvBEfP7ftfCtY-huiuSdOGk8fk4ek0e93UiLHaP3yb3QPiEHRQs-88WWvqMxkzP-Ij8g1_OwAld3zDKl5QW45U1Fi_ZH02EN4i1tWuqaLvRohKGiVwgivljTZk1XCOcKTW5LEc2YVZjkvtnSRbPsIq4DDF4OGXUUBBDTSSt8ZYE1H26Ijp-Ss5Pj7_NT1pdcYF7N9IZxrYMIIctTr2qJYIAyV6UrdeURiMZLcHB8limwybVUlXE6NVyYzM_ytAZui2dkr-3a8ILQyhlthOch1bGstXFYbVeXNTS7GfcJ4QM_rO_xyLEsxsJGv8Qou-OhBR7ayENrEvJhHLPcoXH8k_ozsnmkRCTt2AACZvuvZEUpnOB16gWGuWuey8qB0ZohkD4PNUzzPQqJxf0O0_Nlf20BFonIWbZQHEH9wE5LyOGEEvapn3YPYmZ7PbG2KeLzg_EgeULejN04EnPf2tBdIo3BsD0Ywwl5vpPKcUmgjjloZZ0QPZHXyZqnPW3zM6KI61kuwNdNyMdBsm-m9fdv-vL_yF-Rh2ncg4Kl2SHZ26wuwxFYcRv3Om7fX7zbPa8 priority: 102 providerName: Springer Nature |
Title | Cerebrovascular amyloid Angiopathy in bioengineered vessels is reduced by high-density lipoprotein particles enriched in Apolipoprotein E |
URI | https://link.springer.com/article/10.1186/s13024-020-00366-8 https://www.ncbi.nlm.nih.gov/pubmed/32213187 https://www.proquest.com/docview/2391512341 https://www.proquest.com/docview/2384212009 https://pubmed.ncbi.nlm.nih.gov/PMC7093966 https://doaj.org/article/3a3b31f2c31440f194db508534961efc |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EFAeMjMCojIXiAaHXi2M4TyqpOU6VNCJi0Nyt2nC1Sl5S2Q-qfwH_NnZukZIgpUiP5o7Jz5_Od7_w7Qt6nSlkJTyi4SUMOGmmYmjgKWZkyo9AOKvGi8Nm5OL3gs8vksj1wW7VhlZ1M9IK6aCyekR9FiGQOYpazL4ufIWaNQu9qm0LjIdlnoIlg6gZ52RtcXAKLdRdllDhaoZOOh2gwIQyLCNVgM_KY_f9K5r-2prthk3d8p35LOnlCHre6JM22xH9KHrj6GTnIarCjbzb0A_XRnf7Y_ID8nrglmL995CnNb8BUrwqa1VdVg3mJN7Sqqaka1yIUuoL-QmDx-YpWK7pEiFcoMhuKCMdhgYHv6w2dV4vGYz1A50UXZUeBKTHEtMC_zDAPxK7R9Dm5OJn-mJyGbRqG0IqxXIdMShc7l6SRFSVHgECeitzksrAITmM5GD02SQTo6ZKLQhkZKRarxI7TqAQOiF-Qvbqp3StCC6Okii1zkfSprpXBDLwyL6HYjJkNCOvooW2LUY6pMuba2ypK6C0NNdBQexpqFZBPfZ_FFqHj3tbHSOa-JaJr-4JmeaXbr6TjPDYxKyMbo-u7ZCkvDCiyCYLrM1fCMD8ik2iUATA8m7dXGWCSiKalM8EQ6A90t4AcDlrC2rXD6o7NdCs7VnrH6QF511djT4yHq11zi20UuvJBQQ7Iyy1X9lMCEc1AUsuAyAG_DuY8rKmra48sLsdpDPZvQD53nL0b1v-_6ev7Z_GGPIr8movDKDkke-vlrXsLmtzajPxyHZH9LJt9n8H7eHr-9RuUTsRk5E9H4PeMqz9dKUqi |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAvCBiXwAAjcXmAaHXixM7DhLrRqWNbhdAm7c2LHWdE6pLSdqD8BP4Uv41z3KSlQ-xtypsvke1zfC728XcIeZ1IaQR8fsx14nOwSP1Eh4HP8oRpiX5Qjg-Fj4bx4IR_Po1O18jv9i0MhlW2MtEJ6qwyeEa-FSCSOYhZzj6Ov_uYNQpvV9sUGmmTWiHbdhBjzcOOA1v_BBduur3_Cej9Jgj2-se7A7_JMuCbuCtmPhPChtZGSWDinCP-HU_iVKciM4i9YjjY9CaKYjBDBY8zqUUgWSgj002CHCYYwn9vkXWOBygdsr7TH3752uoCLoDJ26c6Mt6a4jUh99FlQyCY2Jcr6tBlDfhXN_ylHK8Gbl65vXVKce8eudtYs7Q3Z7_7ZM2WD8hGrwRP_qKmb6mLL3UH9xvk166dgAO-iH2l6UU9qoqM9srzosLMyDUtSqqLyjYYiTajPxDafDSlxZROEGQWinRNEWPZzzD0flbTUTGuHNoEdB63cX4UtgUGuWb4yx5molg26j8kJzdCokekU1alfUJopqWQoWE2EC7ZttSYA1ikORTrLjMeYS09lGlQ0jFZx0g5b0nGak5DBTRUjoZKeuT9os94jhFybesdJPOiJeJ7u4Jqcq6aVVJhGuqQ5YEJ8fI9ZwnPNJjSEcL7M5vDMN8hkyiUQjA8kzaPKWCSiOelejFDqEGwHj2yudISpIdZrW7ZTDXSa6qWe80jrxbV2BMj8kpbXWIbicEEYKJ75PGcKxdTAiXBQFcIj4gVfl2Z82pNWXxz2Oaim4TggXvkQ8vZy2H9f02fXj-Ll-T24PjoUB3uDw-ekTuB23-hH0SbpDObXNrnYFfO9Itm81JydtPy4g-JfoW2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gkxAvCBiwwoAgIXiAaJd-JOljGTuNAyYkmLS3qEnTUenWnu46pPsT-K-x0_a2jg8J9S1xqqR2HLt2fibkZaqUlfAwEZuUxWCRstREIeNlyo1CP6jEi8Kfj8XRSTw7TU6v3OL32e5DSLK704AoTXW7vyjKbosrsb_CcFvM0PVBQBXB1E2yrZI0BfdrO8tmX2eDNo4liNlwWeaPI0cHksft_107XzmerqdOXouf-mNpepfc6e1JmnUCcI_ccPV9spPV4Eufr-kr6jM8_a_zHfLzwC3BBd5kn9L8HNz1qqBZfVY1WJt4TauamqpxPUqhK-gPBBefr2i1okuEeYUms6aIcswKTH5v13ReLRqP9wCDF0OmHQXBxDTTAl-ZYS2IS6LDB-Rkevjt4Ij1pRiYFRPZMi6li5xL0tCKMkaQwDgVucllYRGgxsbg-NgkEWCry1gUyshQ8UgldpKGJUhB9JBs1U3tdgktjJIqstyF0pe7Vgar8Mq8hGYz4TYgfOCHtj1OOZbLmGvvryihOx5q4KH2PNQqIG82YxYdSsc_qd8hmzeUiLDtG5rlme6_ko7yyES8DG2E4e-Sp3FhwJhNEGCfuxKm-RqFRKMegOnZvL_OAItERC2dCY5gf2C_BWRvRAn71467BzHTvf5Y6RBx-8GoiHlAXmy6cSTmxNWuuUAaheF8MJID8qiTys2SQE1z0NYyIHIkr6M1j3vq6rtHF5eTNAIfOCBvB8m-nNbfv-nj_yN_Tm59eT_Vnz4cf3xCbod-O0YsTPbIVru8cE_B0GvNs34v_wJrzUpc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebrovascular+amyloid+Angiopathy+in+bioengineered+vessels+is+reduced+by+high-density+lipoprotein+particles+enriched+in+Apolipoprotein+E&rft.jtitle=Molecular+neurodegeneration&rft.au=Jerome%2C+Robert&rft.au=Button%2C+Emily+B&rft.au=Martin%2C+Emma+M&rft.au=McAlary%2C+Luke&rft.date=2020-03-25&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=15&rft.spage=1&rft_id=info:doi/10.1186%2Fs13024-020-00366-8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon |