Simplifying MS1 and MS2 spectra to achieve lower mass error, more dynamic range, and higher peptide identification confidence on the Bruker timsTOF Pro
For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The dat...
Saved in:
| Published in | PloS one Vol. 17; no. 7; p. e0271025 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
07.07.2022
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0271025 |
Cover
| Abstract | For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample’s complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide’s monoisotopic mass, which is critical for the peptide’s identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument’s detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI
10.5281/zenodo.6513126
). Data are available via ProteomeXchange with identifier PXD030706. |
|---|---|
| AbstractList | For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample’s complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide’s monoisotopic mass, which is critical for the peptide’s identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument’s detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126). Data are available via ProteomeXchange with identifier PXD030706. For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample’s complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide’s monoisotopic mass, which is critical for the peptide’s identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument’s detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126). Data are available via ProteomeXchange with identifier PXD030706. The primary goal of mass spectrometry data processing pipelines in the proteomic analysis of complex biological samples is to identify peptides accurately and comprehensively with abundance across a broad dynamic range. It has been reported that detection of low-abundance peptides for early-disease biomarkers in complex fluids is limited by the sensitivity of biomarker discovery platforms [1], the dynamic range of plasma abundance, which can exceed ten orders of magnitude [2], and the fact that lower abundance proteins provide the most insight in disease processes [3]. As mass spectrometry hardware improves, the corresponding increase in amounts of data for analysis pushes legacy software analysis methods out of their designed specification. Additionally, experimentation with new algorithms to analyse raw data produced by instruments such as the Bruker timsTOF Pro has been hampered by the paucity of modular, open-source software pipelines written in languages accessible by the large community of data scientists. Here we present several algorithms for simplifying MS1 and MS2 spectra that are written in Python. We show that these algorithms are effective to help improve the quality and accuracy of peptide identifications. For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample’s complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide’s monoisotopic mass, which is critical for the peptide’s identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument’s detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126 ). Data are available via ProteomeXchange with identifier PXD030706. For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample's complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide's monoisotopic mass, which is critical for the peptide's identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument's detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126). Data are available via ProteomeXchange with identifier PXD030706.For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and quantify peptides. The initial steps of detecting and characterising features in raw data must overcome some considerable challenges. The data presents as a sparse array, sometimes containing billions of intensity readings over time. These points represent both signal and chemical or electrical noise. Depending on the biological sample's complexity, tens to hundreds of thousands of peptides may be present in this vast data landscape. For ion mobility-based LC-MS analysis, each peptide is comprised of a grouping of hundreds of single intensity readings in three dimensions: mass-over-charge (m/z), mobility, and retention time. There is no inherent information about any associations between individual points; whether they represent a peptide or noise must be inferred from their structure. Peptides each have multiple isotopes, different charge states, and a dynamic range of intensity of over six orders of magnitude. Due to the high complexity of most biological samples, peptides often overlap in time and mobility, making it very difficult to tease apart isotopic peaks, to apportion the intensity of each and the contribution of each isotope to the determination of the peptide's monoisotopic mass, which is critical for the peptide's identification. Here we describe four algorithms for the Bruker timsTOF Pro that each play an important role in finding peptide features and determining their characteristics. These algorithms focus on separate characteristics that determine how candidate features are detected in the raw data. The first two algorithms deal with the complexity of the raw data, rapidly clustering raw data into spectra that allows isotopic peaks to be resolved. The third algorithm compensates for saturation of the instrument's detector thereby recovering lost dynamic range, and lastly, the fourth algorithm increases confidence of peptide identifications by simplification of the fragment spectra. These algorithms are effective in processing raw data to detect features and extracting the attributes required for peptide identification, and make an important contribution to an analytical pipeline by detecting features that are higher quality and better segmented from other peptides in close proximity. The software has been developed in Python using Numpy and Pandas and made freely available with an open-source MIT license to facilitate experimentation and further improvement (DOI 10.5281/zenodo.6513126). Data are available via ProteomeXchange with identifier PXD030706. |
| Audience | Academic |
| Author | Infusini, Giuseppe Webb, Andrew I. Dagley, Laura F. Spall, Sukhdeep K. Wilding-McBride, Daryl |
| AuthorAffiliation | 3 Mass Dynamics, Melbourne, Victoria, Australia 2 Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia Aarhus University, DENMARK 1 The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia |
| AuthorAffiliation_xml | – name: Aarhus University, DENMARK – name: 2 Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia – name: 3 Mass Dynamics, Melbourne, Victoria, Australia – name: 1 The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia |
| Author_xml | – sequence: 1 givenname: Daryl orcidid: 0000-0003-3796-1297 surname: Wilding-McBride fullname: Wilding-McBride, Daryl – sequence: 2 givenname: Laura F. orcidid: 0000-0003-4171-3712 surname: Dagley fullname: Dagley, Laura F. – sequence: 3 givenname: Sukhdeep K. surname: Spall fullname: Spall, Sukhdeep K. – sequence: 4 givenname: Giuseppe orcidid: 0000-0001-5425-1698 surname: Infusini fullname: Infusini, Giuseppe – sequence: 5 givenname: Andrew I. orcidid: 0000-0001-5061-6995 surname: Webb fullname: Webb, Andrew I. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35797390$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk39r1DAYx4tM3A99B6IBQRR2Z5q06cU_hDmcHkwmbvpvSJMnvcy2qUm7ea_Et2u6u43dGDhKSPP083z7_MpustW6FpLkeYqnKS3Sd-du8K2sp100TzEpUkzyR8lOyimZMILp1q337WQ3hHOMczpj7EmyTfOCF5TjneTvqW262pqlbSv09TRFstVxJyh0oHovUe-QVAsLF4BqdwkeNTIEBN47v48a5wHpZSsbq5CXbQX7VwILWy0i2kHXWw0orra3xirZW9ci5VozmhSgeOoXgD764Vfke9uEs5Mj9M27p8ljI-sAz9b7XvLj6NPZ4ZfJ8cnn-eHB8UQxXOSTjGQM-EzpQpVUE56XLCW5lsykKQVelGAM15pkQKGYEWMok1xjUkooOOGM7iUvV7pd7YJY1zQIwmaMMM7zIhLzFaGdPBedt430S-GkFVcG5yshfW9VDYJRzQFynZVMZhlAmVJqjCl5igFTjaNWvtIa2k4uL2Vd3wimWIxtvQ5BjG0V67ZGvw_rKIeyAa1iOb2sN4LZ_NLahajcheCEEZKOAm_WAt79HiD0orFBQV3LFtywyhfnBcFpRF_dQe-vypqqZEzctsbF_6pRVBwUmGecUDJS03uo-GiIExMzNDbaNxzebjhEpoc_fSWHEMT89PvD2ZOfm-zrW-wCZN0vgquHcR7DJvjidqVvSnx9YyLwfgUo70LwYISy_dVcx9Rs_b8-ZnecH9T-f8jEP1Y |
| CitedBy_id | crossref_primary_10_1080_03639045_2024_2327475 crossref_primary_10_1016_j_teac_2024_e00239 |
| Cites_doi | 10.1007/s13361-017-1741-9 10.1021/pr1003856 10.1021/cr990076h 10.1038/nmeth.4256 10.1074/mcp.TIR120.002048 10.1007/s13361-017-1801-1 10.1093/nar/gky1106 10.1038/nmeth.1322 10.1074/mcp.M500230-MCP200 10.1021/ac303439m 10.1007/s00726-012-1289-8 10.1021/pr2003177 10.1016/j.chroma.2008.03.033 10.1016/j.jasms.2008.01.009 10.1074/mcp.TIR119.001720 10.1142/9789812701626_0023 10.1038/nbt.3685 10.1021/ac60214a047 10.1021/ac203255e 10.1007/s13361-014-0903-2 10.1080/14789450.2018.1450631 10.1074/mcp.TIR118.000900 10.1074/mcp.R200007-MCP200 10.1021/pr400034z 10.1093/bioinformatics/btl355 10.1007/s00216-007-1486-6 10.1016/j.ijms.2017.11.003 10.1093/jxb/eri068 10.1016/j.mcpro.2021.100149 10.1152/ajplung.00044.2008 10.1021/ac050980b 10.1186/1471-2105-9-504 10.1002/jms.2953 10.1021/pr100291q |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Public Library of Science 2022 Wilding-McBride et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Wilding-McBride et al 2022 Wilding-McBride et al |
| Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Wilding-McBride et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Wilding-McBride et al 2022 Wilding-McBride et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0271025 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Simplifying MS1 and MS2 spectra for higher peptide identification confidence on the Bruker timsTOF Pro |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2686269957 oai_doaj_org_article_63d9ee5d4b6a44eeb133fffb910e03d0 10.1371/journal.pone.0271025 PMC9262215 A709492327 35797390 10_1371_journal_pone_0271025 |
| Genre | Journal Article |
| GeographicLocations | Australia |
| GeographicLocations_xml | – name: Australia |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK BBAFP N95 |
| ID | FETCH-LOGICAL-c6075-4246e98cd7cb3d295b6125da6f113e97beff9dd24e3e782ff36a9d02bae792963 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Mon Dec 05 23:08:06 EST 2022 Fri Oct 03 12:45:27 EDT 2025 Sun Oct 26 04:02:12 EDT 2025 Tue Sep 30 16:57:26 EDT 2025 Fri Sep 05 08:58:07 EDT 2025 Tue Oct 07 07:43:35 EDT 2025 Mon Oct 20 22:26:36 EDT 2025 Mon Oct 20 16:25:51 EDT 2025 Thu Oct 16 14:20:27 EDT 2025 Thu Oct 16 15:11:30 EDT 2025 Thu May 22 21:22:28 EDT 2025 Thu Apr 03 07:04:36 EDT 2025 Wed Oct 01 04:22:44 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6075-4246e98cd7cb3d295b6125da6f113e97beff9dd24e3e782ff36a9d02bae792963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-5425-1698 0000-0003-3796-1297 0000-0003-4171-3712 0000-0001-5061-6995 |
| OpenAccessLink | https://doaj.org/article/63d9ee5d4b6a44eeb133fffb910e03d0 |
| PMID | 35797390 |
| PQID | 2686269957 |
| PQPubID | 1436336 |
| PageCount | e0271025 |
| ParticipantIDs | plos_journals_2686269957 doaj_primary_oai_doaj_org_article_63d9ee5d4b6a44eeb133fffb910e03d0 unpaywall_primary_10_1371_journal_pone_0271025 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9262215 proquest_miscellaneous_2686057201 proquest_journals_2686269957 gale_infotracmisc_A709492327 gale_infotracacademiconefile_A709492327 gale_incontextgauss_ISR_A709492327 gale_incontextgauss_IOV_A709492327 gale_healthsolutions_A709492327 pubmed_primary_35797390 crossref_citationtrail_10_1371_journal_pone_0271025 crossref_primary_10_1371_journal_pone_0271025 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220707 |
| PublicationDateYYYYMMDD | 2022-07-07 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220707 day: 7 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2022 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | P. Du (pone.0271025.ref019) 2006; 22 J. L. Wiza (pone.0271025.ref026) 1979 A. T. Kong (pone.0271025.ref007) 2017; 14 F. Meier (pone.0271025.ref005) 2018; 17 L. H. Negri (pone.0271025.ref025) pone.0271025.ref032 S. Pourshahian (pone.0271025.ref037) 2017; 28 I. Mitra (pone.0271025.ref039) 2012; 84 J. C. Silva (pone.0271025.ref033) 2006; 5 K. M. Åberg (pone.0271025.ref016) 2008; 1192 S. Houel (pone.0271025.ref012) 2010; 9 Y. Perez-Riverol (pone.0271025.ref048) 2019; 47 S. Cappadona (pone.0271025.ref004) 2012; 43 S. Willems (pone.0271025.ref049) 2021; 20 M. L. Toumi (pone.0271025.ref040) 2010; 9 P. Navarro (pone.0271025.ref042) 2016; 34 J. R. Wiśniewski (pone.0271025.ref043) 2009; 6 pone.0271025.ref047 pone.0271025.ref046 pone.0271025.ref045 pone.0271025.ref044 F. Yu (pone.0271025.ref008) 2020; 19 M. T. Strauss (pone.0271025.ref010) 2021 B. Kim (pone.0271025.ref001) 2018; 15 P. Schliekelman (pone.0271025.ref013) 2014; 13 N. Prianichnikov (pone.0271025.ref006) 2020; 19 J. Klein (pone.0271025.ref023) 2021 R. Aebersold (pone.0271025.ref034) 2001; 101 L. Sleno (pone.0271025.ref035) 2012; 47 J. Klein (pone.0271025.ref021) M. Bantscheff (pone.0271025.ref029) 2007; 389 D. A. Abdrakhimov (pone.0271025.ref009) 2021 pone.0271025.ref011 A. Ipsen (pone.0271025.ref014) 2017 M. Mann (pone.0271025.ref038) 1995 R. E. Gerszten (pone.0271025.ref003) 2008; 295 D. Valkenborg (pone.0271025.ref031) 2008; 19 E. Lange (pone.0271025.ref018) 2005 Oliver Raether (pone.0271025.ref027) 2021 R. Tautenhahn (pone.0271025.ref017) 2008; 9 R. Liu (pone.0271025.ref028) 2014; 25 A. V. Nefedov (pone.0271025.ref041) 2011; 10 P. Dittwald (pone.0271025.ref022) 2013; 85 K. K. Murray (pone.0271025.ref036) 2017; 28 J. Smedsgaard (pone.0271025.ref020) 2005; 56 N. L. Anderson (pone.0271025.ref002) 2002; 1 R. Stolt (pone.0271025.ref015) 2006; 78 Savitzky Abraham (pone.0271025.ref024) 1964; 36 A. Bilbao (pone.0271025.ref030) 2018; 427 |
| References_xml | – volume: 28 start-page: 1836 issue: 9 year: 2017 ident: pone.0271025.ref037 article-title: Mass Defect from Nuclear Physics to Mass Spectral Analysis publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-017-1741-9 – volume: 9 start-page: 4152 issue: 8 year: 2010 ident: pone.0271025.ref012 article-title: Quantifying the impact of chimera MS/MS spectra on peptide identification in large scale proteomics studies publication-title: J. Proteome Res. doi: 10.1021/pr1003856 – ident: pone.0271025.ref046 – volume: 101 start-page: 269 issue: 2 year: 2001 ident: pone.0271025.ref034 article-title: Mass Spectrometry in Proteomics publication-title: Chem. Rev. doi: 10.1021/cr990076h – volume: 14 start-page: 513 issue: 5 year: 2017 ident: pone.0271025.ref007 article-title: MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics publication-title: Nat. Methods doi: 10.1038/nmeth.4256 – volume: 19 start-page: 1575 issue: 9 year: 2020 ident: pone.0271025.ref008 article-title: Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.TIR120.002048 – ident: pone.0271025.ref025 publication-title: PeakUtils: Peak detection utilities for 1D data – volume: 28 start-page: 2724 issue: 12 year: 2017 ident: pone.0271025.ref036 article-title: Comment on: ‘Nominal Mass?’ by Athula B. Attygalle and Julius Pavlov, J. Am. Soc. Mass Spectrom. 28, 1737–1738 (2017) publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-017-1801-1 – volume: 47 start-page: D442 issue: D1 year: 2019 ident: pone.0271025.ref048 article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1106 – year: 2021 ident: pone.0271025.ref009 article-title: Biosaur: An open‐source Python software for liquid chromatography–mass spectrometry peptide feature detection with ion mobility support publication-title: Rapid Commun. Mass Spectrom. – volume: 6 start-page: 359 issue: 5 year: 2009 ident: pone.0271025.ref043 article-title: Universal sample preparation method for proteome analysis publication-title: Nat. Methods doi: 10.1038/nmeth.1322 – volume: 5 start-page: 144 issue: 1 year: 2006 ident: pone.0271025.ref033 article-title: Absolute Quantification of Proteins by LCMSE publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M500230-MCP200 – year: 2021 ident: pone.0271025.ref023 publication-title: mobiusklein/brainpy – start-page: 17 issue: 162 year: 1979 ident: pone.0271025.ref026 article-title: Microchannel Plate Detectors publication-title: Nucl. Instrum. Methods – volume: 85 start-page: 1991 issue: 4 year: 2013 ident: pone.0271025.ref022 article-title: BRAIN: A Universal Tool for High-Throughput Calculations of the Isotopic Distribution for Mass Spectrometry publication-title: Anal. Chem. doi: 10.1021/ac303439m – volume: 43 start-page: 1087 issue: 3 year: 2012 ident: pone.0271025.ref004 article-title: Current challenges in software solutions for mass spectrometry-based quantitative proteomics publication-title: Amino Acids doi: 10.1007/s00726-012-1289-8 – volume: 10 start-page: 4150 issue: 9 year: 2011 ident: pone.0271025.ref041 article-title: Examining Troughs in the Mass Distribution of All Theoretically Possible Tryptic Peptides publication-title: J. Proteome Res. doi: 10.1021/pr2003177 – volume: 1192 start-page: 139 issue: 1 year: 2008 ident: pone.0271025.ref016 article-title: Feature detection and alignment of hyphenated chromatographic–mass spectrometric data: Extraction of pure ion chromatograms using Kalman tracking publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2008.03.033 – volume: 19 start-page: 703 issue: 5 year: 2008 ident: pone.0271025.ref031 article-title: A Model-Based Method for the Prediction of the Isotopic Distribution of Peptides publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2008.01.009 – volume-title: Proteomics Dynamic Range Standard Set—UPS2 Product Information ident: pone.0271025.ref032 – volume: 19 start-page: 1058 issue: 6 year: 2020 ident: pone.0271025.ref006 article-title: MaxQuant Software for Ion Mobility Enhanced Shotgun Proteomics * publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.TIR119.001720 – ident: pone.0271025.ref045 – start-page: 243 year: 2005 ident: pone.0271025.ref018 article-title: HIGH-ACCURACY PEAK PICKING OF PROTEOMICS DATA USING WAVELET TECHNIQUES publication-title: Biocomputing 2006 doi: 10.1142/9789812701626_0023 – volume: 34 start-page: 1130 issue: 11 year: 2016 ident: pone.0271025.ref042 article-title: A multicenter study benchmarks software tools for label-free proteome quantification publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3685 – year: 2021 ident: pone.0271025.ref027 article-title: timsTOF detector – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: pone.0271025.ref024 article-title: Smoothing and Differentiation of Data by Simplified Least Squares Procedures. publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 84 start-page: 3026 issue: 6 year: 2012 ident: pone.0271025.ref039 article-title: Improved Mass Defect Model for Theoretical Tryptic Peptides publication-title: Anal. Chem. doi: 10.1021/ac203255e – volume: 25 start-page: 1374 issue: 8 year: 2014 ident: pone.0271025.ref028 article-title: Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-014-0903-2 – volume: 15 start-page: 353 issue: 4 year: 2018 ident: pone.0271025.ref001 article-title: Affinity Enrichment for MS: Improving the yield of low abundance biomarkers publication-title: Expert Rev. Proteomics doi: 10.1080/14789450.2018.1450631 – volume: 17 start-page: 2534 issue: 12 year: 2018 ident: pone.0271025.ref005 article-title: Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer publication-title: Mol. Cell. Proteomics MCP doi: 10.1074/mcp.TIR118.000900 – volume: 1 start-page: 845 issue: 11 year: 2002 ident: pone.0271025.ref002 article-title: The Human Plasma Proteome: History, Character, and Diagnostic Prospects * publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.R200007-MCP200 – volume: 13 start-page: 348 issue: 2 year: 2014 ident: pone.0271025.ref013 article-title: Quantifying the Effect of Competition for Detection between Coeluting Peptides on Detection Probabilities in Mass-Spectrometry-Based Proteomics publication-title: J. Proteome Res. doi: 10.1021/pr400034z – ident: pone.0271025.ref021 article-title: ms_deisotope documentation – volume: 22 start-page: 2059 issue: 17 year: 2006 ident: pone.0271025.ref019 article-title: Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl355 – volume: 389 start-page: 1017 issue: 4 year: 2007 ident: pone.0271025.ref029 article-title: Quantitative mass spectrometry in proteomics: a critical review publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-007-1486-6 – ident: pone.0271025.ref044 – volume: 427 start-page: 91 year: 2018 ident: pone.0271025.ref030 article-title: An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2017.11.003 – volume: 56 start-page: 273 issue: 410 year: 2005 ident: pone.0271025.ref020 article-title: Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri068 – year: 2021 ident: pone.0271025.ref010 article-title: AlphaPept, a modern and open framework for MS-based proteomics publication-title: Bioinformatics – volume: 20 start-page: 100149 year: 2021 ident: pone.0271025.ref049 article-title: AlphaTims: Indexing Trapped Ion Mobility Spectrometry–TOF Data for Fast and Easy Accession and Visualization publication-title: Mol. Cell. Proteomics doi: 10.1016/j.mcpro.2021.100149 – ident: pone.0271025.ref047 – volume: 295 start-page: L16 issue: 1 year: 2008 ident: pone.0271025.ref003 article-title: Challenges in translating plasma proteomics from bench to bedside: update from the NHLBI Clinical Proteomics Programs publication-title: Am. J. Physiol.-Lung Cell. Mol. Physiol. doi: 10.1152/ajplung.00044.2008 – year: 1995 ident: pone.0271025.ref038 article-title: Useful Tables Of Possible And Probable Peptide Masses – volume: 78 start-page: 975 issue: 4 year: 2006 ident: pone.0271025.ref015 article-title: Second-Order Peak Detection for Multicomponent High-Resolution LC/MS Data publication-title: Anal. Chem. doi: 10.1021/ac050980b – start-page: 10 year: 2017 ident: pone.0271025.ref014 article-title: Derivation of the Statistical Distribution of the Mass Peak Centroids of Mass Spectrometers Employing Analog-to-Digital Converters and Electron Multipliers publication-title: Anal Chem – ident: pone.0271025.ref011 – volume: 9 start-page: 504 issue: 1 year: 2008 ident: pone.0271025.ref017 article-title: Highly sensitive feature detection for high resolution LC/MS publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-504 – volume: 47 start-page: 226 issue: 2 year: 2012 ident: pone.0271025.ref035 article-title: The use of mass defect in modern mass spectrometry: Mass defect in mass spectrometry publication-title: J. Mass Spectrom. doi: 10.1002/jms.2953 – volume: 9 start-page: 5492 issue: 10 year: 2010 ident: pone.0271025.ref040 article-title: Improving Mass Defect Filters for Human Proteins publication-title: J. Proteome Res. doi: 10.1021/pr100291q |
| SSID | ssj0053866 |
| Score | 2.3958197 |
| Snippet | For bottom-up proteomic analysis, the goal of analytical pipelines that process the raw output of mass spectrometers is to detect, characterise, identify, and... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0271025 |
| SubjectTerms | Algorithms Analysis Biological properties Biological samples Biology and Life Sciences Biomarkers Chromatography, Liquid Clustering Complexity Computer and Information Sciences Data processing Dynamic range Electrical noise Engineering and Technology Experimentation Feature extraction Ionic mobility Isotopes Mass spectrometers Mass Spectrometry Mobility Noise Open source software Peptides Peptides - chemistry Physical Sciences Proteomics Public domain Research and Analysis Methods Retention Retention time Science Policy Scientific imaging Signal processing Software Spectra Spectrometers |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQX-AFMX6tY4BBSIC0dEnsxPHjQFQDaQzRDe0tcmKbVXRJlbQg_hL-Xe4cN1rEpO2Bp6r1JVLuzufv0u_uCHmlpc4cbVDxhAdcch0UodKBVklYMm7LyL1wO_qcHp7yT2fJ2aVRX8gJ69oDd4rbT5mWxiSaF6ni3EBoYcxaW8AxZ0KmXbYeZnKTTHUxGHZxmvpCOSaifW-XybKuzAQSMThVk8FB5Pr191F5tFzU7VWQ81_m5O11tVS_f6nF4tKxNL1H7no8SQ-659git0x1n2z5HdvSN76t9NsH5M9sjuxxV9dEj2YRVZWGz5i6YstG0VVNkVlpfhq6wNlp9AKANTVNUzd7FPm4VHfj62mDFQl77gbnjidCl0iO0YbOtWcfOYNTSLZtN7WUwjfAmhR86QfIr-YX7cnxlH5p6ofkdPrh5P1h4McyBGUKACPgMU-NzEotyoLpWCYFoiStUhtFzEhRGGul1jE3zAD-sJalSuowLpQRAMZS9oiMKjDENqFGhToTwuisDDlXMlPSRja2cRyWAi4ZE7axUV76nuU4OmORuz_iBOQunZpztGzuLTsmQX_VsuvZcY38OzR_L4sdt90P4Ie598P8Oj8ck-foPHlXvtrHjfxAQAINKDoWY_LSSWDXjQppPd_Vum3zj8ffbiA0-zoQeu2FbA3qKJUvpYBnwm5eA8ndgSTEjnKwvI2uvtFKm8dYMJRKmeCVG_e_evlFv4w3RapeZep1JwNJAADLMXnc7ZZesywRUjAJyhKDfTRQ_XClmp-7pufY1xLg6ZhM-h13I-Pu_A_jPiF3Yix7ca_1d8lo1azNUwCjq-KZizt_AWROi0Y priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZG9wAvE-O2wgCDkABp6dLYiesHhDa0aSDtol3Q3iIntreKLilpC-KX8Hc5x3ECERPsKUp8HCnn5s_OuRDySks9cmGDisc84JLrIAuVDrSKw5xxmw_dgdv-QbJ3xj-dx-dL5KDJhcGwysYnOketyxzPyDcjTGVIpIzF--nXALtG4d_VpoWG8q0V9DtXYuwWWY6wMlaPLG_vHBwdN74ZrDtJfAIdE8NNL6_BtCzMADZosNrGnQXK1fFvvXVvOiln10HRvyMqby-KqfrxXU0mfyxXu3fJiseZdKtWjFWyZIp7ZNVb8oy-8eWm394nP0_GGFXu8p3o_smQqkLDNaIuCbNSdF5SjLg03wydYE81egWAm5qqKqsNinG6VNdt7WmFmQob7gWXLn6ETjFoRhs61j4qySkChU24rbuZUrgDDEpBx74A_Xx8NTs93KVHVfmAnO3unH7YC3y7hiBPAHgEPOKJkaNcizxjOpJxhuhJq8QOh8xIkRlrpdYRN8wALrGWJUrqMMqUEQDSEvaQ9AoQxBqhRoV6JITRozzkXMmRknZoIxtFYS5gSp-wRkZp7muZY0uNSep-0AnY09RsTlGyqZdsnwTtrGldy-M_9Nso_pYWK3G7B2V1kXrDThOmpTGx5lmiODew9DFmrc0AhpmQ6bBPnqPypHVaa-tP0i0BG2tA15Hok5eOAqtxFBjuc6EWs1n68fDzDYhOjjtErz2RLYEdufIpFvBNWOWrQ7neoQSfkneG11DVG67M0t_WBzMb9b9--EU7jC_FEL7ClIuaBjYHADj75FFtLS1nWSykYBKYJTp21GF9d6QYX7pi6FjvEmBrnwxai7uRcB__-zuekDsRJrq4g_x10ptXC_MU4Oc8e-Z9yi-DvYhB priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAvwLitMMAgxEVauiR2kvqxIKqBtIvYhsYDipzYZtXapEpb0Hjgb_B3OcdxIwJDjAeeevGxlZwc25_j73wm5IkSqm9pg5JH3OOCKy_zpfKUjPyccZMH9oXbzm68fcTfHkfHK-TjMhfGeRDWiONyZnfy8UtZ6C3nyS3UK6p3T3sBS4Jljd4UjHqwyIIZM3pqFYfwzdgcE5AukdU4AqjeIatHu_uDD_VOc-jFoc9cOt2fWmpNV1bVvxm7O3hl5wHT3_mVlxfFVJ59kePxT5PX8Br5trztmrNy2lvMs17-9RdFyP_ml-vkqoO9dFC3skZWdHGDrLmBZUafO_XrFzfJ94MRktxt-hXdOQioLBR8htTmhFaSzkuKBFD9WdMxHvFGJ4D_qa6qstqkSBum6qyQk1FOK0yc2LQNnFg6C50ih0dpOlKOJGXjkuZlYerDVSn8AkhMIeRPwX4-mswO94Z0vypvkaPh68NX2547PcLLY8BBHg95rEU_V0meMRWKKEMwp2RsgoBpkWTaGKFUyDXTAJOMYbEUyg8zqRPAjDG7TToF-G6dUC191U8Srfq5z7kUfSlMYEIThn6eQJUuYcsgSXMnrY4nfIxTu1-YwBKrdnOKDyN1D6NLvKbWtJYW-Yv9S4y_xhaFwe0fEA2pi4I0ZkpoHSmexZJzDTMxY8aYDFCh9pnyu-QhRm9aZ9k2w1s6SGCdD2A_TLrksbVAcZAC2Uef5GI2S9_svb-A0cG7ltEzZ2RKcEcuXcYH3BMGa8tyo2UJQ1zeKl7HaF96ZZaGmNcUCxFhzWX_O7_4UVOMjSKjsNDloraBtQrg3y65U3fXxrMsSkTCBDgraXXkluvbJcXoxGqzo_wmoOgu6TVd_kIP9-6_VrhHroSYiWN3GjZIZ14t9H3Ax_PsgRvlfgA4Y8E8 priority: 102 providerName: Unpaywall |
| Title | Simplifying MS1 and MS2 spectra to achieve lower mass error, more dynamic range, and higher peptide identification confidence on the Bruker timsTOF Pro |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35797390 https://www.proquest.com/docview/2686269957 https://www.proquest.com/docview/2686057201 https://pubmed.ncbi.nlm.nih.gov/PMC9262215 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0271025&type=printable https://doaj.org/article/63d9ee5d4b6a44eeb133fffb910e03d0 http://dx.doi.org/10.1371/journal.pone.0271025 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf28QAviPG1wigGIQHSUiWxE9cPCG3TykDah7YVjafIie2toktK2gL7S_h3uXPSiIghxkuqxmdLOd_Zv7Pvg5CXWuq-cxtUPOIel1x7qa-0p1XkZ4zbLHAHbvsH8d6QfzyLzpbIomZrzcDptaYd1pMaluPej69X70Dh37qqDSJYdOpNitz0wMyCPTNaJquwV0ks5rDPm3sF0G53e4moxYtDn9XBdH8bpbVZuZz-zcq9MhkX0-tg6Z_elbfm-URdfVfj8W9b1-AuuVNjTrpVCckaWTL5PbJWa_WUvq5TT7-5T36ejNDD3MU-0f2TgKpcw29IXUBmqeisoOh9ab4ZOsb6avQSwDc1ZVmUmxR9dqmuStzTEqMWNt0AF86XhE7QgUYbOtK1h5ITCgoGua0qm1L4B3iUgrx9AfrZ6HJ6ejigR2XxgAwHu6c7e15dusHLYgAhHg95bGQ_0yJLmQ5llCKS0iq2QcCMFKmxVmodcsMMYBRrWayk9sNUGQGALWYPyUoOE7FOqFG-7gthdD_zOVeyr6QNbGjD0M8EdOkQtpijJKvzmmN5jXHiLusE2DcVmxOc2aSe2Q7xml6TKq_HP-i3cfobWszK7V4U5XlSK3kSMy2NiTRPY8W5gW2QMWttCpDM-Ez7HfIMhSepQlybtSXZEmBkA9IORYe8cBSYmSNH159zNZ9Okw-Hn25AdHLcInpVE9kC2JGpOtwCvgkzfrUoN1qUsL5kreZ1FPUFV6ZJiEFFsZQR9lyI__XNz5tmHBTd-XJTzCsaMBQAfHbIo0pbGs6ySEjBJDBLtPSoxfp2Sz66cInRMfclQNgO6TUad6PJffyfwvCE3A4xCsad8m-QlVk5N08Bm87SLlkWZwKe_Z0An4P3XbK6vXtwdNx1pz1dtxzBu-HB0dbnXw_Ulkc |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BrlYbwgxm2FwQwCAdLSpbYT1w8Ijcu0sRui27S34MT2VtEmJWmZ-iX8Bd_IsZMGIibYy56q1MeWcu4nPheEnimhei5tULKAeUww5cW-VJ6SgZ9QZpKu--C2tx9uHbGPJ8HJAvo5r4WxaZVznegUtcoS-418ndhShlCIgL8Zf_Ps1Ch7uzofoVGyxY6enUPIVrzefg_0fU7I5ofDd1teNVXAS0Kwjx4jLNSilyiexFQREcTWyCsZmm6XasFjbYxQijBNNZhPY2gohfJJLDUHXyKkcO41dJ1R0CUgP_ykDvBAd4RhVZ5HeXe94obOOEt1B8I_sOVBw_y5KQG1LWiNh1lxkaP7d77m4jQdy9m5HA7_MIabt9DNyovFGyXbLaEFnd5GS5WeKPDLqpn1qzvoR39gc9ZdNRXe63exTBX8EuxKPHOJJxm2-Zz6u8ZDO7ENj8CdxzrPs3wN2yxgrGapHA0SnNs6iDV3wJnLTsFjm5KjNB6oKufJsRmGEN-Us1IxPIGHi4GDvwL8ZDAqDg828ac8u4uOroRs91ArBUIsI6ylr3qca9VLfMak6ElhuoYYQvyEw5Y2onMaRUnVKd0O7BhG7vqPQ8RUojmylI0qyraRV-8al51C_gP_1pK_hrV9vt0fWX4aVWojCqkSWgeKxaFkTINhpdQYE4OTp32q_DZatcwTlUWztbaKNjiE7eC7E95GTx2E7fWR2mSiUzktimj74PgSQP3PDaAXFZDJAB2JrAo44J1sD7EG5EoDEjRW0lhetqw-x0oR_ZZt2Dln_4uXn9TL9lCbIJjqbFrCQOgB7mwb3S-lpcYsDbjgVACyeEOOGqhvrqSDM9dq3XbTBKe4jTq1xF2KuA_-_R6raHHrcG832t3e33mIbhBbUuOuDFZQa5JP9SNwdCfxY6ddMPpy1ersFyChvtI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYALory6UKhBIEBq2qztxOsDQoWyail9iLaot-DEdrtimyzJLlV_Cf-FX8fY8QYiKuilp1XWY0vxjOcRfzOD0DMlVM_BBiWLWMAEU0EaShUoGYUZZSbrug9uW9vx-gH7cBgdzqCf01wYC6uc6kSnqFWR2W_kK8SmMsRCQABvPCxid63_ZvQtsB2k7E3rtJ1GLSKb-uwUwrfq9cYa8Po5If33--_WA99hIMhisJUBIyzWopcpnqVUERGl1uArGZtul2rBU22MUIowTTWYUmNoLIUKSSo1B78iprDuFXSVUyosnJAfNsEe6JE49ql6lHdXvGQsj4pcL0MoCHY9aplC1zGgsQuzo2FRnef0_o3dvD7JR_LsVA6HfxjG_i1003u0eLUWwTk0o_PbaM7rjAq_9IWtX91BP_YGFr_uMqvw1l4Xy1zBL8Eu3bOUeFxgi-3U3zUe2u5t-ARce6zLsiiXsEUEY3WWy5NBhkubE7HkFjh2SBU8svAcpfFAefyTEzkM4b6p-6ZieAJvF4M0fwX68eCk2t_p492yuIsOLoVt99BsDoyYR1jLUPU416qXhYxJ0ZPCdA0xhIQZhykdRKc8SjJfNd027xgm7iqQQ_RUb3NiOZt4znZQ0Mwa1VVD_kP_1rK_obU1v90fRXmUeBWSxFQJrSPF0lgypsHIUmqMScHh0yFVYQctWuFJ6gTaRnMlqxxCePDjCe-gp47C1v3I7Qk6kpOqSjZ2Pl-AaO9Ti-iFJzIFbEcmfTIHvJOtJ9aiXGhRgvbKWsPzVtSnu1Ilv885zJyK__nDT5phu6gFC-a6mNQ0EIaAa9tB9-vT0uwsjbjgVMBm8dY5am19eyQfHLuy67ayJjjIHbTcnLgLMffBv99jEV0DRZZ83NjefIhuEJtd424PFtDsuJzoR-DzjtPHTrlg9OWytdkvSgzDFQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAvwLitMMAgxEVauiR2kvqxIKqBtIvYhsYDipzYZtXapEpb0Hjgb_B3OcdxIwJDjAeeevGxlZwc25_j73wm5IkSqm9pg5JH3OOCKy_zpfKUjPyccZMH9oXbzm68fcTfHkfHK-TjMhfGeRDWiONyZnfy8UtZ6C3nyS3UK6p3T3sBS4Jljd4UjHqwyIIZM3pqFYfwzdgcE5AukdU4AqjeIatHu_uDD_VOc-jFoc9cOt2fWmpNV1bVvxm7O3hl5wHT3_mVlxfFVJ59kePxT5PX8Br5trztmrNy2lvMs17-9RdFyP_ml-vkqoO9dFC3skZWdHGDrLmBZUafO_XrFzfJ94MRktxt-hXdOQioLBR8htTmhFaSzkuKBFD9WdMxHvFGJ4D_qa6qstqkSBum6qyQk1FOK0yc2LQNnFg6C50ih0dpOlKOJGXjkuZlYerDVSn8AkhMIeRPwX4-mswO94Z0vypvkaPh68NX2547PcLLY8BBHg95rEU_V0meMRWKKEMwp2RsgoBpkWTaGKFUyDXTAJOMYbEUyg8zqRPAjDG7TToF-G6dUC191U8Srfq5z7kUfSlMYEIThn6eQJUuYcsgSXMnrY4nfIxTu1-YwBKrdnOKDyN1D6NLvKbWtJYW-Yv9S4y_xhaFwe0fEA2pi4I0ZkpoHSmexZJzDTMxY8aYDFCh9pnyu-QhRm9aZ9k2w1s6SGCdD2A_TLrksbVAcZAC2Uef5GI2S9_svb-A0cG7ltEzZ2RKcEcuXcYH3BMGa8tyo2UJQ1zeKl7HaF96ZZaGmNcUCxFhzWX_O7_4UVOMjSKjsNDloraBtQrg3y65U3fXxrMsSkTCBDgraXXkluvbJcXoxGqzo_wmoOgu6TVd_kIP9-6_VrhHroSYiWN3GjZIZ14t9H3Ax_PsgRvlfgA4Y8E8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simplifying+MS1+and+MS2+spectra+to+achieve+lower+mass+error%2C+more+dynamic+range%2C+and+higher+peptide+identification+confidence+on+the+Bruker+timsTOF+Pro&rft.jtitle=PloS+one&rft.au=Wilding-McBride%2C+Daryl&rft.au=Dagley%2C+Laura+F.&rft.au=Spall%2C+Sukhdeep+K.&rft.au=Infusini%2C+Giuseppe&rft.date=2022-07-07&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=17&rft.issue=7&rft.spage=e0271025&rft_id=info:doi/10.1371%2Fjournal.pone.0271025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0271025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |