免疫综合学习粒子群优化算法

针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中的克隆选择机制,利用克隆复制、高频变异、克隆选择等操作,增加种群的多样性,提高算法的收敛速度,利用柯西分布较宽的两翼分布特性进行精英粒子学习以进一步增强粒子逃离局部极值及多峰函数优化问题全局寻优能力。针对标准测试函数的仿真结果表明,与其他改进粒子群算法相比,ICLPSO算法收敛速度快,求解精度更高。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 31; no. 11; pp. 3229 - 3233
Main Author 林国汉 章兢 刘朝华
Format Journal Article
LanguageChinese
Published 湖南大学 电气与信息工程学院,长沙410082 2014
湖南工程学院电气信息学院,湖南湘潭411101%湖南大学 电气与信息工程学院,长沙,410082%湖南科技大学 信息与电气工程学院,湖南 湘潭,411021
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2014.11.007

Cover

Abstract 针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中的克隆选择机制,利用克隆复制、高频变异、克隆选择等操作,增加种群的多样性,提高算法的收敛速度,利用柯西分布较宽的两翼分布特性进行精英粒子学习以进一步增强粒子逃离局部极值及多峰函数优化问题全局寻优能力。针对标准测试函数的仿真结果表明,与其他改进粒子群算法相比,ICLPSO算法收敛速度快,求解精度更高。
AbstractList 针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中的克隆选择机制,利用克隆复制、高频变异、克隆选择等操作,增加种群的多样性,提高算法的收敛速度,利用柯西分布较宽的两翼分布特性进行精英粒子学习以进一步增强粒子逃离局部极值及多峰函数优化问题全局寻优能力。针对标准测试函数的仿真结果表明,与其他改进粒子群算法相比,ICLPSO算法收敛速度快,求解精度更高。
TP301.6; 针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中的克隆选择机制,利用克隆复制、高频变异、克隆选择等操作,增加种群的多样性,提高算法的收敛速度,利用柯西分布较宽的两翼分布特性进行精英粒子学习以进一步增强粒子逃离局部极值及多峰函数优化问题全局寻优能力。针对标准测试函数的仿真结果表明,与其他改进粒子群算法相比,ICLPSO算法收敛速度快,求解精度更高。
Abstract_FL Convergence of the comprehensive learning particle swarm optimization(CLPSO)algorithm is relatively slow at the late stage of evolution.Once all particles trapped in local optimum,the algorithm can not jump out of the local optimum.This paper proposed immune comprehensive learning particle swarm optimization(ICLPSO)algorithms.The algorithm introduced clonal se-lection mechanism in artificial immune system.Using of clonal copy,hypermutation and clonal selection,it increased the diversi-ty of the population,improved the convergence rate and enhanced the ability of escape from the local optimum and multi-mode op-timization ability of global optimization.Using the elitist learning strategy,the ability to escape from local optimia is further en-hanced.Experiments on several benchmark functions verify the effective of the proposed algorithm.
Author 林国汉 章兢 刘朝华
AuthorAffiliation 湖南大学电气与信息工程学院,长沙410082 湖南工程学院电气信息学院,湖南湘潭411101 湖南科技大学信息与电气工程学院,湖南湘潭411021
AuthorAffiliation_xml – name: 湖南大学 电气与信息工程学院,长沙410082; 湖南工程学院电气信息学院,湖南湘潭411101%湖南大学 电气与信息工程学院,长沙,410082%湖南科技大学 信息与电气工程学院,湖南 湘潭,411021
Author_FL LIU Zhao-hua
ZHANG Jing
LIN Guo-han
Author_FL_xml – sequence: 1
  fullname: LIN Guo-han
– sequence: 2
  fullname: ZHANG Jing
– sequence: 3
  fullname: LIU Zhao-hua
Author_xml – sequence: 1
  fullname: 林国汉 章兢 刘朝华
BookMark eNo9j89Kw0AYxPdQwbb6EiLoJXG__Tab7FGK_6DgpfcQs5uaRTeaIJIHEDwoFMHq0YN4kXrQk1h8msa8hikVmcPA8GOG6ZCWzawmZB2oi1LILeOmRWFdoBQcFNJzGQXuAriU-i3S_s-XSacoDKWcgaRtslFd3dbj1_prWo2uq8nL7POpfr-rJqP6-3k2faxuxvXbw8_H_QpZSqKTQq_-eZcMdncGvX2nf7h30NvuO7GgvqMQOE8SPELfQ8mA8SDgmkrmx8qjsWLCiwOmwNfgCaY8QCEijTpAlQiQErtkc1F7GdkkssPQZBe5bQZDU5iyLM38FTRn_AZdW6DxcWaH52kDn-XpaZSXoRBsrgDxF-xaXlE
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2014.11.007
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Immune comprehensive learning particle swarm optimization algorithm
DocumentTitle_FL Immune comprehensive learning particle swarm optimization algorithm
EndPage 3233
ExternalDocumentID jsjyyyj201411007
662626283
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 国家教育部博士点基金资助项目; 湖南省自然科学基金资助项目
  funderid: (61174140); (20110161110035); (11 jj4049)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c607-d3144ff3b375392124884e0927cd50cd265c82d17e1562d51366ae3e83df61993
ISSN 1001-3695
IngestDate Thu May 29 03:54:50 EDT 2025
Wed Feb 14 10:34:00 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords elitist learning
人工免疫系统
精英学习
comprehensive learning particle swarm optimization algorithm
函数优化
function optimization
综合学习粒子群算法(CLPSO)
artificial immune system
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c607-d3144ff3b375392124884e0927cd50cd265c82d17e1562d51366ae3e83df61993
Notes LIN Guo-han, ZHANG Jing, LIU Zhao-hua (1. College of Electrical & Information Engineering, Hunan University, Changsha 410082, China; 2. College of Electrical & Information, Hunan Institute of Engineering, Xiangtan Hunan 411101, China; 3. School of Information & Electrical Engineering, Hunan University of Science & Tech- nology, Xiangtan Hunan 411021, China)
51-1196/TP
Convergence of the comprehensive learning particle swarm optimization(CLPSO)algorithm is relatively slow at the late stage of evolution.Once all particles trapped in local optimum,the algorithm can not jump out of the local optimum.This paper proposed immune comprehensive learning particle swarm optimization(ICLPSO)algorithms.The algorithm introduced clonal se-lection mechanism in artificial immune system.Using of clonal copy,hypermutation and clonal selection,it increased the diversi-ty of the population,improved the convergence rate and enhanced the ability of escape from the local optimum and multi-mode op-timization ability of global optimizat
PageCount 5
ParticipantIDs wanfang_journals_jsjyyyj201411007
chongqing_primary_662626283
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2014
Publisher 湖南大学 电气与信息工程学院,长沙410082
湖南工程学院电气信息学院,湖南湘潭411101%湖南大学 电气与信息工程学院,长沙,410082%湖南科技大学 信息与电气工程学院,湖南 湘潭,411021
Publisher_xml – name: 湖南大学 电气与信息工程学院,长沙410082
– name: 湖南工程学院电气信息学院,湖南湘潭411101%湖南大学 电气与信息工程学院,长沙,410082%湖南科技大学 信息与电气工程学院,湖南 湘潭,411021
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 1.9639732
Snippet 针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中的克隆选...
TP301.6; 针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3229
SubjectTerms 人工免疫系统
函数优化
精英学习
综合学习粒子群算法(CLPSO)
Title 免疫综合学习粒子群优化算法
URI http://lib.cqvip.com/qk/93231X/201411/662626283.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201411007
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1001-3695
  databaseCode: ABDBF
  dateStart: 20130901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib025702191
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1CqdhLjwjRgDVKQ9cZhSkjhx7KPTZJo4cCrSblWaOJt26AbrDt0diQOgCYnBkQPigsYBToiJX7PSv8Gz42VhQhOgVpZrPz8_-7nvPVv2e4Qs0kg_QvMLJwiH3AmyzHUy_O2wIRehm4W-Kswt30ds5XHwcDVcbbVeNW4t7YyH3Xz3j-9K_oerWIZ81a9k_4GzNVIswDzyF1PkMKZ_xWNIQ-D4TSCNQDCQsc7EMcQ9XSVc4FxnZAKSQRpALEC6BsYH4dsqUZWkIAMD0wNhWvGexolVMgURQcogplDFqjw2ZyHlulZ6v4GJHsRSY8BUBIa2ACQ3MK4tkQLi-lDQNKpaI9VIfmJ684CLJQMcG7LNYKW_ZHLcUGk6E4kpSYCnzUOM6tmolbj6Thdllnorkq1isEvPawhYlD-ioaypX7nROK0IqGDCKALdR7fuQ1_lC7raa2sVaveUq22Guzv8cHqOzPn6fKdN5mScxMsnBibaY02Hg7725XOyodPe-FlDguoQgagSagkaejQKTbyBylYIsLLyl2EJPE8WLfUPzqJdOwJZ3xytPUHzxrw2G5XZaK1hGPUvk4t2R9OR1fK8Qlq761fJpeNoIR2rPK6R-9NnL2f7n2bfD6d7z6cHH4--vZ99eT092Jv9-HB0-G76Yn_2-e3Pr2-uk_5y2u-tODZMh5MzN3IKinvysqRDHBoa22gvch4oV_hRXoRuXvgszLlfeJHytFDAKWAsU1RxWpRMXx-9QdqjzZG6SToqyHmZqcJzC20oU6GUKDJEUgqXlqGYJwv1sAdblTeWQc20eXLPTsTA_ke3BxvbG5PJZENPnfaNGN06E8MCuaAhqxO226Q9frqj7qDNOR7etQvhF9NQXYQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%85%8D%E7%96%AB%E7%BB%BC%E5%90%88%E5%AD%A6%E4%B9%A0%E7%B2%92%E5%AD%90%E7%BE%A4%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%9E%97%E5%9B%BD%E6%B1%89+%E7%AB%A0%E5%85%A2+%E5%88%98%E6%9C%9D%E5%8D%8E&rft.date=2014&rft.issn=1001-3695&rft.volume=31&rft.issue=11&rft.spage=3229&rft.epage=3233&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2014.11.007&rft.externalDocID=662626283
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg