Cerebrovascular amyloid Angiopathy in bioengineered vessels is reduced by high-density lipoprotein particles enriched in Apolipoprotein E

Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood....

Full description

Saved in:
Bibliographic Details
Published inMolecular neurodegeneration Vol. 15; no. 1; pp. 23 - 21
Main Authors Robert, Jerome, Button, Emily B., Martin, Emma M., McAlary, Luke, Gidden, Zoe, Gilmour, Megan, Boyce, Guilaine, Caffrey, Tara M., Agbay, Andrew, Clark, Amanda, Silverman, Judith M., Cashman, Neil R., Wellington, Cheryl L.
Format Journal Article
LanguageEnglish
Published London BioMed Central 25.03.2020
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1750-1326
1750-1326
DOI10.1186/s13024-020-00366-8

Cover

Abstract Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.
AbstractList Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (A[beta]) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces A[beta] deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular A[beta] accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents A[beta]-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering A[beta] binding to collagen-I, ii) forming a complex with A[beta] that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating A[beta] uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to A[beta] and shed new light on a potential role of peripherally-acting apoE in AD. Keywords: Alzheimer's disease, Cerebrovasculature, High-density lipoprotein (HDL), Cerebral amyloid angiopathy (CAA), Endothelial inflammation, Apolipoprotein (apo)E, Tissue engineering
Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.
Abstract Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.
Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.
Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.
Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (A[beta]) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces A[beta] deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. We demonstrate that HDL reduces vascular A[beta] accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents A[beta]-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering A[beta] binding to collagen-I, ii) forming a complex with A[beta] that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating A[beta] uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to A[beta] and shed new light on a potential role of peripherally-acting apoE in AD.
Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood.BACKGROUNDSeveral lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood.Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding.METHODSHere we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding.We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE.RESULTSWe demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE.The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.CONCLUSIONThe findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.
ArticleNumber 23
Audience Academic
Author Cashman, Neil R.
Silverman, Judith M.
Martin, Emma M.
Button, Emily B.
Gilmour, Megan
Boyce, Guilaine
Agbay, Andrew
Caffrey, Tara M.
Robert, Jerome
McAlary, Luke
Gidden, Zoe
Wellington, Cheryl L.
Clark, Amanda
Author_xml – sequence: 1
  givenname: Jerome
  orcidid: 0000-0002-2847-9362
  surname: Robert
  fullname: Robert, Jerome
  email: jrme.robert@gmail.com
  organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Present address: Institute of Clinical Chemistry, University Hospital Zurich
– sequence: 2
  givenname: Emily B.
  surname: Button
  fullname: Button, Emily B.
  organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia
– sequence: 3
  givenname: Emma M.
  surname: Martin
  fullname: Martin, Emma M.
  organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia
– sequence: 4
  givenname: Luke
  surname: McAlary
  fullname: McAlary, Luke
  organization: Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Department of Physics and Astronomy, University of British Columbia
– sequence: 5
  givenname: Zoe
  surname: Gidden
  fullname: Gidden, Zoe
  organization: Djavad Mowafaghian Centre for Brain Health, University of British Columbia
– sequence: 6
  givenname: Megan
  surname: Gilmour
  fullname: Gilmour, Megan
  organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia
– sequence: 7
  givenname: Guilaine
  surname: Boyce
  fullname: Boyce, Guilaine
  organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia
– sequence: 8
  givenname: Tara M.
  surname: Caffrey
  fullname: Caffrey, Tara M.
  organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia
– sequence: 9
  givenname: Andrew
  surname: Agbay
  fullname: Agbay, Andrew
  organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia
– sequence: 10
  givenname: Amanda
  surname: Clark
  fullname: Clark, Amanda
  organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia
– sequence: 11
  givenname: Judith M.
  surname: Silverman
  fullname: Silverman, Judith M.
  organization: Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Department of Neurology, University of British Columbia
– sequence: 12
  givenname: Neil R.
  surname: Cashman
  fullname: Cashman, Neil R.
  organization: Department of Neurology, University of British Columbia
– sequence: 13
  givenname: Cheryl L.
  surname: Wellington
  fullname: Wellington, Cheryl L.
  organization: Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, School of Biomedical Engineering, University of British Columbia, International Collaboration on Repair Discoveries, University of British Columbia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32213187$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURH_gBVigSGzYpPjfzgZpNCpQqRIbWFuOc5PxKGMHO6k0j8Bb4-lM6UyFqiySnHzn2Nc5l8WZDx6K4j1G1xgr8TlhigirEEEVQlSISr0qLrDkqMKUiLOj5_PiMqU1QkwixN8U55QQTLGSF8WfJURoYrg3yc6DiaXZbIfg2nLhexdGM622pfNl4wJkwUOm2_IeUoIhlS6V-XW2WWq25cr1q6oFn9y0LQc3hjGGCbJ5NHFydoBUgo_OrjKe1cUYjqGbt8XrzgwJ3h3uV8Wvrzc_l9-rux_fbpeLu8oKJKcKSwkUgNfEio4xJjmrhWmMbC1iHFvGmbKcCymJZKJVjSQKU8UtqknHmppeFbf73DaYtR6j25i41cE4_SCE2OvDfjU1tKG4I5ZixlCHa9Y2HClO85IYOpuzvuyzxrnZQGvBT9EMJ6GnX7xb6T7ca4lqWguRAz4dAmL4PUOa9MYlC8NgPIQ5aUIVI5ggtNv3x2foOszR56PKVI05JpThJ6o3eQDnu5DXtbtQvRD5jwuKEcnU9X-ofLWwcTa3rHNZPzF8OB7034SPRcqA2gM2hpQidNq6yUwu7OZ2g8ZI7zqr953VubP6obNaZSt5Zn1Mf9FE96aUYd9DfDqNF1x_ARc4_cU
CitedBy_id crossref_primary_10_1016_j_atherosclerosis_2024_118560
crossref_primary_10_3390_biomedicines9010072
crossref_primary_10_1186_s13195_021_00793_9
crossref_primary_10_1016_j_jconrel_2021_08_018
crossref_primary_10_1186_s13024_023_00671_y
crossref_primary_10_3390_biom10091276
crossref_primary_10_1016_j_tem_2023_05_002
crossref_primary_10_1002_alz_12649
crossref_primary_10_1186_s13195_022_01028_1
crossref_primary_10_3389_fphys_2021_700847
crossref_primary_10_1177_0271678X21992638
crossref_primary_10_4103_1673_5374_310671
crossref_primary_10_1073_pnas_2304213120
crossref_primary_10_1186_s13024_022_00560_w
crossref_primary_10_1186_s13024_022_00574_4
crossref_primary_10_1016_j_neuroscience_2023_01_032
crossref_primary_10_3389_fnagi_2023_1134399
crossref_primary_10_3390_ijms21103435
crossref_primary_10_1177_13872877241305806
crossref_primary_10_1186_s12987_024_00580_2
crossref_primary_10_3390_cells10051041
Cites_doi 10.1016/j.celrep.2012.09.018
10.1016/j.scr.2014.10.001
10.1161/CIRCRESAHA.108.190587
10.1016/j.neurobiolaging.2014.07.020
10.1016/S0006-8993(99)02471-3
10.1038/s41591-018-0297-y
10.1016/S0197-4580(99)00103-7
10.1093/gerona/glq026
10.1097/MOL.0000000000000604
10.1186/s13195-019-0497-9
10.1126/science.1161591
10.3988/jcn.2011.7.1.1
10.1074/jbc.M110.127829
10.1186/s40478-018-0511-7
10.1194/jlr.C500022-JLR200
10.1161/JAHA.114.001156
10.1371/journal.pone.0079821
10.1016/S0014-5793(03)00261-8
10.1016/S0002-9440(10)63399-8
10.1523/JNEUROSCI.3987-12.2012
10.1016/S0022-2275(20)39811-4
10.1161/JAHA.118.009730
10.1016/j.neuron.2005.06.030
10.1161/CIRCRESAHA.111.258673
10.1016/j.bbadis.2015.10.005
10.1074/jbc.M116.739250
10.1016/S0022-2275(20)31599-6
10.1172/JCI115288
10.1002/ana.24326
10.1194/jlr.M081851
10.1073/pnas.1005888107
10.1021/acs.jproteome.5b00213
10.1016/j.cmet.2014.01.003
10.1016/j.biopsych.2017.03.003
10.1016/j.jalz.2017.05.006
10.1038/sj.jcbfm.9600419
10.1016/j.jacl.2017.11.003
10.1161/CIRCULATIONAHA.106.686477
10.1161/ATVBAHA.111.237693
10.3233/JAD-142862
10.1038/nm890
10.1021/bi002186k
10.1161/STROKEAHA.111.000719
10.1111/nan.12556
10.1111/j.0033-0124.1950.24_14.x
10.3389/fneur.2019.00187
10.1074/jbc.M110.127738
10.1186/s13024-017-0201-0
10.1016/j.jamda.2017.11.017
10.7554/eLife.29595
10.1038/ncb1819
10.1016/j.neurobiolaging.2017.08.028
10.1016/S0140-6736(16)00557-2
10.1186/s12916-014-0206-2
10.1016/0009-8981(85)90068-3
10.1172/jci.insight.124620
10.3233/JAD-140111
10.1111/nan.12342
10.1038/s41582-019-0295-9
10.1161/ATVBAHA.113.301363
10.1038/359325a0
10.1016/S0065-3233(05)70009-7
10.1038/s41582-019-0205-1
10.1016/j.jalz.2018.07.222
10.1016/S0022-510X(02)00288-5
10.3233/JAD-2012-129021
10.3233/JAD-2012-121336
10.1016/j.bbadis.2015.08.024
10.1371/journal.pone.0041636
10.1016/j.scr.2012.11.005
10.1503/cmaj.180066
10.1038/jcbfm.2013.76
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13024-020-00366-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1750-1326
EndPage 21
ExternalDocumentID oai_doaj_org_article_3a3b31f2c31440f194db508534961efc
PMC7093966
A618763102
32213187
10_1186_s13024_020_00366_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: Cure Alzheimer's Fund
  grantid: .
  funderid: http://dx.doi.org/10.13039/100007625
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: Weston Brain Institute
  grantid: RR182093; RR150048
  funderid: http://dx.doi.org/10.13039/100012479
– fundername: ;
– fundername: ;
  grantid: .
– fundername: ;
  grantid: RR182093; RR150048
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
IHR
INH
INR
IPY
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7TK
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c607t-177e3ee592c6f44475496aba7dc0451c4548c556772746d8b7281385c092f4b93
IEDL.DBID 7X7
ISSN 1750-1326
IngestDate Wed Aug 27 01:23:29 EDT 2025
Thu Aug 21 18:12:33 EDT 2025
Thu Sep 04 19:42:21 EDT 2025
Fri Jul 25 22:45:41 EDT 2025
Tue Jun 17 21:02:16 EDT 2025
Tue Jun 10 20:46:26 EDT 2025
Thu Jan 02 22:56:54 EST 2025
Tue Jul 01 01:59:04 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Sat Sep 06 07:29:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cerebral amyloid angiopathy (CAA)
High-density lipoprotein (HDL)
Alzheimer’s disease
Tissue engineering
Apolipoprotein (apo)E
Cerebrovasculature
Endothelial inflammation
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c607t-177e3ee592c6f44475496aba7dc0451c4548c556772746d8b7281385c092f4b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2847-9362
OpenAccessLink https://www.proquest.com/docview/2391512341?pq-origsite=%requestingapplication%
PMID 32213187
PQID 2391512341
PQPubID 55149
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_3a3b31f2c31440f194db508534961efc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7093966
proquest_miscellaneous_2384212009
proquest_journals_2391512341
gale_infotracmisc_A618763102
gale_infotracacademiconefile_A618763102
pubmed_primary_32213187
crossref_citationtrail_10_1186_s13024_020_00366_8
crossref_primary_10_1186_s13024_020_00366_8
springer_journals_10_1186_s13024_020_00366_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-25
PublicationDateYYYYMMDD 2020-03-25
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Molecular neurodegeneration
PublicationTitleAbbrev Mol Neurodegeneration
PublicationTitleAlternate Mol Neurodegener
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References JH Lawson (366_CR58) 2016; 387
P Seubert (366_CR74) 1992; 359
TL Lewis (366_CR26) 2010; 285
MF Linton (366_CR54) 1991; 88
A Merched (366_CR20) 2000; 21
THT Vu (366_CR12) 2019; 8
GS Getz (366_CR30) 2012; 32
S Stukas (366_CR16) 2014; 19
366_CR25
EB Button (366_CR15) 2019; 30
C Reitz (366_CR21) 2010; 67
KH Weisgraber (366_CR33) 1980; 21
I Lefterov (366_CR22) 2010; 285
J Robert (366_CR27) 2015; 1862
BB Brodsky (366_CR53) 2005; 70
KL Rasmussen (366_CR61) 2018; 190
J Richiardi (366_CR59) 2015; 36
S Fernández-de Retana (366_CR28) 2017; 60
D Naish (366_CR51) 2009; 227
LM Wilson (366_CR66) 2006; 47
ECK Tan (366_CR13) 2018; 19
A Manousopoulou (366_CR45) 2017; 43
Y Qi (366_CR67) 2018; 12
G Zuliani (366_CR19) 2010; 65
S Stukas (366_CR47) 2014; 3
A Keable (366_CR70) 2016; 1862
K Takamatsu (366_CR71) 2014; 13
KL Rasmussen (366_CR62) 2015; 77
J Sevigny (366_CR3) 2016; 537
A Solomon (366_CR14) 2012; 3
CY Santos (366_CR11) 2017; 7
J Robert (366_CR32) 2017; 12
D Laurin (366_CR6) 2007; 116
D Kothapalli (366_CR52) 2012; 2
J Robert (366_CR35) 2013; 33
J Fan (366_CR38) 2018; 59
RP Koldamova (366_CR43) 2001; 40
N Zhao (366_CR34) 2018; 83
RD Bell (366_CR9) 2007; 27
C Mineo (366_CR17) 2012; 111
D Cox (366_CR39) 2016; 291
J Robert (366_CR31) 2017; 6
366_CR4
J Robert (366_CR37) 2013; 8
S-K Herukka (366_CR75) 2015; 46
KL Rasmussen (366_CR60) 2017; 14
MD Sweeney (366_CR10) 2019; 15
366_CR2
WAW Ruzali (366_CR56) 2013; 33
C-C Wu (366_CR68) 2013; 44
G Datta (366_CR77) 2001; 42
M Burwinkel (366_CR50) 2018; 6
P Christina (366_CR1) 2018
K Hultman (366_CR65) 2013; 33
EB Button (366_CR23) 2019; 11
AM Fagan (366_CR24) 2004; 165
L Rohrer (366_CR42) 2009; 104
JC Di Francesco (366_CR5) 2015; 6
A Biffi (366_CR7) 2011; 7
366_CR44
E Koren (366_CR76) 1985; 147
RD Bell (366_CR57) 2009; 11
SM Gordon (366_CR29) 2015; 14
J Attems (366_CR40) 2014; 12
T Kanekiyo (366_CR48) 2012; 32
CA Hawkes (366_CR63) 2012; 7
AM Morton (366_CR36) 2019; 4
H Akiyama (366_CR69) 2000; 858
DA Nation (366_CR8) 2019; 25
SM Sacre (366_CR18) 2003; 540
R Deane (366_CR49) 2003; 9
DL Brody (366_CR73) 2008; 321
S Salloway (366_CR64) 2002; 204
J Camacho (366_CR46) 2019; 10
K Thanopoulou (366_CR55) 2010; 107
X Xu (366_CR72) 2013; 10
E McGowan (366_CR41) 2005; 47
References_xml – volume: 2
  start-page: 1259
  year: 2012
  ident: 366_CR52
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.09.018
– volume: 13
  start-page: 442
  year: 2014
  ident: 366_CR71
  publication-title: Stem Cell Res
  doi: 10.1016/j.scr.2014.10.001
– volume: 104
  start-page: 1142
  year: 2009
  ident: 366_CR42
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.108.190587
– volume: 36
  start-page: 33
  year: 2015
  ident: 366_CR59
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2014.07.020
– volume: 858
  start-page: 172
  year: 2000
  ident: 366_CR69
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(99)02471-3
– volume: 537
  start-page: 50
  year: 2016
  ident: 366_CR3
  publication-title: Nat Publ Group
– volume: 25
  start-page: 270
  year: 2019
  ident: 366_CR8
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0297-y
– volume: 21
  start-page: 27
  year: 2000
  ident: 366_CR20
  publication-title: Neurobiol Aging
  doi: 10.1016/S0197-4580(99)00103-7
– volume: 65
  start-page: 559
  year: 2010
  ident: 366_CR19
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/glq026
– volume: 30
  start-page: 224
  year: 2019
  ident: 366_CR15
  publication-title: Curr Opin Lipidol
  doi: 10.1097/MOL.0000000000000604
– volume: 11
  start-page: 1
  year: 2019
  ident: 366_CR23
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-019-0497-9
– volume: 321
  start-page: 1221
  year: 2008
  ident: 366_CR73
  publication-title: Science (New York, NY)
  doi: 10.1126/science.1161591
– volume: 7
  start-page: 1
  year: 2011
  ident: 366_CR7
  publication-title: J Clin Neurol
  doi: 10.3988/jcn.2011.7.1.1
– volume: 285
  start-page: 36958
  year: 2010
  ident: 366_CR26
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.127829
– volume: 6
  start-page: 23
  year: 2018
  ident: 366_CR50
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/s40478-018-0511-7
– volume: 47
  start-page: 755
  year: 2006
  ident: 366_CR66
  publication-title: J Lipid Res
  doi: 10.1194/jlr.C500022-JLR200
– volume: 3
  start-page: e001156
  year: 2014
  ident: 366_CR47
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.114.001156
– volume: 8
  start-page: e79821
  year: 2013
  ident: 366_CR37
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0079821
– volume: 540
  start-page: 181
  year: 2003
  ident: 366_CR18
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(03)00261-8
– volume: 165
  start-page: 1413
  year: 2004
  ident: 366_CR24
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)63399-8
– volume: 32
  start-page: 16458
  year: 2012
  ident: 366_CR48
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3987-12.2012
– volume: 21
  start-page: 316
  year: 1980
  ident: 366_CR33
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)39811-4
– volume: 8
  start-page: e009730
  year: 2019
  ident: 366_CR12
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.118.009730
– volume: 47
  start-page: 191
  year: 2005
  ident: 366_CR41
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.06.030
– volume: 111
  start-page: 1079
  year: 2012
  ident: 366_CR17
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.111.258673
– volume: 1862
  start-page: 1027
  year: 2015
  ident: 366_CR27
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2015.10.005
– volume: 291
  start-page: 22618
  year: 2016
  ident: 366_CR39
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.739250
– volume: 42
  start-page: 1096
  year: 2001
  ident: 366_CR77
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)31599-6
– volume: 88
  start-page: 270
  year: 1991
  ident: 366_CR54
  publication-title: J Clin Invest
  doi: 10.1172/JCI115288
– volume: 77
  start-page: 301
  year: 2015
  ident: 366_CR62
  publication-title: Ann Neurol
  doi: 10.1002/ana.24326
– volume: 59
  start-page: 830
  year: 2018
  ident: 366_CR38
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M081851
– volume: 107
  start-page: 20816
  year: 2010
  ident: 366_CR55
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1005888107
– volume: 14
  start-page: 2686
  year: 2015
  ident: 366_CR29
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.5b00213
– volume: 19
  start-page: 574
  year: 2014
  ident: 366_CR16
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.01.003
– volume: 83
  start-page: 347
  year: 2018
  ident: 366_CR34
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.03.003
– volume: 14
  start-page: 71
  year: 2017
  ident: 366_CR60
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2017.05.006
– volume: 27
  start-page: 909
  year: 2007
  ident: 366_CR9
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/sj.jcbfm.9600419
– volume: 12
  start-page: 89
  year: 2018
  ident: 366_CR67
  publication-title: J Clin Lipidol
  doi: 10.1016/j.jacl.2017.11.003
– volume: 116
  start-page: 2269
  year: 2007
  ident: 366_CR6
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.686477
– volume: 32
  start-page: 1104
  year: 2012
  ident: 366_CR30
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.111.237693
– volume: 46
  start-page: 261
  year: 2015
  ident: 366_CR75
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-142862
– volume: 9
  start-page: 907
  year: 2003
  ident: 366_CR49
  publication-title: Nat Med
  doi: 10.1038/nm890
– volume: 40
  start-page: 3553
  year: 2001
  ident: 366_CR43
  publication-title: Biochemistry
  doi: 10.1021/bi002186k
– volume: 44
  start-page: 1402
  year: 2013
  ident: 366_CR68
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.111.000719
– ident: 366_CR25
  doi: 10.1111/nan.12556
– start-page: 1
  volume-title: World Alzheimer’s report 2018. Alzheimer’s disease internations: world alzheimer report 2018
  year: 2018
  ident: 366_CR1
  doi: 10.1111/j.0033-0124.1950.24_14.x
– volume: 10
  start-page: 1
  year: 2019
  ident: 366_CR46
  publication-title: Front Neurol
  doi: 10.3389/fneur.2019.00187
– volume: 67
  start-page: 1491
  year: 2010
  ident: 366_CR21
  publication-title: Arch Neurol
– volume: 7
  start-page: 69
  year: 2017
  ident: 366_CR11
  publication-title: Alzheimers Dement
– volume: 227
  start-page: 422
  year: 2009
  ident: 366_CR51
  publication-title: Science (New York, NY)
– volume: 285
  start-page: 36945
  year: 2010
  ident: 366_CR22
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.127738
– volume: 12
  start-page: 60
  year: 2017
  ident: 366_CR32
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-017-0201-0
– volume: 19
  start-page: 577
  year: 2018
  ident: 366_CR13
  publication-title: J Am Med Dir Assoc
  doi: 10.1016/j.jamda.2017.11.017
– volume: 6
  start-page: e29595
  year: 2017
  ident: 366_CR31
  publication-title: eLife
  doi: 10.7554/eLife.29595
– volume: 11
  start-page: 143
  year: 2009
  ident: 366_CR57
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1819
– volume: 60
  start-page: 116
  year: 2017
  ident: 366_CR28
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2017.08.028
– volume: 387
  start-page: 2026
  year: 2016
  ident: 366_CR58
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00557-2
– volume: 12
  start-page: 206
  year: 2014
  ident: 366_CR40
  publication-title: BMC Med
  doi: 10.1186/s12916-014-0206-2
– volume: 147
  start-page: 85
  year: 1985
  ident: 366_CR76
  publication-title: Clin Chim Acta
  doi: 10.1016/0009-8981(85)90068-3
– volume: 4
  start-page: 1
  year: 2019
  ident: 366_CR36
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.124620
– ident: 366_CR44
  doi: 10.3233/JAD-140111
– volume: 43
  start-page: 492
  year: 2017
  ident: 366_CR45
  publication-title: Neuropathol Appl Neurobiol
  doi: 10.1111/nan.12342
– ident: 366_CR4
  doi: 10.1038/s41582-019-0295-9
– volume: 33
  start-page: 2699
  year: 2013
  ident: 366_CR35
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.113.301363
– volume: 359
  start-page: 325
  year: 1992
  ident: 366_CR74
  publication-title: Nature
  doi: 10.1038/359325a0
– volume: 70
  start-page: 301
  year: 2005
  ident: 366_CR53
  publication-title: Adv Protein Chem
  doi: 10.1016/S0065-3233(05)70009-7
– ident: 366_CR2
  doi: 10.1038/s41582-019-0205-1
– volume: 15
  start-page: 158
  year: 2019
  ident: 366_CR10
  publication-title: Alzheimer’s Dementia
  doi: 10.1016/j.jalz.2018.07.222
– volume: 204
  start-page: 183
  year: 2002
  ident: 366_CR64
  publication-title: J Neurol Sci
  doi: 10.1016/S0022-510X(02)00288-5
– volume: 3
  start-page: 465
  year: 2012
  ident: 366_CR14
  publication-title: Adv Alzheimers Dis
  doi: 10.3233/JAD-2012-129021
– volume: 6
  start-page: 4
  year: 2015
  ident: 366_CR5
  publication-title: Front Neurol
– volume: 33
  start-page: 95
  year: 2013
  ident: 366_CR56
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2012-121336
– volume: 1862
  start-page: 1037
  year: 2016
  ident: 366_CR70
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2015.08.024
– volume: 7
  start-page: e41636
  year: 2012
  ident: 366_CR63
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0041636
– volume: 10
  start-page: 213
  year: 2013
  ident: 366_CR72
  publication-title: Stem Cell Res
  doi: 10.1016/j.scr.2012.11.005
– volume: 190
  start-page: E1033
  year: 2018
  ident: 366_CR61
  publication-title: Can Med Assoc J
  doi: 10.1503/cmaj.180066
– volume: 33
  start-page: 1251
  year: 2013
  ident: 366_CR65
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2013.76
SSID ssj0047005
Score 2.36445
Snippet Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ)...
Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition...
Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid...
Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer's disease (AD) risk by decreasing vascular beta-amyloid (A[beta])...
Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ)...
Abstract Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms Advertising executives
Alzheimer's disease
Apolipoprotein (apo)E
Apolipoprotein E
Apolipoproteins
Apolipoproteins E - metabolism
Biomedical and Life Sciences
Biomedicine
Brain research
Cells, Cultured
Cerebral amyloid angiopathy
Cerebral amyloid angiopathy (CAA)
Cerebral Amyloid Angiopathy - metabolism
Cerebrovasculature
Cholesterol
Cholesterol, HDL - metabolism
Collagen
Disease
Diseases
EDTA
Endothelial inflammation
Endothelium
Growth factors
High density lipoprotein
High-density lipoprotein (HDL)
Humans
Immunotherapy
Inflammation
Low density lipoprotein receptors
Molecular Medicine
Monocytes
Neurodegenerative diseases
Neurology
Neurosciences
Novels
Organ Culture Techniques
Pathogenesis
Protein binding
Proteins
Research Article
Scavenger receptors
Smooth muscle
Tissue Engineering
Veins & arteries
β-Amyloid
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT70goAVCC3IlBAewGseJ7RzTqlWFBCcq9WbFjgORtslqd4u0j9C37ozz06YIuKC92eOVPTMez8Tjbwh5n2vtFPyYTG3OUvBIWW5Fwnidc6sxDqrxofDXb_LiMv1ylV09KPWFOWE9PHDPuGNRCit4nTiB15A1xNyVBaciQ6Bz7muH1jfO4zGY6m1wqkC5xicyWh6v8XouZRgqIQCLZHp2DAW0_t9t8oND6XHC5KNb03AYnT8jTwcvkhb97J-TJ759QfaKFiLo6y39QENeZ_hgvkduT_0KAt8p55SW1xCkNxUt2h9NhxWJt7RpqW06P2AT-or-QkjxxZo2a7pCcFdosluK2MaswpT3zZYummUXUB5g8HLMr6OgjphcWuFfFlgB4p7obJ9cnp99P71gQwEG5mSsNowr5YX3WZ44WacIDQhML22pKoewNC6FcMdlmQQPXaWy0lYlmguduThPapC9eEl22q71rwmtrFZaOO4TFYpca4u1d1VZQ7ONuYsIH-Vh3IBOjkUyFiZEKVqaXoYGZGiCDI2OyKdpzLLH5vgr9QmKeaJEXO3QANpmBi6Zf2lbRD6ikhjc_TA9Vw6PGGCRiKNlCskR4g-8togczihh17p596hmZrAaa5MgWj-4EimPyNHUjSMxE6713Q3SaLzEB9c4Iq96rZyWBMaZg41WEVEzfZ2ted7TNj8DpriKcwGRb0Q-j5p9P60_8_TN_-DpAdlNws4ULMkOyc5mdePfgqe3se_Cpr4D9klMqg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELfGeOEFAeNPYCAjIXgAQx07tvOAUJk2TUjwRKW9WbHjbJG6pLQdoh-Bb82dm2RkjKlv9rmyfXf2Xe78O0Je5cZ4DT-mpMuZBIuU5U6kjFc5dwb9oAofCn_9po5n8stJdrJD-nJH3QaurnXtsJ7UbDl__-vH5hMo_Meo8EZ9WGHwTTJ0hBBeRTFzi9yO8SJM5ZNDVEFqELn-4cy140aXU8Tw__ek_uuquppGeSWWGq-oo3vkbmdb0ulWGO6TndA8IHvTBvzq8w19TWO2Z_yMvkd-H4QluMNDJiotzsF1r0s6bU7rFusUb2jdUFe3oUMsDCX9iUDj8xWtV3SJkK_Q5DYUEY9ZiYnw6w2d14s2Yj_A4EWfdUdBSDHltMS_nGJdiEuiw4dkdnT4_eCYdWUZmFcTvWZc6yBCyPLUq0oiYKDMVeEKXXoEq_ESnCCfZQrsdi1VaZxODRcm85M8rUAixCOy27RNeEJo6Yw2wvOQ6lj62jisyKuLCprdhPuE8J4f1neY5Vg6Y26j72KU3fLQAg9t5KE1CXk7jFlsETtupP6MbB4oEW07NrTLU9vtkhWFcIJXqRcYCq94LksHhm2GYPs8VDDNNygkFqUUpueL7mkDLBLRtexUcQT-A1suIfsjStBlP-7uxcz2qmBTxPAHA0PyhLwcunEk5sc1ob1AGoOhfTCYE_J4K5XDkuDI5nBy64TokbyO1jzuaeqziDSuJ7kAfzgh73rJvpzW__f06c2reEbupFHnBEuzfbK7Xl6E52DZrd2LqK5_AFdOR_0
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLggSnkEWmQkBAewWMeO7RzDqlWFBCcq9WbFjgORtslqd1tpf0L_NTPeJG3KQ0K52ePIzozHM5nxN4S8zY3xGh6mpMuZBIuU5U6kjNc5dwb9oBovCn_9pk7P5Jfz7LyHycG7MLfj99yoT2sMrEmGTg5Cpyhm7pMHGTSiNM_VfNC6UoM4DZdi_jhucvBEfP7ftfCtY-huiuSdOGk8fk4ek0e93UiLHaP3yb3QPiEHRQs-88WWvqMxkzP-Ij8g1_OwAld3zDKl5QW45U1Fi_ZH02EN4i1tWuqaLvRohKGiVwgivljTZk1XCOcKTW5LEc2YVZjkvtnSRbPsIq4DDF4OGXUUBBDTSSt8ZYE1H26Ijp-Ss5Pj7_NT1pdcYF7N9IZxrYMIIctTr2qJYIAyV6UrdeURiMZLcHB8limwybVUlXE6NVyYzM_ytAZui2dkr-3a8ILQyhlthOch1bGstXFYbVeXNTS7GfcJ4QM_rO_xyLEsxsJGv8Qou-OhBR7ayENrEvJhHLPcoXH8k_ozsnmkRCTt2AACZvuvZEUpnOB16gWGuWuey8qB0ZohkD4PNUzzPQqJxf0O0_Nlf20BFonIWbZQHEH9wE5LyOGEEvapn3YPYmZ7PbG2KeLzg_EgeULejN04EnPf2tBdIo3BsD0Ywwl5vpPKcUmgjjloZZ0QPZHXyZqnPW3zM6KI61kuwNdNyMdBsm-m9fdv-vL_yF-Rh2ncg4Kl2SHZ26wuwxFYcRv3Om7fX7zbPa8
  priority: 102
  providerName: Springer Nature
Title Cerebrovascular amyloid Angiopathy in bioengineered vessels is reduced by high-density lipoprotein particles enriched in Apolipoprotein E
URI https://link.springer.com/article/10.1186/s13024-020-00366-8
https://www.ncbi.nlm.nih.gov/pubmed/32213187
https://www.proquest.com/docview/2391512341
https://www.proquest.com/docview/2384212009
https://pubmed.ncbi.nlm.nih.gov/PMC7093966
https://doaj.org/article/3a3b31f2c31440f194db508534961efc
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EFAeMjMCojIXiAaHXi2M4TyqpOU6VNCJi0Nyt2nC1Sl5S2Q-qfwH_NnZukZIgpUiP5o7Jz5_Od7_w7Qt6nSlkJTyi4SUMOGmmYmjgKWZkyo9AOKvGi8Nm5OL3gs8vksj1wW7VhlZ1M9IK6aCyekR9FiGQOYpazL4ufIWaNQu9qm0LjIdlnoIlg6gZ52RtcXAKLdRdllDhaoZOOh2gwIQyLCNVgM_KY_f9K5r-2prthk3d8p35LOnlCHre6JM22xH9KHrj6GTnIarCjbzb0A_XRnf7Y_ID8nrglmL995CnNb8BUrwqa1VdVg3mJN7Sqqaka1yIUuoL-QmDx-YpWK7pEiFcoMhuKCMdhgYHv6w2dV4vGYz1A50UXZUeBKTHEtMC_zDAPxK7R9Dm5OJn-mJyGbRqG0IqxXIdMShc7l6SRFSVHgECeitzksrAITmM5GD02SQTo6ZKLQhkZKRarxI7TqAQOiF-Qvbqp3StCC6Okii1zkfSprpXBDLwyL6HYjJkNCOvooW2LUY6pMuba2ypK6C0NNdBQexpqFZBPfZ_FFqHj3tbHSOa-JaJr-4JmeaXbr6TjPDYxKyMbo-u7ZCkvDCiyCYLrM1fCMD8ik2iUATA8m7dXGWCSiKalM8EQ6A90t4AcDlrC2rXD6o7NdCs7VnrH6QF511djT4yHq11zi20UuvJBQQ7Iyy1X9lMCEc1AUsuAyAG_DuY8rKmra48sLsdpDPZvQD53nL0b1v-_6ev7Z_GGPIr8movDKDkke-vlrXsLmtzajPxyHZH9LJt9n8H7eHr-9RuUTsRk5E9H4PeMqz9dKUqi
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAvCBiXwAAjcXmAaHXixM7DhLrRqWNbhdAm7c2LHWdE6pLSdqD8BP4Uv41z3KSlQ-xtypsvke1zfC728XcIeZ1IaQR8fsx14nOwSP1Eh4HP8oRpiX5Qjg-Fj4bx4IR_Po1O18jv9i0MhlW2MtEJ6qwyeEa-FSCSOYhZzj6Ov_uYNQpvV9sUGmmTWiHbdhBjzcOOA1v_BBduur3_Cej9Jgj2-se7A7_JMuCbuCtmPhPChtZGSWDinCP-HU_iVKciM4i9YjjY9CaKYjBDBY8zqUUgWSgj002CHCYYwn9vkXWOBygdsr7TH3752uoCLoDJ26c6Mt6a4jUh99FlQyCY2Jcr6tBlDfhXN_ylHK8Gbl65vXVKce8eudtYs7Q3Z7_7ZM2WD8hGrwRP_qKmb6mLL3UH9xvk166dgAO-iH2l6UU9qoqM9srzosLMyDUtSqqLyjYYiTajPxDafDSlxZROEGQWinRNEWPZzzD0flbTUTGuHNoEdB63cX4UtgUGuWb4yx5molg26j8kJzdCokekU1alfUJopqWQoWE2EC7ZttSYA1ikORTrLjMeYS09lGlQ0jFZx0g5b0nGak5DBTRUjoZKeuT9os94jhFybesdJPOiJeJ7u4Jqcq6aVVJhGuqQ5YEJ8fI9ZwnPNJjSEcL7M5vDMN8hkyiUQjA8kzaPKWCSiOelejFDqEGwHj2yudISpIdZrW7ZTDXSa6qWe80jrxbV2BMj8kpbXWIbicEEYKJ75PGcKxdTAiXBQFcIj4gVfl2Z82pNWXxz2Oaim4TggXvkQ8vZy2H9f02fXj-Ll-T24PjoUB3uDw-ekTuB23-hH0SbpDObXNrnYFfO9Itm81JydtPy4g-JfoW2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gkxAvCBiwwoAgIXiAaJd-JOljGTuNAyYkmLS3qEnTUenWnu46pPsT-K-x0_a2jg8J9S1xqqR2HLt2fibkZaqUlfAwEZuUxWCRstREIeNlyo1CP6jEi8Kfj8XRSTw7TU6v3OL32e5DSLK704AoTXW7vyjKbosrsb_CcFvM0PVBQBXB1E2yrZI0BfdrO8tmX2eDNo4liNlwWeaPI0cHksft_107XzmerqdOXouf-mNpepfc6e1JmnUCcI_ccPV9spPV4Eufr-kr6jM8_a_zHfLzwC3BBd5kn9L8HNz1qqBZfVY1WJt4TauamqpxPUqhK-gPBBefr2i1okuEeYUms6aIcswKTH5v13ReLRqP9wCDF0OmHQXBxDTTAl-ZYS2IS6LDB-Rkevjt4Ij1pRiYFRPZMi6li5xL0tCKMkaQwDgVucllYRGgxsbg-NgkEWCry1gUyshQ8UgldpKGJUhB9JBs1U3tdgktjJIqstyF0pe7Vgar8Mq8hGYz4TYgfOCHtj1OOZbLmGvvryihOx5q4KH2PNQqIG82YxYdSsc_qd8hmzeUiLDtG5rlme6_ko7yyES8DG2E4e-Sp3FhwJhNEGCfuxKm-RqFRKMegOnZvL_OAItERC2dCY5gf2C_BWRvRAn71467BzHTvf5Y6RBx-8GoiHlAXmy6cSTmxNWuuUAaheF8MJID8qiTys2SQE1z0NYyIHIkr6M1j3vq6rtHF5eTNAIfOCBvB8m-nNbfv-nj_yN_Tm59eT_Vnz4cf3xCbod-O0YsTPbIVru8cE_B0GvNs34v_wJrzUpc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebrovascular+amyloid+Angiopathy+in+bioengineered+vessels+is+reduced+by+high-density+lipoprotein+particles+enriched+in+Apolipoprotein+E&rft.jtitle=Molecular+neurodegeneration&rft.au=Jerome%2C+Robert&rft.au=Button%2C+Emily+B&rft.au=Martin%2C+Emma+M&rft.au=McAlary%2C+Luke&rft.date=2020-03-25&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=15&rft.spage=1&rft_id=info:doi/10.1186%2Fs13024-020-00366-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon