免疫综合学习粒子群优化算法
针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中的克隆选择机制,利用克隆复制、高频变异、克隆选择等操作,增加种群的多样性,提高算法的收敛速度,利用柯西分布较宽的两翼分布特性进行精英粒子学习以进一步增强粒子逃离局部极值及多峰函数优化问题全局寻优能力。针对标准测试函数的仿真结果表明,与其他改进粒子群算法相比,ICLPSO算法收敛速度快,求解精度更高。...
        Saved in:
      
    
          | Published in | 计算机应用研究 Vol. 31; no. 11; pp. 3229 - 3233 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            湖南大学 电气与信息工程学院,长沙410082
    
        2014
     湖南工程学院电气信息学院,湖南湘潭411101%湖南大学 电气与信息工程学院,长沙,410082%湖南科技大学 信息与电气工程学院,湖南 湘潭,411021  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1001-3695 | 
| DOI | 10.3969/j.issn.1001-3695.2014.11.007 | 
Cover
| Abstract | 针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中的克隆选择机制,利用克隆复制、高频变异、克隆选择等操作,增加种群的多样性,提高算法的收敛速度,利用柯西分布较宽的两翼分布特性进行精英粒子学习以进一步增强粒子逃离局部极值及多峰函数优化问题全局寻优能力。针对标准测试函数的仿真结果表明,与其他改进粒子群算法相比,ICLPSO算法收敛速度快,求解精度更高。 | 
    
|---|---|
| AbstractList | 针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中的克隆选择机制,利用克隆复制、高频变异、克隆选择等操作,增加种群的多样性,提高算法的收敛速度,利用柯西分布较宽的两翼分布特性进行精英粒子学习以进一步增强粒子逃离局部极值及多峰函数优化问题全局寻优能力。针对标准测试函数的仿真结果表明,与其他改进粒子群算法相比,ICLPSO算法收敛速度快,求解精度更高。 TP301.6; 针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中的克隆选择机制,利用克隆复制、高频变异、克隆选择等操作,增加种群的多样性,提高算法的收敛速度,利用柯西分布较宽的两翼分布特性进行精英粒子学习以进一步增强粒子逃离局部极值及多峰函数优化问题全局寻优能力。针对标准测试函数的仿真结果表明,与其他改进粒子群算法相比,ICLPSO算法收敛速度快,求解精度更高。  | 
    
| Abstract_FL | Convergence of the comprehensive learning particle swarm optimization(CLPSO)algorithm is relatively slow at the late stage of evolution.Once all particles trapped in local optimum,the algorithm can not jump out of the local optimum.This paper proposed immune comprehensive learning particle swarm optimization(ICLPSO)algorithms.The algorithm introduced clonal se-lection mechanism in artificial immune system.Using of clonal copy,hypermutation and clonal selection,it increased the diversi-ty of the population,improved the convergence rate and enhanced the ability of escape from the local optimum and multi-mode op-timization ability of global optimization.Using the elitist learning strategy,the ability to escape from local optimia is further en-hanced.Experiments on several benchmark functions verify the effective of the proposed algorithm. | 
    
| Author | 林国汉 章兢 刘朝华 | 
    
| AuthorAffiliation | 湖南大学电气与信息工程学院,长沙410082 湖南工程学院电气信息学院,湖南湘潭411101 湖南科技大学信息与电气工程学院,湖南湘潭411021 | 
    
| AuthorAffiliation_xml | – name: 湖南大学 电气与信息工程学院,长沙410082; 湖南工程学院电气信息学院,湖南湘潭411101%湖南大学 电气与信息工程学院,长沙,410082%湖南科技大学 信息与电气工程学院,湖南 湘潭,411021 | 
    
| Author_FL | LIU Zhao-hua ZHANG Jing LIN Guo-han  | 
    
| Author_FL_xml | – sequence: 1 fullname: LIN Guo-han – sequence: 2 fullname: ZHANG Jing – sequence: 3 fullname: LIU Zhao-hua  | 
    
| Author_xml | – sequence: 1 fullname: 林国汉 章兢 刘朝华  | 
    
| BookMark | eNo9j89Kw0AYxPdQwbb6EiLoJXG__Tab7FGK_6DgpfcQs5uaRTeaIJIHEDwoFMHq0YN4kXrQk1h8msa8hikVmcPA8GOG6ZCWzawmZB2oi1LILeOmRWFdoBQcFNJzGQXuAriU-i3S_s-XSacoDKWcgaRtslFd3dbj1_prWo2uq8nL7POpfr-rJqP6-3k2faxuxvXbw8_H_QpZSqKTQq_-eZcMdncGvX2nf7h30NvuO7GgvqMQOE8SPELfQ8mA8SDgmkrmx8qjsWLCiwOmwNfgCaY8QCEijTpAlQiQErtkc1F7GdkkssPQZBe5bQZDU5iyLM38FTRn_AZdW6DxcWaH52kDn-XpaZSXoRBsrgDxF-xaXlE | 
    
| ClassificationCodes | TP301.6 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.3969/j.issn.1001-3695.2014.11.007 | 
    
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| DocumentTitleAlternate | Immune comprehensive learning particle swarm optimization algorithm | 
    
| DocumentTitle_FL | Immune comprehensive learning particle swarm optimization algorithm | 
    
| EndPage | 3233 | 
    
| ExternalDocumentID | jsjyyyj201411007 662626283  | 
    
| GrantInformation_xml | – fundername: 国家自然科学基金资助项目; 国家教育部博士点基金资助项目; 湖南省自然科学基金资助项目 funderid: (61174140); (20110161110035); (11 jj4049)  | 
    
| GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX  | 
    
| ID | FETCH-LOGICAL-c607-d3144ff3b375392124884e0927cd50cd265c82d17e1562d51366ae3e83df61993 | 
    
| ISSN | 1001-3695 | 
    
| IngestDate | Thu May 29 03:54:50 EDT 2025 Wed Feb 14 10:34:00 EST 2024  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | elitist learning 人工免疫系统 精英学习 comprehensive learning particle swarm optimization algorithm 函数优化 function optimization 综合学习粒子群算法(CLPSO) artificial immune system  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c607-d3144ff3b375392124884e0927cd50cd265c82d17e1562d51366ae3e83df61993 | 
    
| Notes | LIN Guo-han, ZHANG Jing, LIU Zhao-hua (1. College of Electrical & Information Engineering, Hunan University, Changsha 410082, China; 2. College of Electrical & Information, Hunan Institute of Engineering, Xiangtan Hunan 411101, China; 3. School of Information & Electrical Engineering, Hunan University of Science & Tech- nology, Xiangtan Hunan 411021, China) 51-1196/TP Convergence of the comprehensive learning particle swarm optimization(CLPSO)algorithm is relatively slow at the late stage of evolution.Once all particles trapped in local optimum,the algorithm can not jump out of the local optimum.This paper proposed immune comprehensive learning particle swarm optimization(ICLPSO)algorithms.The algorithm introduced clonal se-lection mechanism in artificial immune system.Using of clonal copy,hypermutation and clonal selection,it increased the diversi-ty of the population,improved the convergence rate and enhanced the ability of escape from the local optimum and multi-mode op-timization ability of global optimizat  | 
    
| PageCount | 5 | 
    
| ParticipantIDs | wanfang_journals_jsjyyyj201411007 chongqing_primary_662626283  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014 | 
    
| PublicationDateYYYYMMDD | 2014-01-01 | 
    
| PublicationDate_xml | – year: 2014 text: 2014  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 计算机应用研究 | 
    
| PublicationTitleAlternate | Application Research of Computers | 
    
| PublicationTitle_FL | Application Research of Computers | 
    
| PublicationYear | 2014 | 
    
| Publisher | 湖南大学 电气与信息工程学院,长沙410082 湖南工程学院电气信息学院,湖南湘潭411101%湖南大学 电气与信息工程学院,长沙,410082%湖南科技大学 信息与电气工程学院,湖南 湘潭,411021  | 
    
| Publisher_xml | – name: 湖南大学 电气与信息工程学院,长沙410082 – name: 湖南工程学院电气信息学院,湖南湘潭411101%湖南大学 电气与信息工程学院,长沙,410082%湖南科技大学 信息与电气工程学院,湖南 湘潭,411021  | 
    
| SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191  | 
    
| Score | 1.9639732 | 
    
| Snippet | 针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中的克隆选... TP301.6; 针对综合学习粒子群算法后期收敛速度慢、一旦所有粒子陷入局部最优,则无法跳出等缺陷,提出免疫综合学习粒子群优化(ICLPSO)算法。ICLPSO算法引入人工免疫系统中...  | 
    
| SourceID | wanfang chongqing  | 
    
| SourceType | Aggregation Database Publisher  | 
    
| StartPage | 3229 | 
    
| SubjectTerms | 人工免疫系统 函数优化 精英学习 综合学习粒子群算法(CLPSO)  | 
    
| Title | 免疫综合学习粒子群优化算法 | 
    
| URI | http://lib.cqvip.com/qk/93231X/201411/662626283.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201411007  | 
    
| Volume | 31 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1001-3695 databaseCode: ABDBF dateStart: 20130901 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssib025702191 providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1CqdhLjwjRgDVKQ9cZhSkjhx7KPTZJo4cCrSblWaOJt26AbrDt0diQOgCYnBkQPigsYBToiJX7PSv8Gz42VhQhOgVpZrPz8_-7nvPVv2e4Qs0kg_QvMLJwiH3AmyzHUy_O2wIRehm4W-Kswt30ds5XHwcDVcbbVeNW4t7YyH3Xz3j-9K_oerWIZ81a9k_4GzNVIswDzyF1PkMKZ_xWNIQ-D4TSCNQDCQsc7EMcQ9XSVc4FxnZAKSQRpALEC6BsYH4dsqUZWkIAMD0wNhWvGexolVMgURQcogplDFqjw2ZyHlulZ6v4GJHsRSY8BUBIa2ACQ3MK4tkQLi-lDQNKpaI9VIfmJ684CLJQMcG7LNYKW_ZHLcUGk6E4kpSYCnzUOM6tmolbj6Thdllnorkq1isEvPawhYlD-ioaypX7nROK0IqGDCKALdR7fuQ1_lC7raa2sVaveUq22Guzv8cHqOzPn6fKdN5mScxMsnBibaY02Hg7725XOyodPe-FlDguoQgagSagkaejQKTbyBylYIsLLyl2EJPE8WLfUPzqJdOwJZ3xytPUHzxrw2G5XZaK1hGPUvk4t2R9OR1fK8Qlq761fJpeNoIR2rPK6R-9NnL2f7n2bfD6d7z6cHH4--vZ99eT092Jv9-HB0-G76Yn_2-e3Pr2-uk_5y2u-tODZMh5MzN3IKinvysqRDHBoa22gvch4oV_hRXoRuXvgszLlfeJHytFDAKWAsU1RxWpRMXx-9QdqjzZG6SToqyHmZqcJzC20oU6GUKDJEUgqXlqGYJwv1sAdblTeWQc20eXLPTsTA_ke3BxvbG5PJZENPnfaNGN06E8MCuaAhqxO226Q9frqj7qDNOR7etQvhF9NQXYQ | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%85%8D%E7%96%AB%E7%BB%BC%E5%90%88%E5%AD%A6%E4%B9%A0%E7%B2%92%E5%AD%90%E7%BE%A4%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%9E%97%E5%9B%BD%E6%B1%89+%E7%AB%A0%E5%85%A2+%E5%88%98%E6%9C%9D%E5%8D%8E&rft.date=2014&rft.issn=1001-3695&rft.volume=31&rft.issue=11&rft.spage=3229&rft.epage=3233&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2014.11.007&rft.externalDocID=662626283 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg  |