Key challenges for delivering clinical impact with artificial intelligence
Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article...
Saved in:
| Published in | BMC medicine Vol. 17; no. 1; pp. 195 - 9 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
29.10.2019
BioMed Central Ltd BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1741-7015 1741-7015 |
| DOI | 10.1186/s12916-019-1426-2 |
Cover
| Abstract | Background
Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice.
Main body
Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes.
Conclusion
The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational. |
|---|---|
| AbstractList | Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice.
Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes.
The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational. Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice.BACKGROUNDArtificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice.Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes.MAIN BODYKey challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes.The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational.CONCLUSIONThe safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational. Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. Main body Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes. Conclusion The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational. Abstract Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. Main body Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes. Conclusion The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational. Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. Main body Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes. Conclusion The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational. Keywords: Artificial intelligence, Machine learning, Algorithms, Translation, Evaluation, Regulation Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational. |
| ArticleNumber | 195 |
| Audience | Academic |
| Author | Karthikesalingam, Alan King, Dominic Suleyman, Mustafa Kelly, Christopher J. Corrado, Greg |
| Author_xml | – sequence: 1 givenname: Christopher J. orcidid: 0000-0002-1246-844X surname: Kelly fullname: Kelly, Christopher J. email: cjkelly@google.com organization: Google Health – sequence: 2 givenname: Alan surname: Karthikesalingam fullname: Karthikesalingam, Alan organization: Google Health – sequence: 3 givenname: Mustafa surname: Suleyman fullname: Suleyman, Mustafa organization: DeepMind – sequence: 4 givenname: Greg surname: Corrado fullname: Corrado, Greg organization: Google Health – sequence: 5 givenname: Dominic surname: King fullname: King, Dominic organization: Google Health |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31665002$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk2L1TAULTLifOgPcCMFQdx0TNImaTfCMPgxOuBG1yFNb9o80uSZtDO8f29qn8N7IoN00fTmnHPvOb3n2YnzDrLsJUaXGNfsXcSkwaxAuClwRVhBnmRnmFe44AjTk4PzaXYe4wYhQjmvnmWnJWaMps-z7MtX2OVqkNaC6yHm2oe8A2vuIBjX58oaZ5S0uRm3Uk35vZmGXIbJaKPMUnYTWGt6cAqeZ0-1tBFe7N8X2Y-PH75ffy5uv326ub66LRRDbCqgaTjImlMmFZGsAUVaLTXlDVVNOncEoVbJJl3LGpeI47aCDrWgO1SXpCwvsptVt_NyI7bBjDLshJdG_C740ItlQmVBlKhWyWvZlpxWoHHDOCK6aXlLCQClSYusWrPbyt19iuFBECOxhCzWkEUKWSwhC5JI71fSdm5H6BS4KUh7NMnxjTOD6P2dYDXBCNdJ4O1eIPifM8RJjCaqFKR04OeYWuBkm7Nq6fV6hfYy-TFO-6SoFri4YqiiFHHCEuryH6j0dDAalZZGm1Q_Irw5IAwg7TREb-fJeBePga8OvT6Y_LNBCYBXgAo-xgD6vwLkf3GUmeTSO41t7KPM_f-K22U_IYiNn4NL6_YI6Rc5Mfez |
| CitedBy_id | crossref_primary_10_1016_j_artmed_2022_102471 crossref_primary_10_1088_1361_6560_ad33b7 crossref_primary_10_1007_s13347_023_00608_9 crossref_primary_10_1038_s41591_024_02850_w crossref_primary_10_1016_j_artmed_2023_102751 crossref_primary_10_1016_j_artmed_2021_102190 crossref_primary_10_1016_j_radi_2024_06_010 crossref_primary_10_1136_neurintsurg_2020_016997 crossref_primary_10_1016_j_ejro_2023_100497 crossref_primary_10_1111_1754_9485_13193 crossref_primary_10_3390_biomedicines12030606 crossref_primary_10_7717_peerj_18500 crossref_primary_10_2196_47532 crossref_primary_10_1038_s41597_022_01335_0 crossref_primary_10_1145_3582430 crossref_primary_10_1001_jamaophthalmol_2022_0222 crossref_primary_10_1016_j_jor_2023_11_063 crossref_primary_10_1186_s12875_025_02773_6 crossref_primary_10_1038_s41591_022_01895_z crossref_primary_10_3390_cancers14061524 crossref_primary_10_1038_s41591_020_1037_7 crossref_primary_10_3390_cancers15051355 crossref_primary_10_1016_j_media_2022_102647 crossref_primary_10_1007_s10676_023_09721_x crossref_primary_10_2196_48633 crossref_primary_10_2174_1386207326666230306114626 crossref_primary_10_1007_s12070_024_04608_9 crossref_primary_10_1136_bmjinnov_2020_000648 crossref_primary_10_1093_jamia_ocac078 crossref_primary_10_1038_s41746_021_00544_y crossref_primary_10_1080_23808993_2024_2325936 crossref_primary_10_1038_s41430_024_01529_2 crossref_primary_10_1016_j_eswa_2022_117158 crossref_primary_10_3389_fonc_2023_1129380 crossref_primary_10_1016_j_hpb_2024_07_415 crossref_primary_10_37990_medr_1567242 crossref_primary_10_1007_s00066_024_02281_z crossref_primary_10_1016_j_ijmedinf_2023_105190 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_106989 crossref_primary_10_1186_s12916_020_01841_1 crossref_primary_10_7759_cureus_55991 crossref_primary_10_1177_00469580241266364 crossref_primary_10_3390_diagnostics13061038 crossref_primary_10_4103_CRST_CRST_43_20 crossref_primary_10_1016_S2589_7500_20_30219_3 crossref_primary_10_1016_j_ijmedinf_2021_104510 crossref_primary_10_7759_cureus_77524 crossref_primary_10_1007_s44254_025_00086_6 crossref_primary_10_1038_s41537_025_00583_4 crossref_primary_10_3390_diagnostics12071643 crossref_primary_10_1016_j_ajp_2022_103021 crossref_primary_10_3390_diagnostics15050648 crossref_primary_10_1016_j_ijinfomgt_2023_102728 crossref_primary_10_1097_CCM_0000000000005758 crossref_primary_10_34197_ats_scholar_2023_0036PS crossref_primary_10_57125_FEM_2024_12_30_02 crossref_primary_10_1038_s41746_021_00468_7 crossref_primary_10_1136_spcare_2023_004634 crossref_primary_10_1093_jamia_ocae076 crossref_primary_10_2196_46430 crossref_primary_10_2196_25759 crossref_primary_10_1016_j_wneu_2023_11_060 crossref_primary_10_1186_s12967_024_05005_0 crossref_primary_10_1002_cjp2_227 crossref_primary_10_1016_j_bbe_2022_08_001 crossref_primary_10_1038_s41598_020_77893_3 crossref_primary_10_3390_diagnostics14020174 crossref_primary_10_4236_jcc_2023_1111001 crossref_primary_10_2196_46487 crossref_primary_10_1002_2056_4538_70008 crossref_primary_10_1016_j_engstruct_2023_115675 crossref_primary_10_1186_s40463_022_00566_w crossref_primary_10_1038_s41390_024_03494_9 crossref_primary_10_1038_s41746_024_01117_5 crossref_primary_10_1007_s11886_022_01655_y crossref_primary_10_1016_j_resourpol_2023_104213 crossref_primary_10_3390_info15120768 crossref_primary_10_1007_s43681_021_00131_7 crossref_primary_10_1016_S2589_7500_21_00019_4 crossref_primary_10_1057_s41599_025_04564_x crossref_primary_10_1016_j_siny_2022_101393 crossref_primary_10_1186_s13063_022_06471_x crossref_primary_10_1007_s00330_020_07030_1 crossref_primary_10_3390_app122211677 crossref_primary_10_1097_PRS_0000000000010572 crossref_primary_10_1093_europace_euac135 crossref_primary_10_1038_s44222_024_00195_0 crossref_primary_10_1007_s10916_021_01783_y crossref_primary_10_1016_j_chest_2020_06_065 crossref_primary_10_1016_j_jacr_2020_09_029 crossref_primary_10_1136_bmj_m3164 crossref_primary_10_1093_eurjcn_zvae077 crossref_primary_10_1136_bmjsit_2022_000141 crossref_primary_10_1016_S2589_7500_22_00029_2 crossref_primary_10_1515_cclm_2022_0470 crossref_primary_10_1016_j_jacr_2020_09_060 crossref_primary_10_1001_jamanetworkopen_2022_12095 crossref_primary_10_1007_s10278_022_00594_y crossref_primary_10_1016_j_ijmedinf_2023_105159 crossref_primary_10_3389_fdgth_2022_833912 crossref_primary_10_1038_s41598_020_65794_4 crossref_primary_10_3390_diagnostics12081878 crossref_primary_10_1016_j_xcrm_2022_100622 crossref_primary_10_12688_f1000research_138294_2 crossref_primary_10_3390_cancers14133063 crossref_primary_10_1038_s41746_022_00737_z crossref_primary_10_12688_f1000research_138294_1 crossref_primary_10_1016_j_jvscit_2022_06_018 crossref_primary_10_3390_data6020022 crossref_primary_10_1093_ehjdh_ztab089 crossref_primary_10_1038_s41409_022_01622_9 crossref_primary_10_1016_j_hlpt_2022_100602 crossref_primary_10_1080_0960085X_2023_2251927 crossref_primary_10_3389_fneur_2023_1179250 crossref_primary_10_1007_s10815_024_03215_5 crossref_primary_10_1111_cts_13175 crossref_primary_10_3390_jcm12134209 crossref_primary_10_1007_s13311_023_01358_4 crossref_primary_10_3390_app14020675 crossref_primary_10_1093_bib_bbaa369 crossref_primary_10_1109_TMI_2023_3287361 crossref_primary_10_1016_j_asoc_2021_108391 crossref_primary_10_3348_kjr_2021_0048 crossref_primary_10_1038_s41746_022_00652_3 crossref_primary_10_3390_jcm13247833 crossref_primary_10_1093_ehjdh_ztad021 crossref_primary_10_1016_j_bpsc_2021_02_001 crossref_primary_10_1002_mus_28023 crossref_primary_10_1016_S2589_7500_20_30187_4 crossref_primary_10_1016_S2468_1253_19_30431_5 crossref_primary_10_1056_AIoa2300138 crossref_primary_10_1007_s11606_022_07526_0 crossref_primary_10_1093_jamia_ocac254 crossref_primary_10_1093_jamia_ocad100 crossref_primary_10_1177_02666669241291568 crossref_primary_10_2196_57981 crossref_primary_10_61186_ijbc_15_3_13 crossref_primary_10_1016_j_ajem_2025_03_029 crossref_primary_10_3390_healthcare12040481 crossref_primary_10_4103_ijo_IJO_2583_21 crossref_primary_10_3390_s22208073 crossref_primary_10_1136_medethics_2021_107352 crossref_primary_10_3389_fdgth_2022_932411 crossref_primary_10_3390_jpm14040354 crossref_primary_10_1038_s41551_023_01049_7 crossref_primary_10_1038_s41746_024_01270_x crossref_primary_10_1016_j_artmed_2024_102861 crossref_primary_10_1186_s12912_024_02571_y crossref_primary_10_4103_jpi_jpi_84_20 crossref_primary_10_1007_s00134_024_07776_y crossref_primary_10_1093_jamia_ocab154 crossref_primary_10_1186_s13073_024_01315_6 crossref_primary_10_1111_imj_16519 crossref_primary_10_1016_j_heliyon_2021_e06993 crossref_primary_10_3390_cancers17010028 crossref_primary_10_3389_fradi_2025_1493783 crossref_primary_10_1016_j_jseint_2024_07_002 crossref_primary_10_1088_1757_899X_1020_1_012008 crossref_primary_10_2196_46859 crossref_primary_10_1016_j_ibmed_2025_100237 crossref_primary_10_1016_j_artmed_2024_102850 crossref_primary_10_1016_j_eswa_2022_118083 crossref_primary_10_1097_NMC_0000000000000839 crossref_primary_10_1109_RBME_2021_3131358 crossref_primary_10_1016_j_surg_2022_03_031 crossref_primary_10_3389_fonc_2022_980793 crossref_primary_10_7759_cureus_71148 crossref_primary_10_1016_j_patter_2021_100347 crossref_primary_10_3390_biom14101303 crossref_primary_10_1038_s41380_023_02047_6 crossref_primary_10_1056_NEJMra2212850 crossref_primary_10_1007_s00417_023_06101_5 crossref_primary_10_1371_journal_pdig_0000011 crossref_primary_10_1093_jamia_ocae220 crossref_primary_10_1186_s12967_022_03777_x crossref_primary_10_29413_ABS_2024_9_5_2 crossref_primary_10_1002_INMD_20230013 crossref_primary_10_1080_15265161_2020_1820111 crossref_primary_10_3390_app14167342 crossref_primary_10_1016_j_eururo_2019_12_006 crossref_primary_10_1186_s12913_021_06861_y crossref_primary_10_1002_pd_5892 crossref_primary_10_1089_tmj_2022_0405 crossref_primary_10_1016_j_diii_2023_05_007 crossref_primary_10_1016_j_wneu_2024_09_075 crossref_primary_10_1097_BSD_0000000000001520 crossref_primary_10_3390_cancers14153780 crossref_primary_10_1016_j_cels_2021_05_005 crossref_primary_10_1016_j_mehy_2023_111084 crossref_primary_10_1007_s00330_021_07881_2 crossref_primary_10_1136_thoraxjnl_2020_214556 crossref_primary_10_1148_radiol_2021210578 crossref_primary_10_47316_cajmhe_2024_5_4_02 crossref_primary_10_3389_fmed_2024_1506641 crossref_primary_10_1016_j_ajo_2025_02_022 crossref_primary_10_1016_j_lanwpc_2024_101254 crossref_primary_10_1016_j_jorep_2024_100358 crossref_primary_10_1227_NEU_0000000000001736 crossref_primary_10_1007_s10462_023_10525_0 crossref_primary_10_1016_j_eclinm_2023_102312 crossref_primary_10_2196_34678 crossref_primary_10_1016_j_jcmg_2021_04_030 crossref_primary_10_1016_j_preteyeres_2025_101350 crossref_primary_10_1108_IMDS_12_2023_0977 crossref_primary_10_1177_00033197251324630 crossref_primary_10_1371_journal_pdig_0000261 crossref_primary_10_1177_20552076241257014 crossref_primary_10_1016_j_mcpdig_2024_06_009 crossref_primary_10_1016_S2589_7500_24_00198_5 crossref_primary_10_1016_j_ajp_2023_103705 crossref_primary_10_5005_newborn_2_1_iv crossref_primary_10_1016_j_ejso_2024_108014 crossref_primary_10_1038_s41591_021_01614_0 crossref_primary_10_1182_blood_2023022981 crossref_primary_10_1016_j_artmed_2024_102815 crossref_primary_10_1111_imj_15017 crossref_primary_10_1186_s13045_023_01514_5 crossref_primary_10_1007_s00432_022_04263_z crossref_primary_10_3390_diagnostics14040397 crossref_primary_10_1016_j_ijmedinf_2022_104866 crossref_primary_10_1016_j_cmpb_2023_107684 crossref_primary_10_2196_22453 crossref_primary_10_1007_s10143_023_02014_3 crossref_primary_10_1186_s12880_025_01604_5 crossref_primary_10_1186_s12903_023_03027_6 crossref_primary_10_1177_20595131211066585 crossref_primary_10_1038_s41467_023_38569_4 crossref_primary_10_1016_j_bspc_2024_107177 crossref_primary_10_1177_20552076241272657 crossref_primary_10_1016_j_jbi_2022_104168 crossref_primary_10_1007_s00330_023_09409_2 crossref_primary_10_2196_57750 crossref_primary_10_3389_fcvm_2022_945726 crossref_primary_10_1111_all_15849 crossref_primary_10_1108_K_01_2024_0222 crossref_primary_10_1016_j_survophthal_2024_09_003 crossref_primary_10_3390_app12073341 crossref_primary_10_1016_j_artmed_2021_102158 crossref_primary_10_2147_JHC_S382310 crossref_primary_10_3346_jkms_2020_35_e379 crossref_primary_10_1108_BPMJ_10_2019_0411 crossref_primary_10_1186_s40885_024_00266_9 crossref_primary_10_1093_aje_kwad107 crossref_primary_10_3233_JAD_210714 crossref_primary_10_1016_j_ejphar_2024_177067 crossref_primary_10_1186_s12903_024_05231_4 crossref_primary_10_1016_j_hbpd_2022_03_001 crossref_primary_10_3389_fphys_2023_1288226 crossref_primary_10_1007_s13218_022_00780_8 crossref_primary_10_7759_cureus_46454 crossref_primary_10_1007_s12072_021_10291_7 crossref_primary_10_1016_j_csbj_2020_08_019 crossref_primary_10_1109_TAI_2024_3353164 crossref_primary_10_1007_s12072_022_10342_7 crossref_primary_10_1016_j_bbe_2021_09_002 crossref_primary_10_1177_00187208251323478 crossref_primary_10_1371_journal_pdig_0000514 crossref_primary_10_1016_j_wneu_2021_11_081 crossref_primary_10_1038_s41467_024_51202_2 crossref_primary_10_1080_1744666X_2022_2017773 crossref_primary_10_2196_33703 crossref_primary_10_38124_ijisrt_IJISRT24OCT089 crossref_primary_10_1097_MOT_0000000000000781 crossref_primary_10_1038_s41390_024_03774_4 crossref_primary_10_1038_s41598_024_81724_0 crossref_primary_10_1016_j_ejcped_2024_100197 crossref_primary_10_1016_j_jval_2021_11_1362 crossref_primary_10_1016_j_jval_2021_11_1360 crossref_primary_10_1038_s41388_023_02826_z crossref_primary_10_7759_cureus_43192 crossref_primary_10_1038_s41598_022_24356_6 crossref_primary_10_1089_thy_2023_0132 crossref_primary_10_1111_inm_13303 crossref_primary_10_1186_s13073_021_00968_x crossref_primary_10_3389_fmed_2022_994805 crossref_primary_10_3389_fphys_2021_658583 crossref_primary_10_1227_neu_0000000000001999 crossref_primary_10_2196_28120 crossref_primary_10_5582_irdr_2023_01111 crossref_primary_10_1109_ACCESS_2022_3178382 crossref_primary_10_47992_IJHSP_2581_6411_0097 crossref_primary_10_1016_j_inffus_2024_102690 crossref_primary_10_1200_CCI_21_00102 crossref_primary_10_1159_000519960 crossref_primary_10_1186_s12874_025_02463_y crossref_primary_10_1109_TNNLS_2020_3027314 crossref_primary_10_1007_s00068_020_01444_8 crossref_primary_10_1148_ryai_2020200098 crossref_primary_10_3390_children12030317 crossref_primary_10_7717_peerj_10317 crossref_primary_10_1371_journal_pdig_0000533 crossref_primary_10_2147_IDR_S407202 crossref_primary_10_1002_hsr2_70312 crossref_primary_10_1007_s00737_024_01474_w crossref_primary_10_3390_brainsci14020186 crossref_primary_10_1016_j_medj_2021_04_006 crossref_primary_10_1002_widm_1379 crossref_primary_10_1186_s11689_022_09438_w crossref_primary_10_1177_20552076241271803 crossref_primary_10_1111_anae_15212 crossref_primary_10_1016_j_jrras_2024_101282 crossref_primary_10_1371_journal_pone_0274276 crossref_primary_10_1016_j_cpcardiol_2023_102250 crossref_primary_10_1016_j_drudis_2020_12_009 crossref_primary_10_1136_bmjopen_2023_079785 crossref_primary_10_1007_s41019_022_00176_6 crossref_primary_10_1097_RTI_0000000000000622 crossref_primary_10_1007_s11936_023_01022_2 crossref_primary_10_1063_5_0073209 crossref_primary_10_1080_10447318_2023_2291616 crossref_primary_10_61466_ijcmr3020001 crossref_primary_10_17816_socm619132 crossref_primary_10_1111_jonm_13425 crossref_primary_10_1109_TPAMI_2023_3296408 crossref_primary_10_1148_radiol_220182 crossref_primary_10_1038_s41586_023_06160_y crossref_primary_10_3389_fcvm_2023_1127716 crossref_primary_10_1007_s00464_023_10637_2 crossref_primary_10_5124_jkma_2020_63_11_696 crossref_primary_10_1016_j_jbo_2024_100525 crossref_primary_10_1080_17476348_2021_1894133 crossref_primary_10_1148_radiol_222126 crossref_primary_10_1371_journal_pone_0304069 crossref_primary_10_3389_fmedt_2024_1469852 crossref_primary_10_55544_jrasb_2_5_9 crossref_primary_10_1177_20552076211048654 crossref_primary_10_1097_CCM_0000000000006359 crossref_primary_10_1016_S2589_7500_22_00252_7 crossref_primary_10_1371_journal_pcbi_1011815 crossref_primary_10_1007_s00464_022_09112_1 crossref_primary_10_3389_fpsyg_2024_1422177 crossref_primary_10_1007_s10278_024_01282_9 crossref_primary_10_1136_bmjhci_2021_100495 crossref_primary_10_3389_fneur_2021_711646 crossref_primary_10_1109_TETC_2024_3481035 crossref_primary_10_1016_j_eswa_2024_124888 crossref_primary_10_2196_18599 crossref_primary_10_1111_jonm_13894 crossref_primary_10_1038_s41591_021_01343_4 crossref_primary_10_1186_s12911_023_02103_9 crossref_primary_10_1109_ACCESS_2023_3279732 crossref_primary_10_1097_GOX_0000000000004279 crossref_primary_10_1136_bmjopen_2022_069255 crossref_primary_10_1016_j_patter_2021_100269 crossref_primary_10_1016_j_patter_2023_100864 crossref_primary_10_1038_s41598_021_93967_2 crossref_primary_10_7759_cureus_69555 crossref_primary_10_1177_11795549241311408 crossref_primary_10_1097_CIN_0000000000001197 crossref_primary_10_1093_bjsopen_zrad011 crossref_primary_10_1148_ryai_220074 crossref_primary_10_2196_38178 crossref_primary_10_1038_s41416_021_01689_z crossref_primary_10_1200_JCO_23_01978 crossref_primary_10_3233_JCB_230118 crossref_primary_10_1007_s13760_024_02682_y crossref_primary_10_3389_fmolb_2024_1483326 crossref_primary_10_1186_s12911_023_02369_z crossref_primary_10_2196_50295 crossref_primary_10_1016_j_radi_2024_01_019 crossref_primary_10_1016_j_compbiomed_2022_106043 crossref_primary_10_7759_cureus_45594 crossref_primary_10_1016_j_ejphar_2024_177080 crossref_primary_10_1016_j_medine_2019_11_006 crossref_primary_10_1016_j_medin_2019_11_003 crossref_primary_10_2174_2666782701666220920091940 crossref_primary_10_1371_journal_pone_0276836 crossref_primary_10_1136_bjo_2023_324188 crossref_primary_10_1007_s11606_020_06394_w crossref_primary_10_1016_j_compbiomed_2021_104850 crossref_primary_10_2174_1389450121666200708120646 crossref_primary_10_1186_s13000_020_00995_z crossref_primary_10_1016_j_oor_2024_100343 crossref_primary_10_1038_s41746_022_00712_8 crossref_primary_10_1038_s41746_023_00753_7 crossref_primary_10_1002_hsr2_70372 crossref_primary_10_1371_journal_pone_0296456 crossref_primary_10_1186_s42444_022_00075_x crossref_primary_10_1007_s40615_024_02237_0 crossref_primary_10_1016_j_cll_2022_09_023 crossref_primary_10_1080_15459624_2024_2443198 crossref_primary_10_1093_ptj_pzae137 crossref_primary_10_1111_jebm_12549 crossref_primary_10_1016_j_semcancer_2023_09_005 crossref_primary_10_7759_cureus_46860 crossref_primary_10_1371_journal_pone_0242806 crossref_primary_10_1038_s42256_021_00357_4 crossref_primary_10_1016_j_ccrj_2023_04_003 crossref_primary_10_1002_hsr2_70139 crossref_primary_10_1182_bloodadvances_2023010140 crossref_primary_10_1186_s12911_024_02653_6 crossref_primary_10_1109_TBME_2023_3287514 crossref_primary_10_1055_a_2415_8408 crossref_primary_10_1097_TP_0000000000005312 crossref_primary_10_1007_s10943_024_02206_1 crossref_primary_10_61186_ist_202401_01_12 crossref_primary_10_1002_bies_202100025 crossref_primary_10_3389_fdgth_2021_739327 crossref_primary_10_3390_diagnostics13040743 crossref_primary_10_1016_j_media_2022_102391 crossref_primary_10_2196_49655 crossref_primary_10_3174_ajnr_A7850 crossref_primary_10_1053_j_gastro_2020_04_001 crossref_primary_10_12998_wjcc_v11_i33_7940 crossref_primary_10_1007_s10462_021_10074_4 crossref_primary_10_3390_su14127327 crossref_primary_10_4103_jpi_jpi_54_19 crossref_primary_10_1186_s12880_024_01260_1 crossref_primary_10_47340_mjhss_v2i4_1_2021 crossref_primary_10_1093_ehjdh_ztae034 crossref_primary_10_1016_j_cll_2022_09_004 crossref_primary_10_1007_s10278_022_00601_2 crossref_primary_10_1016_j_xfnr_2020_11_002 crossref_primary_10_1007_s00134_024_07629_8 crossref_primary_10_1038_s41467_021_22989_1 crossref_primary_10_15252_emmm_202216061 crossref_primary_10_1177_15266028231187599 crossref_primary_10_3390_s23218661 crossref_primary_10_1016_j_imu_2023_101352 crossref_primary_10_1186_s12872_023_03665_2 crossref_primary_10_3389_fpsyg_2021_710982 crossref_primary_10_1109_ACCESS_2024_3476436 crossref_primary_10_1038_s41598_021_88226_3 crossref_primary_10_2196_41940 crossref_primary_10_1111_1754_9485_13275 crossref_primary_10_4236_ijis_2023_133005 crossref_primary_10_52711_2231_5713_2024_00061 crossref_primary_10_1016_j_bjae_2023_04_003 crossref_primary_10_1016_j_scs_2024_105907 crossref_primary_10_1002_jac5_1856 crossref_primary_10_1038_s41746_021_00504_6 crossref_primary_10_1016_j_schres_2023_01_014 crossref_primary_10_56083_RCV4N1_158 crossref_primary_10_1016_j_cmpbup_2024_100142 crossref_primary_10_1071_AH21361 crossref_primary_10_1038_s41746_025_01459_8 crossref_primary_10_1053_j_jvca_2020_06_072 crossref_primary_10_1007_s40744_022_00475_4 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_35854_1998_1627_2024_7_819_831 crossref_primary_10_1088_2516_1091_abaaa3 crossref_primary_10_26466_opusjsr_1583315 crossref_primary_10_1177_17531934251322723 crossref_primary_10_4081_btvb_2024_123 crossref_primary_10_1038_s41379_020_00686_6 crossref_primary_10_1038_s41467_021_21896_9 crossref_primary_10_1007_s00439_023_02638_x crossref_primary_10_1016_j_asoc_2025_112788 crossref_primary_10_1097_JS9_0000000000000979 crossref_primary_10_2196_48156 crossref_primary_10_1016_j_gastha_2022_02_025 crossref_primary_10_1016_j_teler_2023_100097 crossref_primary_10_1186_s13741_024_00480_x crossref_primary_10_20517_ais_2024_09 crossref_primary_10_2196_36388 crossref_primary_10_1016_j_revmed_2025_02_002 crossref_primary_10_1186_s40246_020_00287_z crossref_primary_10_3748_wjg_v27_i21_2758 crossref_primary_10_1002_ima_22674 crossref_primary_10_1016_j_cmpb_2022_106754 crossref_primary_10_1111_jdv_17517 crossref_primary_10_3345_cep_2021_00766 crossref_primary_10_1038_s41598_023_28571_7 crossref_primary_10_2196_50201 crossref_primary_10_3390_cells10112924 crossref_primary_10_1097_JCMA_0000000000000824 crossref_primary_10_1016_j_joms_2021_02_031 crossref_primary_10_3389_fmed_2025_1472295 crossref_primary_10_1177_13558196241295970 crossref_primary_10_1016_j_media_2022_102594 crossref_primary_10_1515_jpm_2024_0122 crossref_primary_10_1007_s10278_022_00721_9 crossref_primary_10_3390_jcm12185831 crossref_primary_10_1136_bmj_m3210 crossref_primary_10_1016_S1470_2045_24_00277_8 crossref_primary_10_1016_j_imu_2022_101090 crossref_primary_10_1016_j_jns_2023_122799 crossref_primary_10_5664_jcsm_11362 crossref_primary_10_1161_JAHA_123_030500 crossref_primary_10_1016_j_yamp_2020_07_013 crossref_primary_10_3390_sym17030469 crossref_primary_10_1136_leader_2023_000904 crossref_primary_10_1177_20552076221089099 crossref_primary_10_1177_26334895221112033 crossref_primary_10_3390_curroncol30020168 crossref_primary_10_1016_j_amjsurg_2023_11_019 crossref_primary_10_1016_j_ijmedinf_2023_105201 crossref_primary_10_1038_s41433_023_02680_z crossref_primary_10_2139_ssrn_3795326 crossref_primary_10_1177_1074248420928651 crossref_primary_10_3390_antibiotics12030523 crossref_primary_10_1016_j_identj_2024_11_009 crossref_primary_10_1515_cclm_2023_1037 crossref_primary_10_7759_cureus_54752 crossref_primary_10_1016_j_artmed_2023_102633 crossref_primary_10_1016_S0140_6736_23_02754_X crossref_primary_10_1016_j_ijmedinf_2021_104643 crossref_primary_10_3390_app13063693 crossref_primary_10_4103_tjosr_tjosr_83_22 crossref_primary_10_1177_08404704211037995 crossref_primary_10_1186_s12916_020_01613_x crossref_primary_10_2174_1573405620666230906092310 crossref_primary_10_37126_aige_v2_i2_36 crossref_primary_10_1016_j_ijmedinf_2025_105857 crossref_primary_10_1016_j_techsoc_2024_102469 crossref_primary_10_1186_s13195_020_00757_5 crossref_primary_10_1186_s43057_021_00053_4 crossref_primary_10_3389_fpsyt_2022_1027159 crossref_primary_10_3390_diagnostics14202286 crossref_primary_10_1016_j_eswa_2024_124381 crossref_primary_10_1016_j_cjca_2024_05_025 crossref_primary_10_3389_fonc_2022_852746 crossref_primary_10_1002_ps_8473 crossref_primary_10_1016_j_artmed_2021_102060 crossref_primary_10_14245_ns_2347302_651 crossref_primary_10_4018_IJARPHM_318140 crossref_primary_10_1097_TP_0000000000003640 crossref_primary_10_20517_2394_5079_2024_138 crossref_primary_10_1016_j_otc_2024_05_002 crossref_primary_10_1016_S2589_7500_20_30218_1 crossref_primary_10_2196_18097 crossref_primary_10_3390_diagnostics13111974 crossref_primary_10_35713_aic_v1_i3_45 crossref_primary_10_1016_j_amjcard_2023_06_104 crossref_primary_10_1016_j_semarthrit_2023_152213 crossref_primary_10_1002_hbm_26625 crossref_primary_10_3390_healthcare10101923 crossref_primary_10_1016_j_ajp_2023_103866 crossref_primary_10_3390_children12010014 crossref_primary_10_1016_j_ijis_2024_05_001 crossref_primary_10_1515_revneuro_2023_0050 crossref_primary_10_1080_17469899_2023_2175672 crossref_primary_10_1002_ppap_202300066 crossref_primary_10_1093_ehjdh_ztac025 crossref_primary_10_1016_j_psychres_2024_116193 crossref_primary_10_1016_j_compbiomed_2024_109531 crossref_primary_10_2196_31053 crossref_primary_10_1111_cgf_14034 crossref_primary_10_1016_j_giq_2021_101618 crossref_primary_10_1016_j_crmeth_2021_100107 crossref_primary_10_1007_s00134_021_06446_7 crossref_primary_10_1093_jamia_ocaf033 crossref_primary_10_3389_fonc_2023_1099994 crossref_primary_10_1111_jgh_15378 crossref_primary_10_1016_j_jdent_2024_105091 crossref_primary_10_14366_usg_20078 crossref_primary_10_1016_j_ijmedinf_2023_105073 crossref_primary_10_1016_j_yapd_2024_12_003 crossref_primary_10_1016_j_mcpdig_2023_06_011 crossref_primary_10_1097_TP_0000000000003424 crossref_primary_10_1177_0271678X21991393 crossref_primary_10_1371_journal_pone_0291147 crossref_primary_10_1002_phar_2835 crossref_primary_10_1080_10447318_2024_2345980 crossref_primary_10_1007_s12553_024_00825_y crossref_primary_10_20517_ais_2024_36 crossref_primary_10_3390_jpm13121703 crossref_primary_10_1007_s41060_021_00300_1 crossref_primary_10_1038_s41746_021_00445_0 crossref_primary_10_1002_mds_29376 crossref_primary_10_1016_j_hlpt_2023_100824 crossref_primary_10_1080_17425247_2024_2429702 crossref_primary_10_1167_tvst_11_7_12 crossref_primary_10_1016_j_mayocpiqo_2021_06_001 crossref_primary_10_17816_socm107908 crossref_primary_10_1016_j_compbiomed_2024_108220 crossref_primary_10_1016_j_blre_2023_101144 crossref_primary_10_1016_j_compbiomed_2024_109555 crossref_primary_10_3389_fpubh_2022_1024203 crossref_primary_10_3390_nursrep13010007 crossref_primary_10_1016_j_mcpdig_2024_10_004 crossref_primary_10_1038_s41746_021_00438_z crossref_primary_10_1016_j_cmpb_2024_108323 crossref_primary_10_1186_s42836_021_00095_3 crossref_primary_10_2196_48544 crossref_primary_10_1038_s41598_022_26467_6 crossref_primary_10_1108_BPMJ_02_2024_0089 crossref_primary_10_2196_23483 crossref_primary_10_1093_bib_bbaa237 crossref_primary_10_2196_57271 crossref_primary_10_3389_fmed_2024_1411013 crossref_primary_10_3390_diagnostics10110972 crossref_primary_10_3390_s22239101 crossref_primary_10_1016_j_ijcard_2023_131339 crossref_primary_10_3389_fninf_2023_1272791 crossref_primary_10_2147_JPR_S356319 crossref_primary_10_1007_s42979_024_02896_0 crossref_primary_10_12688_wellcomeopenres_20012_1 crossref_primary_10_1016_j_ifacol_2021_10_066 crossref_primary_10_3390_a14010017 crossref_primary_10_1016_j_semcancer_2025_02_009 crossref_primary_10_1093_neuros_nyab337 crossref_primary_10_3390_medicina58040459 crossref_primary_10_1007_s10462_025_11160_7 crossref_primary_10_1016_j_jacr_2020_03_012 crossref_primary_10_31478_202008a crossref_primary_10_1016_j_ejmp_2021_02_024 crossref_primary_10_1128_JCM_01260_20 crossref_primary_10_2196_59660 crossref_primary_10_2196_58578 crossref_primary_10_1007_s10140_020_01893_z crossref_primary_10_1111_epi_18082 crossref_primary_10_1371_journal_pone_0282415 crossref_primary_10_1542_hpeds_2021_006094 crossref_primary_10_1007_s00129_021_04890_6 crossref_primary_10_3389_fneur_2023_1093690 crossref_primary_10_3390_su141811698 crossref_primary_10_1016_j_preteyeres_2021_100972 crossref_primary_10_3390_cancers16050862 crossref_primary_10_14260_jemds_2022_54 crossref_primary_10_1148_radiol_211706 crossref_primary_10_1371_journal_pone_0300127 crossref_primary_10_1186_s40658_021_00374_7 crossref_primary_10_1038_s41431_021_00928_4 crossref_primary_10_1002_cam4_5485 crossref_primary_10_1371_journal_pone_0282882 crossref_primary_10_1136_medethics_2020_107166 crossref_primary_10_1016_j_csbj_2023_11_011 crossref_primary_10_26633_RPSP_2024_12 crossref_primary_10_1007_s11154_023_09802_8 crossref_primary_10_26633_RPSP_2024_13 crossref_primary_10_7759_cureus_60119 crossref_primary_10_1093_jamia_ocad222 crossref_primary_10_3342_kjorl_hns_2023_00248 crossref_primary_10_1111_jep_13541 crossref_primary_10_1186_s12911_021_01634_3 crossref_primary_10_1002_mp_15461 crossref_primary_10_1002_14651858_CD015522_pub2 crossref_primary_10_1038_s41379_022_01147_y crossref_primary_10_1038_s41598_023_45802_z crossref_primary_10_3389_fpubh_2024_1420032 crossref_primary_10_3389_fcvm_2023_982028 crossref_primary_10_1109_ACCESS_2022_3210468 crossref_primary_10_1109_ACCESS_2025_3529357 crossref_primary_10_1038_s41591_020_1034_x crossref_primary_10_1200_CCI_23_00142 crossref_primary_10_1016_j_xcrm_2023_101230 crossref_primary_10_3389_fcvm_2022_998558 crossref_primary_10_1016_j_cell_2023_01_035 crossref_primary_10_1016_j_jdent_2024_104871 crossref_primary_10_3390_jpm10030062 crossref_primary_10_1016_j_healthpol_2023_104889 crossref_primary_10_1038_s41596_021_00513_5 crossref_primary_10_3389_fneur_2023_1210974 crossref_primary_10_1016_j_ijmedinf_2022_104758 crossref_primary_10_37489_2588_0527_2023_1_3_5 crossref_primary_10_1038_s41598_022_22233_w crossref_primary_10_1093_clinchem_hvad136 crossref_primary_10_1007_s12350_022_02994_7 crossref_primary_10_1161_CIRCRESAHA_121_318106 crossref_primary_10_1016_j_engappai_2023_105894 crossref_primary_10_1016_j_heliyon_2021_e06626 crossref_primary_10_1111_bcp_15930 crossref_primary_10_3389_fnins_2021_713760 crossref_primary_10_1097_EJA_0000000000001696 crossref_primary_10_1016_j_jpi_2024_100366 crossref_primary_10_1016_j_pacs_2021_100241 crossref_primary_10_12968_hmed_2024_0312 crossref_primary_10_1002_clc_24148 crossref_primary_10_1371_journal_pone_0260829 crossref_primary_10_4103_mj_mj_45_23 crossref_primary_10_1371_journal_pone_0282619 crossref_primary_10_1038_s41551_022_00898_y crossref_primary_10_3389_fonc_2022_976168 crossref_primary_10_1016_j_ejim_2023_07_012 crossref_primary_10_1038_s44303_024_00012_8 crossref_primary_10_1016_j_media_2022_102704 crossref_primary_10_1016_j_mcpdig_2024_100189 crossref_primary_10_37349_etat_2023_00160 crossref_primary_10_1016_j_eclinm_2024_102555 crossref_primary_10_3233_THC_231482 crossref_primary_10_2196_55897 crossref_primary_10_1007_s10845_024_02482_4 crossref_primary_10_1109_ACCESS_2021_3137364 crossref_primary_10_1017_sus_2024_21 crossref_primary_10_1016_j_compbiomed_2024_109391 crossref_primary_10_1016_j_mcpdig_2024_100191 crossref_primary_10_1126_sciadv_adj1719 crossref_primary_10_1089_aipo_2024_0051 crossref_primary_10_1007_s10916_024_02104_9 crossref_primary_10_1017_dap_2024_65 crossref_primary_10_1080_10599231_2023_2220603 crossref_primary_10_1007_s11548_020_02222_y crossref_primary_10_34133_2022_9852872 crossref_primary_10_1177_17531934231152592 crossref_primary_10_1055_a_2403_3103 crossref_primary_10_1016_j_eclinm_2023_102200 crossref_primary_10_2139_ssrn_4828970 crossref_primary_10_2196_34304 crossref_primary_10_1016_j_cmpb_2023_107582 crossref_primary_10_1038_s44259_025_00085_4 crossref_primary_10_1007_s40746_020_00205_4 crossref_primary_10_1038_s41591_023_02562_7 crossref_primary_10_3389_fonc_2020_00680 crossref_primary_10_3748_wjg_v27_i22_2979 crossref_primary_10_1016_j_lanepe_2024_101145 crossref_primary_10_1038_s41598_021_89743_x crossref_primary_10_1148_ryai_220028 crossref_primary_10_1016_j_jbi_2022_104268 crossref_primary_10_1097_MPA_0000000000001762 crossref_primary_10_1155_2022_3022280 crossref_primary_10_1038_s41698_022_00275_7 crossref_primary_10_1016_j_radi_2020_11_006 crossref_primary_10_1038_s41598_024_56476_6 crossref_primary_10_1016_j_bspc_2023_105831 crossref_primary_10_1016_S2589_7500_20_30216_8 crossref_primary_10_1186_s12911_023_02341_x crossref_primary_10_1093_ced_llae112 crossref_primary_10_1162_netn_a_00233 crossref_primary_10_1016_j_avsg_2022_12_079 crossref_primary_10_3390_life11030200 crossref_primary_10_1001_jamanetworkopen_2020_32320 crossref_primary_10_1371_journal_pone_0238908 crossref_primary_10_1016_j_procs_2022_08_105 crossref_primary_10_1038_s41746_024_01312_4 crossref_primary_10_7759_cureus_69121 crossref_primary_10_1089_aipo_2024_0031 crossref_primary_10_1093_jamia_ocab065 crossref_primary_10_3390_diagnostics14171866 crossref_primary_10_1016_j_ijmedinf_2022_104983 crossref_primary_10_3389_fnbot_2021_742163 crossref_primary_10_3390_medicina58121743 crossref_primary_10_1016_j_patter_2021_100421 crossref_primary_10_34133_bmef_0054 crossref_primary_10_1016_j_lanepe_2024_101163 crossref_primary_10_1111_adj_12812 crossref_primary_10_1200_CCI_22_00123 crossref_primary_10_5582_bst_2023_01076 crossref_primary_10_1093_jamia_ocae301 crossref_primary_10_1155_jonm_3189531 crossref_primary_10_3390_diagnostics13122056 crossref_primary_10_1371_journal_pone_0265254 crossref_primary_10_3390_app10155135 crossref_primary_10_23736_S2724_5683_24_06288_4 crossref_primary_10_1152_physrev_00033_2022 crossref_primary_10_3390_app122111095 crossref_primary_10_3390_diagnostics11091722 crossref_primary_10_1136_bmj_2024_081554 crossref_primary_10_2196_58723 crossref_primary_10_1016_j_jpha_2025_101194 crossref_primary_10_1161_STROKEAHA_121_036204 crossref_primary_10_1136_bmjopen_2023_076918 crossref_primary_10_3389_fdgth_2020_569178 crossref_primary_10_1038_s41390_022_02387_z crossref_primary_10_1016_j_jtos_2021_11_004 crossref_primary_10_3390_cells10123266 crossref_primary_10_1136_bjophthalmol_2020_317817 crossref_primary_10_3390_s21237786 crossref_primary_10_1001_jamanetworkopen_2021_44742 crossref_primary_10_1016_j_cjca_2024_07_003 crossref_primary_10_1007_s00234_021_02774_z crossref_primary_10_1186_s12911_024_02830_7 crossref_primary_10_1093_bmb_ldae025 crossref_primary_10_2196_39114 crossref_primary_10_31260_RepertMedCir_01217372_1585 crossref_primary_10_3390_diagnostics14141477 crossref_primary_10_3390_jcm13072076 crossref_primary_10_1016_j_cogsys_2023_101186 crossref_primary_10_1080_08164622_2021_2008791 crossref_primary_10_1136_ejhpharm_2023_003857 crossref_primary_10_3390_biomedinformatics4020075 crossref_primary_10_1007_s11908_023_00818_4 crossref_primary_10_1097_WNO_0000000000001682 crossref_primary_10_1056_CAT_21_0469 crossref_primary_10_1136_bmjonc_2023_000255 crossref_primary_10_2196_29301 crossref_primary_10_1038_s41390_025_03815_6 crossref_primary_10_26634_jaim_1_2_20044 crossref_primary_10_2196_40589 crossref_primary_10_1136_jme_2022_108447 crossref_primary_10_3390_jpm10030104 crossref_primary_10_2174_0126662558297036240527120451 crossref_primary_10_1109_ACCESS_2020_3037710 crossref_primary_10_1177_23312165211066174 crossref_primary_10_2196_53892 crossref_primary_10_1056_AIcs2300269 crossref_primary_10_1038_s41591_024_03329_4 crossref_primary_10_1038_s41746_020_0286_7 crossref_primary_10_1117_1_JBO_29_2_027004 crossref_primary_10_1016_j_bspc_2021_103325 crossref_primary_10_1016_S2589_7500_22_00088_7 crossref_primary_10_1177_20552076231152167 crossref_primary_10_3390_curroncol31090389 crossref_primary_10_62486_latia202325 crossref_primary_10_1044_2024_PERSP_24_00037 crossref_primary_10_1038_s41551_021_00733_w crossref_primary_10_1016_j_ibmed_2021_100039 crossref_primary_10_1152_jn_00221_2022 crossref_primary_10_3389_fmed_2022_817549 crossref_primary_10_2196_43838 crossref_primary_10_1109_ACCESS_2024_3520425 crossref_primary_10_1136_bmjhci_2020_100293 crossref_primary_10_3390_s23063062 crossref_primary_10_1002_cai2_9 crossref_primary_10_1016_j_jbi_2023_104531 crossref_primary_10_1016_j_jbi_2022_104013 crossref_primary_10_1016_j_techfore_2024_123568 crossref_primary_10_1109_JBHI_2024_3483577 crossref_primary_10_3390_cancers15092573 crossref_primary_10_7759_cureus_48534 crossref_primary_10_1016_j_brain_2023_100079 crossref_primary_10_1186_s13012_024_01346_y crossref_primary_10_58496_MJCSC_2023_012 crossref_primary_10_1007_s43681_023_00309_1 crossref_primary_10_2196_28236 crossref_primary_10_2196_40565 crossref_primary_10_7861_fhj_2021_0095 crossref_primary_10_1007_s10462_023_10561_w crossref_primary_10_1080_01969722_2021_2018548 crossref_primary_10_1002_hbm_26098 crossref_primary_10_1055_a_2451_9046 crossref_primary_10_1134_S1054661823030203 crossref_primary_10_1136_bmjsit_2021_000109 crossref_primary_10_1016_j_patol_2024_04_003 crossref_primary_10_1007_s11831_023_09940_x crossref_primary_10_1016_j_compbiomed_2023_106668 crossref_primary_10_1097_MJT_0000000000001693 crossref_primary_10_1186_s40537_023_00703_w crossref_primary_10_1177_0022034521998337 crossref_primary_10_4103_jfcm_jfcm_144_24 crossref_primary_10_1038_s41598_021_90285_5 crossref_primary_10_56294_hl2022121 crossref_primary_10_1053_j_jvca_2024_06_025 crossref_primary_10_1016_j_csbj_2021_09_001 crossref_primary_10_29328_journal_abse_1001015 crossref_primary_10_3390_jcm11216426 crossref_primary_10_1038_s41598_022_13504_7 crossref_primary_10_1038_s41746_020_0253_3 crossref_primary_10_2139_ssrn_4616055 crossref_primary_10_1038_s41392_024_01932_y crossref_primary_10_1016_j_hjc_2024_07_003 crossref_primary_10_1016_j_identj_2025_02_006 crossref_primary_10_1101_cshperspect_a041584 crossref_primary_10_1016_j_mlwa_2024_100607 crossref_primary_10_3348_kjr_2022_0834 crossref_primary_10_1016_j_heliyon_2023_e22653 crossref_primary_10_3389_fmed_2021_788777 crossref_primary_10_3390_s22041408 crossref_primary_10_17496_kmer_2020_22_2_99 crossref_primary_10_23736_S1824_4785_20_03263_X crossref_primary_10_1093_jamia_ocaa268 crossref_primary_10_1108_TG_08_2024_0195 crossref_primary_10_1097_TP_0000000000005063 crossref_primary_10_1016_j_imu_2023_101208 crossref_primary_10_1016_j_jad_2021_08_033 crossref_primary_10_22469_jkslp_2022_33_3_142 crossref_primary_10_1016_j_procs_2022_09_532 crossref_primary_10_7759_cureus_56583 crossref_primary_10_1080_15265161_2021_2013977 crossref_primary_10_1371_journal_pgph_0002160 crossref_primary_10_1186_s12911_022_01896_5 crossref_primary_10_3390_diagnostics12061351 crossref_primary_10_14202_vetworld_2023_2143_2149 crossref_primary_10_1093_jamia_ocaa254 crossref_primary_10_2144_fsoa_2021_0074 crossref_primary_10_1007_s12525_022_00606_3 crossref_primary_10_1007_s12195_020_00629_w crossref_primary_10_1007_s13735_019_00190_x crossref_primary_10_55662_JST_2024_5405 crossref_primary_10_1097_ACM_0000000000005605 crossref_primary_10_3390_electronics12214411 crossref_primary_10_3390_diagnostics12112794 crossref_primary_10_1007_s13671_024_00436_w crossref_primary_10_1145_3589961 crossref_primary_10_2139_ssrn_4140234 crossref_primary_10_1016_j_jpedsurg_2024_01_044 crossref_primary_10_3390_jpm13060951 crossref_primary_10_1007_s00595_023_02662_4 crossref_primary_10_1002_emp2_12363 crossref_primary_10_3389_fpubh_2021_755644 crossref_primary_10_1007_s13312_023_2936_8 crossref_primary_10_1016_j_jbi_2023_104504 crossref_primary_10_1016_j_caeai_2024_100251 crossref_primary_10_1148_radiol_222028 crossref_primary_10_1186_s42836_023_00195_2 crossref_primary_10_2196_55855 crossref_primary_10_3389_fmed_2025_1504428 crossref_primary_10_1515_jpem_2023_0554 crossref_primary_10_1016_j_drudis_2024_103889 crossref_primary_10_1093_eurjpc_zwae008 crossref_primary_10_7759_cureus_66398 crossref_primary_10_1527_tjsai_40_2_D_O96 crossref_primary_10_1186_s12911_021_01682_9 crossref_primary_10_1145_3609502 crossref_primary_10_4236_ojanes_2023_137014 crossref_primary_10_3390_ai4020024 crossref_primary_10_1038_s41598_021_90646_0 crossref_primary_10_1186_s12911_024_02656_3 crossref_primary_10_2139_ssrn_4180507 crossref_primary_10_1080_02648725_2023_2196476 crossref_primary_10_1016_j_jointm_2023_10_001 crossref_primary_10_1017_ice_2022_218 crossref_primary_10_1016_j_drudis_2024_104111 crossref_primary_10_1002_path_5565 crossref_primary_10_1089_blr_2020_29183_ks crossref_primary_10_1136_bmjresp_2021_001165 crossref_primary_10_23736_S1825_859X_24_00224_X crossref_primary_10_1016_j_compbiomed_2024_108702 crossref_primary_10_1016_j_compbiomed_2023_107569 crossref_primary_10_7759_cureus_21434 crossref_primary_10_1016_j_jtcvs_2023_11_034 crossref_primary_10_1007_s10844_021_00653_w crossref_primary_10_1016_j_jaad_2021_03_120 crossref_primary_10_3390_diagnostics12092084 crossref_primary_10_1007_s10278_025_01425_6 crossref_primary_10_1016_j_artmed_2024_103052 crossref_primary_10_1016_j_ccell_2021_04_002 crossref_primary_10_1016_j_neubiorev_2023_105137 crossref_primary_10_3390_ijerph18020811 crossref_primary_10_1038_s41592_023_02151_z crossref_primary_10_1214_23_STS891 crossref_primary_10_1136_jitc_2023_007841 crossref_primary_10_3389_fcvm_2022_983859 crossref_primary_10_1136_bmjopen_2021_059414 crossref_primary_10_47992_IJHSP_2581_6411_0116 crossref_primary_10_1109_TMI_2021_3101985 crossref_primary_10_1016_S2589_7500_20_30240_5 crossref_primary_10_3389_phrs_2022_1604434 crossref_primary_10_1186_s13000_024_01452_x crossref_primary_10_1016_j_ailsci_2021_100018 crossref_primary_10_1016_j_preteyeres_2021_101034 crossref_primary_10_4103_aam_aam_192_23 crossref_primary_10_3390_cancers16213690 crossref_primary_10_1111_1754_9485_13379 crossref_primary_10_1038_s41746_022_00690_x crossref_primary_10_1016_j_ccm_2023_08_013 crossref_primary_10_3390_life13102028 crossref_primary_10_1108_IJM_07_2021_0423 crossref_primary_10_1016_j_compbiolchem_2024_108274 crossref_primary_10_3390_onco3030013 crossref_primary_10_1007_s00146_023_01686_1 crossref_primary_10_1002_hep_31603 crossref_primary_10_1177_01945998221110076 crossref_primary_10_1002_lsm_23414 crossref_primary_10_5858_arpa_2021_0635_RA crossref_primary_10_3389_fmed_2023_1192969 crossref_primary_10_1038_s42256_023_00781_8 crossref_primary_10_1093_bioadv_vbac095 crossref_primary_10_3389_frai_2025_1512910 crossref_primary_10_1038_s41746_020_00343_x crossref_primary_10_1038_s41591_021_01620_2 crossref_primary_10_1016_j_media_2020_101813 crossref_primary_10_1093_rheumatology_keac645 crossref_primary_10_2106_JBJS_21_01305 crossref_primary_10_1208_s12249_024_02901_y crossref_primary_10_1136_bmjhci_2022_100643 crossref_primary_10_3389_fdata_2022_850383 crossref_primary_10_1186_s13244_022_01220_9 crossref_primary_10_3389_fnhum_2023_1325154 crossref_primary_10_3390_diagnostics14151691 crossref_primary_10_3389_frai_2021_553987 crossref_primary_10_1016_j_cmpb_2025_108651 crossref_primary_10_3390_cancers15020545 crossref_primary_10_2196_51614 crossref_primary_10_1007_s00467_023_06191_7 crossref_primary_10_1080_17460441_2021_1918096 crossref_primary_10_1136_bmjopen_2021_056369 crossref_primary_10_1016_S2589_7500_21_00252_1 crossref_primary_10_1145_3715115 crossref_primary_10_1038_s41746_022_00700_y crossref_primary_10_1186_s40662_024_00384_3 crossref_primary_10_1167_tvst_12_11_8 crossref_primary_10_1097_APO_0000000000000400 crossref_primary_10_1038_s41746_020_0295_6 crossref_primary_10_4103_aian_AIAN_1120_20 crossref_primary_10_1177_15266028221102660 crossref_primary_10_1186_s12967_021_02955_7 crossref_primary_10_1177_09720634241246331 crossref_primary_10_31159_ksmrt_2024_34_3_23 crossref_primary_10_3389_fmed_2020_00027 crossref_primary_10_3389_fmedt_2023_1183687 crossref_primary_10_3390_sym13010102 crossref_primary_10_1097_ICU_0000000000000677 crossref_primary_10_1002_pd_6059 crossref_primary_10_1177_17456916231181102 crossref_primary_10_3390_diagnostics13193071 crossref_primary_10_4103_pjiap_pjiap_89_24 crossref_primary_10_3390_ai6010010 crossref_primary_10_1080_20473869_2025_2456800 crossref_primary_10_1111_vcp_13401 crossref_primary_10_1016_j_engappai_2024_108610 crossref_primary_10_1016_j_glmedi_2024_100108 crossref_primary_10_7759_cureus_44515 crossref_primary_10_1155_rrp_9091895 crossref_primary_10_1016_j_jtcvs_2024_08_048 crossref_primary_10_1145_3503488 crossref_primary_10_1016_j_giec_2022_12_001 crossref_primary_10_2196_54705 crossref_primary_10_1016_j_rcsop_2023_100346 crossref_primary_10_1038_s41388_023_02797_1 crossref_primary_10_3390_fi14120356 crossref_primary_10_1016_j_media_2022_102684 crossref_primary_10_1016_j_media_2022_102444 crossref_primary_10_1016_j_patter_2022_100493 crossref_primary_10_1016_j_techsoc_2024_102791 crossref_primary_10_1038_s41598_024_60915_9 crossref_primary_10_3390_jimaging10050117 crossref_primary_10_1007_s10943_024_02140_2 crossref_primary_10_2967_jnumed_124_268156 crossref_primary_10_1109_ACCESS_2024_3524428 crossref_primary_10_3390_diagnostics12112708 crossref_primary_10_3390_cells12131755 crossref_primary_10_1186_s12874_023_01921_9 crossref_primary_10_1016_j_hfc_2021_11_005 crossref_primary_10_4103_jiaphd_jiaphd_111_24 crossref_primary_10_3389_fdgth_2023_1260602 crossref_primary_10_2196_42940 crossref_primary_10_1038_s41598_020_67013_6 crossref_primary_10_1093_bjr_tqad031 crossref_primary_10_1016_j_preteyeres_2023_101227 crossref_primary_10_1038_s41467_022_29153_3 crossref_primary_10_1038_s41746_021_00549_7 crossref_primary_10_56294_ri202473 crossref_primary_10_1016_j_jbi_2022_103996 crossref_primary_10_1097_MCC_0000000000001104 crossref_primary_10_1177_21582440241257682 crossref_primary_10_3389_fonc_2025_1547968 crossref_primary_10_1016_j_glmedi_2024_100135 crossref_primary_10_3390_pathogens13110940 crossref_primary_10_3390_pharmaceutics15071916 crossref_primary_10_1016_j_imu_2025_101633 crossref_primary_10_1016_j_healun_2021_02_016 crossref_primary_10_1038_s41598_025_86536_4 crossref_primary_10_1186_s12911_022_02088_x |
| Cites_doi | 10.1038/538311a 10.2139/ssrn.2477899 10.1038/s41551-018-0195-0 10.1109/isbi.2018.8363515 10.1109/cvpr.2018.00865 10.1038/s41746-019-0103-3 10.1136/amiajnl-2012-001089 10.1038/s41591-018-0300-7 10.1038/s41591-018-0335-9 10.1038/s41551-018-0301-3 10.1001/jamacardio.2019.0640 10.18653/v1/n16-3020 10.1001/jamainternmed.2015.5231 10.1126/scitranslmed.3002564 10.1097/md.0000000000003315 10.1161/circulationaha.114.014508 10.1093/jamia/ocv189 10.1016/j.eclinm.2019.03.001 10.1377/hlthaff.27.3.759 10.1001/jama.2019.10306 10.1097/PAS.0000000000001151 10.1038/s41591-018-0268-3 10.1007/978-3-319-55524-9_14 10.1038/s41746-018-0048-y 10.1038/s41746-019-0096-y 10.1370/afm.1713 10.1016/j.ophtha.2018.11.016 10.1097/MLR.0b013e31829b1dbd 10.1093/annonc/mdy166 10.1001/jamanetworkopen.2018.2665 10.1371/journal.pone.0204155 10.1038/s41591-018-0107-6 10.1001/jamadermatol.2019.1735 10.1093/annonc/mdz015 10.1126/science.aaw4399 10.1136/gutjnl-2018-317500 10.1371/journal.pmed.1002683 10.1148/radiol.2018180237 10.1038/s41746-018-0029-1 10.1148/radiol.2017170706 10.1007/s00439-019-01970-5 10.1002/jhm.2652 10.1007/s12265-013-9498-4 10.1001/jamaneurol.2018.1563 10.1016/j.ahj.2018.09.002 10.4132/jptm.2018.12.16 10.1016/j.jid.2018.01.028 10.1148/radiol.2018180958 10.1017/s0269888900000424 10.1001/jama.2016.17216 10.1016/j.jclinepi.2014.06.018 10.1136/gutjnl-2018-317366 10.1001/jamainternmed.2018.8558 10.1038/s41551-016-0024 10.3348/kjr.2019.0025 10.1038/s41746-018-0040-6 10.1515/jaiscr-2017-0019 10.1016/S2589-7500(19)30004-4 10.1038/s41591-018-0147-y 10.1038/s41591-018-0316-z 10.1093/jamia/ocz127 10.1017/s026988890200019x 10.1073/pnas.1806905115 10.1038/s41591-018-0279-0 10.1016/S0140-6736(19)31721-0 10.21437/interspeech.2018-1318 10.1186/1472-6947-8-53 10.1016/s0140-6736(17)30568-8 10.1038/s41586-019-1390-1 10.1001/jama.2015.13453 10.1001/jamanetworkopen.2019.1095 10.1109/cvpr.2017.369 10.1371/journal.pone.0118432 10.1016/S0140-6736(18)31645-3 10.5858/arpa.2018-0147-oa 10.1093/acprof:oso/9780199563623.003.012 10.1038/s41746-019-0105-1 10.1038/nature21056 10.1016/j.ejca.2019.04.001 10.1016/S0140-6736(19)30037-6 10.7326/m18-0249 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 COPYRIGHT 2019 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12916-019-1426-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer [Accès libre] url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-7015 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_308c3163b3754ef196702f9b7b52ee55 10.1186/s12916-019-1426-2 PMC6821018 A604550726 31665002 10_1186_s12916_019_1426_2 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW INH INR ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM 2VQ ADTOC AHSBF C1A H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c606t-e997ea8756ac2a69ec2bfaf5795c9c2bd200bca96aca813071b4ed0befd083233 |
| IEDL.DBID | M48 |
| ISSN | 1741-7015 |
| IngestDate | Fri Oct 03 12:43:56 EDT 2025 Sun Oct 26 04:14:24 EDT 2025 Tue Sep 30 16:40:42 EDT 2025 Thu Sep 04 16:01:54 EDT 2025 Mon Oct 20 22:10:04 EDT 2025 Mon Oct 20 16:39:07 EDT 2025 Thu May 22 21:07:09 EDT 2025 Thu Apr 03 06:59:00 EDT 2025 Wed Oct 01 03:31:41 EDT 2025 Thu Apr 24 23:02:16 EDT 2025 Sat Sep 06 07:29:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Evaluation Translation Regulation Algorithms Artificial intelligence Machine learning |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-e997ea8756ac2a69ec2bfaf5795c9c2bd200bca96aca813071b4ed0befd083233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1246-844X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcmedicine.biomedcentral.com/track/pdf/10.1186/s12916-019-1426-2 |
| PMID | 31665002 |
| PQID | 2310717642 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_308c3163b3754ef196702f9b7b52ee55 unpaywall_primary_10_1186_s12916_019_1426_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6821018 proquest_miscellaneous_2310717642 gale_infotracmisc_A604550726 gale_infotracacademiconefile_A604550726 gale_healthsolutions_A604550726 pubmed_primary_31665002 crossref_primary_10_1186_s12916_019_1426_2 crossref_citationtrail_10_1186_s12916_019_1426_2 springer_journals_10_1186_s12916_019_1426_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-29 |
| PublicationDateYYYYMMDD | 2019-10-29 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC medicine |
| PublicationTitleAbbrev | BMC Med |
| PublicationTitleAlternate | BMC Med |
| PublicationYear | 2019 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | R Poplin (1426_CR45) 2018; 2 Y Gurovich (1426_CR30) 2019; 25 R Shadmi (1426_CR15) 2018 1426_CR89 1426_CR88 CD Lehman (1426_CR94) 2015; 175 1426_CR86 1426_CR81 K Yasaka (1426_CR13) 2018; 286 Y Ding (1426_CR17) 2019; 290 J De Fauw (1426_CR24) 2018; 24 S Phansalkar (1426_CR95) 2013; 20 M Ribeiro (1426_CR72) 2016 CK Zarins (1426_CR46) 2013; 6 1426_CR10 1426_CR98 1426_CR11 IY Chen (1426_CR80) 2018 G Bologna (1426_CR90) 2017; 7 1426_CR93 JJ Titano (1426_CR60) 2018; 24 PA Keane (1426_CR65) 2018; 1 TPA Debray (1426_CR76) 2015; 68 HY Chang (1426_CR18) 2019; 53 E Long (1426_CR55) 2017; 1 A Kannan (1426_CR39) 2018; 2018 DF Steiner (1426_CR52) 2018; 42 1426_CR69 1426_CR7 Y Mori (1426_CR54) 2018; 169 S Chilamkurthy (1426_CR14) 2018; 392 1426_CR67 T Bodenheimer (1426_CR4) 2014; 12 P Wang (1426_CR28) 2018; 2 M Ward-Peterson (1426_CR82) 2016; 95 C Lacave (1426_CR92) 2002; 17 A Esteva (1426_CR19) 2017; 542 Y Liu (1426_CR51) 2018; 143 V Gulshan (1426_CR23) 2016; 316 A Rajkomar (1426_CR42) 2019; 179 H Liang (1426_CR32) 2019; 25 A Rajkomar (1426_CR34) 2018; 1 J Fox (1426_CR91) 1984; 1 A Esteva (1426_CR2) 2019; 25 CD Galloway (1426_CR27) 2019; 4 AJ Vickers (1426_CR68) 2008; 8 GJ Escobar (1426_CR33) 2016; 11 N Tomašev (1426_CR35) 2019; 572 1426_CR74 JC Mandel (1426_CR84) 2016; 23 EA McGlynn (1426_CR43) 2015; 314 SS Han (1426_CR21) 2018; 138 1426_CR73 1426_CR70 1426_CR71 R Sayres (1426_CR96) 2019; 126 AH Beck (1426_CR44) 2011; 3 AY Hannun (1426_CR25) 2019; 25 K Kamnitsas (1426_CR16) 2016 MG Core (1426_CR87) 2006 U Mutlu (1426_CR47) 2018; 75 S Barocas (1426_CR79) 2016 P Wang (1426_CR59) 2019; 68 EJ Hwang (1426_CR5) 2019; 2 A Nelson (1426_CR41) 2019; 2 1426_CR40 Y Kanagasingam (1426_CR49) 2018; 1 MP Turakhia (1426_CR56) 2019; 207 WR Hersh (1426_CR85) 2013; 51 J Xu (1426_CR29) 2019; 138 T Saito (1426_CR66) 2015; 10 V Bellemo (1426_CR50) 2019; 1 1426_CR58 ZI Attia (1426_CR26) 2019; 394 P Craig (1426_CR62) 2009 EJ Topol (1426_CR1) 2019; 25 GS Collins (1426_CR63) 2015; 131 DM Berwick (1426_CR3) 2008; 27 JR Zech (1426_CR75) 2018; 15 H Lin (1426_CR57) 2019; 9 R Singh (1426_CR8) 2018; 13 R Lindsey (1426_CR53) 2018; 115 D Wang (1426_CR97) 2016 K Crawford (1426_CR78) 2016; 538 P Khosravi (1426_CR31) 2019; 2 GS Collins (1426_CR64) 2019; 393 HA Haenssle (1426_CR20) 2018; 29 1426_CR38 X Wang (1426_CR6) 2017 1426_CR36 MD Abràmoff (1426_CR48) 2018; 1 JG Nam (1426_CR9) 2019; 290 1426_CR37 P Brocklehurst (1426_CR61) 2017; 389 K-L Hua (1426_CR12) 2015; 8 DW Kim (1426_CR77) 2019; 20 TJ Brinker (1426_CR22) 2019; 113 SG Finlayson (1426_CR83) 2019; 363 |
| References_xml | – volume: 538 start-page: 311 year: 2016 ident: 1426_CR78 publication-title: Nature. doi: 10.1038/538311a – ident: 1426_CR10 – volume-title: Big Data’s Disparate Impact. 104 California Law Review 671 year: 2016 ident: 1426_CR79 doi: 10.2139/ssrn.2477899 – volume: 2 start-page: 158 year: 2018 ident: 1426_CR45 publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0195-0 – volume-title: Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) year: 2018 ident: 1426_CR15 doi: 10.1109/isbi.2018.8363515 – ident: 1426_CR7 doi: 10.1109/cvpr.2018.00865 – volume: 2 start-page: 26 year: 2019 ident: 1426_CR41 publication-title: NPJ Digit Med doi: 10.1038/s41746-019-0103-3 – volume: 20 start-page: 489 year: 2013 ident: 1426_CR95 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-001089 – volume: 25 start-page: 44 year: 2019 ident: 1426_CR1 publication-title: Nat Med doi: 10.1038/s41591-018-0300-7 – volume: 25 start-page: 433 year: 2019 ident: 1426_CR32 publication-title: Nat Med doi: 10.1038/s41591-018-0335-9 – ident: 1426_CR38 – volume: 2 start-page: 741 year: 2018 ident: 1426_CR28 publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0301-3 – volume: 4 start-page: 428 issue: 5 year: 2019 ident: 1426_CR27 publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2019.0640 – volume-title: Why Is My Classifier Discriminatory? In: 32nd Conference on Neural Information Processing Systems (NeurIPS) year: 2018 ident: 1426_CR80 – volume-title: “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations year: 2016 ident: 1426_CR72 doi: 10.18653/v1/n16-3020 – volume: 175 start-page: 1828 year: 2015 ident: 1426_CR94 publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2015.5231 – volume: 8 start-page: 2015 year: 2015 ident: 1426_CR12 publication-title: Onco Targets Ther – volume: 3 start-page: 108ra113 year: 2011 ident: 1426_CR44 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002564 – volume: 95 start-page: e3315 year: 2016 ident: 1426_CR82 publication-title: Medicine. doi: 10.1097/md.0000000000003315 – volume: 131 start-page: 211 year: 2015 ident: 1426_CR63 publication-title: Circulation. doi: 10.1161/circulationaha.114.014508 – volume: 23 start-page: 899 year: 2016 ident: 1426_CR84 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocv189 – volume: 9 start-page: 52 year: 2019 ident: 1426_CR57 publication-title: EClinicalMedicine. doi: 10.1016/j.eclinm.2019.03.001 – volume: 27 start-page: 759 year: 2008 ident: 1426_CR3 publication-title: Health Aff doi: 10.1377/hlthaff.27.3.759 – ident: 1426_CR67 doi: 10.1001/jama.2019.10306 – start-page: 1766 volume-title: Building Explainable Artificial Intelligence Systems. IAAI'06 Proceedings of the 18th conference on Innovative Applications of Artificial Intelligence. Volume 2 year: 2006 ident: 1426_CR87 – volume: 42 start-page: 1636 year: 2018 ident: 1426_CR52 publication-title: Am J Surg Pathol doi: 10.1097/PAS.0000000000001151 – volume: 25 start-page: 65 year: 2019 ident: 1426_CR25 publication-title: Nat Med doi: 10.1038/s41591-018-0268-3 – start-page: 38 volume-title: International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries year: 2016 ident: 1426_CR16 doi: 10.1007/978-3-319-55524-9_14 – volume: 1 start-page: 40 year: 2018 ident: 1426_CR65 publication-title: NPJ Digit Med doi: 10.1038/s41746-018-0048-y – volume: 2 start-page: 21 year: 2019 ident: 1426_CR31 publication-title: NPJ Digit Med doi: 10.1038/s41746-019-0096-y – volume: 12 start-page: 573 year: 2014 ident: 1426_CR4 publication-title: Ann Fam Med doi: 10.1370/afm.1713 – ident: 1426_CR88 – volume: 126 start-page: 552 year: 2019 ident: 1426_CR96 publication-title: Ophthalmology. doi: 10.1016/j.ophtha.2018.11.016 – volume: 51 start-page: S30 issue: 8 Suppl 3 year: 2013 ident: 1426_CR85 publication-title: Med Care doi: 10.1097/MLR.0b013e31829b1dbd – volume: 29 start-page: 1836 year: 2018 ident: 1426_CR20 publication-title: Ann Oncol doi: 10.1093/annonc/mdy166 – volume: 1 start-page: e182665 year: 2018 ident: 1426_CR49 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2018.2665 – volume: 13 start-page: e0204155 year: 2018 ident: 1426_CR8 publication-title: PLoS One doi: 10.1371/journal.pone.0204155 – volume: 24 start-page: 1342 year: 2018 ident: 1426_CR24 publication-title: Nat Med doi: 10.1038/s41591-018-0107-6 – ident: 1426_CR73 doi: 10.1001/jamadermatol.2019.1735 – ident: 1426_CR81 doi: 10.1093/annonc/mdz015 – volume: 363 start-page: 1287 year: 2019 ident: 1426_CR83 publication-title: Science. doi: 10.1126/science.aaw4399 – ident: 1426_CR37 – ident: 1426_CR89 – volume: 68 start-page: 1813 issue: 10 year: 2019 ident: 1426_CR59 publication-title: Gut. doi: 10.1136/gutjnl-2018-317500 – volume: 15 start-page: e1002683 year: 2018 ident: 1426_CR75 publication-title: PLoS Med doi: 10.1371/journal.pmed.1002683 – volume: 290 start-page: 218 year: 2019 ident: 1426_CR9 publication-title: Radiology. doi: 10.1148/radiol.2018180237 – volume: 1 start-page: 18 year: 2018 ident: 1426_CR34 publication-title: NPJ Digit Med doi: 10.1038/s41746-018-0029-1 – volume: 286 start-page: 887 year: 2018 ident: 1426_CR13 publication-title: Radiology. doi: 10.1148/radiol.2017170706 – volume: 138 start-page: 109 year: 2019 ident: 1426_CR29 publication-title: Hum Genet doi: 10.1007/s00439-019-01970-5 – volume: 11 start-page: S18 issue: Suppl 1 year: 2016 ident: 1426_CR33 publication-title: J Hosp Med doi: 10.1002/jhm.2652 – volume: 6 start-page: 708 year: 2013 ident: 1426_CR46 publication-title: J Cardiovasc Transl Res doi: 10.1007/s12265-013-9498-4 – volume: 75 start-page: 1256 year: 2018 ident: 1426_CR47 publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2018.1563 – volume: 207 start-page: 66 year: 2019 ident: 1426_CR56 publication-title: Am Heart J doi: 10.1016/j.ahj.2018.09.002 – volume: 53 start-page: 1 year: 2019 ident: 1426_CR18 publication-title: J Pathol Transl Med doi: 10.4132/jptm.2018.12.16 – volume: 138 start-page: 1529 year: 2018 ident: 1426_CR21 publication-title: J Invest Dermatol doi: 10.1016/j.jid.2018.01.028 – ident: 1426_CR40 – volume-title: Deep Learning for Identifying Metastatic Breast Cancer year: 2016 ident: 1426_CR97 – volume: 290 start-page: 456 year: 2019 ident: 1426_CR17 publication-title: Radiology. doi: 10.1148/radiol.2018180958 – ident: 1426_CR69 – volume: 1 start-page: 4 year: 1984 ident: 1426_CR91 publication-title: Knowl Eng Rev doi: 10.1017/s0269888900000424 – volume: 316 start-page: 2402 year: 2016 ident: 1426_CR23 publication-title: JAMA. doi: 10.1001/jama.2016.17216 – volume: 68 start-page: 279 year: 2015 ident: 1426_CR76 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2014.06.018 – ident: 1426_CR58 doi: 10.1136/gutjnl-2018-317366 – ident: 1426_CR86 – volume: 179 start-page: 836 issue: 6 year: 2019 ident: 1426_CR42 publication-title: JAMA Intern Med doi: 10.1001/jamainternmed.2018.8558 – volume: 1 start-page: 0024 year: 2017 ident: 1426_CR55 publication-title: Nat Biomed Eng doi: 10.1038/s41551-016-0024 – volume: 20 start-page: 405 year: 2019 ident: 1426_CR77 publication-title: Korean J Radiol doi: 10.3348/kjr.2019.0025 – ident: 1426_CR70 – volume: 1 start-page: 39 year: 2018 ident: 1426_CR48 publication-title: NPJ Digit Med doi: 10.1038/s41746-018-0040-6 – volume: 7 start-page: 265 issue: 4 year: 2017 ident: 1426_CR90 publication-title: J Art Intel Soft Comput Res doi: 10.1515/jaiscr-2017-0019 – ident: 1426_CR93 – volume: 1 start-page: e35 year: 2019 ident: 1426_CR50 publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(19)30004-4 – volume: 24 start-page: 1337 year: 2018 ident: 1426_CR60 publication-title: Nat Med doi: 10.1038/s41591-018-0147-y – volume: 25 start-page: 24 year: 2019 ident: 1426_CR2 publication-title: Nat Med doi: 10.1038/s41591-018-0316-z – ident: 1426_CR71 doi: 10.1093/jamia/ocz127 – volume: 17 start-page: 107 year: 2002 ident: 1426_CR92 publication-title: Knowl Eng Rev doi: 10.1017/s026988890200019x – volume: 115 start-page: 11591 year: 2018 ident: 1426_CR53 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1806905115 – volume: 25 start-page: 60 year: 2019 ident: 1426_CR30 publication-title: Nat Med doi: 10.1038/s41591-018-0279-0 – volume: 394 start-page: 861 issue: 10201 year: 2019 ident: 1426_CR26 publication-title: Lancet. doi: 10.1016/S0140-6736(19)31721-0 – volume: 2018 start-page: 2077 year: 2018 ident: 1426_CR39 publication-title: Interspeech doi: 10.21437/interspeech.2018-1318 – volume: 8 start-page: 53 year: 2008 ident: 1426_CR68 publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-8-53 – ident: 1426_CR11 – volume: 389 start-page: 1719 year: 2017 ident: 1426_CR61 publication-title: Lancet. doi: 10.1016/s0140-6736(17)30568-8 – ident: 1426_CR36 – volume: 572 start-page: 116 year: 2019 ident: 1426_CR35 publication-title: Nature. doi: 10.1038/s41586-019-1390-1 – volume: 314 start-page: 2501 year: 2015 ident: 1426_CR43 publication-title: JAMA. doi: 10.1001/jama.2015.13453 – volume: 2 start-page: e191095 year: 2019 ident: 1426_CR5 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.1095 – volume-title: ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2017 ident: 1426_CR6 doi: 10.1109/cvpr.2017.369 – volume: 10 start-page: e0118432 year: 2015 ident: 1426_CR66 publication-title: PLoS One doi: 10.1371/journal.pone.0118432 – ident: 1426_CR98 – volume: 392 start-page: 2388 year: 2018 ident: 1426_CR14 publication-title: Lancet. doi: 10.1016/S0140-6736(18)31645-3 – volume: 143 start-page: 859 issue: 7 year: 2018 ident: 1426_CR51 publication-title: Arch Pathol Lab Med doi: 10.5858/arpa.2018-0147-oa – start-page: 185 volume-title: Evidence-based Public Health: Effectiveness and Efficiency year: 2009 ident: 1426_CR62 doi: 10.1093/acprof:oso/9780199563623.003.012 – ident: 1426_CR74 doi: 10.1038/s41746-019-0105-1 – volume: 542 start-page: 115 year: 2017 ident: 1426_CR19 publication-title: Nature. doi: 10.1038/nature21056 – volume: 113 start-page: 47 year: 2019 ident: 1426_CR22 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2019.04.001 – volume: 393 start-page: 1577 year: 2019 ident: 1426_CR64 publication-title: Lancet. doi: 10.1016/S0140-6736(19)30037-6 – volume: 169 start-page: 357 year: 2018 ident: 1426_CR54 publication-title: Ann Intern Med doi: 10.7326/m18-0249 |
| SSID | ssj0025774 |
| Score | 2.7146747 |
| SecondaryResourceType | review_article |
| Snippet | Background
Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains... Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine.... Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains... Abstract Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 195 |
| SubjectTerms | Algorithms Analysis Artificial Intelligence Beyond Big Data to new Biomedical and Health Data Science: moving to next century precision health Biomedicine Clinical trials Delivery of Health Care - trends Evaluation Humans Machine learning Management Medical care Medical care quality Medicine Medicine & Public Health Opinion Peer Review Regulation Retirement benefits Technology Translation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlhz4Ooe86TVoVCoUGEVm2JOuYlIaQkp4ayE1IskwDixO6u4T8-8xYslm3kFx6W3ZmF2semhlL8w0hn7XslIbEmMWKO1b7FlxKuJJJA-GhjgI2TnzfcfZTnZzXpxfyYmPUF94JS_DASXAHFW9CBUmDx1mtsQOD0Vx0xmsvRYxyQC_ljRmLqVxqSchq8hlm2aiDJUS1Eitnw0oISUzMotAA1v_vlrwRk_6-Lzkdmj4jT9b9tbu9cYvFRlw6fk62c0JJD9NCXpBHsX9JHp_lI_NX5PRHvKVhHJmypJCk0jYu8DoG_DcdOyNpapek-F6WolQSsgS93IDsfE3Oj7__-nbC8gAFFkD8KxaN0dFBRaJcEE6ZGITvXCe1kcHA5xZcxAdngOwaCGa69HVsuY9dC5mZqKo3ZKu_6uM7QkMjPZ75gruLuhXC-Ia3quO6dU4pGQrCR4HakNHFccjFwg5VRqNs0oEFHVjUgRUF-Tr95DpBa9zHfIRamhgRFXv4AmzFZluxD9lKQT6ijm1qMZ182x4qjs3dWqiCfBk40Lvh8YPLTQogBMTJmnHuzjjBK8OM_Gm0I4skvMrWx6v10mJCDTU01H0FeZvsaloVPDxkzBwoemZxs2XPKf3l7wEUXDUCwdcKsj_aps270fI-qe5P5vuwDnb-hw7ek6di8EPOhNklW6s_67gHed3Kfxhc-A7FkEPr priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5KCn0cSt91m7QqFAoNJrJsSdYxDQkhJT01kJuQZJkGFid0dyn5952xZbNOSkpvy87Y2Jq3R_MJ4JOWrdKYGOex5C6vfIMmJVyRS4PhoYoCHSd97zj9ro7PqpNzeZ7AomkWZrN_X9Rqb4nxqKCa1-QFBpMcve19jFGq78uqg6m2kpjGpKblXy-bhZ0enf-2D94IQjc3SE5d0sfwcN1duevfbrHYCERHT-FJyiDZ_iDyZ3Avds_hwWnqkb-Ak2_xmoXxjJQlw6yUNXFB-y_w3mwchWTDfCSjD7GM9GeAkmAXGxidL-Hs6PDHwXGeTkzIA673Ko_G6OiwBFEuCKdMDMK3rpXayGDwd4M24YMzSHY1Ri9d-Co23Me2wVRMlOUr2Oouu_gGWKilpyYv2reoGiGMr3mjWq4b55SSIQM-LqgNCU6cTrVY2L6sqJUdZGBRBpZkYEUGX6ZLrgYsjbuYv5KUJkaCwe7_QO2wyapsyetQYkbp6SDf2KI30Vy0xmsvRYxSZvCBZGyHmdLJmO2-4jTNrYXK4HPPQeaMjx9cmkrARSBgrBnn9owTzTDMyB9HPbJEor1rXbxcLy1l0Fg0Y6GXwetBr6a3wofHFJkjRc80bvbac0p38bNHAVe1ILS1DHZH3bTJ_SzvWtXdSX3_LYO3_3Xvd_BI9AbHc2G2YWv1ax13MGNb-fe9rf4BR2Y00g priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yB348-P1RPbWCIHhkr802SfO4isdxcocPLpxPIUnT87zaXW53kfOvd6ZNy_aUE8G30kxLM5n5zaTJ_ELIa8lLISExpn6SGJrZAlyKmZRyBeEh8wyAE_93HB6J_Vl2cMyPA6UQ1sLY765bVB5vFqBXDWrDhTvbXRRl6-y52F1CvEpxTqxoCsGGAhpvCQ5p-YhszY4-Tb-0BZEplRD3wqrmH58bxKWGvv93kN6IUpd3UPbLqLfIjXW9MBc_TFVtRKq9O-Rb18d2g8rZeL2yY_fzEv3jf1HCXXI75LPxtDXAe-Sar--T64fhvQ_IwUd_EbvuxJZlDDlyXPgKd4NAR-KuMDNuqzVj_C0cozW3xBbx6QZj6EMy2_vw-f0-Dec3UAejv6JeKekNTIiEccwI5R2zpSm5VNwpuC7AQ60zCppNDrFUpjbzRWJ9WUBiyCaTR2RUz2v_hMQu5xaXnAFtWFYwpmyeFKJMZGGMENxFJOlGT7tAbo5nbFS6meTkQrc60qAjjTrSLCJv-0cWLbPHVcLv0CR6QSTlbm7Mz0908HE9SXI3gfzW4rHCvgRskwkrlZWWM-85j8hLNCjdVrj20KKnIsHacslERN40EgguOMwm1EiAEpCmayC5PZAEUHCD5led0Wpswp10tZ-vlxrzeZjCw7QzIo9bI-57BR8PCXsCLXJg3oNuD1vq068NJ7nIGXK_RWSncwQdwHB5lVZ3el_5-xg8_SfpZ-QmaxwioUxtk9HqfO2fQ_64si8CMvwCLAZmAQ priority: 102 providerName: Unpaywall |
| Title | Key challenges for delivering clinical impact with artificial intelligence |
| URI | https://link.springer.com/article/10.1186/s12916-019-1426-2 https://www.ncbi.nlm.nih.gov/pubmed/31665002 https://www.proquest.com/docview/2310717642 https://pubmed.ncbi.nlm.nih.gov/PMC6821018 https://bmcmedicine.biomedcentral.com/track/pdf/10.1186/s12916-019-1426-2 https://doaj.org/article/308c3163b3754ef196702f9b7b52ee55 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: RBZ dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: KQ8 dateStart: 20031101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: GX1 dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: M~E dateStart: 20030101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1741-7015 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: M48 dateStart: 20031101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: AAJSJ dateStart: 20031201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer [Accès libre] customDbUrl: eissn: 1741-7015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025774 issn: 1741-7015 databaseCode: C6C dateStart: 20030112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1rb9Mw8DQ2aYwPiDeBUYyEhMQUSJ3Ejj8g1FabpqFW00SlwhfLdhyYFKWjD0H_Pee81MAYX6q2d4mSe5_PvgN4zeOMcQyMfRsGyo90iipFVd-PBbqHyFI0nG69Yzxhp9PobBbPdqAZb1UTcHltaufmSU0X-btfPzYfUeE_lAqfsPdL9Fl9lxcLv48Ox0eLvIeOSrhJDuOoLSqgcPKoLmxee9kB7Id9hiFLvcbSeKmymf_fJnvLZ_25n7Itqt6B2-viSm1-qjzf8lsn9-BuHXCSQSUh92HHFg9gf1yX1B_C2Se7IaYZqbIkGMSS1OZuuwbemzQnJ0l1nJK4dVvixK3qPEEut1p6PoLpyfHn0alfD1jwDbJn5VshuFWYsTBlqGLCGqozlcVcxEbg9xRVSBslEKwSdHa8ryObBtpmKUZuNAwfw24xL-xTICaJtasJozmgUUqp0EmQsizgqVJIUuNB0BBUmrr7uBuCkcsyC0mYrNghkR3SsUNSD962l1xVrTduQh46LrWIrmt2-cd88U3WSijDIDHI4VC7ub82Q-PDA5oJzXVMrY1jD146HsvqCGqr-3LAAnf4m1PmwZsSw8kjPr5R9SEGJILro9XBPOxgotaaDvhVI0fSgdxWt8LO10vpAm7MsTEv9OBJJVftWzXi6QHvSFzntbuQ4vJ72TScJdQ1Z_PgqJFN2SjbTVQ9asX3_zx49s_nfQ4HtNSzwKfiEHZXi7V9gcHcSvfgFp_xHuwNjyfnF_hrxEa9cmGkVyovfl4MvyJ8OjkffPkNSlVGKQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQJjF4QHwTGMxISEhMEa4T2_FjQUylW_fCJu3Nsh0HJlXptLRC---5S5yoATTEW1VfosR3v_vIfZiQd0pUUoFjnIaM2TR3JUCK20kqNJiHPHBQnPi9Y3EqZ-f5_EJcxD7upq9271OSraZuYV3Ijw1YpglGvzqdgFlJQe_uYo0VoHF3Op1_mw9xlgCXJiYw_3rhyAS1k_r_1MdbBun3YskhY3qf7G3qK3vz0y6XW0bp6CF5EL1JOu3Y_4jcCfVjcncR8-VPyPw43FDfn5fSUPBQaRmWWIsB96Z9WyTteiUpfpSlKEvdWAl6uTWv8yk5P_py9nmWxtMTUg97v06D1ipYCEek9dxKHTx3la2E0sJr-F0CPpy3GpZtAZZMTVweSuZCVYJbxrPsGdmpV3V4QagvhMOEL2Cd5yXn2hWslBVTpbVSCp8Q1m-o8XG0OJ5wsTRtiFFI0_HAAA8M8sDwhHwYLrnq5mrcRvwJuTQQ4kjs9o_V9XcTEWYyVvgMvEuHh_qGCjSLYrzSTjnBQxAiIQfIY9P1lw7ANlPJsLNbcZmQ9y0FQhse39vYoQCbgEOyRpT7I0qApB8tv-3lyOAS1rHVYbVpDHrTEEBD0JeQ551cDW8FDw_uMoMVNZK40WuPV-rLH-1EcFlwnLyWkMNeNk1URc1tu3o4iO-_efDyv-59QPZmZ4sTc_L19PgVucdb8LGU632ys77ehNfgya3dm4jcX6i_PSs |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-kQrUP4rfRalcQBEvo3ia7m32sp0dtbfHBQt-W3c1GC0fuaO4o_e-dSTbholLx7bidhGRnfvOR2Zkh5J0SlVTgGKchYzbNXQmQ4naSCg3mIQ8cFCd-7zg9k0fn-fGFuIhzTpv-tHufkuxqGrBLU706WJZVB_FCHjRgpSYYCet0AiYmBR18NwfjhiMMpnI6RFwCnJuYyvzrZSNj1Pbs_1Mzb5im349NDrnTHXJvXS_tzbWdzzfM0-wheRD9SnrYCcIjcifUj8n2acycPyHHJ-GG-n5ySkPBV6VlmOOpDLg37QskaVc1SfHzLEWp6hpM0MuNzp1Pyfns8_fpURrnKKQeuLBKg9YqWAhMpPXcSh08d5WthNLCa_hdAlKctxqWbQE2TU1cHkrmQlWCg8az7BnZqhd1eEGoL4TD1C-gnucl59oVrJQVU6W1UgqfENZvqPGxyTjOupibNtgopOl4YIAHBnlgeEI-DJcsuw4btxF_RC4NhNgcu_1jcfXDRKyZjBU-Az_T4XjfUIGOUYxX2ikneAhCJGQPeWy6StMB4uZQMqzxVlwm5H1LgSCHx_c21irAJmC7rBHl7ogSwOlHy297OTK4hCfa6rBYNwb9agilIfxLyPNOroa3gocHx5nBihpJ3Oi1xyv15c-2N7gsOPZgS8h-L5smKqXmtl3dH8T33zx4-V_33iPb3z7NzNcvZyevyH3eYo-lXO-SrdXVOrwGl27l3rSw_QUMsEAI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yB348-P1RPbWCIHhkr802SfO4isdxcocPLpxPIUnT87zaXW53kfOvd6ZNy_aUE8G30kxLM5n5zaTJ_ELIa8lLISExpn6SGJrZAlyKmZRyBeEh8wyAE_93HB6J_Vl2cMyPA6UQ1sLY765bVB5vFqBXDWrDhTvbXRRl6-y52F1CvEpxTqxoCsGGAhpvCQ5p-YhszY4-Tb-0BZEplRD3wqrmH58bxKWGvv93kN6IUpd3UPbLqLfIjXW9MBc_TFVtRKq9O-Rb18d2g8rZeL2yY_fzEv3jf1HCXXI75LPxtDXAe-Sar--T64fhvQ_IwUd_EbvuxJZlDDlyXPgKd4NAR-KuMDNuqzVj_C0cozW3xBbx6QZj6EMy2_vw-f0-Dec3UAejv6JeKekNTIiEccwI5R2zpSm5VNwpuC7AQ60zCppNDrFUpjbzRWJ9WUBiyCaTR2RUz2v_hMQu5xaXnAFtWFYwpmyeFKJMZGGMENxFJOlGT7tAbo5nbFS6meTkQrc60qAjjTrSLCJv-0cWLbPHVcLv0CR6QSTlbm7Mz0908HE9SXI3gfzW4rHCvgRskwkrlZWWM-85j8hLNCjdVrj20KKnIsHacslERN40EgguOMwm1EiAEpCmayC5PZAEUHCD5led0Wpswp10tZ-vlxrzeZjCw7QzIo9bI-57BR8PCXsCLXJg3oNuD1vq068NJ7nIGXK_RWSncwQdwHB5lVZ3el_5-xg8_SfpZ-QmaxwioUxtk9HqfO2fQ_64si8CMvwCLAZmAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+challenges+for+delivering+clinical+impact+with+artificial+intelligence&rft.jtitle=BMC+medicine&rft.au=Kelly%2C+Christopher+J&rft.au=Karthikesalingam%2C+Alan&rft.au=Suleyman%2C+Mustafa&rft.au=Corrado%2C+Greg&rft.date=2019-10-29&rft.eissn=1741-7015&rft.volume=17&rft.issue=1&rft.spage=195&rft_id=info:doi/10.1186%2Fs12916-019-1426-2&rft_id=info%3Apmid%2F31665002&rft.externalDocID=31665002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7015&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7015&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7015&client=summon |