Lymphatic pumping: mechanics, mechanisms and malfunction
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on t...
Saved in:
Published in | The Journal of physiology Vol. 594; no. 20; pp. 5749 - 5768 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
15.10.2016
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3751 1469-7793 1469-7793 |
DOI | 10.1113/JP272088 |
Cover
Abstract | A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.
Diagram depicting the major factors regulating the effective pumping ability of a prenodal collecting lymphatic vessel as it transports lymph formed in lymphatic capillaries to the subcapsular sinus of a lymph node. Pressures indicate approximate hydrostatic pressures measured in the interstitium and at the entrance to the lymph node, respectively, that have been recorded in many regions of the lymphatic system. Cut‐away sections show the locations of two valves. The blue shaded region depicts the relatively modest net filtration of fluid and solute that occurs under normal conditions all along the length of the collecting vessel. Each of these factors can also become a target of lymphatic dysfunction. AP, action potential; LEC, lymphatic endothelial cell; LMC, lymphatic muscle cell. |
---|---|
AbstractList | A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease. A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease. image A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease. A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease. Diagram depicting the major factors regulating the effective pumping ability of a prenodal collecting lymphatic vessel as it transports lymph formed in lymphatic capillaries to the subcapsular sinus of a lymph node. Pressures indicate approximate hydrostatic pressures measured in the interstitium and at the entrance to the lymph node, respectively, that have been recorded in many regions of the lymphatic system. Cut-away sections show the locations of two valves. The blue shaded region depicts the relatively modest net filtration of fluid and solute that occurs under normal conditions all along the length of the collecting vessel. Each of these factors can also become a target of lymphatic dysfunction. AP, action potential; LEC, lymphatic endothelial cell; LMC, lymphatic muscle cell. A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease. Diagram depicting the major factors regulating the effective pumping ability of a prenodal collecting lymphatic vessel as it transports lymph formed in lymphatic capillaries to the subcapsular sinus of a lymph node. Pressures indicate approximate hydrostatic pressures measured in the interstitium and at the entrance to the lymph node, respectively, that have been recorded in many regions of the lymphatic system. Cut‐away sections show the locations of two valves. The blue shaded region depicts the relatively modest net filtration of fluid and solute that occurs under normal conditions all along the length of the collecting vessel. Each of these factors can also become a target of lymphatic dysfunction. AP, action potential; LEC, lymphatic endothelial cell; LMC, lymphatic muscle cell. |
Author | Davis, Michael J. Castorena‐Gonzalez, Jorge A. Zawieja, Scott D. Scallan, Joshua P. |
AuthorAffiliation | 1 Department of Medical Pharmacology and Physiology University of Missouri Columbia MO USA |
AuthorAffiliation_xml | – name: 1 Department of Medical Pharmacology and Physiology University of Missouri Columbia MO USA |
Author_xml | – sequence: 1 givenname: Joshua P. surname: Scallan fullname: Scallan, Joshua P. organization: University of Missouri – sequence: 2 givenname: Scott D. surname: Zawieja fullname: Zawieja, Scott D. organization: University of Missouri – sequence: 3 givenname: Jorge A. surname: Castorena‐Gonzalez fullname: Castorena‐Gonzalez, Jorge A. organization: University of Missouri – sequence: 4 givenname: Michael J. surname: Davis fullname: Davis, Michael J. email: davismj@missouri.edu organization: University of Missouri |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27219461$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1LwzAUhoMoblPBXyADb7ywmpO0TeKFIMNPBnoxr0OWZlukTWvTKvv3ZmzzYyh4dULynDfnvG8PbbvSGYQOAZ8BAD1_eCKMYM63UBfiVESMCbqNuhgTElGWQAf1vH_BGCgWYhd1Ag0iTqGL-HBeVDPVWN2v2qKybnrRL4yeKWe1P10ffeH7ymX9QuWT1unGlm4f7UxU7s3Bqu6h55vr0eAuGj7e3g-uhpFOMUuiWKWQJTAZ44RgGooQ2DCtIIshw1gYPhZEZTxcjTWDBLKAcA4ZMUTpOKF76HKpW7XjwmTauKZWuaxqW6h6Lktl5c8XZ2dyWr7JBKdU0DgInKwE6vK1Nb6RhfXa5Llypmy9BE4ZETzF4h8oSVNOgsMBPd5AX8q2dsGJBcXjsIkggTr6Pvzn1Gv_v37Udel9bSafCGC5iFauow3o2QaqbaMWUYS1bf5bQ7RseLe5mf8pLEcPT4wGpz8AhqWwzw |
CODEN | JPHYA7 |
CitedBy_id | crossref_primary_10_1113_JP277254 crossref_primary_10_1038_s41467_025_56147_8 crossref_primary_10_14797_mdcvj_1286 crossref_primary_10_3390_life13030836 crossref_primary_10_3390_medicina57111272 crossref_primary_10_1016_j_yjmcc_2019_06_002 crossref_primary_10_1093_function_zqae033 crossref_primary_10_1089_lrb_2024_0087 crossref_primary_10_3390_ijms18010171 crossref_primary_10_1089_lrb_2019_0069 crossref_primary_10_1161_ATVBAHA_123_319188 crossref_primary_10_1111_imr_13030 crossref_primary_10_1016_j_trsl_2018_12_003 crossref_primary_10_3389_fphys_2022_1098408 crossref_primary_10_1089_lrb_2019_0052 crossref_primary_10_1017_S1047951122001342 crossref_primary_10_1016_j_aanat_2018_08_004 crossref_primary_10_1016_j_jpedsurg_2019_02_026 crossref_primary_10_14814_phy2_14375 crossref_primary_10_3390_biomedicines10051111 crossref_primary_10_1161_ATVBAHA_117_309883 crossref_primary_10_3390_cells10061344 crossref_primary_10_1016_j_mehy_2020_109748 crossref_primary_10_14814_phy2_15697 crossref_primary_10_1152_ajpheart_00023_2023 crossref_primary_10_3389_fphys_2022_1060146 crossref_primary_10_1007_s12609_023_00501_6 crossref_primary_10_1016_j_bpj_2018_07_033 crossref_primary_10_1177_09636897241260195 crossref_primary_10_1016_j_jscai_2023_101174 crossref_primary_10_1089_lrb_2019_0088 crossref_primary_10_1084_jem_20241752 crossref_primary_10_3389_fphar_2022_848088 crossref_primary_10_3390_cancers12082297 crossref_primary_10_3390_ijms24043221 crossref_primary_10_1038_s41598_023_40826_x crossref_primary_10_1152_ajpcell_00137_2022 crossref_primary_10_1016_j_jcmgh_2018_10_015 crossref_primary_10_3389_fphys_2022_798284 crossref_primary_10_3389_fphys_2020_00137 crossref_primary_10_1016_j_mvr_2021_104274 crossref_primary_10_3390_biomedicines11030656 crossref_primary_10_15825_1995_1191_2021_3_186_191 crossref_primary_10_1152_ajpheart_00175_2020 crossref_primary_10_1089_lrb_2020_0060 crossref_primary_10_3389_fcvm_2023_1094805 crossref_primary_10_3390_cancers12082280 crossref_primary_10_15825_1995_1191_2022_4_54_59 crossref_primary_10_1115_1_4053749 crossref_primary_10_1186_s12951_023_02022_x crossref_primary_10_1126_science_abb8739 crossref_primary_10_1089_lrb_2017_0052 crossref_primary_10_3390_jcm11195964 crossref_primary_10_1371_journal_pcbi_1012846 crossref_primary_10_1146_annurev_fluid_122316_045259 crossref_primary_10_1097_MOL_0000000000000821 crossref_primary_10_1142_S1793545820300049 crossref_primary_10_1134_S0022093022050076 crossref_primary_10_3389_fphys_2021_745096 crossref_primary_10_1089_lrb_2022_0026 crossref_primary_10_1097_PRS_0000000000005091 crossref_primary_10_1093_function_zqad017 crossref_primary_10_1038_s41569_018_0087_8 crossref_primary_10_1016_j_devcel_2024_12_010 crossref_primary_10_1161_ATVBAHA_120_314370 crossref_primary_10_1002_ar_24143 crossref_primary_10_1016_j_ijcard_2024_132399 crossref_primary_10_1016_j_aanat_2018_03_006 crossref_primary_10_1016_j_lfs_2018_09_043 crossref_primary_10_1245_s10434_022_12552_7 crossref_primary_10_1158_1055_9965_EPI_19_0448 crossref_primary_10_3390_medicines9050033 crossref_primary_10_3389_fphys_2019_01604 crossref_primary_10_3390_jcm12051930 crossref_primary_10_1089_lrb_2021_0090 crossref_primary_10_3390_cancers12113290 crossref_primary_10_1097_MOH_0000000000000713 crossref_primary_10_1093_cvr_cvab279 crossref_primary_10_14814_phy2_15258 crossref_primary_10_1080_08941939_2021_1937756 crossref_primary_10_1542_pir_2023_006291 crossref_primary_10_1016_j_ijoa_2023_103963 crossref_primary_10_1124_jpet_119_257592 crossref_primary_10_1097_PRS_0000000000008252 crossref_primary_10_1016_j_ajpath_2019_08_009 crossref_primary_10_1186_s43046_020_00041_5 crossref_primary_10_1089_lrb_2019_0040 crossref_primary_10_1007_s10237_023_01780_9 crossref_primary_10_1249_MSS_0000000000002918 crossref_primary_10_1007_s10741_021_10188_5 crossref_primary_10_2147_IJGM_S405926 crossref_primary_10_1016_j_it_2021_07_003 crossref_primary_10_1016_j_cmpb_2024_108543 crossref_primary_10_1007_s11886_020_01405_y crossref_primary_10_1039_D2AN00396A crossref_primary_10_3389_fneur_2019_00533 crossref_primary_10_3389_fphys_2020_00459 crossref_primary_10_1038_s41586_025_08724_6 crossref_primary_10_3389_fphar_2022_952581 crossref_primary_10_3390_biology10040261 crossref_primary_10_1038_s41586_023_06899_4 crossref_primary_10_1111_febs_16155 crossref_primary_10_1126_sciadv_adf9775 crossref_primary_10_3389_fped_2022_1020984 crossref_primary_10_1039_D1LC00014D crossref_primary_10_1111_micc_12839 crossref_primary_10_1089_wound_2021_0041 crossref_primary_10_3389_fphys_2020_00114 crossref_primary_10_1111_obr_12565 crossref_primary_10_1124_pharmrev_123_001159 crossref_primary_10_1039_D1LC00720C crossref_primary_10_3390_ijms23147614 crossref_primary_10_1161_HYPERTENSIONAHA_123_17942 crossref_primary_10_1016_j_mehy_2023_111022 crossref_primary_10_1016_j_neulet_2020_135197 crossref_primary_10_1038_s41467_018_04418_y crossref_primary_10_1038_s41569_020_00489_x crossref_primary_10_3390_tropicalmed3020045 crossref_primary_10_1089_lrb_2023_0079 crossref_primary_10_4103_jdmimsu_jdmimsu_422_22 crossref_primary_10_3389_fphys_2020_00684 crossref_primary_10_1016_j_tice_2024_102681 crossref_primary_10_1038_s43587_024_00691_3 crossref_primary_10_1111_joa_12761 crossref_primary_10_1589_jpts_28_3084 crossref_primary_10_3390_ijms25063538 crossref_primary_10_3389_fmedt_2024_1397561 crossref_primary_10_3390_biology11030419 crossref_primary_10_1016_j_addr_2020_08_013 crossref_primary_10_1016_j_tips_2019_10_002 crossref_primary_10_1038_s41598_019_42142_9 crossref_primary_10_1097_CCM_0000000000006561 crossref_primary_10_1016_j_celrep_2019_05_050 crossref_primary_10_1016_j_ejvs_2024_06_004 crossref_primary_10_1016_j_jcmgh_2018_12_002 crossref_primary_10_7759_cureus_8930 crossref_primary_10_7759_cureus_80896 crossref_primary_10_1016_j_healun_2019_04_002 crossref_primary_10_1113_JP284752 crossref_primary_10_1111_cts_12864 crossref_primary_10_1152_physrev_00031_2020 crossref_primary_10_1002_oby_23458 crossref_primary_10_1186_s12951_024_02940_4 crossref_primary_10_1111_micc_12748 crossref_primary_10_1097_JS9_0000000000001106 crossref_primary_10_1186_s13075_019_2039_z crossref_primary_10_1016_j_addr_2020_12_005 crossref_primary_10_1113_JP279612 crossref_primary_10_1002_med_21855 crossref_primary_10_3390_ijms23031428 crossref_primary_10_1038_s41598_023_48131_3 crossref_primary_10_1089_lrb_2016_0061 crossref_primary_10_3390_ijms232214179 crossref_primary_10_1186_s12951_023_01989_x crossref_primary_10_1016_j_lpmfor_2023_10_003 crossref_primary_10_3390_biology12071039 crossref_primary_10_1038_s41598_020_75190_7 crossref_primary_10_1007_s10237_021_01486_w crossref_primary_10_1111_bph_15602 crossref_primary_10_1111_micc_12879 crossref_primary_10_1117_1_NPh_11_1_010601 crossref_primary_10_1002_tbio_201900036 crossref_primary_10_1016_j_mvr_2018_11_003 crossref_primary_10_1117_1_JBO_22_10_106003 crossref_primary_10_1038_s41598_022_16884_y crossref_primary_10_14814_phy2_16170 crossref_primary_10_1039_D1LC00022E crossref_primary_10_3390_metabo11090617 crossref_primary_10_1152_ajpgi_00095_2022 crossref_primary_10_1172_jci_insight_135121 crossref_primary_10_1007_s00467_025_06692_7 crossref_primary_10_1146_annurev_immunol_041015_055354 crossref_primary_10_1152_ajpheart_00648_2017 crossref_primary_10_1186_s40560_023_00694_z crossref_primary_10_1111_micc_12887 crossref_primary_10_1292_jvms_21_0363 crossref_primary_10_31857_S0044452923010084 crossref_primary_10_1016_j_biocel_2019_105562 crossref_primary_10_1038_s41431_022_01210_x crossref_primary_10_1186_s12987_024_00605_w crossref_primary_10_1053_j_jvca_2021_07_049 crossref_primary_10_1002_advs_202206579 crossref_primary_10_3389_fphar_2022_850586 crossref_primary_10_3390_cells10123289 crossref_primary_10_1113_JP279472 crossref_primary_10_1016_j_mad_2024_111975 crossref_primary_10_1007_s10549_020_05863_4 crossref_primary_10_1152_ajpgi_00271_2021 crossref_primary_10_3390_cells10102594 crossref_primary_10_1152_physrev_00006_2020 crossref_primary_10_1089_lrb_2020_0008 crossref_primary_10_1136_bmjopen_2023_076127 crossref_primary_10_1111_micc_12778 crossref_primary_10_1016_j_compbiomed_2021_105189 crossref_primary_10_1161_ATVBAHA_118_311645 crossref_primary_10_1089_lrb_2021_0022 crossref_primary_10_1152_ajpheart_00499_2017 crossref_primary_10_1152_physiol_00015_2022 crossref_primary_10_3390_jcm12185930 crossref_primary_10_1152_physrev_00039_2021 crossref_primary_10_1161_ATVBAHA_120_315507 crossref_primary_10_1016_j_jare_2024_12_024 crossref_primary_10_1016_j_ccc_2019_11_003 crossref_primary_10_1016_j_jvir_2021_01_269 crossref_primary_10_1097_PRS_0000000000009866 crossref_primary_10_1101_cshperspect_a041171 crossref_primary_10_1016_j_sempedsurg_2024_151426 crossref_primary_10_3389_fphys_2020_00404 crossref_primary_10_1016_j_taap_2019_114847 crossref_primary_10_1136_heartjnl_2018_314461 crossref_primary_10_3389_fphys_2021_672987 crossref_primary_10_3390_ijms222111756 crossref_primary_10_1016_j_acra_2018_04_006 crossref_primary_10_1364_BOE_383390 crossref_primary_10_1002_adhm_202000895 crossref_primary_10_1371_journal_pone_0183222 crossref_primary_10_1186_s13054_023_04496_5 crossref_primary_10_1016_j_jacc_2020_10_022 crossref_primary_10_25259_JSSTD_3_2021 crossref_primary_10_25259_JSSTD_3_2020 crossref_primary_10_1165_rcmb_2020_0196TR crossref_primary_10_7554_eLife_79780 crossref_primary_10_1007_s12609_019_00341_3 crossref_primary_10_1097_GOX_0000000000003342 crossref_primary_10_3389_fphys_2024_1413764 crossref_primary_10_1161_HYPERTENSIONAHA_124_23194 crossref_primary_10_1016_j_isci_2020_101751 crossref_primary_10_1016_j_amjsurg_2024_116050 crossref_primary_10_1111_micc_12792 crossref_primary_10_3389_fphys_2023_1198052 crossref_primary_10_1016_j_immuni_2021_10_003 crossref_primary_10_1111_micc_12793 crossref_primary_10_1111_aas_13710 crossref_primary_10_1007_s10237_021_01501_0 crossref_primary_10_1152_ajprenal_00322_2020 crossref_primary_10_1007_s10741_024_10449_z crossref_primary_10_1038_s41598_023_41995_5 crossref_primary_10_3390_ijms23062975 crossref_primary_10_1101_cshperspect_a041274 crossref_primary_10_3390_biom10101424 crossref_primary_10_1016_j_pacs_2022_100446 crossref_primary_10_2174_1573397119666230127144711 crossref_primary_10_3390_cells10102584 crossref_primary_10_1038_nrgastro_2017_79 crossref_primary_10_1007_s10237_018_1042_7 crossref_primary_10_1038_s44303_024_00061_z crossref_primary_10_1016_j_jacc_2021_05_021 crossref_primary_10_1097_ALN_0000000000005002 |
Cites_doi | 10.1161/CIRCRESAHA.112.269399 10.1136/jmg.39.7.478 10.1038/nm1689 10.1196/annals.1413.008 10.1152/ajpheart.00007.2008 10.1152/physrev.1990.70.4.987 10.1152/ajpheart.00921.2013 10.1080/10739680490476033 10.1089/lrb.2013.1132 10.1089/1539685041690409 10.1016/j.ydbio.2008.04.024 10.1093/cvr/cvv117 10.1111/j.1365-2036.2011.04759.x 10.1113/jphysiol.1994.sp020450 10.1016/j.mvr.2006.05.009 10.1111/j.1469-7793.1997.439be.x 10.1152/ajpheart.1987.253.6.H1349 10.1136/jmg.2004.024802 10.1002/ibd.21150 10.1161/CIRCULATIONAHA.106.675348 10.1007/s10549-011-1667-z 10.1152/physiolgenomics.00169.2002 10.1161/01.RES.67.5.1097 10.1152/ajpheart.00879.2008 10.1113/jphysiol.1997.sp022013 10.1089/153968503321642642 10.1084/jem.90.5.497 10.1152/ajpheart.1989.257.6.H2059 10.1016/j.cmet.2013.04.002 10.1111/j.1469-7793.1997.001bi.x 10.1167/iovs.14-15638 10.1016/j.biocel.2003.12.008 10.1016/j.immuni.2004.09.003 10.1016/0090-6980(83)90138-7 10.1016/S0022-3565(25)22801-4 10.1113/jphysiol.2014.276683 10.1113/jphysiol.2013.258681 10.1371/journal.pone.0070703 10.2353/ajpath.2010.091301 10.1152/ajpheart.1986.250.5.H706 10.1152/ajpheart.00538.2011 10.1371/journal.pone.0148384 10.1371/journal.pone.0094713 10.1097/MIB.0000000000000402 10.1002/ar.1092020404 10.1016/j.ydbio.2015.10.022 10.1113/jphysiol.2013.260042 10.1084/jem.20142290 10.1152/ajpheart.01029.2007 10.1002/ar.1091770210 10.1111/j.1748-1716.1977.tb10364.x 10.1016/j.ajhg.2010.04.010 10.1113/jphysiol.2006.115279 10.1083/jcb.200901104 10.1113/jphysiol.2012.250662 10.1038/sj.bjp.0705264 10.1152/ajplegacy.1975.228.5.1326 10.1081/CNV-48707 10.1161/01.RES.53.4.535 10.1073/pnas.1116152108 10.1113/jphysiol.2012.237909 10.1152/ajpheart.00677.2012 10.1161/01.RES.8.5.1077 10.1113/jphysiol.1996.sp021404 10.1172/JCI63685 10.1111/micc.12143 10.1111/j.1749-6632.2010.05752.x 10.1172/JCI46116 10.1089/lrb.2013.0031 10.1097/PRS.0000000000000268 10.1152/ajpheart.01340.2006 10.1136/gut.1.2.87 10.1152/ajpheart.00467.2015 10.1113/jphysiol.2008.162438 10.1111/j.1749-6632.2010.05757.x 10.1113/jphysiol.1992.sp019139 10.1113/jphysiol.1980.sp013520 10.1007/BF00582310 10.4199/C00030ED1V01Y201104ISP018 10.1038/ncomms9085 10.1172/JCI70422 10.1172/JCI80454 10.1096/fj.02-0626fje 10.1006/mvre.2000.2275 10.1016/0026-2862(89)90039-3 10.1007/978-3-7091-1646-3_6 10.1159/000342437 10.1136/gut.2007.123166 10.1101/gad.330105 10.1152/ajpheart.01040.2008 10.1158/1078-0432.CCR-11-2303 10.1006/mvre.1995.1008 10.1016/j.tcm.2013.09.004 10.1084/jem.20062596 10.1172/JCI78888 10.1152/ajpheart.00522.2012 10.1016/j.biomaterials.2013.03.034 10.1196/annals.1413.007 10.1089/lrb.2011.0022 10.1113/jphysiol.2012.230599 10.1113/jphysiol.2013.266700 10.1113/jphysiol.2014.280347 10.1083/jcb.201110132 10.1152/ajpgi.00392.2012 10.1152/ajpheart.00378.2012 10.1111/j.1469-7793.1997.013bi.x 10.1006/dbio.2002.0826 10.1111/j.1469-7793.1999.00201.x 10.1152/ajpgi.00058.2006 10.1016/j.devcel.2009.06.017 10.1093/infdis/167.6.1358 10.1371/journal.pone.0106034 10.1038/sj.bjp.0702026 10.1016/j.tem.2010.04.003 10.1111/j.1749-6632.2002.tb04867.x 10.1210/jc.2004-0372 10.1186/gb-2008-9-1-r14 10.4049/jimmunol.1301758 10.1172/JCI15830 10.1152/ajpheart.1993.264.4.H1283 10.1038/ajh.2008.218 10.1038/nri2448 10.1111/j.1549-8719.2011.00107.x 10.1016/j.semcdb.2015.01.005 10.1113/jphysiol.1993.sp019910 10.2353/ajpath.2010.100594 10.2353/ajpath.2009.080963 10.1038/nature14432 10.1038/nm1094 10.1089/lrb.2012.0013 10.1152/ajpheart.00606.2011 10.1152/ajpheart.00527.2013 10.1038/ng1642 10.1113/jphysiol.2001.016642 10.1016/j.ydbio.2011.04.004 10.1113/jphysiol.2007.130401 10.1152/ajpheart.00260.2011 10.1242/dev.101188 10.1007/s00018-012-1110-6 10.1038/ijo.2010.273 10.1016/j.devcel.2011.12.020 10.1161/CIRCRESAHA.112.269316 10.1161/01.RES.87.6.474 10.1152/ajpheart.00543.2005 10.1002/(SICI)1097-0142(19981215)83:12B <2814::AID-CNCR31>3.0.CO;2-E 10.1016/0026-2862(84)90042-6 10.1096/fj.12-222695 10.1101/gad.16974811 10.1152/ajpheart.00133.2011 10.1152/ajpheart.1999.277.4.H1453 10.1152/ajpheart.01098.2011 10.1159/000323484 10.1111/j.1549-8719.2011.00146.x 10.1172/JCI79386 10.1152/ajpheart.01159.2011 10.1161/01.RES.0000258856.19922.45 10.1152/ajpheart.01097.2011 10.1152/ajpheart.00517.2013 10.1152/ajpheart.00598.2014 10.1093/cvr/cvq062 10.1111/bph.13194 10.1006/mvre.1998.2089 10.1016/j.jbiomech.2015.07.045 10.1007/s00441-002-0623-y 10.1152/physrev.00037.2011 10.1113/JP270166 10.1016/j.mvr.2014.07.008 10.1113/jphysiol.1976.sp011557 10.1113/jphysiol.2009.179622 10.2337/db10-0585 10.4049/jimmunol.1500221 10.1007/s10456-013-9393-2 10.1093/hmg/ddg123 |
ContentType | Journal Article |
Copyright | 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society. Journal compilation © 2016 The Physiological Society |
Copyright_xml | – notice: 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society – notice: 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society. – notice: Journal compilation © 2016 The Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/JP272088 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database CrossRef MEDLINE - Academic Calcium & Calcified Tissue Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | J. P. Scallan and others |
EISSN | 1469-7793 |
EndPage | 5768 |
ExternalDocumentID | PMC5063934 4213916391 27219461 10_1113_JP272088 TJP7345 |
Genre | article Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: K99 HL124142; R01‐HL‐120867; HL‐122608; HL‐122578 – fundername: NHLBI NIH HHS grantid: K99 HL124142 – fundername: NHLBI NIH HHS grantid: R01 HL120867 – fundername: NHLBI NIH HHS grantid: R01 HL122578 – fundername: NHLBI NIH HHS grantid: R01 HL125608 – fundername: NHLBI NIH HHS grantid: R00 HL124142 – fundername: NIH grantid: K99 HL124142; R01‐HL‐120867; HL‐122608; HL‐122578 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 0YM 10A 123 18M 1OC 29L 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AI. AIACR AIAGR AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HGLYW HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ TEORI TLM TN5 TR2 UB1 UPT V8K VH1 W8F W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WXI WXSBR WYISQ XG1 YBU YHG YKV YQT YSK YZZ ZZTAW ~IA ~WT AAYXX CITATION AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c6075-4a61d51fb05203fb0990e7ca1d41d009e8b92ad87cabc7151db09881d2e2ac453 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 18:33:26 EDT 2025 Fri Jul 11 11:48:31 EDT 2025 Fri Jul 11 09:12:21 EDT 2025 Fri Jul 25 12:12:35 EDT 2025 Thu Apr 03 06:58:57 EDT 2025 Thu Apr 24 22:55:19 EDT 2025 Thu Jul 03 08:42:41 EDT 2025 Wed Aug 20 07:26:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | muscle contraction lymphedema lymphatic |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6075-4a61d51fb05203fb0990e7ca1d41d009e8b92ad87cabc7151db09881d2e2ac453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP272088 |
PMID | 27219461 |
PQID | 1828415192 |
PQPubID | 1086388 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5063934 proquest_miscellaneous_1837298609 proquest_miscellaneous_1826682469 proquest_journals_1828415192 pubmed_primary_27219461 crossref_primary_10_1113_JP272088 crossref_citationtrail_10_1113_JP272088 wiley_primary_10_1113_JP272088_TJP7345 |
PublicationCentury | 2000 |
PublicationDate | 15 October 2016 |
PublicationDateYYYYMMDD | 2016-10-15 |
PublicationDate_xml | – month: 10 year: 2016 text: 15 October 2016 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2016 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2004; 21 2010; 16 2012; 122 1968; 1 2000; 87 2007; 583 2010; 588 2007; 100 1960; 1 2002; 310 2013; 123 2015; 309 2013; 70 2015; 308 2012; 19 2014; 24 2012; 18 1960; 8 2006; 291 2006; 290 2009; 195 2004; 2 2008; 587 2014; 28 2013; 8 2011; 354 2012; 10 2014; 134 2014; 21 1949; 90 1998; 15 2010; 21 1980; 309 2007; 293 2004; 36 2010; 1207 2008; 21 2013; 591 2013; 197 2014; 17 1996; 493 2014; 96 1989; 37 2012; 22 2014; 12 1983; 25 1971; 4 2003; 44 2009; 17 2014; 124 1975; 228 1980; 239 1997; 501.P 2007; 204 1976; 261 2015; 523 1989; 257 2015; 125 2002; 251 1994; 271 2008; 57 1982; 202 2009; 296 2009; 175 1991 2011; 130 2007; 13 2016; 11 2012; 590 2012; 591 2014; 306 2011; 301 2015; 194 2012; 197 2005; 19 2012; 111 2014; 307 1995; 49 1990; 27 2015; 593 1981; 14 2010; 177 1993; 471 1977; 99 2014; 141 1968; 23 2015; 38 2010; 59 2006; 72 2013; 27 1984; 27 1986; 250 2003; 13 2008; 9 1983; 53 2010; 1777 2008; 8 2003; 17 1999; 521 2015; 107 2011; 18 2003; 111 2005; 23 2014; 214 1993; 167 2003; 12 1997; 500 2015; 48 2015; 172 1997; 503 2013; 17 1997; 504 2013; 11 2015; 212 1991; 260 1988; 411 2000; 60 1998; 125 2003; 1 2011; 25 2014; 9 2005; 37 1998; 56 2014; 55 2002; 39 2008; 1131 2015; 6 2003; 139 2002; 450 2011 2008; 19 2013; 305 2016; 409 2004; 89 2013; 304 2005; 42 2002; 979 2011; 35 2011; 34 2014; 192 2012; 302 2014; 592 2012; 303 1993; 264 1970; 59 2004; 10 1973; 177 2004; 11 2007; 115 2010; 87 2012; 92 2010; 86 1990; 67 2011; 108 1987; 253 1991; 24 1992; 450 2013; 34 1980; 13 1971; 78 2015; 21 1994; 481 2011; 48 2008; 576 1999; 277 2008; 295 1990; 70 1966 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_91_1 Olszewski WL (e_1_2_6_129_1) 1980; 239 e_1_2_6_152_1 Vajda J (e_1_2_6_169_1) 1971; 78 e_1_2_6_175_1 Alessandrini C (e_1_2_6_6_1) 1981; 14 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 e_1_2_6_179_1 e_1_2_6_19_1 e_1_2_6_182_1 e_1_2_6_11_1 e_1_2_6_34_1 Miyahara H (e_1_2_6_115_1) 1994; 271 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_106_1 e_1_2_6_148_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_163_1 e_1_2_6_140_1 e_1_2_6_121_1 e_1_2_6_167_1 e_1_2_6_102_1 e_1_2_6_144_1 e_1_2_6_186_1 e_1_2_6_9_1 McHale NG (e_1_2_6_103_1) 1990; 27 e_1_2_6_5_1 Gnepp DR (e_1_2_6_62_1) 1980; 13 e_1_2_6_170_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 Lauweryns J (e_1_2_6_86_1) 1971; 4 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_159_1 e_1_2_6_31_1 Hollywood MA (e_1_2_6_72_1) 1997; 501 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_174_1 e_1_2_6_151_1 e_1_2_6_132_1 e_1_2_6_178_1 e_1_2_6_113_1 e_1_2_6_155_1 e_1_2_6_181_1 Ohhashi T (e_1_2_6_127_1) 1991; 260 Szuba A (e_1_2_6_161_1) 2003; 44 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_147_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 Mislin H (e_1_2_6_114_1) 1966 e_1_2_6_120_1 e_1_2_6_162_1 Gashev AA (e_1_2_6_58_1) 2002; 450 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_143_1 e_1_2_6_166_1 e_1_2_6_185_1 e_1_2_6_192_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_158_1 e_1_2_6_32_1 Gui P (e_1_2_6_66_1) 2014; 28 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_150_1 e_1_2_6_173_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_154_1 e_1_2_6_177_1 e_1_2_6_180_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_142_1 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_184_1 e_1_2_6_123_1 e_1_2_6_165_1 West JB (e_1_2_6_183_1) 1991 e_1_2_6_191_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_138_1 Zawieja DC (e_1_2_6_190_1) 2011 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_153_1 Guarna M (e_1_2_6_65_1) 1991; 24 e_1_2_6_172_1 e_1_2_6_111_1 e_1_2_6_157_1 Kalima TV (e_1_2_6_79_1) 1970; 59 e_1_2_6_134_1 e_1_2_6_176_1 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 Zawieja DC (e_1_2_6_189_1) 1991; 260 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_63_1 Leak LV (e_1_2_6_87_1) 1968; 1 e_1_2_6_21_1 e_1_2_6_107_1 Zweifach BW (e_1_2_6_193_1) 1975; 228 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_164_1 e_1_2_6_187_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_168_1 Zawieja DC (e_1_2_6_188_1) 1993; 264 e_1_2_6_8_1 e_1_2_6_171_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 Olszewski WL (e_1_2_6_130_1) 1968; 23 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – year: 2011 – volume: 111 start-page: 437 year: 2012 end-page: 445 article-title: Semaphorin3A, Neuropilin‐1, and PlexinA1 are required for lymphatic valve formation publication-title: Circ Res – volume: 523 start-page: 337 year: 2015 end-page: 341 article-title: Structural and functional features of central nervous system lymphatic vessels publication-title: Nature – volume: 202 start-page: 453 year: 1982 end-page: 461 article-title: The morphology of canine lymphatic valves publication-title: Anat Rec – volume: 8 start-page: e70703 year: 2013 article-title: Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes publication-title: PLoS One – volume: 9 start-page: R14 year: 2008 article-title: Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity publication-title: Genome Biol – volume: 36 start-page: 1147 year: 2004 end-page: 1153 article-title: Lymphatic smooth muscle: the motor unit of lymph drainage publication-title: Int J Biochem Cell Biol – volume: 125 start-page: 17 year: 1998 end-page: 22 article-title: ATP‐sensitive K channels in smooth muscle cells of guinea‐pig mesenteric lymphatics: role in nitric oxide and β‐adrenoceptor agonist‐induced hyperpolarizations publication-title: Br J Pharmacol – volume: 57 start-page: 1 year: 2008 end-page: 4 article-title: The forgotten role of lymphangitis in Crohn's disease publication-title: Gut – volume: 48 start-page: 3593 year: 2015 end-page: 3599 article-title: Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow publication-title: J Biomech – volume: 177 start-page: 303 year: 1973 end-page: 315 article-title: The sympathetic innervation of the cervical lymphatic duct of the dog publication-title: Anat Rec – volume: 78 start-page: 521 year: 1971 end-page: 531 article-title: The structure of valves in the lymphatic vessels publication-title: Anat Rec – volume: 1131 start-page: 82 year: 2008 end-page: 88 article-title: The link between lymphatic function and adipose biology publication-title: Ann NY Acad Sci – volume: 503 start-page: 13 year: 1997 end-page: 21 article-title: Tetrodotoxin‐sensitive sodium current in sheep lymphatic smooth muscle publication-title: J Physiol – volume: 301 start-page: H1828 year: 2011 end-page: 1840 article-title: Mesenteric lymph flow in adult and aged rats publication-title: Am J Physiol Heart Circ Physiol – volume: 303 start-page: H795 year: 2012 end-page: H808 article-title: Intrinsic increase in lymphangion muscle contractility in response to elevated afterload publication-title: Am J Physiol Heart Circ Physiol – volume: 260 start-page: H1172 year: 1991 end-page: H1178 article-title: Acetylcholine‐induced release of endothelium‐derived relaxing factor from lymphatic endothelial cells publication-title: Am J Physiol – volume: 25 start-page: 85 year: 1983 end-page: 98 article-title: Effects of arachidonic acid and its cyclo‐oxygenase and lipoxygenase products on lymphatic vessel contractility in vitro publication-title: Prostaglandins – volume: 134 start-page: 154e year: 2014 end-page: 160e article-title: Lymphedema and obesity: is there a link? publication-title: Plast Reconstr Surg – volume: 2 start-page: 2 year: 2004 end-page: 10 article-title: Effects of substance P on mesenteric lymphatic contractility in the rat publication-title: Lymphat Res Biol – volume: 139 start-page: 243 year: 2003 end-page: 254 article-title: 5‐HT decreases contractile and electrical activities in lymphatic vessels of the guinea‐pig mesentery: role of 5‐HT ‐receptors publication-title: Br J Pharmacol – volume: 21 start-page: 1553 year: 2015 end-page: 1563 article-title: Colonic insult impairs lymph flow, increases cellular content of the lymph, alters local lymphatic microenvironment, and leads to sustained inflammation in the rat ileum publication-title: Inflamm Bowel Dis – volume: 27 start-page: 1114 year: 2013 end-page: 1126 article-title: Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema publication-title: FASEB J – volume: 87 start-page: 198 year: 2010 end-page: 210 article-title: Microvascular fluid exchange and the revised Starling principle publication-title: Cardiovasc Res – volume: 92 start-page: 1005 year: 2012 end-page: 1060 article-title: Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer publication-title: Physiol Rev – volume: 12 start-page: 1179 year: 2003 end-page: 1185 article-title: haploinsufficient mice are a model for human autosomal dominant lymphedema‐distichiasis syndrome publication-title: Hum Mol Genet – volume: 27 start-page: 71 year: 1984 end-page: 80 article-title: Variegated effects of prostaglandins on spontaneous activity in bovine mesenteric lymphatics publication-title: Microvasc Res – volume: 8 start-page: 1077 year: 1960 end-page: 1091 article-title: Homeometric autoregulation in the heart publication-title: Circ Res – volume: 503 start-page: 1 year: 1997 end-page: 11 article-title: Outward currents in smooth muscle cells isolated from sheep mesenteric lymphatics publication-title: J Physiol – volume: 72 start-page: 161 year: 2006 end-page: 171 article-title: Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF‐C upregulation, and the protective role of MMP‐9 publication-title: Microvasc Res – volume: 304 start-page: G623 year: 2013 end-page: G634 article-title: Involvement of the NO‐cGMP‐K(ATP) channel pathway in the mesenteric lymphatic pump dysfunction observed in the guinea pig model of TNBS‐induced ileitis publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 504 start-page: 439 year: 1997 end-page: 451 article-title: Functional electrical properties of the endothelium in lymphatic vessels of the guinea‐pig mesentery publication-title: J Physiol – volume: 24 start-page: 121 year: 2014 end-page: 127 article-title: Lymphatic vessel abnormalities arising from disorders of Ras signal transduction publication-title: Trends Cardiovasc Med – volume: 1 start-page: 39 year: 1968 end-page: 52 article-title: Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances publication-title: Lymphology – volume: 257 start-page: H2059 year: 1989 end-page: H2069 article-title: Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress publication-title: Am J Physiol – volume: 214 start-page: 67 year: 2014 end-page: 80 article-title: Interplay of mechanotransduction, FOXC2, connexins, and calcineurin signaling in lymphatic valve formation publication-title: Adv Anat Embryol Cell Biol – volume: 167 start-page: 1358 year: 1993 end-page: 1363 article-title: Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes publication-title: J Infect Dis – volume: 308 start-page: H1065 year: 2015 end-page: H1077 article-title: Regulation of inflammation and fibrosis by macrophages in lymphedema publication-title: Am J Physiol Heart Circ Physiol – volume: 23 start-page: 76 year: 2005 end-page: 83 article-title: The problem of post‐breast cancer lymphedema: impact and measurement issues publication-title: Cancer Invest – volume: 28 start-page: 666.663 issue: Suppl. year: 2014 article-title: KCNQ and ERG channels control the rate of diastolic depolarization and electrical pacemaking frequency in lymphatic muscle publication-title: FASEB J – volume: 310 start-page: 77 year: 2002 end-page: 84 article-title: Kit‐like immunopositive cells in sheep mesenteric lymphatic vessels publication-title: Cell Tissue Res – volume: 38 start-page: 55 year: 2015 end-page: 66 article-title: Emerging trends in the pathophysiology of lymphatic contractile function publication-title: Semin Cell Dev Biol – volume: 59 start-page: 187 year: 1970 end-page: 201 article-title: Experimental lymphatic obstruction in the ileum publication-title: Ann Chir Gynaecol Fenn – volume: 13 start-page: 169 year: 2003 end-page: 177 article-title: Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion publication-title: Physiol Genomics – volume: 251 start-page: 206 year: 2002 end-page: 220 article-title: Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40 publication-title: Dev Biol – volume: 303 start-page: H693 year: 2012 end-page: H702 article-title: Aging‐associated shifts in functional status of mast cells located by adult and aged mesenteric lymphatic vessels publication-title: Am J Physiol Heart Circ Physiol – volume: 49 start-page: 97 year: 1995 end-page: 110 article-title: Importance of valves and lymphangion contractions in determining pressure gradients in isolated lymphatics exposed to elevations in outflow pressure publication-title: Microvasc Res – volume: 35 start-page: 1247 year: 2011 end-page: 1250 article-title: Oedema in obesity; role of structural lymphatic abnormalities publication-title: Int J Obes (Lond) – volume: 60 start-page: 261 year: 2000 end-page: 268 article-title: 5‐HT inhibits spontaneous contractility of isolated sheep mesenteric lymphatics via activation of 5‐HT receptors publication-title: Microvasc Res – volume: 10 start-page: 189 year: 2012 end-page: 197 article-title: Analysis of nerve supply pattern in human lymphatic vessels of young and old men publication-title: Lymphat Res Biol – volume: 125 start-page: 2979 year: 2015 end-page: 2994 article-title: GATA2 is required for lymphatic vessel valve development and maintenance publication-title: J Clin Invest – volume: 250 start-page: H706 year: 1986 end-page: H710 article-title: Some consequences of capillary permeability to macromolecules: Starling's hypothesis revisited publication-title: Am J Physiol Heart Circ Physiol – volume: 295 start-page: H1989 year: 2008 end-page: H2000 article-title: Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility publication-title: Am J Physiol Heart Circ Physiol – volume: 172 start-page: 4038 year: 2015 end-page: 4051 article-title: IL‐1β reduces tonic contraction of mesenteric lymphatic muscle cells, with the involvement of cycloxygenase‐2 and prostaglandin E publication-title: Br J Pharmacol – volume: 308 start-page: H1229 year: 2015 end-page: H1236 article-title: Fibrosis worsens chronic lymphedema in rodent tissues publication-title: Am J Physiol Heart Circ Physiol – volume: 239 start-page: H775 year: 1980 end-page: H783 article-title: Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg publication-title: Am J Physiol – volume: 592 start-page: 1213 year: 2014 end-page: 1223 article-title: quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice publication-title: J Physiol – volume: 19 start-page: 309 year: 2008 end-page: 320 article-title: Defective remodeling and maturation of the lymphatic vasculature in Angiopoietin‐2 deficient mice publication-title: Dev Biol – volume: 96 start-page: 38 year: 2014 end-page: 45 article-title: Primary and secondary lymphatic valve development: molecular, functional and mechanical insights publication-title: Microvasc Res – volume: 291 start-page: G566 year: 2006 end-page: G574 article-title: Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis publication-title: Am J Physiol Gastrointest Liver Physiol – volume: 59 start-page: 2817 year: 2010 end-page: 2825 article-title: Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss publication-title: Diabetes – volume: 1207 start-page: E75 issue: Suppl. 1 year: 2010 end-page: 85 article-title: Emerging roles of lymphatics in inflammatory bowel disease publication-title: Ann NY Acad Sci – volume: 197 start-page: 837 year: 2012 end-page: 849 article-title: Smooth muscle‐endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation publication-title: J Cell Biol – volume: 354 start-page: 253 year: 2011 end-page: 266 article-title: Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax publication-title: Dev Biol – volume: 592 start-page: 4697 year: 2014 end-page: 4714 article-title: Human lymphatic vessel contractile activity is inhibited but not by the calcium channel blocker nifedipine publication-title: J Physiol – volume: 1131 start-page: 89 year: 2008 end-page: 99 article-title: Molecular regulation of lymphatic contractility publication-title: Ann NY Acad Sci – volume: 9 start-page: e94713 year: 2014 article-title: Chronic high‐fat diet impairs collecting lymphatic vessel function in mice publication-title: PLoS One – volume: 16 start-page: 1029 year: 2010 end-page: 1039 article-title: Angiopoietin‐2 in experimental colitis publication-title: Inflamm Bowel Dis – start-page: 360 year: 1966 end-page: 365 – volume: 305 start-page: H203 year: 2013 end-page: H210 article-title: Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure publication-title: Am J Physiol Heart Circ Physiol – volume: 122 start-page: 733 year: 2012 end-page: 747 article-title: RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice publication-title: J Clin Invest – volume: 591 start-page: 2139 year: 2013 end-page: 2156 article-title: Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels publication-title: J Physiol – volume: 37 start-page: 218 year: 1989 end-page: 229 article-title: Suppression of fluid pumping in isolated bovine mesenteric lymphatics by interleukin‐1: interaction with prostaglandin E publication-title: Microvasc Res – volume: 260 start-page: H1935 year: 1991 end-page: H1943 article-title: Reactive oxygen metabolites inhibit spontaneous lymphatic contractions publication-title: Am J Physiol – volume: 204 start-page: 2349 year: 2007 end-page: 2362 article-title: Functionally specialized junctions between endothelial cells of lymphatic vessels publication-title: J Exp Med – volume: 1 start-page: 87 year: 1960 end-page: 105 article-title: Crohn's disease (regional enteritis) of the large intestine and its distinction from ulcerative colitis publication-title: Gut – volume: 22 start-page: 430 year: 2012 end-page: 445 article-title: Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic‐valve formation publication-title: Dev Cell – volume: 48 start-page: 397 year: 2011 end-page: 407 article-title: Mutations in in humans (lymphoedema distichiasis syndrome) cause lymphatic dysfunction on dependency publication-title: J Vasc Res – volume: 42 start-page: 98 year: 2005 end-page: 102 article-title: Milroy disease and the VEGFR‐3 mutation phenotype publication-title: J Med Genet – volume: 295 start-page: H587 year: 2008 end-page: H597 article-title: Modulation of lymphatic muscle contractility by the neuropeptide substance P publication-title: Am J Physiol Heart Circ Physiol – volume: 301 start-page: H1897 year: 2011 end-page: H1906 article-title: Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping publication-title: Am J Physiol Heart Circ Physiol – volume: 591 start-page: 5071 year: 2013 end-page: 5081 article-title: Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides publication-title: J Physiol – volume: 228 start-page: 1326 year: 1975 end-page: 1335 article-title: Micromanipulation of pressure in terminal lymphatics in the rat mesentery publication-title: Am J Physiol – volume: 17 start-page: 175 year: 2009 end-page: 186 article-title: Integrin‐α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis publication-title: Dev Cell – volume: 501.P start-page: 109 year: 1997 end-page: 110P article-title: Isolated sheep mesenteric lymphatic smooth muscle cells possess both T‐ and L‐type calcium currents publication-title: J Physiol – volume: 290 start-page: H813 year: 2006 end-page: H822 article-title: Calcitonin gene‐related peptide activates different signaling pathways in mesenteric lymphatics of guinea pigs publication-title: Am J Physiol Heart Circ Physiol – volume: 108 start-page: 18784 year: 2011 end-page: 18789 article-title: Impaired lymphatic contraction associated with immunosuppression publication-title: Proc Natl Acad Sci USA – volume: 107 start-page: 89 year: 2015 end-page: 97 article-title: Lymphatic vascular integrity is disrupted in type 2 diabetes due to impaired nitric oxide signalling publication-title: Cardiovasc Res – volume: 27 start-page: 127 year: 1990 end-page: 136 article-title: Lymphatic innervation publication-title: Blood Vessels – volume: 212 start-page: 991 year: 2015 end-page: 999 article-title: A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules publication-title: J Exp Med – volume: 592 start-page: 5409 year: 2014 end-page: 5427 article-title: Distinct roles of L‐ and T‐type voltage‐dependent Ca channels in regulation of lymphatic vessel contractile activity publication-title: J Physiol – volume: 70 start-page: 1055 year: 2013 end-page: 1066 article-title: Flow control in our vessels: vascular valves make sure there is no way back publication-title: Cell Mol Life Sci – volume: 307 start-page: H33 year: 2014 end-page: H43 article-title: The contribution of K channels to human thoracic duct contractility publication-title: Am J Physiol Heart Circ Physiol – volume: 450 start-page: 1023 year: 2002 end-page: 1037 article-title: Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct publication-title: J Physiol – volume: 115 start-page: 1912 year: 2007 end-page: 1920 article-title: Mutations in are strongly associated with primary valve failure in veins of the lower limb publication-title: Circulation – volume: 24 start-page: 161 year: 1991 end-page: 167 article-title: Peptidergic innervation of mesenteric lymphatics in guinea pigs: an immunocytochemical and pharmacological study publication-title: Lymphology – volume: 34 start-page: 533 year: 2011 end-page: 543 article-title: Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease publication-title: Aliment Pharmacol Ther – volume: 15 start-page: 2814 year: 1998 end-page: 2816 article-title: Precipitating factors in lymphedema: myths and realities publication-title: Cancer – volume: 17 start-page: 395 year: 2014 end-page: 406 article-title: The effects of inflammatory cytokines on lymphatic endothelial barrier function publication-title: Angiogenesis – volume: 86 start-page: 943 year: 2010 end-page: 948 article-title: GJC2 missense mutations cause human lymphedema publication-title: Am J Hum Genet – volume: 90 start-page: 497 year: 1949 end-page: 509 article-title: Lymphatic contractility; a possible intrinsic mechanism of lymphatic vessels for the transport of lymph publication-title: J Exp Med – volume: 309 start-page: H2042 year: 2015 end-page: H2057 article-title: Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery publication-title: Am J Physiol Heart Circ Physiol – volume: 53 start-page: 535 year: 1983 end-page: 538 article-title: Vasoactive intestinal peptide inhibitory innervation in bovine mesenteric lymphatics. A histochemical and pharmacological study publication-title: Circ Res – volume: 124 start-page: 273 year: 2014 end-page: 284 article-title: Platelets mediate lymphovenous hemostasis to maintain blood‐lymphatic separation throughout life publication-title: J Clin Invest – volume: 18 start-page: 463 year: 2011 end-page: 473 article-title: Aging‐associated alterations in contractility of rat mesenteric lymphatic vessels publication-title: Microcirculation – volume: 21 start-page: 1018 year: 2008 end-page: 1022 article-title: Metabolic syndrome: comparison of the two commonly used animal models publication-title: Am J Hypertens – volume: 99 start-page: 140 year: 1977 end-page: 148 article-title: Twenty‐four hour variation in flow and composition of leg lymph in normal men publication-title: Acta Physiol Scand – volume: 175 start-page: 1328 year: 2009 end-page: 1337 article-title: Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration publication-title: Am J Pathol – volume: 306 start-page: H206 year: 2014 end-page: H213 article-title: The human thoracic duct is functionally innervated by adrenergic nerves publication-title: Am J Physiol Heart Circ Physiol – volume: 11 start-page: e0148384 year: 2016 article-title: Network scale modeling of lymph transport and its effective pumping parameters publication-title: PLoS One – volume: 111 start-page: 426 year: 2012 end-page: 436 article-title: An unexpected role of semaphorin3a‐neuropilin‐1 signaling in lymphatic vessel maturation and valve formation publication-title: Circ Res – volume: 195 start-page: 439 year: 2009 end-page: 457 article-title: controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1 publication-title: J Cell Biol – volume: 56 start-page: 127 year: 1998 end-page: 138 article-title: Pressure‐volume relationships in sheep mesenteric lymphatic vessels in situ: response to hypovolemia publication-title: Microvasc Res – volume: 1777 start-page: 2124 year: 2010 end-page: 2133 article-title: Akt/protein kinase B is required for lymphatic network formation, remodeling, and valve development publication-title: Am J Pathol – volume: 70 start-page: 987 year: 1990 end-page: 1028 article-title: Microlymphatics and lymph flow publication-title: Physiol Rev – volume: 593 start-page: 3109 year: 2015 end-page: 3122 article-title: Voltage‐gated sodium channels contribute to action potentials and spontaneous contractility in isolated human lymphatic vessels publication-title: J Physiol – volume: 21 start-page: 480 year: 2010 end-page: 487 article-title: Lymphatic lipid transport: sewer or subway? publication-title: Trends Endocrinol Metab – volume: 100 start-page: 556 year: 2007 end-page: 563 article-title: Connexin 40 is essential for the pressure control of renin synthesis and secretion publication-title: Circ Res – volume: 295 start-page: H2113 year: 2008 end-page: H2127 article-title: TGF‐β1 is a negative regulator of lymphatic regeneration during wound repair publication-title: Am J Physiol Heart Circ Physiol – volume: 125 start-page: 3861 year: 2015 end-page: 3877 article-title: FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature publication-title: J Clin Invest – volume: 197 start-page: 145 year: 2013 end-page: 158 article-title: Identification of interstitial Cajal‐like cells in the human thoracic duct publication-title: Cells Tissues Organs – volume: 12 start-page: 37 year: 2014 end-page: 47 article-title: Mast cell‐directed recruitment of MHC class II positive cells and eosinophils towards mesenteric lymphatic vessels in adulthood and elderly publication-title: Lymphat Res Biol – volume: 302 start-page: H2250 year: 2012 end-page: H2256 article-title: Functional recovery of fluid drainage precedes lymphangiogenesis in acute murine foreleg publication-title: Am J Physiol Heart Circ Physiol – volume: 303 start-page: H1107 year: 2012 end-page: H1113 article-title: A chronic and latent lymphatic insufficiency follows recovery from acute lymphedema in the rat foreleg publication-title: Am J Physiol Heart Circ Physiol – volume: 14 start-page: 1 year: 1981 end-page: 6 article-title: Cholinergic and adrenergic innervation of mesenterial lymph vessels in guinea pig publication-title: Lymphology – volume: 10 start-page: 974 year: 2004 end-page: 981 article-title: Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis publication-title: Nat Med – volume: 11 start-page: 117 year: 2013 end-page: 120 article-title: The lymphatics and the inflammatory response: lessons learned from human lymphedema publication-title: Lymphat Res Biol – volume: 10 start-page: 53 year: 2012 end-page: 62 article-title: Evidence of increased oxidative stress in aged mesenteric lymphatic vessels publication-title: Lymphat Res Biol – volume: 4 start-page: 125 year: 1971 end-page: 132 article-title: Stereomicroscopic funnel‐like architecture of pulmonary lymphatic valves publication-title: Lymphology – volume: 11 start-page: 477 year: 2004 end-page: 492 article-title: Regional variations of contractile activity in isolated rat lymphatics publication-title: Microcirculation – volume: 576 start-page: 721 year: 2008 end-page: 726 article-title: Interstitial cells of Cajal: a new perspective on smooth muscle function publication-title: J Physiol – volume: 293 start-page: H1183 year: 2007 end-page: H1189 article-title: Lymphangion coordination minimally affects mean flow in lymphatic vessels publication-title: Am J Physiol Heart Circ Physiol – volume: 471 start-page: 465 year: 1993 end-page: 479 article-title: Pacemaker potentials in lymphatic smooth muscle of the guinea‐pig mesentery publication-title: J Physiol – volume: 192 start-page: 2326 year: 2014 end-page: 2338 article-title: Epigenetic silencing of the human gene: rethinking the role of nitric oxide in human macrophage inflammatory responses publication-title: J Immunol – volume: 177 start-page: 3202 year: 2010 end-page: 3214 article-title: Blockade of transforming growth factor‐β1 accelerates lymphatic regeneration during wound repair publication-title: Am J Pathol – volume: 6 start-page: 8085 year: 2015 article-title: Novel mutations in cause an autosomal recessive generalized lymphatic dysplasia with non‐immune hydrops fetalis publication-title: Nat Commun – volume: 309 start-page: 461 year: 1980 end-page: 472 article-title: Nervous modulation of spontaneous contractions in bovine mesenteric lymphatics publication-title: J Physiol – volume: 13 start-page: 1458 year: 2007 end-page: 1466 article-title: Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation publication-title: Nat Med – volume: 9 start-page: e106034 year: 2014 article-title: Spatio‐temporal changes of lymphatic contractility and drainage patterns following lymphadenectomy in mice publication-title: PLoS One – volume: 271 start-page: 379 year: 1994 end-page: 385 article-title: 5‐Hydroxytryptamine‐2 and ‐4 receptors located on bovine isolated mesenteric lymphatics publication-title: J Pharmacol Exp Ther – volume: 591 start-page: 4549 year: 2013 end-page: 4565 article-title: Cyclic guanosine monophosphate and the dependent protein kinase regulate lymphatic contractility in rat thoracic duct publication-title: J Physiol – volume: 493 start-page: 563 year: 1996 end-page: 575 article-title: Endothelium‐dependent modulation of pacemaking in lymphatic vessels of the guinea‐pig mesentery publication-title: J Physiol – volume: 19 start-page: 397 year: 2005 end-page: 410 article-title: PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature publication-title: Genes Dev – volume: 18 start-page: 2382 year: 2012 end-page: 2390 article-title: Connexin 47 mutations increase risk for secondary lymphedema following breast cancer treatment publication-title: Clin Cancer Res – volume: 481 start-page: 415 year: 1994 end-page: 423 article-title: Mediation of excitatory neurotransmission by the release of ATP and noradrenaline in sheep mesenteric lymphatic vessels publication-title: J Physiol – volume: 194 start-page: 5200 year: 2015 end-page: 5210 article-title: Collecting lymphatic vessel permeability facilitates adipose tissue inflammation and distribution of antigen to lymph node – homing adipose tissue dendritic cells publication-title: J Immunol – volume: 17 start-page: 671 year: 2013 end-page: 684 article-title: Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR‐BI‐mediated transport of HDL publication-title: Cell Metab – volume: 261 start-page: 255 year: 1976 end-page: 269 article-title: The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels publication-title: J Physiol – volume: 583 start-page: 271 year: 2007 end-page: 285 article-title: Human lymphatic pumping measured in healthy and lymphoedematous arms by lymphatic congestion lymphoscintigraphy publication-title: J Physiol – volume: 1 start-page: 159 year: 2003 end-page: 169 article-title: Animal models for the study of lymphatic insufficiency publication-title: Lymphat Res Biol – volume: 89 start-page: 2595 year: 2004 end-page: 2600 article-title: Obesity, metabolic syndrome, and cardiovascular disease publication-title: J Clin Endocrinol Metab – volume: 409 start-page: 218 year: 2016 end-page: 233 article-title: Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development publication-title: Dev Biol – volume: 23 start-page: 1345 year: 1968 end-page: 1347 article-title: Observations of movements of lymph vessels in patients with lymphoedema of the limbs publication-title: Polski Tygodnik Lekarski – volume: 264 start-page: H1283 year: 1993 end-page: H1291 article-title: Distribution, propagation, and coordination of contractile activity in lymphatics publication-title: Am J Physiol Heart Circ Physiol – volume: 587 start-page: 165 year: 2008 end-page: 182 article-title: Rate‐sensitive contractile responses of lymphatic vessels to circumferential stretch publication-title: J Physiol – volume: 87 start-page: 474 year: 2000 end-page: 479 article-title: Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries – Role in vasomotor control publication-title: Circ Res – volume: 125 start-page: 2995 year: 2015 end-page: 3007 article-title: Lymph flow regulates collecting lymphatic vessel maturation in vivo publication-title: J Clin Invest – volume: 411 start-page: 167 year: 1988 end-page: 172 article-title: The effect of known K ‐channel blockers on the electrical activity of bovine lymphatic smooth muscle publication-title: Pflugers Arch – volume: 67 start-page: 1097 year: 1990 end-page: 1106 article-title: Lymphatic pumping in response to changes in transmural pressure is modulated by erythrolysate/hemoglobin publication-title: Circ Res – volume: 450 start-page: 503 year: 1992 end-page: 512 article-title: Co‐ordination of pumping in isolated bovine lymphatic vessels publication-title: J Physiol – volume: 37 start-page: 1072 year: 2005 end-page: 1081 article-title: Lymphatic vascular defects promoted by haploinsufficiency cause adult‐onset obesity publication-title: Nat Genet – volume: 123 start-page: 1571 year: 2013 end-page: 1579 article-title: Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice publication-title: J Clin Invest – volume: 141 start-page: 2446 year: 2014 end-page: 2451 article-title: Notch signaling functions in lymphatic valve formation publication-title: Development – volume: 25 start-page: 2187 year: 2011 end-page: 2197 article-title: Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves publication-title: Genes Dev – volume: 521 start-page: 201 year: 1999 end-page: 211 article-title: Hyperpolarization‐activated inward current in isolated sheep mesenteric lymphatic smooth muscle publication-title: J Physiol – volume: 979 start-page: 52 year: 2002 end-page: 63 article-title: Contractility patterns of normal and pathologically changed human lymphatics publication-title: Ann NY Acad Sci – volume: 590 start-page: 2677 year: 2012 end-page: 2691 article-title: Mechanisms of VIP‐induced inhibition of the lymphatic vessel pump publication-title: J Physiol – volume: 296 start-page: H293 year: 2009 end-page: H302 article-title: Myogenic constriction and dilation of isolated lymphatic vessels publication-title: Am J Physiol Heart Circ Physiol – volume: 303 start-page: H809 year: 2012 end-page: H824 article-title: Independent and interactive effects of preload and afterload on the pump function of the isolated lymphangion publication-title: Am J Physiol Heart Circ Physiol – volume: 111 start-page: 717 year: 2003 end-page: 725 article-title: VEGF‐C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema publication-title: J Clin Invest – volume: 39 start-page: 478 year: 2002 end-page: 483 article-title: Analysis of the phenotypic abnormalities in lymphoedema‐distichiasis syndrome in 74 patients with mutations or linkage to 16q24 publication-title: J Med Genet – volume: 500 start-page: 235 year: 1997 end-page: 244 article-title: Co‐ordination of contractile activity in guinea‐pig mesenteric lymphatics publication-title: J Physiol – volume: 277 start-page: H1453 year: 1999 end-page: H1456 article-title: Involvement of ATP‐sensitive K channels in spontaneous activity of isolated lymph microvessels in rats publication-title: Am J Physiol – volume: 130 start-page: 981 year: 2011 end-page: 991 article-title: Risk factors for lymphedema in breast cancer survivors, the Iowa Women's Health Study publication-title: Breast Cancer Res Treat – volume: 13 start-page: 91 year: 1980 end-page: 99 article-title: Scanning electron microscopic study of canine lymphatic vessels and their valves publication-title: Lymphology – volume: 44 start-page: 43 year: 2003 end-page: 57 article-title: The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema publication-title: J Nucl Med – volume: 21 start-page: 561 year: 2004 end-page: 574 article-title: Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization publication-title: Immunity – volume: 588 start-page: 243 year: 2010 end-page: 254 article-title: determination of collecting lymphatic vessel permeability to albumin: a role for lymphatics in exchange publication-title: J Physiol – volume: 55 start-page: 6440 year: 2014 end-page: 6442 article-title: Consensus statement on the immunohistochemical detection of ocular lymphatic vessels publication-title: Invest Ophthalmol Vis Sci – volume: 21 start-page: 640 year: 2014 end-page: 648 article-title: Involvement of histamine in endothelium‐dependent relaxation of mesenteric lymphatic vessels publication-title: Microcirculation – volume: 591 start-page: 443 year: 2012 end-page: 449 article-title: Constriction of isolated collecting lymphatic vessels in response to acute increases in downsteam pressure publication-title: J Physiol – volume: 34 start-page: 5128 year: 2013 end-page: 5137 article-title: Use of a PEG‐conjugated bright near‐infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis publication-title: Biomaterials – volume: 19 start-page: 403 year: 2012 end-page: 415 article-title: Myoendothelial contacts, gap junctions, and microdomains: anatomical links to function? publication-title: Microcirculation – volume: 8 start-page: 958 year: 2008 end-page: 969 article-title: Exploring the full spectrum of macrophage activation publication-title: Nat Rev Immunol – volume: 301 start-page: H48 year: 2011 end-page: H60 article-title: Determinants of valve gating in collecting lymphatic vessels from rat mesentery publication-title: Am J Physiol Heart Circ Physiol – volume: 1207 start-page: E94 issue: Suppl. 1 year: 2010 end-page: 102 article-title: Lymphatic system: a vital link between metabolic syndrome and inflammation publication-title: Ann NY Acad Sci – year: 1991 – volume: 17 start-page: 920 year: 2003 end-page: 922 article-title: Molecular and functional analyses of the contractile apparatus in lymphatic muscle publication-title: FASEB J – volume: 253 start-page: H1349 year: 1987 end-page: H1357 article-title: Decreased lymphatic pumping after intravenous endotoxin administration in sheep publication-title: Am J Physiol – volume: 302 start-page: H643 year: 2012 end-page: H653 article-title: Impairments in the intrinsic contractility of mesenteric collecting lymphatics in a rat model of metabolic syndrome publication-title: Am J Physiol Heart Circ Physiol – ident: e_1_2_6_78_1 doi: 10.1161/CIRCRESAHA.112.269399 – ident: e_1_2_6_25_1 doi: 10.1136/jmg.39.7.478 – ident: e_1_2_6_162_1 doi: 10.1038/nm1689 – ident: e_1_2_6_121_1 doi: 10.1196/annals.1413.008 – ident: e_1_2_6_177_1 doi: 10.1152/ajpheart.00007.2008 – ident: e_1_2_6_151_1 doi: 10.1152/physrev.1990.70.4.987 – ident: e_1_2_6_164_1 doi: 10.1152/ajpheart.00921.2013 – volume: 239 start-page: H775 year: 1980 ident: e_1_2_6_129_1 article-title: Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg publication-title: Am J Physiol – ident: e_1_2_6_57_1 doi: 10.1080/10739680490476033 – ident: e_1_2_6_137_1 doi: 10.1089/lrb.2013.1132 – ident: e_1_2_6_9_1 doi: 10.1089/1539685041690409 – ident: e_1_2_6_44_1 doi: 10.1016/j.ydbio.2008.04.024 – ident: e_1_2_6_147_1 doi: 10.1093/cvr/cvv117 – ident: e_1_2_6_134_1 doi: 10.1111/j.1365-2036.2011.04759.x – ident: e_1_2_6_74_1 doi: 10.1113/jphysiol.1994.sp020450 – ident: e_1_2_6_138_1 doi: 10.1016/j.mvr.2006.05.009 – volume: 78 start-page: 521 year: 1971 ident: e_1_2_6_169_1 article-title: The structure of valves in the lymphatic vessels publication-title: Anat Rec – ident: e_1_2_6_179_1 doi: 10.1111/j.1469-7793.1997.439be.x – ident: e_1_2_6_49_1 doi: 10.1152/ajpheart.1987.253.6.H1349 – ident: e_1_2_6_24_1 doi: 10.1136/jmg.2004.024802 – ident: e_1_2_6_56_1 doi: 10.1002/ibd.21150 – ident: e_1_2_6_109_1 doi: 10.1161/CIRCULATIONAHA.106.675348 – ident: e_1_2_6_2_1 doi: 10.1007/s10549-011-1667-z – ident: e_1_2_6_43_1 doi: 10.1152/physiolgenomics.00169.2002 – ident: e_1_2_6_50_1 doi: 10.1161/01.RES.67.5.1097 – ident: e_1_2_6_33_1 doi: 10.1152/ajpheart.00879.2008 – ident: e_1_2_6_37_1 doi: 10.1113/jphysiol.1997.sp022013 – ident: e_1_2_6_155_1 doi: 10.1089/153968503321642642 – ident: e_1_2_6_157_1 doi: 10.1084/jem.90.5.497 – ident: e_1_2_6_19_1 doi: 10.1152/ajpheart.1989.257.6.H2059 – ident: e_1_2_6_93_1 doi: 10.1016/j.cmet.2013.04.002 – ident: e_1_2_6_34_1 doi: 10.1111/j.1469-7793.1997.001bi.x – volume: 260 start-page: H1172 year: 1991 ident: e_1_2_6_127_1 article-title: Acetylcholine‐induced release of endothelium‐derived relaxing factor from lymphatic endothelial cells publication-title: Am J Physiol – ident: e_1_2_6_153_1 doi: 10.1167/iovs.14-15638 – ident: e_1_2_6_180_1 doi: 10.1016/j.biocel.2003.12.008 – ident: e_1_2_6_10_1 doi: 10.1016/j.immuni.2004.09.003 – ident: e_1_2_6_77_1 doi: 10.1016/0090-6980(83)90138-7 – volume: 271 start-page: 379 year: 1994 ident: e_1_2_6_115_1 article-title: 5‐Hydroxytryptamine‐2 and ‐4 receptors located on bovine isolated mesenteric lymphatics publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(25)22801-4 – ident: e_1_2_6_166_1 doi: 10.1113/jphysiol.2014.276683 – ident: e_1_2_6_59_1 doi: 10.1113/jphysiol.2013.258681 – ident: e_1_2_6_182_1 doi: 10.1371/journal.pone.0070703 – ident: e_1_2_6_192_1 doi: 10.2353/ajpath.2010.091301 – ident: e_1_2_6_135_1 doi: 10.1152/ajpheart.1986.250.5.H706 – ident: e_1_2_6_3_1 doi: 10.1152/ajpheart.00538.2011 – ident: e_1_2_6_76_1 doi: 10.1371/journal.pone.0148384 – volume: 14 start-page: 1 year: 1981 ident: e_1_2_6_6_1 article-title: Cholinergic and adrenergic innervation of mesenterial lymph vessels in guinea pig publication-title: Lymphology – ident: e_1_2_6_20_1 doi: 10.1371/journal.pone.0094713 – ident: e_1_2_6_35_1 doi: 10.1097/MIB.0000000000000402 – ident: e_1_2_6_5_1 doi: 10.1002/ar.1092020404 – ident: e_1_2_6_60_1 doi: 10.1016/j.ydbio.2015.10.022 – ident: e_1_2_6_146_1 doi: 10.1113/jphysiol.2013.260042 – volume: 44 start-page: 43 year: 2003 ident: e_1_2_6_161_1 article-title: The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema publication-title: J Nucl Med – ident: e_1_2_6_12_1 doi: 10.1084/jem.20142290 – ident: e_1_2_6_40_1 doi: 10.1152/ajpheart.01029.2007 – volume: 4 start-page: 125 year: 1971 ident: e_1_2_6_86_1 article-title: Stereomicroscopic funnel‐like architecture of pulmonary lymphatic valves publication-title: Lymphology – ident: e_1_2_6_168_1 doi: 10.1002/ar.1091770210 – ident: e_1_2_6_52_1 doi: 10.1111/j.1748-1716.1977.tb10364.x – ident: e_1_2_6_176_1 doi: 10.1152/ajpheart.00007.2008 – ident: e_1_2_6_53_1 doi: 10.1016/j.ajhg.2010.04.010 – ident: e_1_2_6_142_1 doi: 10.1113/jphysiol.2006.115279 – ident: e_1_2_6_124_1 doi: 10.1083/jcb.200901104 – ident: e_1_2_6_145_1 doi: 10.1113/jphysiol.2012.250662 – ident: e_1_2_6_30_1 doi: 10.1038/sj.bjp.0705264 – volume: 228 start-page: 1326 year: 1975 ident: e_1_2_6_193_1 article-title: Micromanipulation of pressure in terminal lymphatics in the rat mesentery publication-title: Am J Physiol doi: 10.1152/ajplegacy.1975.228.5.1326 – ident: e_1_2_6_11_1 doi: 10.1081/CNV-48707 – ident: e_1_2_6_126_1 doi: 10.1161/01.RES.53.4.535 – ident: e_1_2_6_91_1 doi: 10.1073/pnas.1116152108 – ident: e_1_2_6_149_1 doi: 10.1113/jphysiol.2012.237909 – ident: e_1_2_6_47_1 doi: 10.1152/ajpheart.00677.2012 – ident: e_1_2_6_144_1 doi: 10.1161/01.RES.8.5.1077 – ident: e_1_2_6_175_1 doi: 10.1113/jphysiol.1996.sp021404 – ident: e_1_2_6_99_1 doi: 10.1172/JCI63685 – ident: e_1_2_6_123_1 doi: 10.1111/micc.12143 – ident: e_1_2_6_28_1 doi: 10.1111/j.1749-6632.2010.05752.x – ident: e_1_2_6_85_1 doi: 10.1172/JCI46116 – ident: e_1_2_6_32_1 doi: 10.1089/lrb.2013.0031 – ident: e_1_2_6_108_1 doi: 10.1097/PRS.0000000000000268 – ident: e_1_2_6_173_1 doi: 10.1152/ajpheart.01340.2006 – ident: e_1_2_6_94_1 doi: 10.1136/gut.1.2.87 – ident: e_1_2_6_29_1 doi: 10.1152/ajpheart.00467.2015 – ident: e_1_2_6_39_1 doi: 10.1113/jphysiol.2008.162438 – volume: 260 start-page: H1935 year: 1991 ident: e_1_2_6_189_1 article-title: Reactive oxygen metabolites inhibit spontaneous lymphatic contractions publication-title: Am J Physiol – ident: e_1_2_6_7_1 doi: 10.1111/j.1749-6632.2010.05757.x – ident: e_1_2_6_104_1 doi: 10.1113/jphysiol.1992.sp019139 – ident: e_1_2_6_106_1 doi: 10.1113/jphysiol.1980.sp013520 – ident: e_1_2_6_8_1 doi: 10.1007/BF00582310 – ident: e_1_2_6_158_1 doi: 10.4199/C00030ED1V01Y201104ISP018 – ident: e_1_2_6_55_1 doi: 10.1038/ncomms9085 – ident: e_1_2_6_71_1 doi: 10.1172/JCI70422 – ident: e_1_2_6_140_1 doi: 10.1172/JCI80454 – ident: e_1_2_6_120_1 doi: 10.1096/fj.02-0626fje – ident: e_1_2_6_107_1 doi: 10.1006/mvre.2000.2275 – ident: e_1_2_6_67_1 doi: 10.1016/0026-2862(89)90039-3 – ident: e_1_2_6_141_1 doi: 10.1007/978-3-7091-1646-3_6 – ident: e_1_2_6_26_1 doi: 10.1159/000342437 – ident: e_1_2_6_171_1 doi: 10.1136/gut.2007.123166 – ident: e_1_2_6_98_1 doi: 10.1101/gad.330105 – ident: e_1_2_6_38_1 doi: 10.1152/ajpheart.01040.2008 – ident: e_1_2_6_54_1 doi: 10.1158/1078-0432.CCR-11-2303 – ident: e_1_2_6_48_1 doi: 10.1006/mvre.1995.1008 – volume: 501 start-page: 109 year: 1997 ident: e_1_2_6_72_1 article-title: Isolated sheep mesenteric lymphatic smooth muscle cells possess both T‐ and L‐type calcium currents publication-title: J Physiol – ident: e_1_2_6_154_1 doi: 10.1016/j.tcm.2013.09.004 – ident: e_1_2_6_15_1 doi: 10.1084/jem.20062596 – ident: e_1_2_6_81_1 doi: 10.1172/JCI78888 – ident: e_1_2_6_112_1 doi: 10.1152/ajpheart.00522.2012 – ident: e_1_2_6_133_1 doi: 10.1016/j.biomaterials.2013.03.034 – ident: e_1_2_6_68_1 doi: 10.1196/annals.1413.007 – ident: e_1_2_6_167_1 doi: 10.1089/lrb.2011.0022 – ident: e_1_2_6_178_1 doi: 10.1113/jphysiol.2012.230599 – ident: e_1_2_6_22_1 doi: 10.1113/jphysiol.2013.266700 – ident: e_1_2_6_88_1 doi: 10.1113/jphysiol.2014.280347 – volume: 59 start-page: 187 year: 1970 ident: e_1_2_6_79_1 article-title: Experimental lymphatic obstruction in the ileum publication-title: Ann Chir Gynaecol Fenn – ident: e_1_2_6_96_1 doi: 10.1083/jcb.201110132 – ident: e_1_2_6_100_1 doi: 10.1152/ajpgi.00392.2012 – ident: e_1_2_6_31_1 doi: 10.1152/ajpheart.00378.2012 – ident: e_1_2_6_73_1 doi: 10.1111/j.1469-7793.1997.013bi.x – volume: 1 start-page: 39 year: 1968 ident: e_1_2_6_87_1 article-title: Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances publication-title: Lymphology – ident: e_1_2_6_156_1 doi: 10.1006/dbio.2002.0826 – ident: e_1_2_6_102_1 doi: 10.1111/j.1469-7793.1999.00201.x – ident: e_1_2_6_186_1 doi: 10.1152/ajpgi.00058.2006 – ident: e_1_2_6_18_1 doi: 10.1016/j.devcel.2009.06.017 – ident: e_1_2_6_152_1 doi: 10.1093/infdis/167.6.1358 – ident: e_1_2_6_84_1 doi: 10.1371/journal.pone.0106034 – ident: e_1_2_6_174_1 doi: 10.1038/sj.bjp.0702026 – ident: e_1_2_6_46_1 doi: 10.1016/j.tem.2010.04.003 – ident: e_1_2_6_128_1 doi: 10.1111/j.1749-6632.2002.tb04867.x – ident: e_1_2_6_64_1 doi: 10.1210/jc.2004-0372 – ident: e_1_2_6_70_1 doi: 10.1186/gb-2008-9-1-r14 – ident: e_1_2_6_63_1 doi: 10.4049/jimmunol.1301758 – ident: e_1_2_6_187_1 doi: 10.1172/JCI15830 – volume: 264 start-page: H1283 year: 1993 ident: e_1_2_6_188_1 article-title: Distribution, propagation, and coordination of contractile activity in lymphatics publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.1993.264.4.H1283 – ident: e_1_2_6_131_1 doi: 10.1038/ajh.2008.218 – ident: e_1_2_6_118_1 doi: 10.1038/nri2448 – ident: e_1_2_6_122_1 doi: 10.1111/j.1549-8719.2011.00107.x – ident: e_1_2_6_27_1 doi: 10.1016/j.semcdb.2015.01.005 – ident: e_1_2_6_170_1 doi: 10.1113/jphysiol.1993.sp019910 – volume: 23 start-page: 1345 year: 1968 ident: e_1_2_6_130_1 article-title: Observations of movements of lymph vessels in patients with lymphoedema of the limbs publication-title: Polski Tygodnik Lekarski – ident: e_1_2_6_13_1 doi: 10.2353/ajpath.2010.100594 – ident: e_1_2_6_92_1 doi: 10.2353/ajpath.2009.080963 – ident: e_1_2_6_95_1 doi: 10.1038/nature14432 – ident: e_1_2_6_132_1 doi: 10.1038/nm1094 – volume: 24 start-page: 161 year: 1991 ident: e_1_2_6_65_1 article-title: Peptidergic innervation of mesenteric lymphatics in guinea pigs: an immunocytochemical and pharmacological study publication-title: Lymphology – ident: e_1_2_6_113_1 doi: 10.1089/lrb.2012.0013 – ident: e_1_2_6_191_1 doi: 10.1152/ajpheart.00606.2011 – ident: e_1_2_6_97_1 doi: 10.1152/ajpheart.00527.2013 – ident: e_1_2_6_69_1 doi: 10.1038/ng1642 – volume: 27 start-page: 127 year: 1990 ident: e_1_2_6_103_1 article-title: Lymphatic innervation publication-title: Blood Vessels – volume: 450 start-page: 1023 year: 2002 ident: e_1_2_6_58_1 article-title: Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct publication-title: J Physiol doi: 10.1113/jphysiol.2001.016642 – ident: e_1_2_6_80_1 doi: 10.1016/j.ydbio.2011.04.004 – ident: e_1_2_6_117_1 doi: 10.1113/jphysiol.2007.130401 – ident: e_1_2_6_21_1 doi: 10.1152/ajpheart.00260.2011 – start-page: 360 volume-title: Progress in Lymphology. Proceedings of the International Symposium on Lymphology year: 1966 ident: e_1_2_6_114_1 – ident: e_1_2_6_119_1 doi: 10.1242/dev.101188 – ident: e_1_2_6_16_1 doi: 10.1007/s00018-012-1110-6 – ident: e_1_2_6_172_1 doi: 10.1038/ijo.2010.273 – ident: e_1_2_6_139_1 doi: 10.1016/j.devcel.2011.12.020 – ident: e_1_2_6_23_1 doi: 10.1161/CIRCRESAHA.112.269316 – ident: e_1_2_6_51_1 doi: 10.1161/01.RES.87.6.474 – ident: e_1_2_6_75_1 doi: 10.1152/ajpheart.00543.2005 – ident: e_1_2_6_136_1 doi: 10.1002/(SICI)1097-0142(19981215)83:12B <2814::AID-CNCR31>3.0.CO;2-E – ident: e_1_2_6_125_1 doi: 10.1016/0026-2862(84)90042-6 – ident: e_1_2_6_14_1 doi: 10.1096/fj.12-222695 – ident: e_1_2_6_159_1 doi: 10.1101/gad.16974811 – volume-title: Best and Taylor's Physiological Basis of Medical Practice year: 1991 ident: e_1_2_6_183_1 – ident: e_1_2_6_41_1 doi: 10.1152/ajpheart.00133.2011 – ident: e_1_2_6_116_1 doi: 10.1152/ajpheart.1999.277.4.H1453 – ident: e_1_2_6_150_1 doi: 10.1152/ajpheart.01098.2011 – volume-title: Comprehensive Physiology year: 2011 ident: e_1_2_6_190_1 – ident: e_1_2_6_110_1 doi: 10.1159/000323484 – ident: e_1_2_6_143_1 doi: 10.1111/j.1549-8719.2011.00146.x – ident: e_1_2_6_160_1 doi: 10.1172/JCI79386 – ident: e_1_2_6_111_1 doi: 10.1152/ajpheart.01159.2011 – volume: 28 start-page: 666.663 year: 2014 ident: e_1_2_6_66_1 article-title: KCNQ and ERG channels control the rate of diastolic depolarization and electrical pacemaking frequency in lymphatic muscle publication-title: FASEB J – ident: e_1_2_6_181_1 doi: 10.1161/01.RES.0000258856.19922.45 – ident: e_1_2_6_42_1 doi: 10.1152/ajpheart.01097.2011 – volume: 13 start-page: 91 year: 1980 ident: e_1_2_6_62_1 article-title: Scanning electron microscopic study of canine lymphatic vessels and their valves publication-title: Lymphology – ident: e_1_2_6_163_1 doi: 10.1152/ajpheart.00517.2013 – ident: e_1_2_6_61_1 doi: 10.1152/ajpheart.00598.2014 – ident: e_1_2_6_89_1 doi: 10.1093/cvr/cvq062 – ident: e_1_2_6_4_1 doi: 10.1111/bph.13194 – ident: e_1_2_6_90_1 doi: 10.1006/mvre.1998.2089 – ident: e_1_2_6_185_1 doi: 10.1016/j.jbiomech.2015.07.045 – ident: e_1_2_6_101_1 doi: 10.1007/s00441-002-0623-y – ident: e_1_2_6_184_1 doi: 10.1152/physrev.00037.2011 – ident: e_1_2_6_165_1 doi: 10.1113/JP270166 – ident: e_1_2_6_17_1 doi: 10.1016/j.mvr.2014.07.008 – ident: e_1_2_6_105_1 doi: 10.1113/jphysiol.1976.sp011557 – ident: e_1_2_6_148_1 doi: 10.1113/jphysiol.2009.179622 – ident: e_1_2_6_45_1 doi: 10.2337/db10-0585 – ident: e_1_2_6_83_1 doi: 10.4049/jimmunol.1500221 – ident: e_1_2_6_36_1 doi: 10.1007/s10456-013-9393-2 – ident: e_1_2_6_82_1 doi: 10.1093/hmg/ddg123 |
SSID | ssj0013099 |
Score | 2.623157 |
SecondaryResourceType | review_article |
Snippet | A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5749 |
SubjectTerms | Animals Cardiovascular Physiology Humans Lymph - physiology lymphatic Lymphatic system Lymphatic System - physiology Lymphatic Vessels - physiology lymphedema muscle contraction Muscle Contraction - physiology Muscle, Smooth - physiology Pressure Topical Review Topical Reviews Vasculature |
Title | Lymphatic pumping: mechanics, mechanisms and malfunction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP272088 https://www.ncbi.nlm.nih.gov/pubmed/27219461 https://www.proquest.com/docview/1828415192 https://www.proquest.com/docview/1826682469 https://www.proquest.com/docview/1837298609 https://pubmed.ncbi.nlm.nih.gov/PMC5063934 |
Volume | 594 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF7EJ1-8j3oRQeqL0W6yR-KbqLUUFZEKBR_CXkXRRrHtg_56Z3JpvRBfkpBMkt3sTOab3dlvCdkWPJQS9NYPIGxDUm3hq8BKn4bGGHAPwiqc4Hx-IVrXrN3l3SKrEufC5PwQVYcbWkb2v0YDV7pYhYQi2UD7EocQI5znS0OBtPnHV8H7AEIjjiuicMlpwTsLt-6XN457oi_w8muW5Ef0mrmf5gy5KQueZ53c742Ges-8fuJ0_F_NZsl0gUq9w1yN5siES-fJwmEKEXn_xat7WZ5o1gG_QKKzF9AAJHr1nkAXwPUdeH2HE4jvzGC3PBz0B55KrddXD-g6sfkXyXXzpHPU8ov1F3wjAEn4TAlqOe1pzJUJYQeey0mjqGXUAjZzkY4DZSM4pY0E6GBBJAIAHLhAGcbDJTKZPqZuhXgOUIJWEE1qZ5lpNLQxjMmAG9ZjotdTNbJTtkViCnJyXCPjIcmDlDApP0qNbFWSTzkhxzcy62VzJoVJDhIIpCJAK4Bo4RHVZTAmHCFRqXscZTJCRAET8W8yONIZiQbILOcaUhUEXk9jJmiNyDHdqQSQzHv8Snp3m5F6c8SKIauReqYaP9Yt6bQvZcj46l8F18gUgDyB_pbydTI5fB65DQBSQ72ZmQxsT7v0DVwlGKU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71caCXQmmBhQJBQuXSLOvEr8CpQq2WZVtVaCv1UClybK-o2k0rdvdQfj0zzgOW0gpxShSPEzueyXzjsb8AvJUiVQr1Nk4wbCNSbRmbxKmYpdZadA_SGdrgfHgk-yd8cCpOl-Bjsxem4odoJ9zIMsL3mgycJqRrKye2gcEx5RC1XobVkJ4jRPQ1-ZVC6GVZSxWuBKuZZ7Hu-6bmoi-6BTBvr5P8Hb8GB3TwEM6aplfrTi6681nRtT_-YHX8z749gvUamEZ7lSZtwJIvH8PmXolB-eQm2onCUtEwB78JeniDSkBcr9E1qgN6vw_RxNMe4nM73W1Op5NpZEoXTcwleU_SgC04OdgfferH9S8YYisRTMTcSOYEGxe0XCbFAzovr6xhjjOH8MzrIkuM03ipsArRg0MRjRg48YmxXKRPYKW8Kv0ziDwChcJgQFl4x22vV1jLuUqE5WMux2PTgXfNYOS25ien32Rc5lWckubNS-nAm1byuuLk-IvMdjOeeW2V0xxjKY2ABUEt3qItRnuiJIkp_dU8yEipEy6z-2Qo2allD2WeVirSNgQfzzIuWQfUgvK0AsTnvVhSnn8LvN6C4GLKO7ATdOPOvuWjwbFKuXj-r4Kv4UF_dDjMh5-PvryANcR8ktwvE9uwMvs-9y8RV82KV8F-fgI8PRvS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8oJsYXUFE4PrQkBl_scdvuV30j6AVOIBcDCYkPzXZ3GwhcuXB3D_DXM9MvPVFjeGrTnba73ZnOb3ZnfwvwQYpYKdTbMMKwjUi1ZWgip0IWW2vRPUhnaIHz0bHcP-WDM3FWZ1XSWpiKH6IdcCPLKP_XZOBjl9dGTmQDgyFNIWr9FJ5xiV6SANH36OcMQi9JWqZwJVhNPIv37jR3zruiB_jyYZrkr_C19D_9JfjR1LxKO7nszqZZ1979Rur4uKa9hMUalga7lR69gie-eA3LuwWG5KPbYDsoE0XLEfhl0Ie3qALE9BqMURnQ930ORp5WEF_YyafmdDKaBKZwwchcke-k_n8Dp_2vJ3v7Yb0BQ2glQomQG8mcYHlGyTIxHtB1eWUNc5w5BGdeZ0lknMZLmVWIHRyKaETAkY-M5SJ-CwvFdeFXIfAIEzKD4WTmHbe9XmYt5yoSludc5rnpwMemL1Jbs5PTJhlXaRWlxGnzUTqw1UqOK0aOP8hsNN2Z1jY5STGS0ghXENLiI9pitCaaIjGFv56VMlLqiMvkXzI01allD2VWKg1pK4KvZwmXrANqTndaAWLzni8pLs5LVm9BYDHmHdguVeOvbUtPBkMVc7H2v4Lv4fnwSz89PDj-tg4vEPBJ8r1MbMDC9GbmNxFUTbN3pfXcA9U6GoE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lymphatic+pumping%3A+mechanics%2C+mechanisms+and+malfunction&rft.jtitle=The+Journal+of+physiology&rft.au=Scallan%2C+Joshua+P&rft.au=Zawieja%2C+Scott+D&rft.au=Castorena-Gonzalez%2C+Jorge+A&rft.au=Davis%2C+Michael+J&rft.date=2016-10-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=594&rft.issue=20&rft.spage=5749&rft_id=info:doi/10.1113%2FJP272088&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4213916391 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |