Lymphatic pumping: mechanics, mechanisms and malfunction

A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on t...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 594; no. 20; pp. 5749 - 5768
Main Authors Scallan, Joshua P., Zawieja, Scott D., Castorena‐Gonzalez, Jorge A., Davis, Michael J.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 15.10.2016
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/JP272088

Cover

Abstract A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease. Diagram depicting the major factors regulating the effective pumping ability of a prenodal collecting lymphatic vessel as it transports lymph formed in lymphatic capillaries to the subcapsular sinus of a lymph node. Pressures indicate approximate hydrostatic pressures measured in the interstitium and at the entrance to the lymph node, respectively, that have been recorded in many regions of the lymphatic system. Cut‐away sections show the locations of two valves. The blue shaded region depicts the relatively modest net filtration of fluid and solute that occurs under normal conditions all along the length of the collecting vessel. Each of these factors can also become a target of lymphatic dysfunction. AP, action potential; LEC, lymphatic endothelial cell; LMC, lymphatic muscle cell.
AbstractList A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease. image
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease. Diagram depicting the major factors regulating the effective pumping ability of a prenodal collecting lymphatic vessel as it transports lymph formed in lymphatic capillaries to the subcapsular sinus of a lymph node. Pressures indicate approximate hydrostatic pressures measured in the interstitium and at the entrance to the lymph node, respectively, that have been recorded in many regions of the lymphatic system. Cut-away sections show the locations of two valves. The blue shaded region depicts the relatively modest net filtration of fluid and solute that occurs under normal conditions all along the length of the collecting vessel. Each of these factors can also become a target of lymphatic dysfunction. AP, action potential; LEC, lymphatic endothelial cell; LMC, lymphatic muscle cell.
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease. Diagram depicting the major factors regulating the effective pumping ability of a prenodal collecting lymphatic vessel as it transports lymph formed in lymphatic capillaries to the subcapsular sinus of a lymph node. Pressures indicate approximate hydrostatic pressures measured in the interstitium and at the entrance to the lymph node, respectively, that have been recorded in many regions of the lymphatic system. Cut‐away sections show the locations of two valves. The blue shaded region depicts the relatively modest net filtration of fluid and solute that occurs under normal conditions all along the length of the collecting vessel. Each of these factors can also become a target of lymphatic dysfunction. AP, action potential; LEC, lymphatic endothelial cell; LMC, lymphatic muscle cell.
Author Davis, Michael J.
Castorena‐Gonzalez, Jorge A.
Zawieja, Scott D.
Scallan, Joshua P.
AuthorAffiliation 1 Department of Medical Pharmacology and Physiology University of Missouri Columbia MO USA
AuthorAffiliation_xml – name: 1 Department of Medical Pharmacology and Physiology University of Missouri Columbia MO USA
Author_xml – sequence: 1
  givenname: Joshua P.
  surname: Scallan
  fullname: Scallan, Joshua P.
  organization: University of Missouri
– sequence: 2
  givenname: Scott D.
  surname: Zawieja
  fullname: Zawieja, Scott D.
  organization: University of Missouri
– sequence: 3
  givenname: Jorge A.
  surname: Castorena‐Gonzalez
  fullname: Castorena‐Gonzalez, Jorge A.
  organization: University of Missouri
– sequence: 4
  givenname: Michael J.
  surname: Davis
  fullname: Davis, Michael J.
  email: davismj@missouri.edu
  organization: University of Missouri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27219461$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1LwzAUhoMoblPBXyADb7ywmpO0TeKFIMNPBnoxr0OWZlukTWvTKvv3ZmzzYyh4dULynDfnvG8PbbvSGYQOAZ8BAD1_eCKMYM63UBfiVESMCbqNuhgTElGWQAf1vH_BGCgWYhd1Ag0iTqGL-HBeVDPVWN2v2qKybnrRL4yeKWe1P10ffeH7ymX9QuWT1unGlm4f7UxU7s3Bqu6h55vr0eAuGj7e3g-uhpFOMUuiWKWQJTAZ44RgGooQ2DCtIIshw1gYPhZEZTxcjTWDBLKAcA4ZMUTpOKF76HKpW7XjwmTauKZWuaxqW6h6Lktl5c8XZ2dyWr7JBKdU0DgInKwE6vK1Nb6RhfXa5Llypmy9BE4ZETzF4h8oSVNOgsMBPd5AX8q2dsGJBcXjsIkggTr6Pvzn1Gv_v37Udel9bSafCGC5iFauow3o2QaqbaMWUYS1bf5bQ7RseLe5mf8pLEcPT4wGpz8AhqWwzw
CODEN JPHYA7
CitedBy_id crossref_primary_10_1113_JP277254
crossref_primary_10_1038_s41467_025_56147_8
crossref_primary_10_14797_mdcvj_1286
crossref_primary_10_3390_life13030836
crossref_primary_10_3390_medicina57111272
crossref_primary_10_1016_j_yjmcc_2019_06_002
crossref_primary_10_1093_function_zqae033
crossref_primary_10_1089_lrb_2024_0087
crossref_primary_10_3390_ijms18010171
crossref_primary_10_1089_lrb_2019_0069
crossref_primary_10_1161_ATVBAHA_123_319188
crossref_primary_10_1111_imr_13030
crossref_primary_10_1016_j_trsl_2018_12_003
crossref_primary_10_3389_fphys_2022_1098408
crossref_primary_10_1089_lrb_2019_0052
crossref_primary_10_1017_S1047951122001342
crossref_primary_10_1016_j_aanat_2018_08_004
crossref_primary_10_1016_j_jpedsurg_2019_02_026
crossref_primary_10_14814_phy2_14375
crossref_primary_10_3390_biomedicines10051111
crossref_primary_10_1161_ATVBAHA_117_309883
crossref_primary_10_3390_cells10061344
crossref_primary_10_1016_j_mehy_2020_109748
crossref_primary_10_14814_phy2_15697
crossref_primary_10_1152_ajpheart_00023_2023
crossref_primary_10_3389_fphys_2022_1060146
crossref_primary_10_1007_s12609_023_00501_6
crossref_primary_10_1016_j_bpj_2018_07_033
crossref_primary_10_1177_09636897241260195
crossref_primary_10_1016_j_jscai_2023_101174
crossref_primary_10_1089_lrb_2019_0088
crossref_primary_10_1084_jem_20241752
crossref_primary_10_3389_fphar_2022_848088
crossref_primary_10_3390_cancers12082297
crossref_primary_10_3390_ijms24043221
crossref_primary_10_1038_s41598_023_40826_x
crossref_primary_10_1152_ajpcell_00137_2022
crossref_primary_10_1016_j_jcmgh_2018_10_015
crossref_primary_10_3389_fphys_2022_798284
crossref_primary_10_3389_fphys_2020_00137
crossref_primary_10_1016_j_mvr_2021_104274
crossref_primary_10_3390_biomedicines11030656
crossref_primary_10_15825_1995_1191_2021_3_186_191
crossref_primary_10_1152_ajpheart_00175_2020
crossref_primary_10_1089_lrb_2020_0060
crossref_primary_10_3389_fcvm_2023_1094805
crossref_primary_10_3390_cancers12082280
crossref_primary_10_15825_1995_1191_2022_4_54_59
crossref_primary_10_1115_1_4053749
crossref_primary_10_1186_s12951_023_02022_x
crossref_primary_10_1126_science_abb8739
crossref_primary_10_1089_lrb_2017_0052
crossref_primary_10_3390_jcm11195964
crossref_primary_10_1371_journal_pcbi_1012846
crossref_primary_10_1146_annurev_fluid_122316_045259
crossref_primary_10_1097_MOL_0000000000000821
crossref_primary_10_1142_S1793545820300049
crossref_primary_10_1134_S0022093022050076
crossref_primary_10_3389_fphys_2021_745096
crossref_primary_10_1089_lrb_2022_0026
crossref_primary_10_1097_PRS_0000000000005091
crossref_primary_10_1093_function_zqad017
crossref_primary_10_1038_s41569_018_0087_8
crossref_primary_10_1016_j_devcel_2024_12_010
crossref_primary_10_1161_ATVBAHA_120_314370
crossref_primary_10_1002_ar_24143
crossref_primary_10_1016_j_ijcard_2024_132399
crossref_primary_10_1016_j_aanat_2018_03_006
crossref_primary_10_1016_j_lfs_2018_09_043
crossref_primary_10_1245_s10434_022_12552_7
crossref_primary_10_1158_1055_9965_EPI_19_0448
crossref_primary_10_3390_medicines9050033
crossref_primary_10_3389_fphys_2019_01604
crossref_primary_10_3390_jcm12051930
crossref_primary_10_1089_lrb_2021_0090
crossref_primary_10_3390_cancers12113290
crossref_primary_10_1097_MOH_0000000000000713
crossref_primary_10_1093_cvr_cvab279
crossref_primary_10_14814_phy2_15258
crossref_primary_10_1080_08941939_2021_1937756
crossref_primary_10_1542_pir_2023_006291
crossref_primary_10_1016_j_ijoa_2023_103963
crossref_primary_10_1124_jpet_119_257592
crossref_primary_10_1097_PRS_0000000000008252
crossref_primary_10_1016_j_ajpath_2019_08_009
crossref_primary_10_1186_s43046_020_00041_5
crossref_primary_10_1089_lrb_2019_0040
crossref_primary_10_1007_s10237_023_01780_9
crossref_primary_10_1249_MSS_0000000000002918
crossref_primary_10_1007_s10741_021_10188_5
crossref_primary_10_2147_IJGM_S405926
crossref_primary_10_1016_j_it_2021_07_003
crossref_primary_10_1016_j_cmpb_2024_108543
crossref_primary_10_1007_s11886_020_01405_y
crossref_primary_10_1039_D2AN00396A
crossref_primary_10_3389_fneur_2019_00533
crossref_primary_10_3389_fphys_2020_00459
crossref_primary_10_1038_s41586_025_08724_6
crossref_primary_10_3389_fphar_2022_952581
crossref_primary_10_3390_biology10040261
crossref_primary_10_1038_s41586_023_06899_4
crossref_primary_10_1111_febs_16155
crossref_primary_10_1126_sciadv_adf9775
crossref_primary_10_3389_fped_2022_1020984
crossref_primary_10_1039_D1LC00014D
crossref_primary_10_1111_micc_12839
crossref_primary_10_1089_wound_2021_0041
crossref_primary_10_3389_fphys_2020_00114
crossref_primary_10_1111_obr_12565
crossref_primary_10_1124_pharmrev_123_001159
crossref_primary_10_1039_D1LC00720C
crossref_primary_10_3390_ijms23147614
crossref_primary_10_1161_HYPERTENSIONAHA_123_17942
crossref_primary_10_1016_j_mehy_2023_111022
crossref_primary_10_1016_j_neulet_2020_135197
crossref_primary_10_1038_s41467_018_04418_y
crossref_primary_10_1038_s41569_020_00489_x
crossref_primary_10_3390_tropicalmed3020045
crossref_primary_10_1089_lrb_2023_0079
crossref_primary_10_4103_jdmimsu_jdmimsu_422_22
crossref_primary_10_3389_fphys_2020_00684
crossref_primary_10_1016_j_tice_2024_102681
crossref_primary_10_1038_s43587_024_00691_3
crossref_primary_10_1111_joa_12761
crossref_primary_10_1589_jpts_28_3084
crossref_primary_10_3390_ijms25063538
crossref_primary_10_3389_fmedt_2024_1397561
crossref_primary_10_3390_biology11030419
crossref_primary_10_1016_j_addr_2020_08_013
crossref_primary_10_1016_j_tips_2019_10_002
crossref_primary_10_1038_s41598_019_42142_9
crossref_primary_10_1097_CCM_0000000000006561
crossref_primary_10_1016_j_celrep_2019_05_050
crossref_primary_10_1016_j_ejvs_2024_06_004
crossref_primary_10_1016_j_jcmgh_2018_12_002
crossref_primary_10_7759_cureus_8930
crossref_primary_10_7759_cureus_80896
crossref_primary_10_1016_j_healun_2019_04_002
crossref_primary_10_1113_JP284752
crossref_primary_10_1111_cts_12864
crossref_primary_10_1152_physrev_00031_2020
crossref_primary_10_1002_oby_23458
crossref_primary_10_1186_s12951_024_02940_4
crossref_primary_10_1111_micc_12748
crossref_primary_10_1097_JS9_0000000000001106
crossref_primary_10_1186_s13075_019_2039_z
crossref_primary_10_1016_j_addr_2020_12_005
crossref_primary_10_1113_JP279612
crossref_primary_10_1002_med_21855
crossref_primary_10_3390_ijms23031428
crossref_primary_10_1038_s41598_023_48131_3
crossref_primary_10_1089_lrb_2016_0061
crossref_primary_10_3390_ijms232214179
crossref_primary_10_1186_s12951_023_01989_x
crossref_primary_10_1016_j_lpmfor_2023_10_003
crossref_primary_10_3390_biology12071039
crossref_primary_10_1038_s41598_020_75190_7
crossref_primary_10_1007_s10237_021_01486_w
crossref_primary_10_1111_bph_15602
crossref_primary_10_1111_micc_12879
crossref_primary_10_1117_1_NPh_11_1_010601
crossref_primary_10_1002_tbio_201900036
crossref_primary_10_1016_j_mvr_2018_11_003
crossref_primary_10_1117_1_JBO_22_10_106003
crossref_primary_10_1038_s41598_022_16884_y
crossref_primary_10_14814_phy2_16170
crossref_primary_10_1039_D1LC00022E
crossref_primary_10_3390_metabo11090617
crossref_primary_10_1152_ajpgi_00095_2022
crossref_primary_10_1172_jci_insight_135121
crossref_primary_10_1007_s00467_025_06692_7
crossref_primary_10_1146_annurev_immunol_041015_055354
crossref_primary_10_1152_ajpheart_00648_2017
crossref_primary_10_1186_s40560_023_00694_z
crossref_primary_10_1111_micc_12887
crossref_primary_10_1292_jvms_21_0363
crossref_primary_10_31857_S0044452923010084
crossref_primary_10_1016_j_biocel_2019_105562
crossref_primary_10_1038_s41431_022_01210_x
crossref_primary_10_1186_s12987_024_00605_w
crossref_primary_10_1053_j_jvca_2021_07_049
crossref_primary_10_1002_advs_202206579
crossref_primary_10_3389_fphar_2022_850586
crossref_primary_10_3390_cells10123289
crossref_primary_10_1113_JP279472
crossref_primary_10_1016_j_mad_2024_111975
crossref_primary_10_1007_s10549_020_05863_4
crossref_primary_10_1152_ajpgi_00271_2021
crossref_primary_10_3390_cells10102594
crossref_primary_10_1152_physrev_00006_2020
crossref_primary_10_1089_lrb_2020_0008
crossref_primary_10_1136_bmjopen_2023_076127
crossref_primary_10_1111_micc_12778
crossref_primary_10_1016_j_compbiomed_2021_105189
crossref_primary_10_1161_ATVBAHA_118_311645
crossref_primary_10_1089_lrb_2021_0022
crossref_primary_10_1152_ajpheart_00499_2017
crossref_primary_10_1152_physiol_00015_2022
crossref_primary_10_3390_jcm12185930
crossref_primary_10_1152_physrev_00039_2021
crossref_primary_10_1161_ATVBAHA_120_315507
crossref_primary_10_1016_j_jare_2024_12_024
crossref_primary_10_1016_j_ccc_2019_11_003
crossref_primary_10_1016_j_jvir_2021_01_269
crossref_primary_10_1097_PRS_0000000000009866
crossref_primary_10_1101_cshperspect_a041171
crossref_primary_10_1016_j_sempedsurg_2024_151426
crossref_primary_10_3389_fphys_2020_00404
crossref_primary_10_1016_j_taap_2019_114847
crossref_primary_10_1136_heartjnl_2018_314461
crossref_primary_10_3389_fphys_2021_672987
crossref_primary_10_3390_ijms222111756
crossref_primary_10_1016_j_acra_2018_04_006
crossref_primary_10_1364_BOE_383390
crossref_primary_10_1002_adhm_202000895
crossref_primary_10_1371_journal_pone_0183222
crossref_primary_10_1186_s13054_023_04496_5
crossref_primary_10_1016_j_jacc_2020_10_022
crossref_primary_10_25259_JSSTD_3_2021
crossref_primary_10_25259_JSSTD_3_2020
crossref_primary_10_1165_rcmb_2020_0196TR
crossref_primary_10_7554_eLife_79780
crossref_primary_10_1007_s12609_019_00341_3
crossref_primary_10_1097_GOX_0000000000003342
crossref_primary_10_3389_fphys_2024_1413764
crossref_primary_10_1161_HYPERTENSIONAHA_124_23194
crossref_primary_10_1016_j_isci_2020_101751
crossref_primary_10_1016_j_amjsurg_2024_116050
crossref_primary_10_1111_micc_12792
crossref_primary_10_3389_fphys_2023_1198052
crossref_primary_10_1016_j_immuni_2021_10_003
crossref_primary_10_1111_micc_12793
crossref_primary_10_1111_aas_13710
crossref_primary_10_1007_s10237_021_01501_0
crossref_primary_10_1152_ajprenal_00322_2020
crossref_primary_10_1007_s10741_024_10449_z
crossref_primary_10_1038_s41598_023_41995_5
crossref_primary_10_3390_ijms23062975
crossref_primary_10_1101_cshperspect_a041274
crossref_primary_10_3390_biom10101424
crossref_primary_10_1016_j_pacs_2022_100446
crossref_primary_10_2174_1573397119666230127144711
crossref_primary_10_3390_cells10102584
crossref_primary_10_1038_nrgastro_2017_79
crossref_primary_10_1007_s10237_018_1042_7
crossref_primary_10_1038_s44303_024_00061_z
crossref_primary_10_1016_j_jacc_2021_05_021
crossref_primary_10_1097_ALN_0000000000005002
Cites_doi 10.1161/CIRCRESAHA.112.269399
10.1136/jmg.39.7.478
10.1038/nm1689
10.1196/annals.1413.008
10.1152/ajpheart.00007.2008
10.1152/physrev.1990.70.4.987
10.1152/ajpheart.00921.2013
10.1080/10739680490476033
10.1089/lrb.2013.1132
10.1089/1539685041690409
10.1016/j.ydbio.2008.04.024
10.1093/cvr/cvv117
10.1111/j.1365-2036.2011.04759.x
10.1113/jphysiol.1994.sp020450
10.1016/j.mvr.2006.05.009
10.1111/j.1469-7793.1997.439be.x
10.1152/ajpheart.1987.253.6.H1349
10.1136/jmg.2004.024802
10.1002/ibd.21150
10.1161/CIRCULATIONAHA.106.675348
10.1007/s10549-011-1667-z
10.1152/physiolgenomics.00169.2002
10.1161/01.RES.67.5.1097
10.1152/ajpheart.00879.2008
10.1113/jphysiol.1997.sp022013
10.1089/153968503321642642
10.1084/jem.90.5.497
10.1152/ajpheart.1989.257.6.H2059
10.1016/j.cmet.2013.04.002
10.1111/j.1469-7793.1997.001bi.x
10.1167/iovs.14-15638
10.1016/j.biocel.2003.12.008
10.1016/j.immuni.2004.09.003
10.1016/0090-6980(83)90138-7
10.1016/S0022-3565(25)22801-4
10.1113/jphysiol.2014.276683
10.1113/jphysiol.2013.258681
10.1371/journal.pone.0070703
10.2353/ajpath.2010.091301
10.1152/ajpheart.1986.250.5.H706
10.1152/ajpheart.00538.2011
10.1371/journal.pone.0148384
10.1371/journal.pone.0094713
10.1097/MIB.0000000000000402
10.1002/ar.1092020404
10.1016/j.ydbio.2015.10.022
10.1113/jphysiol.2013.260042
10.1084/jem.20142290
10.1152/ajpheart.01029.2007
10.1002/ar.1091770210
10.1111/j.1748-1716.1977.tb10364.x
10.1016/j.ajhg.2010.04.010
10.1113/jphysiol.2006.115279
10.1083/jcb.200901104
10.1113/jphysiol.2012.250662
10.1038/sj.bjp.0705264
10.1152/ajplegacy.1975.228.5.1326
10.1081/CNV-48707
10.1161/01.RES.53.4.535
10.1073/pnas.1116152108
10.1113/jphysiol.2012.237909
10.1152/ajpheart.00677.2012
10.1161/01.RES.8.5.1077
10.1113/jphysiol.1996.sp021404
10.1172/JCI63685
10.1111/micc.12143
10.1111/j.1749-6632.2010.05752.x
10.1172/JCI46116
10.1089/lrb.2013.0031
10.1097/PRS.0000000000000268
10.1152/ajpheart.01340.2006
10.1136/gut.1.2.87
10.1152/ajpheart.00467.2015
10.1113/jphysiol.2008.162438
10.1111/j.1749-6632.2010.05757.x
10.1113/jphysiol.1992.sp019139
10.1113/jphysiol.1980.sp013520
10.1007/BF00582310
10.4199/C00030ED1V01Y201104ISP018
10.1038/ncomms9085
10.1172/JCI70422
10.1172/JCI80454
10.1096/fj.02-0626fje
10.1006/mvre.2000.2275
10.1016/0026-2862(89)90039-3
10.1007/978-3-7091-1646-3_6
10.1159/000342437
10.1136/gut.2007.123166
10.1101/gad.330105
10.1152/ajpheart.01040.2008
10.1158/1078-0432.CCR-11-2303
10.1006/mvre.1995.1008
10.1016/j.tcm.2013.09.004
10.1084/jem.20062596
10.1172/JCI78888
10.1152/ajpheart.00522.2012
10.1016/j.biomaterials.2013.03.034
10.1196/annals.1413.007
10.1089/lrb.2011.0022
10.1113/jphysiol.2012.230599
10.1113/jphysiol.2013.266700
10.1113/jphysiol.2014.280347
10.1083/jcb.201110132
10.1152/ajpgi.00392.2012
10.1152/ajpheart.00378.2012
10.1111/j.1469-7793.1997.013bi.x
10.1006/dbio.2002.0826
10.1111/j.1469-7793.1999.00201.x
10.1152/ajpgi.00058.2006
10.1016/j.devcel.2009.06.017
10.1093/infdis/167.6.1358
10.1371/journal.pone.0106034
10.1038/sj.bjp.0702026
10.1016/j.tem.2010.04.003
10.1111/j.1749-6632.2002.tb04867.x
10.1210/jc.2004-0372
10.1186/gb-2008-9-1-r14
10.4049/jimmunol.1301758
10.1172/JCI15830
10.1152/ajpheart.1993.264.4.H1283
10.1038/ajh.2008.218
10.1038/nri2448
10.1111/j.1549-8719.2011.00107.x
10.1016/j.semcdb.2015.01.005
10.1113/jphysiol.1993.sp019910
10.2353/ajpath.2010.100594
10.2353/ajpath.2009.080963
10.1038/nature14432
10.1038/nm1094
10.1089/lrb.2012.0013
10.1152/ajpheart.00606.2011
10.1152/ajpheart.00527.2013
10.1038/ng1642
10.1113/jphysiol.2001.016642
10.1016/j.ydbio.2011.04.004
10.1113/jphysiol.2007.130401
10.1152/ajpheart.00260.2011
10.1242/dev.101188
10.1007/s00018-012-1110-6
10.1038/ijo.2010.273
10.1016/j.devcel.2011.12.020
10.1161/CIRCRESAHA.112.269316
10.1161/01.RES.87.6.474
10.1152/ajpheart.00543.2005
10.1002/(SICI)1097-0142(19981215)83:12B <2814::AID-CNCR31>3.0.CO;2-E
10.1016/0026-2862(84)90042-6
10.1096/fj.12-222695
10.1101/gad.16974811
10.1152/ajpheart.00133.2011
10.1152/ajpheart.1999.277.4.H1453
10.1152/ajpheart.01098.2011
10.1159/000323484
10.1111/j.1549-8719.2011.00146.x
10.1172/JCI79386
10.1152/ajpheart.01159.2011
10.1161/01.RES.0000258856.19922.45
10.1152/ajpheart.01097.2011
10.1152/ajpheart.00517.2013
10.1152/ajpheart.00598.2014
10.1093/cvr/cvq062
10.1111/bph.13194
10.1006/mvre.1998.2089
10.1016/j.jbiomech.2015.07.045
10.1007/s00441-002-0623-y
10.1152/physrev.00037.2011
10.1113/JP270166
10.1016/j.mvr.2014.07.008
10.1113/jphysiol.1976.sp011557
10.1113/jphysiol.2009.179622
10.2337/db10-0585
10.4049/jimmunol.1500221
10.1007/s10456-013-9393-2
10.1093/hmg/ddg123
ContentType Journal Article
Copyright 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Journal compilation © 2016 The Physiological Society
Copyright_xml – notice: 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society
– notice: 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
– notice: Journal compilation © 2016 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/JP272088
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
CrossRef
MEDLINE - Academic

Calcium & Calcified Tissue Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate J. P. Scallan and others
EISSN 1469-7793
EndPage 5768
ExternalDocumentID PMC5063934
4213916391
27219461
10_1113_JP272088
TJP7345
Genre article
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: K99 HL124142; R01‐HL‐120867; HL‐122608; HL‐122578
– fundername: NHLBI NIH HHS
  grantid: K99 HL124142
– fundername: NHLBI NIH HHS
  grantid: R01 HL120867
– fundername: NHLBI NIH HHS
  grantid: R01 HL122578
– fundername: NHLBI NIH HHS
  grantid: R01 HL125608
– fundername: NHLBI NIH HHS
  grantid: R00 HL124142
– fundername: NIH
  grantid: K99 HL124142; R01‐HL‐120867; HL‐122608; HL‐122578
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
0YM
10A
123
18M
1OC
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c6075-4a61d51fb05203fb0990e7ca1d41d009e8b92ad87cabc7151db09881d2e2ac453
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 18:33:26 EDT 2025
Fri Jul 11 11:48:31 EDT 2025
Fri Jul 11 09:12:21 EDT 2025
Fri Jul 25 12:12:35 EDT 2025
Thu Apr 03 06:58:57 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Thu Jul 03 08:42:41 EDT 2025
Wed Aug 20 07:26:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords muscle contraction
lymphedema
lymphatic
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6075-4a61d51fb05203fb0990e7ca1d41d009e8b92ad87cabc7151db09881d2e2ac453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP272088
PMID 27219461
PQID 1828415192
PQPubID 1086388
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5063934
proquest_miscellaneous_1837298609
proquest_miscellaneous_1826682469
proquest_journals_1828415192
pubmed_primary_27219461
crossref_primary_10_1113_JP272088
crossref_citationtrail_10_1113_JP272088
wiley_primary_10_1113_JP272088_TJP7345
PublicationCentury 2000
PublicationDate 15 October 2016
PublicationDateYYYYMMDD 2016-10-15
PublicationDate_xml – month: 10
  year: 2016
  text: 15 October 2016
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2016
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2004; 21
2010; 16
2012; 122
1968; 1
2000; 87
2007; 583
2010; 588
2007; 100
1960; 1
2002; 310
2013; 123
2015; 309
2013; 70
2015; 308
2012; 19
2014; 24
2012; 18
1960; 8
2006; 291
2006; 290
2009; 195
2004; 2
2008; 587
2014; 28
2013; 8
2011; 354
2012; 10
2014; 134
2014; 21
1949; 90
1998; 15
2010; 21
1980; 309
2007; 293
2004; 36
2010; 1207
2008; 21
2013; 591
2013; 197
2014; 17
1996; 493
2014; 96
1989; 37
2012; 22
2014; 12
1983; 25
1971; 4
2003; 44
2009; 17
2014; 124
1975; 228
1980; 239
1997; 501.P
2007; 204
1976; 261
2015; 523
1989; 257
2015; 125
2002; 251
1994; 271
2008; 57
1982; 202
2009; 296
2009; 175
1991
2011; 130
2007; 13
2016; 11
2012; 590
2012; 591
2014; 306
2011; 301
2015; 194
2012; 197
2005; 19
2012; 111
2014; 307
1995; 49
1990; 27
2015; 593
1981; 14
2010; 177
1993; 471
1977; 99
2014; 141
1968; 23
2015; 38
2010; 59
2006; 72
2013; 27
1984; 27
1986; 250
2003; 13
2008; 9
1983; 53
2010; 1777
2008; 8
2003; 17
1999; 521
2015; 107
2011; 18
2003; 111
2005; 23
2014; 214
1993; 167
2003; 12
1997; 500
2015; 48
2015; 172
1997; 503
2013; 17
1997; 504
2013; 11
2015; 212
1991; 260
1988; 411
2000; 60
1998; 125
2003; 1
2011; 25
2014; 9
2005; 37
1998; 56
2014; 55
2002; 39
2008; 1131
2015; 6
2003; 139
2002; 450
2011
2008; 19
2013; 305
2016; 409
2004; 89
2013; 304
2005; 42
2002; 979
2011; 35
2011; 34
2014; 192
2012; 302
2014; 592
2012; 303
1993; 264
1970; 59
2004; 10
1973; 177
2004; 11
2007; 115
2010; 87
2012; 92
2010; 86
1990; 67
2011; 108
1987; 253
1991; 24
1992; 450
2013; 34
1980; 13
1971; 78
2015; 21
1994; 481
2011; 48
2008; 576
1999; 277
2008; 295
1990; 70
1966
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_91_1
Olszewski WL (e_1_2_6_129_1) 1980; 239
e_1_2_6_152_1
Vajda J (e_1_2_6_169_1) 1971; 78
e_1_2_6_175_1
Alessandrini C (e_1_2_6_6_1) 1981; 14
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_156_1
e_1_2_6_179_1
e_1_2_6_19_1
e_1_2_6_182_1
e_1_2_6_11_1
e_1_2_6_34_1
Miyahara H (e_1_2_6_115_1) 1994; 271
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_106_1
e_1_2_6_148_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_163_1
e_1_2_6_140_1
e_1_2_6_121_1
e_1_2_6_167_1
e_1_2_6_102_1
e_1_2_6_144_1
e_1_2_6_186_1
e_1_2_6_9_1
McHale NG (e_1_2_6_103_1) 1990; 27
e_1_2_6_5_1
Gnepp DR (e_1_2_6_62_1) 1980; 13
e_1_2_6_170_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
Lauweryns J (e_1_2_6_86_1) 1971; 4
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_159_1
e_1_2_6_31_1
Hollywood MA (e_1_2_6_72_1) 1997; 501
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_174_1
e_1_2_6_151_1
e_1_2_6_132_1
e_1_2_6_178_1
e_1_2_6_113_1
e_1_2_6_155_1
e_1_2_6_181_1
Ohhashi T (e_1_2_6_127_1) 1991; 260
Szuba A (e_1_2_6_161_1) 2003; 44
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_147_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
Mislin H (e_1_2_6_114_1) 1966
e_1_2_6_120_1
e_1_2_6_162_1
Gashev AA (e_1_2_6_58_1) 2002; 450
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_143_1
e_1_2_6_166_1
e_1_2_6_185_1
e_1_2_6_192_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_158_1
e_1_2_6_32_1
Gui P (e_1_2_6_66_1) 2014; 28
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_150_1
e_1_2_6_173_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_154_1
e_1_2_6_177_1
e_1_2_6_180_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_142_1
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_184_1
e_1_2_6_123_1
e_1_2_6_165_1
West JB (e_1_2_6_183_1) 1991
e_1_2_6_191_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_138_1
Zawieja DC (e_1_2_6_190_1) 2011
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_153_1
Guarna M (e_1_2_6_65_1) 1991; 24
e_1_2_6_172_1
e_1_2_6_111_1
e_1_2_6_157_1
Kalima TV (e_1_2_6_79_1) 1970; 59
e_1_2_6_134_1
e_1_2_6_176_1
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
Zawieja DC (e_1_2_6_189_1) 1991; 260
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_63_1
Leak LV (e_1_2_6_87_1) 1968; 1
e_1_2_6_21_1
e_1_2_6_107_1
Zweifach BW (e_1_2_6_193_1) 1975; 228
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_164_1
e_1_2_6_187_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_168_1
Zawieja DC (e_1_2_6_188_1) 1993; 264
e_1_2_6_8_1
e_1_2_6_171_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
Olszewski WL (e_1_2_6_130_1) 1968; 23
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – year: 2011
– volume: 111
  start-page: 437
  year: 2012
  end-page: 445
  article-title: Semaphorin3A, Neuropilin‐1, and PlexinA1 are required for lymphatic valve formation
  publication-title: Circ Res
– volume: 523
  start-page: 337
  year: 2015
  end-page: 341
  article-title: Structural and functional features of central nervous system lymphatic vessels
  publication-title: Nature
– volume: 202
  start-page: 453
  year: 1982
  end-page: 461
  article-title: The morphology of canine lymphatic valves
  publication-title: Anat Rec
– volume: 8
  start-page: e70703
  year: 2013
  article-title: Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes
  publication-title: PLoS One
– volume: 9
  start-page: R14
  year: 2008
  article-title: Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity
  publication-title: Genome Biol
– volume: 36
  start-page: 1147
  year: 2004
  end-page: 1153
  article-title: Lymphatic smooth muscle: the motor unit of lymph drainage
  publication-title: Int J Biochem Cell Biol
– volume: 125
  start-page: 17
  year: 1998
  end-page: 22
  article-title: ATP‐sensitive K channels in smooth muscle cells of guinea‐pig mesenteric lymphatics: role in nitric oxide and β‐adrenoceptor agonist‐induced hyperpolarizations
  publication-title: Br J Pharmacol
– volume: 57
  start-page: 1
  year: 2008
  end-page: 4
  article-title: The forgotten role of lymphangitis in Crohn's disease
  publication-title: Gut
– volume: 48
  start-page: 3593
  year: 2015
  end-page: 3599
  article-title: Determining the combined effect of the lymphatic valve leaflets and sinus on resistance to forward flow
  publication-title: J Biomech
– volume: 177
  start-page: 303
  year: 1973
  end-page: 315
  article-title: The sympathetic innervation of the cervical lymphatic duct of the dog
  publication-title: Anat Rec
– volume: 78
  start-page: 521
  year: 1971
  end-page: 531
  article-title: The structure of valves in the lymphatic vessels
  publication-title: Anat Rec
– volume: 1131
  start-page: 82
  year: 2008
  end-page: 88
  article-title: The link between lymphatic function and adipose biology
  publication-title: Ann NY Acad Sci
– volume: 503
  start-page: 13
  year: 1997
  end-page: 21
  article-title: Tetrodotoxin‐sensitive sodium current in sheep lymphatic smooth muscle
  publication-title: J Physiol
– volume: 301
  start-page: H1828
  year: 2011
  end-page: 1840
  article-title: Mesenteric lymph flow in adult and aged rats
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 303
  start-page: H795
  year: 2012
  end-page: H808
  article-title: Intrinsic increase in lymphangion muscle contractility in response to elevated afterload
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 260
  start-page: H1172
  year: 1991
  end-page: H1178
  article-title: Acetylcholine‐induced release of endothelium‐derived relaxing factor from lymphatic endothelial cells
  publication-title: Am J Physiol
– volume: 25
  start-page: 85
  year: 1983
  end-page: 98
  article-title: Effects of arachidonic acid and its cyclo‐oxygenase and lipoxygenase products on lymphatic vessel contractility in vitro
  publication-title: Prostaglandins
– volume: 134
  start-page: 154e
  year: 2014
  end-page: 160e
  article-title: Lymphedema and obesity: is there a link?
  publication-title: Plast Reconstr Surg
– volume: 2
  start-page: 2
  year: 2004
  end-page: 10
  article-title: Effects of substance P on mesenteric lymphatic contractility in the rat
  publication-title: Lymphat Res Biol
– volume: 139
  start-page: 243
  year: 2003
  end-page: 254
  article-title: 5‐HT decreases contractile and electrical activities in lymphatic vessels of the guinea‐pig mesentery: role of 5‐HT ‐receptors
  publication-title: Br J Pharmacol
– volume: 21
  start-page: 1553
  year: 2015
  end-page: 1563
  article-title: Colonic insult impairs lymph flow, increases cellular content of the lymph, alters local lymphatic microenvironment, and leads to sustained inflammation in the rat ileum
  publication-title: Inflamm Bowel Dis
– volume: 27
  start-page: 1114
  year: 2013
  end-page: 1126
  article-title: Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema
  publication-title: FASEB J
– volume: 87
  start-page: 198
  year: 2010
  end-page: 210
  article-title: Microvascular fluid exchange and the revised Starling principle
  publication-title: Cardiovasc Res
– volume: 92
  start-page: 1005
  year: 2012
  end-page: 1060
  article-title: Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer
  publication-title: Physiol Rev
– volume: 12
  start-page: 1179
  year: 2003
  end-page: 1185
  article-title: haploinsufficient mice are a model for human autosomal dominant lymphedema‐distichiasis syndrome
  publication-title: Hum Mol Genet
– volume: 27
  start-page: 71
  year: 1984
  end-page: 80
  article-title: Variegated effects of prostaglandins on spontaneous activity in bovine mesenteric lymphatics
  publication-title: Microvasc Res
– volume: 8
  start-page: 1077
  year: 1960
  end-page: 1091
  article-title: Homeometric autoregulation in the heart
  publication-title: Circ Res
– volume: 503
  start-page: 1
  year: 1997
  end-page: 11
  article-title: Outward currents in smooth muscle cells isolated from sheep mesenteric lymphatics
  publication-title: J Physiol
– volume: 72
  start-page: 161
  year: 2006
  end-page: 171
  article-title: Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, VEGF‐C upregulation, and the protective role of MMP‐9
  publication-title: Microvasc Res
– volume: 304
  start-page: G623
  year: 2013
  end-page: G634
  article-title: Involvement of the NO‐cGMP‐K(ATP) channel pathway in the mesenteric lymphatic pump dysfunction observed in the guinea pig model of TNBS‐induced ileitis
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 504
  start-page: 439
  year: 1997
  end-page: 451
  article-title: Functional electrical properties of the endothelium in lymphatic vessels of the guinea‐pig mesentery
  publication-title: J Physiol
– volume: 24
  start-page: 121
  year: 2014
  end-page: 127
  article-title: Lymphatic vessel abnormalities arising from disorders of Ras signal transduction
  publication-title: Trends Cardiovasc Med
– volume: 1
  start-page: 39
  year: 1968
  end-page: 52
  article-title: Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances
  publication-title: Lymphology
– volume: 257
  start-page: H2059
  year: 1989
  end-page: H2069
  article-title: Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress
  publication-title: Am J Physiol
– volume: 214
  start-page: 67
  year: 2014
  end-page: 80
  article-title: Interplay of mechanotransduction, FOXC2, connexins, and calcineurin signaling in lymphatic valve formation
  publication-title: Adv Anat Embryol Cell Biol
– volume: 167
  start-page: 1358
  year: 1993
  end-page: 1363
  article-title: Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes
  publication-title: J Infect Dis
– volume: 308
  start-page: H1065
  year: 2015
  end-page: H1077
  article-title: Regulation of inflammation and fibrosis by macrophages in lymphedema
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 23
  start-page: 76
  year: 2005
  end-page: 83
  article-title: The problem of post‐breast cancer lymphedema: impact and measurement issues
  publication-title: Cancer Invest
– volume: 28
  start-page: 666.663
  issue: Suppl.
  year: 2014
  article-title: KCNQ and ERG channels control the rate of diastolic depolarization and electrical pacemaking frequency in lymphatic muscle
  publication-title: FASEB J
– volume: 310
  start-page: 77
  year: 2002
  end-page: 84
  article-title: Kit‐like immunopositive cells in sheep mesenteric lymphatic vessels
  publication-title: Cell Tissue Res
– volume: 38
  start-page: 55
  year: 2015
  end-page: 66
  article-title: Emerging trends in the pathophysiology of lymphatic contractile function
  publication-title: Semin Cell Dev Biol
– volume: 59
  start-page: 187
  year: 1970
  end-page: 201
  article-title: Experimental lymphatic obstruction in the ileum
  publication-title: Ann Chir Gynaecol Fenn
– volume: 13
  start-page: 169
  year: 2003
  end-page: 177
  article-title: Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion
  publication-title: Physiol Genomics
– volume: 251
  start-page: 206
  year: 2002
  end-page: 220
  article-title: Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40
  publication-title: Dev Biol
– volume: 303
  start-page: H693
  year: 2012
  end-page: H702
  article-title: Aging‐associated shifts in functional status of mast cells located by adult and aged mesenteric lymphatic vessels
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 49
  start-page: 97
  year: 1995
  end-page: 110
  article-title: Importance of valves and lymphangion contractions in determining pressure gradients in isolated lymphatics exposed to elevations in outflow pressure
  publication-title: Microvasc Res
– volume: 35
  start-page: 1247
  year: 2011
  end-page: 1250
  article-title: Oedema in obesity; role of structural lymphatic abnormalities
  publication-title: Int J Obes (Lond)
– volume: 60
  start-page: 261
  year: 2000
  end-page: 268
  article-title: 5‐HT inhibits spontaneous contractility of isolated sheep mesenteric lymphatics via activation of 5‐HT receptors
  publication-title: Microvasc Res
– volume: 10
  start-page: 189
  year: 2012
  end-page: 197
  article-title: Analysis of nerve supply pattern in human lymphatic vessels of young and old men
  publication-title: Lymphat Res Biol
– volume: 125
  start-page: 2979
  year: 2015
  end-page: 2994
  article-title: GATA2 is required for lymphatic vessel valve development and maintenance
  publication-title: J Clin Invest
– volume: 250
  start-page: H706
  year: 1986
  end-page: H710
  article-title: Some consequences of capillary permeability to macromolecules: Starling's hypothesis revisited
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 295
  start-page: H1989
  year: 2008
  end-page: H2000
  article-title: Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 172
  start-page: 4038
  year: 2015
  end-page: 4051
  article-title: IL‐1β reduces tonic contraction of mesenteric lymphatic muscle cells, with the involvement of cycloxygenase‐2 and prostaglandin E
  publication-title: Br J Pharmacol
– volume: 308
  start-page: H1229
  year: 2015
  end-page: H1236
  article-title: Fibrosis worsens chronic lymphedema in rodent tissues
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 239
  start-page: H775
  year: 1980
  end-page: H783
  article-title: Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg
  publication-title: Am J Physiol
– volume: 592
  start-page: 1213
  year: 2014
  end-page: 1223
  article-title: quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice
  publication-title: J Physiol
– volume: 19
  start-page: 309
  year: 2008
  end-page: 320
  article-title: Defective remodeling and maturation of the lymphatic vasculature in Angiopoietin‐2 deficient mice
  publication-title: Dev Biol
– volume: 96
  start-page: 38
  year: 2014
  end-page: 45
  article-title: Primary and secondary lymphatic valve development: molecular, functional and mechanical insights
  publication-title: Microvasc Res
– volume: 291
  start-page: G566
  year: 2006
  end-page: G574
  article-title: Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 59
  start-page: 2817
  year: 2010
  end-page: 2825
  article-title: Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss
  publication-title: Diabetes
– volume: 1207
  start-page: E75
  issue: Suppl. 1
  year: 2010
  end-page: 85
  article-title: Emerging roles of lymphatics in inflammatory bowel disease
  publication-title: Ann NY Acad Sci
– volume: 197
  start-page: 837
  year: 2012
  end-page: 849
  article-title: Smooth muscle‐endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation
  publication-title: J Cell Biol
– volume: 354
  start-page: 253
  year: 2011
  end-page: 266
  article-title: Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax
  publication-title: Dev Biol
– volume: 592
  start-page: 4697
  year: 2014
  end-page: 4714
  article-title: Human lymphatic vessel contractile activity is inhibited but not by the calcium channel blocker nifedipine
  publication-title: J Physiol
– volume: 1131
  start-page: 89
  year: 2008
  end-page: 99
  article-title: Molecular regulation of lymphatic contractility
  publication-title: Ann NY Acad Sci
– volume: 9
  start-page: e94713
  year: 2014
  article-title: Chronic high‐fat diet impairs collecting lymphatic vessel function in mice
  publication-title: PLoS One
– volume: 16
  start-page: 1029
  year: 2010
  end-page: 1039
  article-title: Angiopoietin‐2 in experimental colitis
  publication-title: Inflamm Bowel Dis
– start-page: 360
  year: 1966
  end-page: 365
– volume: 305
  start-page: H203
  year: 2013
  end-page: H210
  article-title: Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 122
  start-page: 733
  year: 2012
  end-page: 747
  article-title: RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice
  publication-title: J Clin Invest
– volume: 591
  start-page: 2139
  year: 2013
  end-page: 2156
  article-title: Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels
  publication-title: J Physiol
– volume: 37
  start-page: 218
  year: 1989
  end-page: 229
  article-title: Suppression of fluid pumping in isolated bovine mesenteric lymphatics by interleukin‐1: interaction with prostaglandin E
  publication-title: Microvasc Res
– volume: 260
  start-page: H1935
  year: 1991
  end-page: H1943
  article-title: Reactive oxygen metabolites inhibit spontaneous lymphatic contractions
  publication-title: Am J Physiol
– volume: 204
  start-page: 2349
  year: 2007
  end-page: 2362
  article-title: Functionally specialized junctions between endothelial cells of lymphatic vessels
  publication-title: J Exp Med
– volume: 1
  start-page: 87
  year: 1960
  end-page: 105
  article-title: Crohn's disease (regional enteritis) of the large intestine and its distinction from ulcerative colitis
  publication-title: Gut
– volume: 22
  start-page: 430
  year: 2012
  end-page: 445
  article-title: Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic‐valve formation
  publication-title: Dev Cell
– volume: 48
  start-page: 397
  year: 2011
  end-page: 407
  article-title: Mutations in in humans (lymphoedema distichiasis syndrome) cause lymphatic dysfunction on dependency
  publication-title: J Vasc Res
– volume: 42
  start-page: 98
  year: 2005
  end-page: 102
  article-title: Milroy disease and the VEGFR‐3 mutation phenotype
  publication-title: J Med Genet
– volume: 295
  start-page: H587
  year: 2008
  end-page: H597
  article-title: Modulation of lymphatic muscle contractility by the neuropeptide substance P
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 301
  start-page: H1897
  year: 2011
  end-page: H1906
  article-title: Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 591
  start-page: 5071
  year: 2013
  end-page: 5081
  article-title: Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides
  publication-title: J Physiol
– volume: 228
  start-page: 1326
  year: 1975
  end-page: 1335
  article-title: Micromanipulation of pressure in terminal lymphatics in the rat mesentery
  publication-title: Am J Physiol
– volume: 17
  start-page: 175
  year: 2009
  end-page: 186
  article-title: Integrin‐α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis
  publication-title: Dev Cell
– volume: 501.P
  start-page: 109
  year: 1997
  end-page: 110P
  article-title: Isolated sheep mesenteric lymphatic smooth muscle cells possess both T‐ and L‐type calcium currents
  publication-title: J Physiol
– volume: 290
  start-page: H813
  year: 2006
  end-page: H822
  article-title: Calcitonin gene‐related peptide activates different signaling pathways in mesenteric lymphatics of guinea pigs
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 108
  start-page: 18784
  year: 2011
  end-page: 18789
  article-title: Impaired lymphatic contraction associated with immunosuppression
  publication-title: Proc Natl Acad Sci USA
– volume: 107
  start-page: 89
  year: 2015
  end-page: 97
  article-title: Lymphatic vascular integrity is disrupted in type 2 diabetes due to impaired nitric oxide signalling
  publication-title: Cardiovasc Res
– volume: 27
  start-page: 127
  year: 1990
  end-page: 136
  article-title: Lymphatic innervation
  publication-title: Blood Vessels
– volume: 212
  start-page: 991
  year: 2015
  end-page: 999
  article-title: A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules
  publication-title: J Exp Med
– volume: 592
  start-page: 5409
  year: 2014
  end-page: 5427
  article-title: Distinct roles of L‐ and T‐type voltage‐dependent Ca channels in regulation of lymphatic vessel contractile activity
  publication-title: J Physiol
– volume: 70
  start-page: 1055
  year: 2013
  end-page: 1066
  article-title: Flow control in our vessels: vascular valves make sure there is no way back
  publication-title: Cell Mol Life Sci
– volume: 307
  start-page: H33
  year: 2014
  end-page: H43
  article-title: The contribution of K channels to human thoracic duct contractility
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 450
  start-page: 1023
  year: 2002
  end-page: 1037
  article-title: Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct
  publication-title: J Physiol
– volume: 115
  start-page: 1912
  year: 2007
  end-page: 1920
  article-title: Mutations in are strongly associated with primary valve failure in veins of the lower limb
  publication-title: Circulation
– volume: 24
  start-page: 161
  year: 1991
  end-page: 167
  article-title: Peptidergic innervation of mesenteric lymphatics in guinea pigs: an immunocytochemical and pharmacological study
  publication-title: Lymphology
– volume: 34
  start-page: 533
  year: 2011
  end-page: 543
  article-title: Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease
  publication-title: Aliment Pharmacol Ther
– volume: 15
  start-page: 2814
  year: 1998
  end-page: 2816
  article-title: Precipitating factors in lymphedema: myths and realities
  publication-title: Cancer
– volume: 17
  start-page: 395
  year: 2014
  end-page: 406
  article-title: The effects of inflammatory cytokines on lymphatic endothelial barrier function
  publication-title: Angiogenesis
– volume: 86
  start-page: 943
  year: 2010
  end-page: 948
  article-title: GJC2 missense mutations cause human lymphedema
  publication-title: Am J Hum Genet
– volume: 90
  start-page: 497
  year: 1949
  end-page: 509
  article-title: Lymphatic contractility; a possible intrinsic mechanism of lymphatic vessels for the transport of lymph
  publication-title: J Exp Med
– volume: 309
  start-page: H2042
  year: 2015
  end-page: H2057
  article-title: Lipopolysaccharide modulates neutrophil recruitment and macrophage polarization on lymphatic vessels and impairs lymphatic function in rat mesentery
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 53
  start-page: 535
  year: 1983
  end-page: 538
  article-title: Vasoactive intestinal peptide inhibitory innervation in bovine mesenteric lymphatics. A histochemical and pharmacological study
  publication-title: Circ Res
– volume: 124
  start-page: 273
  year: 2014
  end-page: 284
  article-title: Platelets mediate lymphovenous hemostasis to maintain blood‐lymphatic separation throughout life
  publication-title: J Clin Invest
– volume: 18
  start-page: 463
  year: 2011
  end-page: 473
  article-title: Aging‐associated alterations in contractility of rat mesenteric lymphatic vessels
  publication-title: Microcirculation
– volume: 21
  start-page: 1018
  year: 2008
  end-page: 1022
  article-title: Metabolic syndrome: comparison of the two commonly used animal models
  publication-title: Am J Hypertens
– volume: 99
  start-page: 140
  year: 1977
  end-page: 148
  article-title: Twenty‐four hour variation in flow and composition of leg lymph in normal men
  publication-title: Acta Physiol Scand
– volume: 175
  start-page: 1328
  year: 2009
  end-page: 1337
  article-title: Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration
  publication-title: Am J Pathol
– volume: 306
  start-page: H206
  year: 2014
  end-page: H213
  article-title: The human thoracic duct is functionally innervated by adrenergic nerves
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 11
  start-page: e0148384
  year: 2016
  article-title: Network scale modeling of lymph transport and its effective pumping parameters
  publication-title: PLoS One
– volume: 111
  start-page: 426
  year: 2012
  end-page: 436
  article-title: An unexpected role of semaphorin3a‐neuropilin‐1 signaling in lymphatic vessel maturation and valve formation
  publication-title: Circ Res
– volume: 195
  start-page: 439
  year: 2009
  end-page: 457
  article-title: controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1
  publication-title: J Cell Biol
– volume: 56
  start-page: 127
  year: 1998
  end-page: 138
  article-title: Pressure‐volume relationships in sheep mesenteric lymphatic vessels in situ: response to hypovolemia
  publication-title: Microvasc Res
– volume: 1777
  start-page: 2124
  year: 2010
  end-page: 2133
  article-title: Akt/protein kinase B is required for lymphatic network formation, remodeling, and valve development
  publication-title: Am J Pathol
– volume: 70
  start-page: 987
  year: 1990
  end-page: 1028
  article-title: Microlymphatics and lymph flow
  publication-title: Physiol Rev
– volume: 593
  start-page: 3109
  year: 2015
  end-page: 3122
  article-title: Voltage‐gated sodium channels contribute to action potentials and spontaneous contractility in isolated human lymphatic vessels
  publication-title: J Physiol
– volume: 21
  start-page: 480
  year: 2010
  end-page: 487
  article-title: Lymphatic lipid transport: sewer or subway?
  publication-title: Trends Endocrinol Metab
– volume: 100
  start-page: 556
  year: 2007
  end-page: 563
  article-title: Connexin 40 is essential for the pressure control of renin synthesis and secretion
  publication-title: Circ Res
– volume: 295
  start-page: H2113
  year: 2008
  end-page: H2127
  article-title: TGF‐β1 is a negative regulator of lymphatic regeneration during wound repair
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 125
  start-page: 3861
  year: 2015
  end-page: 3877
  article-title: FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature
  publication-title: J Clin Invest
– volume: 197
  start-page: 145
  year: 2013
  end-page: 158
  article-title: Identification of interstitial Cajal‐like cells in the human thoracic duct
  publication-title: Cells Tissues Organs
– volume: 12
  start-page: 37
  year: 2014
  end-page: 47
  article-title: Mast cell‐directed recruitment of MHC class II positive cells and eosinophils towards mesenteric lymphatic vessels in adulthood and elderly
  publication-title: Lymphat Res Biol
– volume: 302
  start-page: H2250
  year: 2012
  end-page: H2256
  article-title: Functional recovery of fluid drainage precedes lymphangiogenesis in acute murine foreleg
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 303
  start-page: H1107
  year: 2012
  end-page: H1113
  article-title: A chronic and latent lymphatic insufficiency follows recovery from acute lymphedema in the rat foreleg
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 14
  start-page: 1
  year: 1981
  end-page: 6
  article-title: Cholinergic and adrenergic innervation of mesenterial lymph vessels in guinea pig
  publication-title: Lymphology
– volume: 10
  start-page: 974
  year: 2004
  end-page: 981
  article-title: Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis
  publication-title: Nat Med
– volume: 11
  start-page: 117
  year: 2013
  end-page: 120
  article-title: The lymphatics and the inflammatory response: lessons learned from human lymphedema
  publication-title: Lymphat Res Biol
– volume: 10
  start-page: 53
  year: 2012
  end-page: 62
  article-title: Evidence of increased oxidative stress in aged mesenteric lymphatic vessels
  publication-title: Lymphat Res Biol
– volume: 4
  start-page: 125
  year: 1971
  end-page: 132
  article-title: Stereomicroscopic funnel‐like architecture of pulmonary lymphatic valves
  publication-title: Lymphology
– volume: 11
  start-page: 477
  year: 2004
  end-page: 492
  article-title: Regional variations of contractile activity in isolated rat lymphatics
  publication-title: Microcirculation
– volume: 576
  start-page: 721
  year: 2008
  end-page: 726
  article-title: Interstitial cells of Cajal: a new perspective on smooth muscle function
  publication-title: J Physiol
– volume: 293
  start-page: H1183
  year: 2007
  end-page: H1189
  article-title: Lymphangion coordination minimally affects mean flow in lymphatic vessels
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 471
  start-page: 465
  year: 1993
  end-page: 479
  article-title: Pacemaker potentials in lymphatic smooth muscle of the guinea‐pig mesentery
  publication-title: J Physiol
– volume: 192
  start-page: 2326
  year: 2014
  end-page: 2338
  article-title: Epigenetic silencing of the human gene: rethinking the role of nitric oxide in human macrophage inflammatory responses
  publication-title: J Immunol
– volume: 177
  start-page: 3202
  year: 2010
  end-page: 3214
  article-title: Blockade of transforming growth factor‐β1 accelerates lymphatic regeneration during wound repair
  publication-title: Am J Pathol
– volume: 6
  start-page: 8085
  year: 2015
  article-title: Novel mutations in cause an autosomal recessive generalized lymphatic dysplasia with non‐immune hydrops fetalis
  publication-title: Nat Commun
– volume: 309
  start-page: 461
  year: 1980
  end-page: 472
  article-title: Nervous modulation of spontaneous contractions in bovine mesenteric lymphatics
  publication-title: J Physiol
– volume: 13
  start-page: 1458
  year: 2007
  end-page: 1466
  article-title: Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation
  publication-title: Nat Med
– volume: 9
  start-page: e106034
  year: 2014
  article-title: Spatio‐temporal changes of lymphatic contractility and drainage patterns following lymphadenectomy in mice
  publication-title: PLoS One
– volume: 271
  start-page: 379
  year: 1994
  end-page: 385
  article-title: 5‐Hydroxytryptamine‐2 and ‐4 receptors located on bovine isolated mesenteric lymphatics
  publication-title: J Pharmacol Exp Ther
– volume: 591
  start-page: 4549
  year: 2013
  end-page: 4565
  article-title: Cyclic guanosine monophosphate and the dependent protein kinase regulate lymphatic contractility in rat thoracic duct
  publication-title: J Physiol
– volume: 493
  start-page: 563
  year: 1996
  end-page: 575
  article-title: Endothelium‐dependent modulation of pacemaking in lymphatic vessels of the guinea‐pig mesentery
  publication-title: J Physiol
– volume: 19
  start-page: 397
  year: 2005
  end-page: 410
  article-title: PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature
  publication-title: Genes Dev
– volume: 18
  start-page: 2382
  year: 2012
  end-page: 2390
  article-title: Connexin 47 mutations increase risk for secondary lymphedema following breast cancer treatment
  publication-title: Clin Cancer Res
– volume: 481
  start-page: 415
  year: 1994
  end-page: 423
  article-title: Mediation of excitatory neurotransmission by the release of ATP and noradrenaline in sheep mesenteric lymphatic vessels
  publication-title: J Physiol
– volume: 194
  start-page: 5200
  year: 2015
  end-page: 5210
  article-title: Collecting lymphatic vessel permeability facilitates adipose tissue inflammation and distribution of antigen to lymph node – homing adipose tissue dendritic cells
  publication-title: J Immunol
– volume: 17
  start-page: 671
  year: 2013
  end-page: 684
  article-title: Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR‐BI‐mediated transport of HDL
  publication-title: Cell Metab
– volume: 261
  start-page: 255
  year: 1976
  end-page: 269
  article-title: The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels
  publication-title: J Physiol
– volume: 583
  start-page: 271
  year: 2007
  end-page: 285
  article-title: Human lymphatic pumping measured in healthy and lymphoedematous arms by lymphatic congestion lymphoscintigraphy
  publication-title: J Physiol
– volume: 1
  start-page: 159
  year: 2003
  end-page: 169
  article-title: Animal models for the study of lymphatic insufficiency
  publication-title: Lymphat Res Biol
– volume: 89
  start-page: 2595
  year: 2004
  end-page: 2600
  article-title: Obesity, metabolic syndrome, and cardiovascular disease
  publication-title: J Clin Endocrinol Metab
– volume: 409
  start-page: 218
  year: 2016
  end-page: 233
  article-title: Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development
  publication-title: Dev Biol
– volume: 23
  start-page: 1345
  year: 1968
  end-page: 1347
  article-title: Observations of movements of lymph vessels in patients with lymphoedema of the limbs
  publication-title: Polski Tygodnik Lekarski
– volume: 264
  start-page: H1283
  year: 1993
  end-page: H1291
  article-title: Distribution, propagation, and coordination of contractile activity in lymphatics
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 587
  start-page: 165
  year: 2008
  end-page: 182
  article-title: Rate‐sensitive contractile responses of lymphatic vessels to circumferential stretch
  publication-title: J Physiol
– volume: 87
  start-page: 474
  year: 2000
  end-page: 479
  article-title: Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries – Role in vasomotor control
  publication-title: Circ Res
– volume: 125
  start-page: 2995
  year: 2015
  end-page: 3007
  article-title: Lymph flow regulates collecting lymphatic vessel maturation in vivo
  publication-title: J Clin Invest
– volume: 411
  start-page: 167
  year: 1988
  end-page: 172
  article-title: The effect of known K ‐channel blockers on the electrical activity of bovine lymphatic smooth muscle
  publication-title: Pflugers Arch
– volume: 67
  start-page: 1097
  year: 1990
  end-page: 1106
  article-title: Lymphatic pumping in response to changes in transmural pressure is modulated by erythrolysate/hemoglobin
  publication-title: Circ Res
– volume: 450
  start-page: 503
  year: 1992
  end-page: 512
  article-title: Co‐ordination of pumping in isolated bovine lymphatic vessels
  publication-title: J Physiol
– volume: 37
  start-page: 1072
  year: 2005
  end-page: 1081
  article-title: Lymphatic vascular defects promoted by haploinsufficiency cause adult‐onset obesity
  publication-title: Nat Genet
– volume: 123
  start-page: 1571
  year: 2013
  end-page: 1579
  article-title: Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice
  publication-title: J Clin Invest
– volume: 141
  start-page: 2446
  year: 2014
  end-page: 2451
  article-title: Notch signaling functions in lymphatic valve formation
  publication-title: Development
– volume: 25
  start-page: 2187
  year: 2011
  end-page: 2197
  article-title: Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves
  publication-title: Genes Dev
– volume: 521
  start-page: 201
  year: 1999
  end-page: 211
  article-title: Hyperpolarization‐activated inward current in isolated sheep mesenteric lymphatic smooth muscle
  publication-title: J Physiol
– volume: 979
  start-page: 52
  year: 2002
  end-page: 63
  article-title: Contractility patterns of normal and pathologically changed human lymphatics
  publication-title: Ann NY Acad Sci
– volume: 590
  start-page: 2677
  year: 2012
  end-page: 2691
  article-title: Mechanisms of VIP‐induced inhibition of the lymphatic vessel pump
  publication-title: J Physiol
– volume: 296
  start-page: H293
  year: 2009
  end-page: H302
  article-title: Myogenic constriction and dilation of isolated lymphatic vessels
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 303
  start-page: H809
  year: 2012
  end-page: H824
  article-title: Independent and interactive effects of preload and afterload on the pump function of the isolated lymphangion
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 111
  start-page: 717
  year: 2003
  end-page: 725
  article-title: VEGF‐C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema
  publication-title: J Clin Invest
– volume: 39
  start-page: 478
  year: 2002
  end-page: 483
  article-title: Analysis of the phenotypic abnormalities in lymphoedema‐distichiasis syndrome in 74 patients with mutations or linkage to 16q24
  publication-title: J Med Genet
– volume: 500
  start-page: 235
  year: 1997
  end-page: 244
  article-title: Co‐ordination of contractile activity in guinea‐pig mesenteric lymphatics
  publication-title: J Physiol
– volume: 277
  start-page: H1453
  year: 1999
  end-page: H1456
  article-title: Involvement of ATP‐sensitive K channels in spontaneous activity of isolated lymph microvessels in rats
  publication-title: Am J Physiol
– volume: 130
  start-page: 981
  year: 2011
  end-page: 991
  article-title: Risk factors for lymphedema in breast cancer survivors, the Iowa Women's Health Study
  publication-title: Breast Cancer Res Treat
– volume: 13
  start-page: 91
  year: 1980
  end-page: 99
  article-title: Scanning electron microscopic study of canine lymphatic vessels and their valves
  publication-title: Lymphology
– volume: 44
  start-page: 43
  year: 2003
  end-page: 57
  article-title: The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema
  publication-title: J Nucl Med
– volume: 21
  start-page: 561
  year: 2004
  end-page: 574
  article-title: Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization
  publication-title: Immunity
– volume: 588
  start-page: 243
  year: 2010
  end-page: 254
  article-title: determination of collecting lymphatic vessel permeability to albumin: a role for lymphatics in exchange
  publication-title: J Physiol
– volume: 55
  start-page: 6440
  year: 2014
  end-page: 6442
  article-title: Consensus statement on the immunohistochemical detection of ocular lymphatic vessels
  publication-title: Invest Ophthalmol Vis Sci
– volume: 21
  start-page: 640
  year: 2014
  end-page: 648
  article-title: Involvement of histamine in endothelium‐dependent relaxation of mesenteric lymphatic vessels
  publication-title: Microcirculation
– volume: 591
  start-page: 443
  year: 2012
  end-page: 449
  article-title: Constriction of isolated collecting lymphatic vessels in response to acute increases in downsteam pressure
  publication-title: J Physiol
– volume: 34
  start-page: 5128
  year: 2013
  end-page: 5137
  article-title: Use of a PEG‐conjugated bright near‐infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis
  publication-title: Biomaterials
– volume: 19
  start-page: 403
  year: 2012
  end-page: 415
  article-title: Myoendothelial contacts, gap junctions, and microdomains: anatomical links to function?
  publication-title: Microcirculation
– volume: 8
  start-page: 958
  year: 2008
  end-page: 969
  article-title: Exploring the full spectrum of macrophage activation
  publication-title: Nat Rev Immunol
– volume: 301
  start-page: H48
  year: 2011
  end-page: H60
  article-title: Determinants of valve gating in collecting lymphatic vessels from rat mesentery
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 1207
  start-page: E94
  issue: Suppl. 1
  year: 2010
  end-page: 102
  article-title: Lymphatic system: a vital link between metabolic syndrome and inflammation
  publication-title: Ann NY Acad Sci
– year: 1991
– volume: 17
  start-page: 920
  year: 2003
  end-page: 922
  article-title: Molecular and functional analyses of the contractile apparatus in lymphatic muscle
  publication-title: FASEB J
– volume: 253
  start-page: H1349
  year: 1987
  end-page: H1357
  article-title: Decreased lymphatic pumping after intravenous endotoxin administration in sheep
  publication-title: Am J Physiol
– volume: 302
  start-page: H643
  year: 2012
  end-page: H653
  article-title: Impairments in the intrinsic contractility of mesenteric collecting lymphatics in a rat model of metabolic syndrome
  publication-title: Am J Physiol Heart Circ Physiol
– ident: e_1_2_6_78_1
  doi: 10.1161/CIRCRESAHA.112.269399
– ident: e_1_2_6_25_1
  doi: 10.1136/jmg.39.7.478
– ident: e_1_2_6_162_1
  doi: 10.1038/nm1689
– ident: e_1_2_6_121_1
  doi: 10.1196/annals.1413.008
– ident: e_1_2_6_177_1
  doi: 10.1152/ajpheart.00007.2008
– ident: e_1_2_6_151_1
  doi: 10.1152/physrev.1990.70.4.987
– ident: e_1_2_6_164_1
  doi: 10.1152/ajpheart.00921.2013
– volume: 239
  start-page: H775
  year: 1980
  ident: e_1_2_6_129_1
  article-title: Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg
  publication-title: Am J Physiol
– ident: e_1_2_6_57_1
  doi: 10.1080/10739680490476033
– ident: e_1_2_6_137_1
  doi: 10.1089/lrb.2013.1132
– ident: e_1_2_6_9_1
  doi: 10.1089/1539685041690409
– ident: e_1_2_6_44_1
  doi: 10.1016/j.ydbio.2008.04.024
– ident: e_1_2_6_147_1
  doi: 10.1093/cvr/cvv117
– ident: e_1_2_6_134_1
  doi: 10.1111/j.1365-2036.2011.04759.x
– ident: e_1_2_6_74_1
  doi: 10.1113/jphysiol.1994.sp020450
– ident: e_1_2_6_138_1
  doi: 10.1016/j.mvr.2006.05.009
– volume: 78
  start-page: 521
  year: 1971
  ident: e_1_2_6_169_1
  article-title: The structure of valves in the lymphatic vessels
  publication-title: Anat Rec
– ident: e_1_2_6_179_1
  doi: 10.1111/j.1469-7793.1997.439be.x
– ident: e_1_2_6_49_1
  doi: 10.1152/ajpheart.1987.253.6.H1349
– ident: e_1_2_6_24_1
  doi: 10.1136/jmg.2004.024802
– ident: e_1_2_6_56_1
  doi: 10.1002/ibd.21150
– ident: e_1_2_6_109_1
  doi: 10.1161/CIRCULATIONAHA.106.675348
– ident: e_1_2_6_2_1
  doi: 10.1007/s10549-011-1667-z
– ident: e_1_2_6_43_1
  doi: 10.1152/physiolgenomics.00169.2002
– ident: e_1_2_6_50_1
  doi: 10.1161/01.RES.67.5.1097
– ident: e_1_2_6_33_1
  doi: 10.1152/ajpheart.00879.2008
– ident: e_1_2_6_37_1
  doi: 10.1113/jphysiol.1997.sp022013
– ident: e_1_2_6_155_1
  doi: 10.1089/153968503321642642
– ident: e_1_2_6_157_1
  doi: 10.1084/jem.90.5.497
– ident: e_1_2_6_19_1
  doi: 10.1152/ajpheart.1989.257.6.H2059
– ident: e_1_2_6_93_1
  doi: 10.1016/j.cmet.2013.04.002
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1469-7793.1997.001bi.x
– volume: 260
  start-page: H1172
  year: 1991
  ident: e_1_2_6_127_1
  article-title: Acetylcholine‐induced release of endothelium‐derived relaxing factor from lymphatic endothelial cells
  publication-title: Am J Physiol
– ident: e_1_2_6_153_1
  doi: 10.1167/iovs.14-15638
– ident: e_1_2_6_180_1
  doi: 10.1016/j.biocel.2003.12.008
– ident: e_1_2_6_10_1
  doi: 10.1016/j.immuni.2004.09.003
– ident: e_1_2_6_77_1
  doi: 10.1016/0090-6980(83)90138-7
– volume: 271
  start-page: 379
  year: 1994
  ident: e_1_2_6_115_1
  article-title: 5‐Hydroxytryptamine‐2 and ‐4 receptors located on bovine isolated mesenteric lymphatics
  publication-title: J Pharmacol Exp Ther
  doi: 10.1016/S0022-3565(25)22801-4
– ident: e_1_2_6_166_1
  doi: 10.1113/jphysiol.2014.276683
– ident: e_1_2_6_59_1
  doi: 10.1113/jphysiol.2013.258681
– ident: e_1_2_6_182_1
  doi: 10.1371/journal.pone.0070703
– ident: e_1_2_6_192_1
  doi: 10.2353/ajpath.2010.091301
– ident: e_1_2_6_135_1
  doi: 10.1152/ajpheart.1986.250.5.H706
– ident: e_1_2_6_3_1
  doi: 10.1152/ajpheart.00538.2011
– ident: e_1_2_6_76_1
  doi: 10.1371/journal.pone.0148384
– volume: 14
  start-page: 1
  year: 1981
  ident: e_1_2_6_6_1
  article-title: Cholinergic and adrenergic innervation of mesenterial lymph vessels in guinea pig
  publication-title: Lymphology
– ident: e_1_2_6_20_1
  doi: 10.1371/journal.pone.0094713
– ident: e_1_2_6_35_1
  doi: 10.1097/MIB.0000000000000402
– ident: e_1_2_6_5_1
  doi: 10.1002/ar.1092020404
– ident: e_1_2_6_60_1
  doi: 10.1016/j.ydbio.2015.10.022
– ident: e_1_2_6_146_1
  doi: 10.1113/jphysiol.2013.260042
– volume: 44
  start-page: 43
  year: 2003
  ident: e_1_2_6_161_1
  article-title: The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema
  publication-title: J Nucl Med
– ident: e_1_2_6_12_1
  doi: 10.1084/jem.20142290
– ident: e_1_2_6_40_1
  doi: 10.1152/ajpheart.01029.2007
– volume: 4
  start-page: 125
  year: 1971
  ident: e_1_2_6_86_1
  article-title: Stereomicroscopic funnel‐like architecture of pulmonary lymphatic valves
  publication-title: Lymphology
– ident: e_1_2_6_168_1
  doi: 10.1002/ar.1091770210
– ident: e_1_2_6_52_1
  doi: 10.1111/j.1748-1716.1977.tb10364.x
– ident: e_1_2_6_176_1
  doi: 10.1152/ajpheart.00007.2008
– ident: e_1_2_6_53_1
  doi: 10.1016/j.ajhg.2010.04.010
– ident: e_1_2_6_142_1
  doi: 10.1113/jphysiol.2006.115279
– ident: e_1_2_6_124_1
  doi: 10.1083/jcb.200901104
– ident: e_1_2_6_145_1
  doi: 10.1113/jphysiol.2012.250662
– ident: e_1_2_6_30_1
  doi: 10.1038/sj.bjp.0705264
– volume: 228
  start-page: 1326
  year: 1975
  ident: e_1_2_6_193_1
  article-title: Micromanipulation of pressure in terminal lymphatics in the rat mesentery
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1975.228.5.1326
– ident: e_1_2_6_11_1
  doi: 10.1081/CNV-48707
– ident: e_1_2_6_126_1
  doi: 10.1161/01.RES.53.4.535
– ident: e_1_2_6_91_1
  doi: 10.1073/pnas.1116152108
– ident: e_1_2_6_149_1
  doi: 10.1113/jphysiol.2012.237909
– ident: e_1_2_6_47_1
  doi: 10.1152/ajpheart.00677.2012
– ident: e_1_2_6_144_1
  doi: 10.1161/01.RES.8.5.1077
– ident: e_1_2_6_175_1
  doi: 10.1113/jphysiol.1996.sp021404
– ident: e_1_2_6_99_1
  doi: 10.1172/JCI63685
– ident: e_1_2_6_123_1
  doi: 10.1111/micc.12143
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1749-6632.2010.05752.x
– ident: e_1_2_6_85_1
  doi: 10.1172/JCI46116
– ident: e_1_2_6_32_1
  doi: 10.1089/lrb.2013.0031
– ident: e_1_2_6_108_1
  doi: 10.1097/PRS.0000000000000268
– ident: e_1_2_6_173_1
  doi: 10.1152/ajpheart.01340.2006
– ident: e_1_2_6_94_1
  doi: 10.1136/gut.1.2.87
– ident: e_1_2_6_29_1
  doi: 10.1152/ajpheart.00467.2015
– ident: e_1_2_6_39_1
  doi: 10.1113/jphysiol.2008.162438
– volume: 260
  start-page: H1935
  year: 1991
  ident: e_1_2_6_189_1
  article-title: Reactive oxygen metabolites inhibit spontaneous lymphatic contractions
  publication-title: Am J Physiol
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1749-6632.2010.05757.x
– ident: e_1_2_6_104_1
  doi: 10.1113/jphysiol.1992.sp019139
– ident: e_1_2_6_106_1
  doi: 10.1113/jphysiol.1980.sp013520
– ident: e_1_2_6_8_1
  doi: 10.1007/BF00582310
– ident: e_1_2_6_158_1
  doi: 10.4199/C00030ED1V01Y201104ISP018
– ident: e_1_2_6_55_1
  doi: 10.1038/ncomms9085
– ident: e_1_2_6_71_1
  doi: 10.1172/JCI70422
– ident: e_1_2_6_140_1
  doi: 10.1172/JCI80454
– ident: e_1_2_6_120_1
  doi: 10.1096/fj.02-0626fje
– ident: e_1_2_6_107_1
  doi: 10.1006/mvre.2000.2275
– ident: e_1_2_6_67_1
  doi: 10.1016/0026-2862(89)90039-3
– ident: e_1_2_6_141_1
  doi: 10.1007/978-3-7091-1646-3_6
– ident: e_1_2_6_26_1
  doi: 10.1159/000342437
– ident: e_1_2_6_171_1
  doi: 10.1136/gut.2007.123166
– ident: e_1_2_6_98_1
  doi: 10.1101/gad.330105
– ident: e_1_2_6_38_1
  doi: 10.1152/ajpheart.01040.2008
– ident: e_1_2_6_54_1
  doi: 10.1158/1078-0432.CCR-11-2303
– ident: e_1_2_6_48_1
  doi: 10.1006/mvre.1995.1008
– volume: 501
  start-page: 109
  year: 1997
  ident: e_1_2_6_72_1
  article-title: Isolated sheep mesenteric lymphatic smooth muscle cells possess both T‐ and L‐type calcium currents
  publication-title: J Physiol
– ident: e_1_2_6_154_1
  doi: 10.1016/j.tcm.2013.09.004
– ident: e_1_2_6_15_1
  doi: 10.1084/jem.20062596
– ident: e_1_2_6_81_1
  doi: 10.1172/JCI78888
– ident: e_1_2_6_112_1
  doi: 10.1152/ajpheart.00522.2012
– ident: e_1_2_6_133_1
  doi: 10.1016/j.biomaterials.2013.03.034
– ident: e_1_2_6_68_1
  doi: 10.1196/annals.1413.007
– ident: e_1_2_6_167_1
  doi: 10.1089/lrb.2011.0022
– ident: e_1_2_6_178_1
  doi: 10.1113/jphysiol.2012.230599
– ident: e_1_2_6_22_1
  doi: 10.1113/jphysiol.2013.266700
– ident: e_1_2_6_88_1
  doi: 10.1113/jphysiol.2014.280347
– volume: 59
  start-page: 187
  year: 1970
  ident: e_1_2_6_79_1
  article-title: Experimental lymphatic obstruction in the ileum
  publication-title: Ann Chir Gynaecol Fenn
– ident: e_1_2_6_96_1
  doi: 10.1083/jcb.201110132
– ident: e_1_2_6_100_1
  doi: 10.1152/ajpgi.00392.2012
– ident: e_1_2_6_31_1
  doi: 10.1152/ajpheart.00378.2012
– ident: e_1_2_6_73_1
  doi: 10.1111/j.1469-7793.1997.013bi.x
– volume: 1
  start-page: 39
  year: 1968
  ident: e_1_2_6_87_1
  article-title: Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances
  publication-title: Lymphology
– ident: e_1_2_6_156_1
  doi: 10.1006/dbio.2002.0826
– ident: e_1_2_6_102_1
  doi: 10.1111/j.1469-7793.1999.00201.x
– ident: e_1_2_6_186_1
  doi: 10.1152/ajpgi.00058.2006
– ident: e_1_2_6_18_1
  doi: 10.1016/j.devcel.2009.06.017
– ident: e_1_2_6_152_1
  doi: 10.1093/infdis/167.6.1358
– ident: e_1_2_6_84_1
  doi: 10.1371/journal.pone.0106034
– ident: e_1_2_6_174_1
  doi: 10.1038/sj.bjp.0702026
– ident: e_1_2_6_46_1
  doi: 10.1016/j.tem.2010.04.003
– ident: e_1_2_6_128_1
  doi: 10.1111/j.1749-6632.2002.tb04867.x
– ident: e_1_2_6_64_1
  doi: 10.1210/jc.2004-0372
– ident: e_1_2_6_70_1
  doi: 10.1186/gb-2008-9-1-r14
– ident: e_1_2_6_63_1
  doi: 10.4049/jimmunol.1301758
– ident: e_1_2_6_187_1
  doi: 10.1172/JCI15830
– volume: 264
  start-page: H1283
  year: 1993
  ident: e_1_2_6_188_1
  article-title: Distribution, propagation, and coordination of contractile activity in lymphatics
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.1993.264.4.H1283
– ident: e_1_2_6_131_1
  doi: 10.1038/ajh.2008.218
– ident: e_1_2_6_118_1
  doi: 10.1038/nri2448
– ident: e_1_2_6_122_1
  doi: 10.1111/j.1549-8719.2011.00107.x
– ident: e_1_2_6_27_1
  doi: 10.1016/j.semcdb.2015.01.005
– ident: e_1_2_6_170_1
  doi: 10.1113/jphysiol.1993.sp019910
– volume: 23
  start-page: 1345
  year: 1968
  ident: e_1_2_6_130_1
  article-title: Observations of movements of lymph vessels in patients with lymphoedema of the limbs
  publication-title: Polski Tygodnik Lekarski
– ident: e_1_2_6_13_1
  doi: 10.2353/ajpath.2010.100594
– ident: e_1_2_6_92_1
  doi: 10.2353/ajpath.2009.080963
– ident: e_1_2_6_95_1
  doi: 10.1038/nature14432
– ident: e_1_2_6_132_1
  doi: 10.1038/nm1094
– volume: 24
  start-page: 161
  year: 1991
  ident: e_1_2_6_65_1
  article-title: Peptidergic innervation of mesenteric lymphatics in guinea pigs: an immunocytochemical and pharmacological study
  publication-title: Lymphology
– ident: e_1_2_6_113_1
  doi: 10.1089/lrb.2012.0013
– ident: e_1_2_6_191_1
  doi: 10.1152/ajpheart.00606.2011
– ident: e_1_2_6_97_1
  doi: 10.1152/ajpheart.00527.2013
– ident: e_1_2_6_69_1
  doi: 10.1038/ng1642
– volume: 27
  start-page: 127
  year: 1990
  ident: e_1_2_6_103_1
  article-title: Lymphatic innervation
  publication-title: Blood Vessels
– volume: 450
  start-page: 1023
  year: 2002
  ident: e_1_2_6_58_1
  article-title: Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2001.016642
– ident: e_1_2_6_80_1
  doi: 10.1016/j.ydbio.2011.04.004
– ident: e_1_2_6_117_1
  doi: 10.1113/jphysiol.2007.130401
– ident: e_1_2_6_21_1
  doi: 10.1152/ajpheart.00260.2011
– start-page: 360
  volume-title: Progress in Lymphology. Proceedings of the International Symposium on Lymphology
  year: 1966
  ident: e_1_2_6_114_1
– ident: e_1_2_6_119_1
  doi: 10.1242/dev.101188
– ident: e_1_2_6_16_1
  doi: 10.1007/s00018-012-1110-6
– ident: e_1_2_6_172_1
  doi: 10.1038/ijo.2010.273
– ident: e_1_2_6_139_1
  doi: 10.1016/j.devcel.2011.12.020
– ident: e_1_2_6_23_1
  doi: 10.1161/CIRCRESAHA.112.269316
– ident: e_1_2_6_51_1
  doi: 10.1161/01.RES.87.6.474
– ident: e_1_2_6_75_1
  doi: 10.1152/ajpheart.00543.2005
– ident: e_1_2_6_136_1
  doi: 10.1002/(SICI)1097-0142(19981215)83:12B <2814::AID-CNCR31>3.0.CO;2-E
– ident: e_1_2_6_125_1
  doi: 10.1016/0026-2862(84)90042-6
– ident: e_1_2_6_14_1
  doi: 10.1096/fj.12-222695
– ident: e_1_2_6_159_1
  doi: 10.1101/gad.16974811
– volume-title: Best and Taylor's Physiological Basis of Medical Practice
  year: 1991
  ident: e_1_2_6_183_1
– ident: e_1_2_6_41_1
  doi: 10.1152/ajpheart.00133.2011
– ident: e_1_2_6_116_1
  doi: 10.1152/ajpheart.1999.277.4.H1453
– ident: e_1_2_6_150_1
  doi: 10.1152/ajpheart.01098.2011
– volume-title: Comprehensive Physiology
  year: 2011
  ident: e_1_2_6_190_1
– ident: e_1_2_6_110_1
  doi: 10.1159/000323484
– ident: e_1_2_6_143_1
  doi: 10.1111/j.1549-8719.2011.00146.x
– ident: e_1_2_6_160_1
  doi: 10.1172/JCI79386
– ident: e_1_2_6_111_1
  doi: 10.1152/ajpheart.01159.2011
– volume: 28
  start-page: 666.663
  year: 2014
  ident: e_1_2_6_66_1
  article-title: KCNQ and ERG channels control the rate of diastolic depolarization and electrical pacemaking frequency in lymphatic muscle
  publication-title: FASEB J
– ident: e_1_2_6_181_1
  doi: 10.1161/01.RES.0000258856.19922.45
– ident: e_1_2_6_42_1
  doi: 10.1152/ajpheart.01097.2011
– volume: 13
  start-page: 91
  year: 1980
  ident: e_1_2_6_62_1
  article-title: Scanning electron microscopic study of canine lymphatic vessels and their valves
  publication-title: Lymphology
– ident: e_1_2_6_163_1
  doi: 10.1152/ajpheart.00517.2013
– ident: e_1_2_6_61_1
  doi: 10.1152/ajpheart.00598.2014
– ident: e_1_2_6_89_1
  doi: 10.1093/cvr/cvq062
– ident: e_1_2_6_4_1
  doi: 10.1111/bph.13194
– ident: e_1_2_6_90_1
  doi: 10.1006/mvre.1998.2089
– ident: e_1_2_6_185_1
  doi: 10.1016/j.jbiomech.2015.07.045
– ident: e_1_2_6_101_1
  doi: 10.1007/s00441-002-0623-y
– ident: e_1_2_6_184_1
  doi: 10.1152/physrev.00037.2011
– ident: e_1_2_6_165_1
  doi: 10.1113/JP270166
– ident: e_1_2_6_17_1
  doi: 10.1016/j.mvr.2014.07.008
– ident: e_1_2_6_105_1
  doi: 10.1113/jphysiol.1976.sp011557
– ident: e_1_2_6_148_1
  doi: 10.1113/jphysiol.2009.179622
– ident: e_1_2_6_45_1
  doi: 10.2337/db10-0585
– ident: e_1_2_6_83_1
  doi: 10.4049/jimmunol.1500221
– ident: e_1_2_6_36_1
  doi: 10.1007/s10456-013-9393-2
– ident: e_1_2_6_82_1
  doi: 10.1093/hmg/ddg123
SSID ssj0013099
Score 2.623157
SecondaryResourceType review_article
Snippet A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5749
SubjectTerms Animals
Cardiovascular Physiology
Humans
Lymph - physiology
lymphatic
Lymphatic system
Lymphatic System - physiology
Lymphatic Vessels - physiology
lymphedema
muscle contraction
Muscle Contraction - physiology
Muscle, Smooth - physiology
Pressure
Topical Review
Topical Reviews
Vasculature
Title Lymphatic pumping: mechanics, mechanisms and malfunction
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP272088
https://www.ncbi.nlm.nih.gov/pubmed/27219461
https://www.proquest.com/docview/1828415192
https://www.proquest.com/docview/1826682469
https://www.proquest.com/docview/1837298609
https://pubmed.ncbi.nlm.nih.gov/PMC5063934
Volume 594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF7EJ1-8j3oRQeqL0W6yR-KbqLUUFZEKBR_CXkXRRrHtg_56Z3JpvRBfkpBMkt3sTOab3dlvCdkWPJQS9NYPIGxDUm3hq8BKn4bGGHAPwiqc4Hx-IVrXrN3l3SKrEufC5PwQVYcbWkb2v0YDV7pYhYQi2UD7EocQI5znS0OBtPnHV8H7AEIjjiuicMlpwTsLt-6XN457oi_w8muW5Ef0mrmf5gy5KQueZ53c742Ges-8fuJ0_F_NZsl0gUq9w1yN5siES-fJwmEKEXn_xat7WZ5o1gG_QKKzF9AAJHr1nkAXwPUdeH2HE4jvzGC3PBz0B55KrddXD-g6sfkXyXXzpHPU8ov1F3wjAEn4TAlqOe1pzJUJYQeey0mjqGXUAjZzkY4DZSM4pY0E6GBBJAIAHLhAGcbDJTKZPqZuhXgOUIJWEE1qZ5lpNLQxjMmAG9ZjotdTNbJTtkViCnJyXCPjIcmDlDApP0qNbFWSTzkhxzcy62VzJoVJDhIIpCJAK4Bo4RHVZTAmHCFRqXscZTJCRAET8W8yONIZiQbILOcaUhUEXk9jJmiNyDHdqQSQzHv8Snp3m5F6c8SKIauReqYaP9Yt6bQvZcj46l8F18gUgDyB_pbydTI5fB65DQBSQ72ZmQxsT7v0DVwlGKU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71caCXQmmBhQJBQuXSLOvEr8CpQq2WZVtVaCv1UClybK-o2k0rdvdQfj0zzgOW0gpxShSPEzueyXzjsb8AvJUiVQr1Nk4wbCNSbRmbxKmYpdZadA_SGdrgfHgk-yd8cCpOl-Bjsxem4odoJ9zIMsL3mgycJqRrKye2gcEx5RC1XobVkJ4jRPQ1-ZVC6GVZSxWuBKuZZ7Hu-6bmoi-6BTBvr5P8Hb8GB3TwEM6aplfrTi6681nRtT_-YHX8z749gvUamEZ7lSZtwJIvH8PmXolB-eQm2onCUtEwB78JeniDSkBcr9E1qgN6vw_RxNMe4nM73W1Op5NpZEoXTcwleU_SgC04OdgfferH9S8YYisRTMTcSOYEGxe0XCbFAzovr6xhjjOH8MzrIkuM03ipsArRg0MRjRg48YmxXKRPYKW8Kv0ziDwChcJgQFl4x22vV1jLuUqE5WMux2PTgXfNYOS25ien32Rc5lWckubNS-nAm1byuuLk-IvMdjOeeW2V0xxjKY2ABUEt3qItRnuiJIkp_dU8yEipEy6z-2Qo2allD2WeVirSNgQfzzIuWQfUgvK0AsTnvVhSnn8LvN6C4GLKO7ATdOPOvuWjwbFKuXj-r4Kv4UF_dDjMh5-PvryANcR8ktwvE9uwMvs-9y8RV82KV8F-fgI8PRvS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8oJsYXUFE4PrQkBl_scdvuV30j6AVOIBcDCYkPzXZ3GwhcuXB3D_DXM9MvPVFjeGrTnba73ZnOb3ZnfwvwQYpYKdTbMMKwjUi1ZWgip0IWW2vRPUhnaIHz0bHcP-WDM3FWZ1XSWpiKH6IdcCPLKP_XZOBjl9dGTmQDgyFNIWr9FJ5xiV6SANH36OcMQi9JWqZwJVhNPIv37jR3zruiB_jyYZrkr_C19D_9JfjR1LxKO7nszqZZ1979Rur4uKa9hMUalga7lR69gie-eA3LuwWG5KPbYDsoE0XLEfhl0Ie3qALE9BqMURnQ930ORp5WEF_YyafmdDKaBKZwwchcke-k_n8Dp_2vJ3v7Yb0BQ2glQomQG8mcYHlGyTIxHtB1eWUNc5w5BGdeZ0lknMZLmVWIHRyKaETAkY-M5SJ-CwvFdeFXIfAIEzKD4WTmHbe9XmYt5yoSludc5rnpwMemL1Jbs5PTJhlXaRWlxGnzUTqw1UqOK0aOP8hsNN2Z1jY5STGS0ghXENLiI9pitCaaIjGFv56VMlLqiMvkXzI01allD2VWKg1pK4KvZwmXrANqTndaAWLzni8pLs5LVm9BYDHmHdguVeOvbUtPBkMVc7H2v4Lv4fnwSz89PDj-tg4vEPBJ8r1MbMDC9GbmNxFUTbN3pfXcA9U6GoE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lymphatic+pumping%3A+mechanics%2C+mechanisms+and+malfunction&rft.jtitle=The+Journal+of+physiology&rft.au=Scallan%2C+Joshua+P&rft.au=Zawieja%2C+Scott+D&rft.au=Castorena-Gonzalez%2C+Jorge+A&rft.au=Davis%2C+Michael+J&rft.date=2016-10-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=594&rft.issue=20&rft.spage=5749&rft_id=info:doi/10.1113%2FJP272088&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4213916391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon