引入极化方位角特征的极化SAR图像分类

针对传统的基于散射机理的极化SAR图像分类方法易导致与雷达方位向具有一定倾角的建筑物(简称定向建筑物)被错划为森林等体散射类型的问题,提出一种引入极化方位角特征的分类方法。利用四分量分解模型并引入极化方位角补偿技术把像元划分为相应的主散射类型;定义一种极化方位角标准差参数作为区域匀质性测量指标,利用该参数从体散射类型中区分出定向建筑物类型;并在此基础上将Wishart分类器应用于极化SAR图像分类。采用E-SAR系统获取的L波段全极化数据进行实验,并与传统分类方法进行对比。定性和定量的比较结果表明,提出的方法不仅保留了传统分类方法的优势,且很好地解决了定向建筑物与森林的分类混淆现象。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 32; no. 11; pp. 3484 - 3488
Main Author 王剑波 王超 张红 吴樊
Format Journal Article
LanguageChinese
Published 中国科学院遥感与数字地球研究所 数字地球重点实验室,北京 100094 2015
中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所 数字地球重点实验室,北京,100094
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2015.11.067

Cover

Abstract 针对传统的基于散射机理的极化SAR图像分类方法易导致与雷达方位向具有一定倾角的建筑物(简称定向建筑物)被错划为森林等体散射类型的问题,提出一种引入极化方位角特征的分类方法。利用四分量分解模型并引入极化方位角补偿技术把像元划分为相应的主散射类型;定义一种极化方位角标准差参数作为区域匀质性测量指标,利用该参数从体散射类型中区分出定向建筑物类型;并在此基础上将Wishart分类器应用于极化SAR图像分类。采用E-SAR系统获取的L波段全极化数据进行实验,并与传统分类方法进行对比。定性和定量的比较结果表明,提出的方法不仅保留了传统分类方法的优势,且很好地解决了定向建筑物与森林的分类混淆现象。
AbstractList TP391.41; 针对传统的基于散射机理的极化 SAR 图像分类方法易导致与雷达方位向具有一定倾角的建筑物(简称定向建筑物)被错划为森林等体散射类型的问题,提出一种引入极化方位角特征的分类方法。利用四分量分解模型并引入极化方位角补偿技术把像元划分为相应的主散射类型;定义一种极化方位角标准差参数作为区域匀质性测量指标,利用该参数从体散射类型中区分出定向建筑物类型;并在此基础上将 Wishart 分类器应用于极化 SAR 图像分类。采用 E-SAR 系统获取的 L 波段全极化数据进行实验,并与传统分类方法进行对比。定性和定量的比较结果表明,提出的方法不仅保留了传统分类方法的优势,且很好地解决了定向建筑物与森林的分类混淆现象。
针对传统的基于散射机理的极化SAR图像分类方法易导致与雷达方位向具有一定倾角的建筑物(简称定向建筑物)被错划为森林等体散射类型的问题,提出一种引入极化方位角特征的分类方法。利用四分量分解模型并引入极化方位角补偿技术把像元划分为相应的主散射类型;定义一种极化方位角标准差参数作为区域匀质性测量指标,利用该参数从体散射类型中区分出定向建筑物类型;并在此基础上将Wishart分类器应用于极化SAR图像分类。采用E-SAR系统获取的L波段全极化数据进行实验,并与传统分类方法进行对比。定性和定量的比较结果表明,提出的方法不仅保留了传统分类方法的优势,且很好地解决了定向建筑物与森林的分类混淆现象。
Abstract_FL The conventional PolSAR image classification algorithm based on the scattering mechanism tends to misclassify the oriented buildings (not parallel to the radar azimuth)into the volume scattering category such as the forests.To overcome this problem,this paper developed an improved classification method by introducing polarization orientation angle (POA)feature. Firstly,it divided all pixels into corresponding dominated scattering categories by applying four-component decomposition mo-del combined with the polarization orientation angle compensation.Then,it defined a parameter,POA standard deviation,as an indicator of the region homogeneity measure and used this parameter to distinguish the oriented buildings from the volume scattering category.Based on this,it applied the Wishart iterative classifier to the PolSAR image classification.Using the E-SAR L band full polarimetric SAR data,this paper made a comparison between the proposed method and the conventional classification algorithm.The quantitative and qualitative comparisons result proves that the proposed method not only preserves the advantage of the conventional classification,but also effectively eliminates the classification confusion between the oriented buildings and the forests.
Author 王剑波 王超 张红 吴樊
AuthorAffiliation 中国科学院遥感与数字地球研究所数字地球重点实验室,北京100094 中国科学院大学,北京100049
AuthorAffiliation_xml – name: 中国科学院遥感与数字地球研究所 数字地球重点实验室,北京 100094; 中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所 数字地球重点实验室,北京,100094
Author_FL Zhang Hong
Wu Fan
Wang Jianbo
Wang Chao
Author_FL_xml – sequence: 1
  fullname: Wang Jianbo
– sequence: 2
  fullname: Wang Chao
– sequence: 3
  fullname: Zhang Hong
– sequence: 4
  fullname: Wu Fan
Author_xml – sequence: 1
  fullname: 王剑波 王超 张红 吴樊
BookMark eNo9j81Kw0AUhWdRwbb6EuLCTeKdmeQmsyzFPygI2n3IzKS1QafaIJJlUYuCIgh2oeBOXLssap_GaX0MIxFXBz4-zuHUSMX0TULIKgWXCxTrqdvLMuNSAOpwFL7LgPoupS5gUCHVf75IalmWAniMCqgSbj8e7OXL7Hlob8az8eTr8_b79X5-PbHT4fzxouT7jT37NLXnd_ZqNH97XyILnfgwS5b_sk7amxvt5rbT2t3aaTZajkIIHOqHoJXGUEqMWZIA1RoDlkAolOSITIhQc08hysAXUlEvlEwlqHXMpAgZr5O1svYsNp3YdKO0fzowxWCUZmme5-nvQ0qLf4W6UqrqoG-6J71CPh70juJBHiEi94AC4z9Nb2Yk
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2015.11.067
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Polarimetric SAR image classification by introducing polarization orientation angle feature
DocumentTitle_FL Polarimetric SAR image classification by introducing polarization orientation angle feature
EndPage 3488
ExternalDocumentID jsjyyyj201511067
666340102
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 中国科学院对地观测与数字地球科学中心主任创新基金
  funderid: (41371352,41331176); 中国科学院对地观测与数字地球科学中心主任创新基金
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c607-1580dcd68bb6a2ee01dd672e089cb3662998d34c66b759bc148b2ce6dda2b9823
ISSN 1001-3695
IngestDate Thu May 29 03:54:50 EDT 2025
Wed Feb 14 10:27:54 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords 极化方位角
four-component decomposition
图像分类
Wishart 迭代
image classification
polariza-tion orientation angle (POA)
Wishart iteration
极化合成孔径雷达
四分量分解
polarimetric synthetic aperture radar (PolSAR)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c607-1580dcd68bb6a2ee01dd672e089cb3662998d34c66b759bc148b2ce6dda2b9823
Notes 51-1196/TP
The conventional PolSAR image classification algorithm based on the scattering mechanism tends to misclassify the oriented buildings (not parallel to the radar azimuth) into the volume scattering category such as the forests. To overcome this problem, this paper developed an improved classification method by introducing polarization orientation angle (POA) teature. Firstly, it divided all pixels into corresponding dominated scattering categories by applying four-component decomposition mo- del combined with the polarization orientation angle compensation. Then, it defined a parameter, POA standard deviation, as an indicator of the region homogeneity measure and used this parameter to distinguish the oriented buildings from the volume scattering category. Based on this, it applied the Wishart iterative classifier to the PolSAR image classification. Using the E-SAR L band full polarimetric SAR data, this paper made a comparison between the proposed method and the conventional classification algorithm.
PageCount 5
ParticipantIDs wanfang_journals_jsjyyyj201511067
chongqing_primary_666340102
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2015
Publisher 中国科学院遥感与数字地球研究所 数字地球重点实验室,北京 100094
中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所 数字地球重点实验室,北京,100094
Publisher_xml – name: 中国科学院遥感与数字地球研究所 数字地球重点实验室,北京 100094
– name: 中国科学院大学,北京 100049%中国科学院遥感与数字地球研究所 数字地球重点实验室,北京,100094
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.004298
Snippet 针对传统的基于散射机理的极化SAR图像分类方法易导致与雷达方位向具有一定倾角的建筑物(简称定向建筑物)被错划为森林等体散射类型的问题,提出一种引入极化方位角特征的...
TP391.41; 针对传统的基于散射机理的极化 SAR 图像分类方法易导致与雷达方位向具有一定倾角的建筑物(简称定向建筑物)被错划为森林等体散射类型的问题,提出一种引入极化...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3484
SubjectTerms Wishart迭代
四分量分解
图像分类
极化合成孔径雷达
极化方位角
Title 引入极化方位角特征的极化SAR图像分类
URI http://lib.cqvip.com/qk/93231X/201511/666340102.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201511067
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  issn: 1001-3695
  databaseCode: ABDBF
  dateStart: 20130901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib025702191
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsMkDxItvMUZlhfRp2Tiv7uk-9uzOEgQ9aITclnltQg4bNckhuQUfKCiCYA4K3sSzx6DmA_wOJ_EzrKqe3YxJkOhlqK3urq7HzFZ1013F2AxeypNukrcc3YcFSp72Wzpx-i3hh0niyDQrKIHpnbty7kFwe0EsjI3_qJ1aWl9LZ7PNY--V_I9VAQd2xVuy_2DZEVFAAAz2hSdYGJ4nsjGPBY_aXAsElOAGAMl1DOEhYaBJEkbySPM44FGHqw6PFTch1x6PQ640NQEdOwrwhqvgKJ3mfXOvib90hH0R7XPVJUBxJXFo5PIoqoe7NFXMDREGQIdEuM0jQ3MargOaM-BGUR-nwhjga7RpSIwCNxHNprl2kUzkc-Md00XBSG4r9NgWUhJQRg7NH2NAGodHJC3Mr0x9D8Te_6T3lVQHknSG8neIxZAYEYg3ID_wpYE6AqA3awvQpO5Ww4E9FB64capRqA5B6iDmgBfQ6REtEB2g6TRPNh66hmRmeHqVdVH3MTYZg-a0GANzdFE3FoNmDolXUFK76dJ50JrTwmNxvrTFSoffq1vzSr7NFzuMcOCnOs57-lpq8p5IdXZEFc8_illMdWsLpxzKT768uryxsbGMnVzMRzjOJj3cG5tgkybqRN2D4Bxi2XqyRg_zIB0shrGSgax5HyyvCO505H2E64eCajXYOCuARptrpOLzFJuphLj1NxEwicrSymDxEYSGdFNv0E8Gi7Wgcv4cO1OtBhvGftrn2djm0gV2dlhppVE53otMlN_elc8-7X3cKl9t723v_Pz--tfnt_svd8rdrf33Ty2-AV9oo_ywWz55U754vv_l6yU2343n23OtquBJK5OYq1UoJ89yqdJUJl5ROG6ey9ArHKWz1JcSIkeV-0EmZRoKnWZuoFIvK2SeJ16qledfZhODlUFxhTX83PWDAnx1mIsA1mRpX8qiUFqHmZ_nTjDFpkdK6D20eW16ElYfAeaYnGI3K7X0qn-71d5hM189QZ9pdhphu2N5jU2sPV4vrkMMv5beqF6O3ztyrVc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%BC%95%E5%85%A5%E6%9E%81%E5%8C%96%E6%96%B9%E4%BD%8D%E8%A7%92%E7%89%B9%E5%BE%81%E7%9A%84%E6%9E%81%E5%8C%96+SAR+%E5%9B%BE%E5%83%8F%E5%88%86%E7%B1%BB&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E7%8E%8B%E5%89%91%E6%B3%A2&rft.au=%E7%8E%8B%E8%B6%85&rft.au=%E5%BC%A0%E7%BA%A2&rft.au=%E5%90%B4%E6%A8%8A&rft.date=2015&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E9%81%A5%E6%84%9F%E4%B8%8E%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E7%A0%94%E7%A9%B6%E6%89%80+%E6%95%B0%E5%AD%97%E5%9C%B0%E7%90%83%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E5%8C%97%E4%BA%AC+100094&rft.issn=1001-3695&rft.issue=11&rft.spage=3484&rft.epage=3488&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2015.11.067&rft.externalDocID=jsjyyyj201511067
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg