Simplifying MS1 and MS2 spectra to achieve lower mass error, more dynamic range, and higher peptide identification confidence on the Bruker timsTOF Pro

For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The dat...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 7; p. e0271025
Main Authors Wilding-McBride, Daryl, Dagley, Laura F., Spall, Sukhdeep K., Infusini, Giuseppe, Webb, Andrew I.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.07.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0271025

Cover

Abstract For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample’s complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide’s monoisotopic mass, which is critical for the peptide’s identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument’s detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126 ). Data are available via ProteomeXchange with identifier PXD030706.
AbstractList For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample’s complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide’s monoisotopic mass, which is critical for the peptide’s identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument’s detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126). Data are available via ProteomeXchange with identifier PXD030706.
For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample’s complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide’s monoisotopic mass, which is critical for the peptide’s identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument’s detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126). Data are available via ProteomeXchange with identifier PXD030706. The primary goal of mass spectrometry data processing pipelines in the proteomic analysis of complex biological samples is to identify peptides accurately and comprehensively with abundance across a broad dynamic range. It has been reported that detection of low-abundance peptides for early-disease biomarkers in complex fluids is limited by the sensitivity of biomarker discovery platforms [1], the dynamic range of plasma abundance, which can exceed ten orders of magnitude [2], and the fact that lower abundance proteins provide the most insight in disease processes [3]. As mass spectrometry hardware improves, the corresponding increase in amounts of data for analysis pushes legacy software analysis methods out of their designed specification. Additionally, experimentation with new algorithms to analyse raw data produced by instruments such as the Bruker timsTOF Pro has been hampered by the paucity of modular, open-source software pipelines written in languages accessible by the large community of data scientists. Here we present several algorithms for simplifying MS1 and MS2 spectra that are written in Python. We show that these algorithms are effective to help improve the quality and accuracy of peptide identifications.
For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample’s complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide’s monoisotopic mass, which is critical for the peptide’s identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument’s detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126 ). Data are available via ProteomeXchange with identifier PXD030706.
For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample's complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide's monoisotopic mass, which is critical for the peptide's identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument's detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126). Data are available via ProteomeXchange with identifier PXD030706.For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample's complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide's monoisotopic mass, which is critical for the peptide's identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument's detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126). Data are available via ProteomeXchange with identifier PXD030706.
Audience Academic
Author Infusini, Giuseppe
Webb, Andrew I.
Dagley, Laura F.
Spall, Sukhdeep K.
Wilding-McBride, Daryl
AuthorAffiliation 3 Mass Dynamics, Melbourne, Victoria, Australia
2 Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
Aarhus University, DENMARK
1 The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
AuthorAffiliation_xml – name: Aarhus University, DENMARK
– name: 2 Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
– name: 3 Mass Dynamics, Melbourne, Victoria, Australia
– name: 1 The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
Author_xml – sequence: 1
  givenname: Daryl
  orcidid: 0000-0003-3796-1297
  surname: Wilding-McBride
  fullname: Wilding-McBride, Daryl
– sequence: 2
  givenname: Laura F.
  orcidid: 0000-0003-4171-3712
  surname: Dagley
  fullname: Dagley, Laura F.
– sequence: 3
  givenname: Sukhdeep K.
  surname: Spall
  fullname: Spall, Sukhdeep K.
– sequence: 4
  givenname: Giuseppe
  orcidid: 0000-0001-5425-1698
  surname: Infusini
  fullname: Infusini, Giuseppe
– sequence: 5
  givenname: Andrew I.
  orcidid: 0000-0001-5061-6995
  surname: Webb
  fullname: Webb, Andrew I.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35797390$$D View this record in MEDLINE/PubMed
BookMark eNqNk39r1DAYx4tM3A99B6IBQRR2Z5q06cU_hDmcHkwmbvpvSJMnvcy2qUm7ea_Et2u6u43dGDhKSPP083z7_MpustW6FpLkeYqnKS3Sd-du8K2sp100TzEpUkzyR8lOyimZMILp1q337WQ3hHOMczpj7EmyTfOCF5TjneTvqW262pqlbSv09TRFstVxJyh0oHovUe-QVAsLF4BqdwkeNTIEBN47v48a5wHpZSsbq5CXbQX7VwILWy0i2kHXWw0orra3xirZW9ci5VozmhSgeOoXgD764Vfke9uEs5Mj9M27p8ljI-sAz9b7XvLj6NPZ4ZfJ8cnn-eHB8UQxXOSTjGQM-EzpQpVUE56XLCW5lsykKQVelGAM15pkQKGYEWMok1xjUkooOOGM7iUvV7pd7YJY1zQIwmaMMM7zIhLzFaGdPBedt430S-GkFVcG5yshfW9VDYJRzQFynZVMZhlAmVJqjCl5igFTjaNWvtIa2k4uL2Vd3wimWIxtvQ5BjG0V67ZGvw_rKIeyAa1iOb2sN4LZ_NLahajcheCEEZKOAm_WAt79HiD0orFBQV3LFtywyhfnBcFpRF_dQe-vypqqZEzctsbF_6pRVBwUmGecUDJS03uo-GiIExMzNDbaNxzebjhEpoc_fSWHEMT89PvD2ZOfm-zrW-wCZN0vgquHcR7DJvjidqVvSnx9YyLwfgUo70LwYISy_dVcx9Rs_b8-ZnecH9T-f8jEP1Y
CitedBy_id crossref_primary_10_1080_03639045_2024_2327475
crossref_primary_10_1016_j_teac_2024_e00239
Cites_doi 10.1007/s13361-017-1741-9
10.1021/pr1003856
10.1021/cr990076h
10.1038/nmeth.4256
10.1074/mcp.TIR120.002048
10.1007/s13361-017-1801-1
10.1093/nar/gky1106
10.1038/nmeth.1322
10.1074/mcp.M500230-MCP200
10.1021/ac303439m
10.1007/s00726-012-1289-8
10.1021/pr2003177
10.1016/j.chroma.2008.03.033
10.1016/j.jasms.2008.01.009
10.1074/mcp.TIR119.001720
10.1142/9789812701626_0023
10.1038/nbt.3685
10.1021/ac60214a047
10.1021/ac203255e
10.1007/s13361-014-0903-2
10.1080/14789450.2018.1450631
10.1074/mcp.TIR118.000900
10.1074/mcp.R200007-MCP200
10.1021/pr400034z
10.1093/bioinformatics/btl355
10.1007/s00216-007-1486-6
10.1016/j.ijms.2017.11.003
10.1093/jxb/eri068
10.1016/j.mcpro.2021.100149
10.1152/ajplung.00044.2008
10.1021/ac050980b
10.1186/1471-2105-9-504
10.1002/jms.2953
10.1021/pr100291q
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Wilding-McBride et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Wilding-McBride et al 2022 Wilding-McBride et al
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Wilding-McBride et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Wilding-McBride et al 2022 Wilding-McBride et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0271025
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE


CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Simplifying MS1 and MS2 spectra for higher peptide identification confidence on the Bruker timsTOF Pro
EISSN 1932-6203
ExternalDocumentID 2686269957
oai_doaj_org_article_63d9ee5d4b6a44eeb133fffb910e03d0
10.1371/journal.pone.0271025
PMC9262215
A709492327
35797390
10_1371_journal_pone_0271025
Genre Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
BBAFP
N95
ID FETCH-LOGICAL-c6075-4246e98cd7cb3d295b6125da6f113e97beff9dd24e3e782ff36a9d02bae792963
IEDL.DBID M48
ISSN 1932-6203
IngestDate Mon Dec 05 23:08:06 EST 2022
Fri Oct 03 12:45:27 EDT 2025
Sun Oct 26 04:02:12 EDT 2025
Tue Sep 30 16:57:26 EDT 2025
Fri Sep 05 08:58:07 EDT 2025
Tue Oct 07 07:43:35 EDT 2025
Mon Oct 20 22:26:36 EDT 2025
Mon Oct 20 16:25:51 EDT 2025
Thu Oct 16 14:20:27 EDT 2025
Thu Oct 16 15:11:30 EDT 2025
Thu May 22 21:22:28 EDT 2025
Thu Apr 03 07:04:36 EDT 2025
Wed Oct 01 04:22:44 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6075-4246e98cd7cb3d295b6125da6f113e97beff9dd24e3e782ff36a9d02bae792963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-5425-1698
0000-0003-3796-1297
0000-0003-4171-3712
0000-0001-5061-6995
OpenAccessLink https://doaj.org/article/63d9ee5d4b6a44eeb133fffb910e03d0
PMID 35797390
PQID 2686269957
PQPubID 1436336
PageCount e0271025
ParticipantIDs plos_journals_2686269957
doaj_primary_oai_doaj_org_article_63d9ee5d4b6a44eeb133fffb910e03d0
unpaywall_primary_10_1371_journal_pone_0271025
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9262215
proquest_miscellaneous_2686057201
proquest_journals_2686269957
gale_infotracmisc_A709492327
gale_infotracacademiconefile_A709492327
gale_incontextgauss_ISR_A709492327
gale_incontextgauss_IOV_A709492327
gale_healthsolutions_A709492327
pubmed_primary_35797390
crossref_citationtrail_10_1371_journal_pone_0271025
crossref_primary_10_1371_journal_pone_0271025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220707
PublicationDateYYYYMMDD 2022-07-07
PublicationDate_xml – month: 7
  year: 2022
  text: 20220707
  day: 7
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P. Du (pone.0271025.ref019) 2006; 22
J. L. Wiza (pone.0271025.ref026) 1979
A. T. Kong (pone.0271025.ref007) 2017; 14
F. Meier (pone.0271025.ref005) 2018; 17
L. H. Negri (pone.0271025.ref025)
pone.0271025.ref032
S. Pourshahian (pone.0271025.ref037) 2017; 28
I. Mitra (pone.0271025.ref039) 2012; 84
J. C. Silva (pone.0271025.ref033) 2006; 5
K. M. Åberg (pone.0271025.ref016) 2008; 1192
S. Houel (pone.0271025.ref012) 2010; 9
Y. Perez-Riverol (pone.0271025.ref048) 2019; 47
S. Cappadona (pone.0271025.ref004) 2012; 43
S. Willems (pone.0271025.ref049) 2021; 20
M. L. Toumi (pone.0271025.ref040) 2010; 9
P. Navarro (pone.0271025.ref042) 2016; 34
J. R. Wiśniewski (pone.0271025.ref043) 2009; 6
pone.0271025.ref047
pone.0271025.ref046
pone.0271025.ref045
pone.0271025.ref044
F. Yu (pone.0271025.ref008) 2020; 19
M. T. Strauss (pone.0271025.ref010) 2021
B. Kim (pone.0271025.ref001) 2018; 15
P. Schliekelman (pone.0271025.ref013) 2014; 13
N. Prianichnikov (pone.0271025.ref006) 2020; 19
J. Klein (pone.0271025.ref023) 2021
R. Aebersold (pone.0271025.ref034) 2001; 101
L. Sleno (pone.0271025.ref035) 2012; 47
J. Klein (pone.0271025.ref021)
M. Bantscheff (pone.0271025.ref029) 2007; 389
D. A. Abdrakhimov (pone.0271025.ref009) 2021
pone.0271025.ref011
A. Ipsen (pone.0271025.ref014) 2017
M. Mann (pone.0271025.ref038) 1995
R. E. Gerszten (pone.0271025.ref003) 2008; 295
D. Valkenborg (pone.0271025.ref031) 2008; 19
E. Lange (pone.0271025.ref018) 2005
Oliver Raether (pone.0271025.ref027) 2021
R. Tautenhahn (pone.0271025.ref017) 2008; 9
R. Liu (pone.0271025.ref028) 2014; 25
A. V. Nefedov (pone.0271025.ref041) 2011; 10
P. Dittwald (pone.0271025.ref022) 2013; 85
K. K. Murray (pone.0271025.ref036) 2017; 28
J. Smedsgaard (pone.0271025.ref020) 2005; 56
N. L. Anderson (pone.0271025.ref002) 2002; 1
R. Stolt (pone.0271025.ref015) 2006; 78
Savitzky Abraham (pone.0271025.ref024) 1964; 36
A. Bilbao (pone.0271025.ref030) 2018; 427
References_xml – volume: 28
  start-page: 1836
  issue: 9
  year: 2017
  ident: pone.0271025.ref037
  article-title: Mass Defect from Nuclear Physics to Mass Spectral Analysis
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-017-1741-9
– volume: 9
  start-page: 4152
  issue: 8
  year: 2010
  ident: pone.0271025.ref012
  article-title: Quantifying the impact of chimera MS/MS spectra on peptide identification in large scale proteomics studies
  publication-title: J. Proteome Res.
  doi: 10.1021/pr1003856
– ident: pone.0271025.ref046
– volume: 101
  start-page: 269
  issue: 2
  year: 2001
  ident: pone.0271025.ref034
  article-title: Mass Spectrometry in Proteomics
  publication-title: Chem. Rev.
  doi: 10.1021/cr990076h
– volume: 14
  start-page: 513
  issue: 5
  year: 2017
  ident: pone.0271025.ref007
  article-title: MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4256
– volume: 19
  start-page: 1575
  issue: 9
  year: 2020
  ident: pone.0271025.ref008
  article-title: Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.TIR120.002048
– ident: pone.0271025.ref025
  publication-title: PeakUtils: Peak detection utilities for 1D data
– volume: 28
  start-page: 2724
  issue: 12
  year: 2017
  ident: pone.0271025.ref036
  article-title: Comment on: ‘Nominal Mass?’ by Athula B. Attygalle and Julius Pavlov, J. Am. Soc. Mass Spectrom. 28, 1737–1738 (2017)
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-017-1801-1
– volume: 47
  start-page: D442
  issue: D1
  year: 2019
  ident: pone.0271025.ref048
  article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1106
– year: 2021
  ident: pone.0271025.ref009
  article-title: Biosaur: An open‐source Python software for liquid chromatography–mass spectrometry peptide feature detection with ion mobility support
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 6
  start-page: 359
  issue: 5
  year: 2009
  ident: pone.0271025.ref043
  article-title: Universal sample preparation method for proteome analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1322
– volume: 5
  start-page: 144
  issue: 1
  year: 2006
  ident: pone.0271025.ref033
  article-title: Absolute Quantification of Proteins by LCMSE
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M500230-MCP200
– year: 2021
  ident: pone.0271025.ref023
  publication-title: mobiusklein/brainpy
– start-page: 17
  issue: 162
  year: 1979
  ident: pone.0271025.ref026
  article-title: Microchannel Plate Detectors
  publication-title: Nucl. Instrum. Methods
– volume: 85
  start-page: 1991
  issue: 4
  year: 2013
  ident: pone.0271025.ref022
  article-title: BRAIN: A Universal Tool for High-Throughput Calculations of the Isotopic Distribution for Mass Spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac303439m
– volume: 43
  start-page: 1087
  issue: 3
  year: 2012
  ident: pone.0271025.ref004
  article-title: Current challenges in software solutions for mass spectrometry-based quantitative proteomics
  publication-title: Amino Acids
  doi: 10.1007/s00726-012-1289-8
– volume: 10
  start-page: 4150
  issue: 9
  year: 2011
  ident: pone.0271025.ref041
  article-title: Examining Troughs in the Mass Distribution of All Theoretically Possible Tryptic Peptides
  publication-title: J. Proteome Res.
  doi: 10.1021/pr2003177
– volume: 1192
  start-page: 139
  issue: 1
  year: 2008
  ident: pone.0271025.ref016
  article-title: Feature detection and alignment of hyphenated chromatographic–mass spectrometric data: Extraction of pure ion chromatograms using Kalman tracking
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2008.03.033
– volume: 19
  start-page: 703
  issue: 5
  year: 2008
  ident: pone.0271025.ref031
  article-title: A Model-Based Method for the Prediction of the Isotopic Distribution of Peptides
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2008.01.009
– volume-title: Proteomics Dynamic Range Standard Set—UPS2 Product Information
  ident: pone.0271025.ref032
– volume: 19
  start-page: 1058
  issue: 6
  year: 2020
  ident: pone.0271025.ref006
  article-title: MaxQuant Software for Ion Mobility Enhanced Shotgun Proteomics *
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.TIR119.001720
– ident: pone.0271025.ref045
– start-page: 243
  year: 2005
  ident: pone.0271025.ref018
  article-title: HIGH-ACCURACY PEAK PICKING OF PROTEOMICS DATA USING WAVELET TECHNIQUES
  publication-title: Biocomputing 2006
  doi: 10.1142/9789812701626_0023
– volume: 34
  start-page: 1130
  issue: 11
  year: 2016
  ident: pone.0271025.ref042
  article-title: A multicenter study benchmarks software tools for label-free proteome quantification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3685
– year: 2021
  ident: pone.0271025.ref027
  article-title: timsTOF detector
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: pone.0271025.ref024
  article-title: Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 84
  start-page: 3026
  issue: 6
  year: 2012
  ident: pone.0271025.ref039
  article-title: Improved Mass Defect Model for Theoretical Tryptic Peptides
  publication-title: Anal. Chem.
  doi: 10.1021/ac203255e
– volume: 25
  start-page: 1374
  issue: 8
  year: 2014
  ident: pone.0271025.ref028
  article-title: Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-014-0903-2
– volume: 15
  start-page: 353
  issue: 4
  year: 2018
  ident: pone.0271025.ref001
  article-title: Affinity Enrichment for MS: Improving the yield of low abundance biomarkers
  publication-title: Expert Rev. Proteomics
  doi: 10.1080/14789450.2018.1450631
– volume: 17
  start-page: 2534
  issue: 12
  year: 2018
  ident: pone.0271025.ref005
  article-title: Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer
  publication-title: Mol. Cell. Proteomics MCP
  doi: 10.1074/mcp.TIR118.000900
– volume: 1
  start-page: 845
  issue: 11
  year: 2002
  ident: pone.0271025.ref002
  article-title: The Human Plasma Proteome: History, Character, and Diagnostic Prospects *
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.R200007-MCP200
– volume: 13
  start-page: 348
  issue: 2
  year: 2014
  ident: pone.0271025.ref013
  article-title: Quantifying the Effect of Competition for Detection between Coeluting Peptides on Detection Probabilities in Mass-Spectrometry-Based Proteomics
  publication-title: J. Proteome Res.
  doi: 10.1021/pr400034z
– ident: pone.0271025.ref021
  article-title: ms_deisotope documentation
– volume: 22
  start-page: 2059
  issue: 17
  year: 2006
  ident: pone.0271025.ref019
  article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl355
– volume: 389
  start-page: 1017
  issue: 4
  year: 2007
  ident: pone.0271025.ref029
  article-title: Quantitative mass spectrometry in proteomics: a critical review
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-007-1486-6
– ident: pone.0271025.ref044
– volume: 427
  start-page: 91
  year: 2018
  ident: pone.0271025.ref030
  article-title: An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2017.11.003
– volume: 56
  start-page: 273
  issue: 410
  year: 2005
  ident: pone.0271025.ref020
  article-title: Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri068
– year: 2021
  ident: pone.0271025.ref010
  article-title: AlphaPept, a modern and open framework for MS-based proteomics
  publication-title: Bioinformatics
– volume: 20
  start-page: 100149
  year: 2021
  ident: pone.0271025.ref049
  article-title: AlphaTims: Indexing Trapped Ion Mobility Spectrometry–TOF Data for Fast and Easy Accession and Visualization
  publication-title: Mol. Cell. Proteomics
  doi: 10.1016/j.mcpro.2021.100149
– ident: pone.0271025.ref047
– volume: 295
  start-page: L16
  issue: 1
  year: 2008
  ident: pone.0271025.ref003
  article-title: Challenges in translating plasma proteomics from bench to bedside: update from the NHLBI Clinical Proteomics Programs
  publication-title: Am. J. Physiol.-Lung Cell. Mol. Physiol.
  doi: 10.1152/ajplung.00044.2008
– year: 1995
  ident: pone.0271025.ref038
  article-title: Useful Tables Of Possible And Probable Peptide Masses
– volume: 78
  start-page: 975
  issue: 4
  year: 2006
  ident: pone.0271025.ref015
  article-title: Second-Order Peak Detection for Multicomponent High-Resolution LC/MS Data
  publication-title: Anal. Chem.
  doi: 10.1021/ac050980b
– start-page: 10
  year: 2017
  ident: pone.0271025.ref014
  article-title: Derivation of the Statistical Distribution of the Mass Peak Centroids of Mass Spectrometers Employing Analog-to-Digital Converters and Electron Multipliers
  publication-title: Anal Chem
– ident: pone.0271025.ref011
– volume: 9
  start-page: 504
  issue: 1
  year: 2008
  ident: pone.0271025.ref017
  article-title: Highly sensitive feature detection for high resolution LC/MS
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-504
– volume: 47
  start-page: 226
  issue: 2
  year: 2012
  ident: pone.0271025.ref035
  article-title: The use of mass defect in modern mass spectrometry: Mass defect in mass spectrometry
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.2953
– volume: 9
  start-page: 5492
  issue: 10
  year: 2010
  ident: pone.0271025.ref040
  article-title: Improving Mass Defect Filters for Human Proteins
  publication-title: J. Proteome Res.
  doi: 10.1021/pr100291q
SSID ssj0053866
Score 2.3958197
Snippet For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0271025
SubjectTerms Algorithms
Analysis
Biological properties
Biological samples
Biology and Life Sciences
Biomarkers
Chromatography, Liquid
Clustering
Complexity
Computer and Information Sciences
Data processing
Dynamic range
Electrical noise
Engineering and Technology
Experimentation
Feature extraction
Ionic mobility
Isotopes
Mass spectrometers
Mass Spectrometry
Mobility
Noise
Open source software
Peptides
Peptides - chemistry
Physical Sciences
Proteomics
Public domain
Research and Analysis Methods
Retention
Retention time
Science Policy
Scientific imaging
Signal processing
Software
Spectra
Spectrometers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQX-AFMX6tY4BBSIC0dEnsxPHjQFQDaQzRDe0tcmKbVXRJlbQg_hL-Xe4cN1rEpO2Bp6r1JVLuzufv0u_uCHmlpc4cbVDxhAdcch0UodKBVklYMm7LyL1wO_qcHp7yT2fJ2aVRX8gJ69oDd4rbT5mWxiSaF6ni3EBoYcxaW8AxZ0KmXbYeZnKTTHUxGHZxmvpCOSaifW-XybKuzAQSMThVk8FB5Pr191F5tFzU7VWQ81_m5O11tVS_f6nF4tKxNL1H7no8SQ-659git0x1n2z5HdvSN76t9NsH5M9sjuxxV9dEj2YRVZWGz5i6YstG0VVNkVlpfhq6wNlp9AKANTVNUzd7FPm4VHfj62mDFQl77gbnjidCl0iO0YbOtWcfOYNTSLZtN7WUwjfAmhR86QfIr-YX7cnxlH5p6ofkdPrh5P1h4McyBGUKACPgMU-NzEotyoLpWCYFoiStUhtFzEhRGGul1jE3zAD-sJalSuowLpQRAMZS9oiMKjDENqFGhToTwuisDDlXMlPSRja2cRyWAi4ZE7axUV76nuU4OmORuz_iBOQunZpztGzuLTsmQX_VsuvZcY38OzR_L4sdt90P4Ie598P8Oj8ck-foPHlXvtrHjfxAQAINKDoWY_LSSWDXjQppPd_Vum3zj8ffbiA0-zoQeu2FbA3qKJUvpYBnwm5eA8ndgSTEjnKwvI2uvtFKm8dYMJRKmeCVG_e_evlFv4w3RapeZep1JwNJAADLMXnc7ZZesywRUjAJyhKDfTRQ_XClmp-7pufY1xLg6ZhM-h13I-Pu_A_jPiF3Yix7ca_1d8lo1azNUwCjq-KZizt_AWROi0Y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZG9wAvE-O2wgCDkABp6dLYiesHhDa0aSDtol3Q3iIntreKLilpC-KX8Hc5x3ECERPsKUp8HCnn5s_OuRDySks9cmGDisc84JLrIAuVDrSKw5xxmw_dgdv-QbJ3xj-dx-dL5KDJhcGwysYnOketyxzPyDcjTGVIpIzF--nXALtG4d_VpoWG8q0V9DtXYuwWWY6wMlaPLG_vHBwdN74ZrDtJfAIdE8NNL6_BtCzMADZosNrGnQXK1fFvvXVvOiln10HRvyMqby-KqfrxXU0mfyxXu3fJiseZdKtWjFWyZIp7ZNVb8oy-8eWm394nP0_GGFXu8p3o_smQqkLDNaIuCbNSdF5SjLg03wydYE81egWAm5qqKqsNinG6VNdt7WmFmQob7gWXLn6ETjFoRhs61j4qySkChU24rbuZUrgDDEpBx74A_Xx8NTs93KVHVfmAnO3unH7YC3y7hiBPAHgEPOKJkaNcizxjOpJxhuhJq8QOh8xIkRlrpdYRN8wALrGWJUrqMMqUEQDSEvaQ9AoQxBqhRoV6JITRozzkXMmRknZoIxtFYS5gSp-wRkZp7muZY0uNSep-0AnY09RsTlGyqZdsnwTtrGldy-M_9Nso_pYWK3G7B2V1kXrDThOmpTGx5lmiODew9DFmrc0AhpmQ6bBPnqPypHVaa-tP0i0BG2tA15Hok5eOAqtxFBjuc6EWs1n68fDzDYhOjjtErz2RLYEdufIpFvBNWOWrQ7neoQSfkneG11DVG67M0t_WBzMb9b9--EU7jC_FEL7ClIuaBjYHADj75FFtLS1nWSykYBKYJTp21GF9d6QYX7pi6FjvEmBrnwxai7uRcB__-zuekDsRJrq4g_x10ptXC_MU4Oc8e-Z9yi-DvYhB
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAvwLitMMAgxEVauiR2kvqxIKqBtIvYhsYDipzYZtXapEpb0Hjgb_B3OcdxIwJDjAeeevGxlZwc25_j73wm5IkSqm9pg5JH3OOCKy_zpfKUjPyccZMH9oXbzm68fcTfHkfHK-TjMhfGeRDWiONyZnfy8UtZ6C3nyS3UK6p3T3sBS4Jljd4UjHqwyIIZM3pqFYfwzdgcE5AukdU4AqjeIatHu_uDD_VOc-jFoc9cOt2fWmpNV1bVvxm7O3hl5wHT3_mVlxfFVJ59kePxT5PX8Br5trztmrNy2lvMs17-9RdFyP_ml-vkqoO9dFC3skZWdHGDrLmBZUafO_XrFzfJ94MRktxt-hXdOQioLBR8htTmhFaSzkuKBFD9WdMxHvFGJ4D_qa6qstqkSBum6qyQk1FOK0yc2LQNnFg6C50ih0dpOlKOJGXjkuZlYerDVSn8AkhMIeRPwX4-mswO94Z0vypvkaPh68NX2547PcLLY8BBHg95rEU_V0meMRWKKEMwp2RsgoBpkWTaGKFUyDXTAJOMYbEUyg8zqRPAjDG7TToF-G6dUC191U8Srfq5z7kUfSlMYEIThn6eQJUuYcsgSXMnrY4nfIxTu1-YwBKrdnOKDyN1D6NLvKbWtJYW-Yv9S4y_xhaFwe0fEA2pi4I0ZkpoHSmexZJzDTMxY8aYDFCh9pnyu-QhRm9aZ9k2w1s6SGCdD2A_TLrksbVAcZAC2Uef5GI2S9_svb-A0cG7ltEzZ2RKcEcuXcYH3BMGa8tyo2UJQ1zeKl7HaF96ZZaGmNcUCxFhzWX_O7_4UVOMjSKjsNDloraBtQrg3y65U3fXxrMsSkTCBDgraXXkluvbJcXoxGqzo_wmoOgu6TVd_kIP9-6_VrhHroSYiWN3GjZIZ14t9H3Ax_PsgRvlfgA4Y8E8
  priority: 102
  providerName: Unpaywall
Title Simplifying MS1 and MS2 spectra to achieve lower mass error, more dynamic range, and higher peptide identification confidence on the Bruker timsTOF Pro
URI https://www.ncbi.nlm.nih.gov/pubmed/35797390
https://www.proquest.com/docview/2686269957
https://www.proquest.com/docview/2686057201
https://pubmed.ncbi.nlm.nih.gov/PMC9262215
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271025&type=printable
https://doaj.org/article/63d9ee5d4b6a44eeb133fffb910e03d0
http://dx.doi.org/10.1371/journal.pone.0271025
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf28QAviPG1wigGIQHSUiWxE9cPCG3TykDah7YVjafIie2toktK2gL7S_h3uXPSiIghxkuqxmdLOd_Zv7Pvg5CXWuq-cxtUPOIel1x7qa-0p1XkZ4zbLHAHbvsH8d6QfzyLzpbIomZrzcDptaYd1pMaluPej69X70Dh37qqDSJYdOpNitz0wMyCPTNaJquwV0ks5rDPm3sF0G53e4moxYtDn9XBdH8bpbVZuZz-zcq9MhkX0-tg6Z_elbfm-URdfVfj8W9b1-AuuVNjTrpVCckaWTL5PbJWa_WUvq5TT7-5T36ejNDD3MU-0f2TgKpcw29IXUBmqeisoOh9ab4ZOsb6avQSwDc1ZVmUmxR9dqmuStzTEqMWNt0AF86XhE7QgUYbOtK1h5ITCgoGua0qm1L4B3iUgrx9AfrZ6HJ6ejigR2XxgAwHu6c7e15dusHLYgAhHg95bGQ_0yJLmQ5llCKS0iq2QcCMFKmxVmodcsMMYBRrWayk9sNUGQGALWYPyUoOE7FOqFG-7gthdD_zOVeyr6QNbGjD0M8EdOkQtpijJKvzmmN5jXHiLusE2DcVmxOc2aSe2Q7xml6TKq_HP-i3cfobWszK7V4U5XlSK3kSMy2NiTRPY8W5gW2QMWttCpDM-Ez7HfIMhSepQlybtSXZEmBkA9IORYe8cBSYmSNH159zNZ9Okw-Hn25AdHLcInpVE9kC2JGpOtwCvgkzfrUoN1qUsL5kreZ1FPUFV6ZJiEFFsZQR9lyI__XNz5tmHBTd-XJTzCsaMBQAfHbIo0pbGs6ySEjBJDBLtPSoxfp2Sz66cInRMfclQNgO6TUad6PJffyfwvCE3A4xCsad8m-QlVk5N08Bm87SLlkWZwKe_Z0An4P3XbK6vXtwdNx1pz1dtxzBu-HB0dbnXw_Ulkc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BrlYbwgxm2FwQwCAdLSpbYT1w8Ijcu0sRui27S34MT2VtEmJWmZ-iX8Bd_IsZMGIibYy56q1MeWcu4nPheEnimhei5tULKAeUww5cW-VJ6SgZ9QZpKu--C2tx9uHbGPJ8HJAvo5r4WxaZVznegUtcoS-418ndhShlCIgL8Zf_Ps1Ch7uzofoVGyxY6enUPIVrzefg_0fU7I5ofDd1teNVXAS0Kwjx4jLNSilyiexFQREcTWyCsZmm6XasFjbYxQijBNNZhPY2gohfJJLDUHXyKkcO41dJ1R0CUgP_ykDvBAd4RhVZ5HeXe94obOOEt1B8I_sOVBw_y5KQG1LWiNh1lxkaP7d77m4jQdy9m5HA7_MIabt9DNyovFGyXbLaEFnd5GS5WeKPDLqpn1qzvoR39gc9ZdNRXe63exTBX8EuxKPHOJJxm2-Zz6u8ZDO7ENj8CdxzrPs3wN2yxgrGapHA0SnNs6iDV3wJnLTsFjm5KjNB6oKufJsRmGEN-Us1IxPIGHi4GDvwL8ZDAqDg828ac8u4uOroRs91ArBUIsI6ylr3qca9VLfMak6ElhuoYYQvyEw5Y2onMaRUnVKd0O7BhG7vqPQ8RUojmylI0qyraRV-8al51C_gP_1pK_hrV9vt0fWX4aVWojCqkSWgeKxaFkTINhpdQYE4OTp32q_DZatcwTlUWztbaKNjiE7eC7E95GTx2E7fWR2mSiUzktimj74PgSQP3PDaAXFZDJAB2JrAo44J1sD7EG5EoDEjRW0lhetqw-x0oR_ZZt2Dln_4uXn9TL9lCbIJjqbFrCQOgB7mwb3S-lpcYsDbjgVACyeEOOGqhvrqSDM9dq3XbTBKe4jTq1xF2KuA_-_R6raHHrcG832t3e33mIbhBbUuOuDFZQa5JP9SNwdCfxY6ddMPpy1ersFyChvtI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYALory6UKhBIEBq2qztxOsDQoWyail9iLaot-DEdrtimyzJLlV_Cf-FX8fY8QYiKuilp1XWY0vxjOcRfzOD0DMlVM_BBiWLWMAEU0EaShUoGYUZZSbrug9uW9vx-gH7cBgdzqCf01wYC6uc6kSnqFWR2W_kK8SmMsRCQABvPCxid63_ZvQtsB2k7E3rtJ1GLSKb-uwUwrfq9cYa8Po5If33--_WA99hIMhisJUBIyzWopcpnqVUERGl1uArGZtul2rBU22MUIowTTWYUmNoLIUKSSo1B78iprDuFXSVUyosnJAfNsEe6JE49ql6lHdXvGQsj4pcL0MoCHY9aplC1zGgsQuzo2FRnef0_o3dvD7JR_LsVA6HfxjG_i1003u0eLUWwTk0o_PbaM7rjAq_9IWtX91BP_YGFr_uMqvw1l4Xy1zBL8Eu3bOUeFxgi-3U3zUe2u5t-ARce6zLsiiXsEUEY3WWy5NBhkubE7HkFjh2SBU8svAcpfFAefyTEzkM4b6p-6ZieAJvF4M0fwX68eCk2t_p492yuIsOLoVt99BsDoyYR1jLUPU416qXhYxJ0ZPCdA0xhIQZhykdRKc8SjJfNd027xgm7iqQQ_RUb3NiOZt4znZQ0Mwa1VVD_kP_1rK_obU1v90fRXmUeBWSxFQJrSPF0lgypsHIUmqMScHh0yFVYQctWuFJ6gTaRnMlqxxCePDjCe-gp47C1v3I7Qk6kpOqSjZ2Pl-AaO9Ti-iFJzIFbEcmfTIHvJOtJ9aiXGhRgvbKWsPzVtSnu1Ilv885zJyK__nDT5phu6gFC-a6mNQ0EIaAa9tB9-vT0uwsjbjgVMBm8dY5am19eyQfHLuy67ayJjjIHbTcnLgLMffBv99jEV0DRZZ83NjefIhuEJtd424PFtDsuJzoR-DzjtPHTrlg9OWytdkvSgzDFQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAvwLitMMAgxEVauiR2kvqxIKqBtIvYhsYDipzYZtXapEpb0Hjgb_B3OcdxIwJDjAeeevGxlZwc25_j73wm5IkSqm9pg5JH3OOCKy_zpfKUjPyccZMH9oXbzm68fcTfHkfHK-TjMhfGeRDWiONyZnfy8UtZ6C3nyS3UK6p3T3sBS4Jljd4UjHqwyIIZM3pqFYfwzdgcE5AukdU4AqjeIatHu_uDD_VOc-jFoc9cOt2fWmpNV1bVvxm7O3hl5wHT3_mVlxfFVJ59kePxT5PX8Br5trztmrNy2lvMs17-9RdFyP_ml-vkqoO9dFC3skZWdHGDrLmBZUafO_XrFzfJ94MRktxt-hXdOQioLBR8htTmhFaSzkuKBFD9WdMxHvFGJ4D_qa6qstqkSBum6qyQk1FOK0yc2LQNnFg6C50ih0dpOlKOJGXjkuZlYerDVSn8AkhMIeRPwX4-mswO94Z0vypvkaPh68NX2547PcLLY8BBHg95rEU_V0meMRWKKEMwp2RsgoBpkWTaGKFUyDXTAJOMYbEUyg8zqRPAjDG7TToF-G6dUC191U8Srfq5z7kUfSlMYEIThn6eQJUuYcsgSXMnrY4nfIxTu1-YwBKrdnOKDyN1D6NLvKbWtJYW-Yv9S4y_xhaFwe0fEA2pi4I0ZkpoHSmexZJzDTMxY8aYDFCh9pnyu-QhRm9aZ9k2w1s6SGCdD2A_TLrksbVAcZAC2Uef5GI2S9_svb-A0cG7ltEzZ2RKcEcuXcYH3BMGa8tyo2UJQ1zeKl7HaF96ZZaGmNcUCxFhzWX_O7_4UVOMjSKjsNDloraBtQrg3y65U3fXxrMsSkTCBDgraXXkluvbJcXoxGqzo_wmoOgu6TVd_kIP9-6_VrhHroSYiWN3GjZIZ14t9H3Ax_PsgRvlfgA4Y8E8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simplifying+MS1+and+MS2+spectra+to+achieve+lower+mass+error%2C+more+dynamic+range%2C+and+higher+peptide+identification+confidence+on+the+Bruker+timsTOF+Pro&rft.jtitle=PloS+one&rft.au=Wilding-McBride%2C+Daryl&rft.au=Dagley%2C+Laura+F.&rft.au=Spall%2C+Sukhdeep+K.&rft.au=Infusini%2C+Giuseppe&rft.date=2022-07-07&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=7&rft.spage=e0271025&rft_id=info:doi/10.1371%2Fjournal.pone.0271025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0271025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon