Key challenges for delivering clinical impact with artificial intelligence

Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article...

Full description

Saved in:
Bibliographic Details
Published inBMC medicine Vol. 17; no. 1; pp. 195 - 9
Main Authors Kelly, Christopher J., Karthikesalingam, Alan, Suleyman, Mustafa, Corrado, Greg, King, Dominic
Format Journal Article
LanguageEnglish
Published London BioMed Central 29.10.2019
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1741-7015
1741-7015
DOI10.1186/s12916-019-1426-2

Cover

Abstract Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. Main body Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes. Conclusion The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational.
AbstractList Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes. The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational.
Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice.BACKGROUNDArtificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice.Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes.MAIN BODYKey challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes.The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational.CONCLUSIONThe safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational.
Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. Main body Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes. Conclusion The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational.
Abstract Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. Main body Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes. Conclusion The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational.
Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. Main body Key challenges for the translation of AI systems in healthcare include those intrinsic to the science of machine learning, logistical difficulties in implementation, and consideration of the barriers to adoption as well as of the necessary sociocultural or pathway changes. Robust peer-reviewed clinical evaluation as part of randomised controlled trials should be viewed as the gold standard for evidence generation, but conducting these in practice may not always be appropriate or feasible. Performance metrics should aim to capture real clinical applicability and be understandable to intended users. Regulation that balances the pace of innovation with the potential for harm, alongside thoughtful post-market surveillance, is required to ensure that patients are not exposed to dangerous interventions nor deprived of access to beneficial innovations. Mechanisms to enable direct comparisons of AI systems must be developed, including the use of independent, local and representative test sets. Developers of AI algorithms must be vigilant to potential dangers, including dataset shift, accidental fitting of confounders, unintended discriminatory bias, the challenges of generalisation to new populations, and the unintended negative consequences of new algorithms on health outcomes. Conclusion The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational. Keywords: Artificial intelligence, Machine learning, Algorithms, Translation, Evaluation, Regulation
Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine. However, there are currently limited examples of such techniques being successfully deployed into clinical practice. This article explores the main challenges and limitations of AI in healthcare, and considers the steps required to translate these potentially transformative technologies from research to clinical practice. The safe and timely translation of AI research into clinically validated and appropriately regulated systems that can benefit everyone is challenging. Robust clinical evaluation, using metrics that are intuitive to clinicians and ideally go beyond measures of technical accuracy to include quality of care and patient outcomes, is essential. Further work is required (1) to identify themes of algorithmic bias and unfairness while developing mitigations to address these, (2) to reduce brittleness and improve generalisability, and (3) to develop methods for improved interpretability of machine learning predictions. If these goals can be achieved, the benefits for patients are likely to be transformational.
ArticleNumber 195
Audience Academic
Author Karthikesalingam, Alan
King, Dominic
Suleyman, Mustafa
Kelly, Christopher J.
Corrado, Greg
Author_xml – sequence: 1
  givenname: Christopher J.
  orcidid: 0000-0002-1246-844X
  surname: Kelly
  fullname: Kelly, Christopher J.
  email: cjkelly@google.com
  organization: Google Health
– sequence: 2
  givenname: Alan
  surname: Karthikesalingam
  fullname: Karthikesalingam, Alan
  organization: Google Health
– sequence: 3
  givenname: Mustafa
  surname: Suleyman
  fullname: Suleyman, Mustafa
  organization: DeepMind
– sequence: 4
  givenname: Greg
  surname: Corrado
  fullname: Corrado, Greg
  organization: Google Health
– sequence: 5
  givenname: Dominic
  surname: King
  fullname: King, Dominic
  organization: Google Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31665002$$D View this record in MEDLINE/PubMed
BookMark eNqNUk2L1TAULTLifOgPcCMFQdx0TNImaTfCMPgxOuBG1yFNb9o80uSZtDO8f29qn8N7IoN00fTmnHPvOb3n2YnzDrLsJUaXGNfsXcSkwaxAuClwRVhBnmRnmFe44AjTk4PzaXYe4wYhQjmvnmWnJWaMps-z7MtX2OVqkNaC6yHm2oe8A2vuIBjX58oaZ5S0uRm3Uk35vZmGXIbJaKPMUnYTWGt6cAqeZ0-1tBFe7N8X2Y-PH75ffy5uv326ub66LRRDbCqgaTjImlMmFZGsAUVaLTXlDVVNOncEoVbJJl3LGpeI47aCDrWgO1SXpCwvsptVt_NyI7bBjDLshJdG_C740ItlQmVBlKhWyWvZlpxWoHHDOCK6aXlLCQClSYusWrPbyt19iuFBECOxhCzWkEUKWSwhC5JI71fSdm5H6BS4KUh7NMnxjTOD6P2dYDXBCNdJ4O1eIPifM8RJjCaqFKR04OeYWuBkm7Nq6fV6hfYy-TFO-6SoFri4YqiiFHHCEuryH6j0dDAalZZGm1Q_Irw5IAwg7TREb-fJeBePga8OvT6Y_LNBCYBXgAo-xgD6vwLkf3GUmeTSO41t7KPM_f-K22U_IYiNn4NL6_YI6Rc5Mfez
CitedBy_id crossref_primary_10_1016_j_artmed_2022_102471
crossref_primary_10_1088_1361_6560_ad33b7
crossref_primary_10_1007_s13347_023_00608_9
crossref_primary_10_1038_s41591_024_02850_w
crossref_primary_10_1016_j_artmed_2023_102751
crossref_primary_10_1016_j_artmed_2021_102190
crossref_primary_10_1016_j_radi_2024_06_010
crossref_primary_10_1136_neurintsurg_2020_016997
crossref_primary_10_1016_j_ejro_2023_100497
crossref_primary_10_1111_1754_9485_13193
crossref_primary_10_3390_biomedicines12030606
crossref_primary_10_7717_peerj_18500
crossref_primary_10_2196_47532
crossref_primary_10_1038_s41597_022_01335_0
crossref_primary_10_1145_3582430
crossref_primary_10_1001_jamaophthalmol_2022_0222
crossref_primary_10_1016_j_jor_2023_11_063
crossref_primary_10_1186_s12875_025_02773_6
crossref_primary_10_1038_s41591_022_01895_z
crossref_primary_10_3390_cancers14061524
crossref_primary_10_1038_s41591_020_1037_7
crossref_primary_10_3390_cancers15051355
crossref_primary_10_1016_j_media_2022_102647
crossref_primary_10_1007_s10676_023_09721_x
crossref_primary_10_2196_48633
crossref_primary_10_2174_1386207326666230306114626
crossref_primary_10_1007_s12070_024_04608_9
crossref_primary_10_1136_bmjinnov_2020_000648
crossref_primary_10_1093_jamia_ocac078
crossref_primary_10_1038_s41746_021_00544_y
crossref_primary_10_1080_23808993_2024_2325936
crossref_primary_10_1038_s41430_024_01529_2
crossref_primary_10_1016_j_eswa_2022_117158
crossref_primary_10_3389_fonc_2023_1129380
crossref_primary_10_1016_j_hpb_2024_07_415
crossref_primary_10_37990_medr_1567242
crossref_primary_10_1007_s00066_024_02281_z
crossref_primary_10_1016_j_ijmedinf_2023_105190
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_106989
crossref_primary_10_1186_s12916_020_01841_1
crossref_primary_10_7759_cureus_55991
crossref_primary_10_1177_00469580241266364
crossref_primary_10_3390_diagnostics13061038
crossref_primary_10_4103_CRST_CRST_43_20
crossref_primary_10_1016_S2589_7500_20_30219_3
crossref_primary_10_1016_j_ijmedinf_2021_104510
crossref_primary_10_7759_cureus_77524
crossref_primary_10_1007_s44254_025_00086_6
crossref_primary_10_1038_s41537_025_00583_4
crossref_primary_10_3390_diagnostics12071643
crossref_primary_10_1016_j_ajp_2022_103021
crossref_primary_10_3390_diagnostics15050648
crossref_primary_10_1016_j_ijinfomgt_2023_102728
crossref_primary_10_1097_CCM_0000000000005758
crossref_primary_10_34197_ats_scholar_2023_0036PS
crossref_primary_10_57125_FEM_2024_12_30_02
crossref_primary_10_1038_s41746_021_00468_7
crossref_primary_10_1136_spcare_2023_004634
crossref_primary_10_1093_jamia_ocae076
crossref_primary_10_2196_46430
crossref_primary_10_2196_25759
crossref_primary_10_1016_j_wneu_2023_11_060
crossref_primary_10_1186_s12967_024_05005_0
crossref_primary_10_1002_cjp2_227
crossref_primary_10_1016_j_bbe_2022_08_001
crossref_primary_10_1038_s41598_020_77893_3
crossref_primary_10_3390_diagnostics14020174
crossref_primary_10_4236_jcc_2023_1111001
crossref_primary_10_2196_46487
crossref_primary_10_1002_2056_4538_70008
crossref_primary_10_1016_j_engstruct_2023_115675
crossref_primary_10_1186_s40463_022_00566_w
crossref_primary_10_1038_s41390_024_03494_9
crossref_primary_10_1038_s41746_024_01117_5
crossref_primary_10_1007_s11886_022_01655_y
crossref_primary_10_1016_j_resourpol_2023_104213
crossref_primary_10_3390_info15120768
crossref_primary_10_1007_s43681_021_00131_7
crossref_primary_10_1016_S2589_7500_21_00019_4
crossref_primary_10_1057_s41599_025_04564_x
crossref_primary_10_1016_j_siny_2022_101393
crossref_primary_10_1186_s13063_022_06471_x
crossref_primary_10_1007_s00330_020_07030_1
crossref_primary_10_3390_app122211677
crossref_primary_10_1097_PRS_0000000000010572
crossref_primary_10_1093_europace_euac135
crossref_primary_10_1038_s44222_024_00195_0
crossref_primary_10_1007_s10916_021_01783_y
crossref_primary_10_1016_j_chest_2020_06_065
crossref_primary_10_1016_j_jacr_2020_09_029
crossref_primary_10_1136_bmj_m3164
crossref_primary_10_1093_eurjcn_zvae077
crossref_primary_10_1136_bmjsit_2022_000141
crossref_primary_10_1016_S2589_7500_22_00029_2
crossref_primary_10_1515_cclm_2022_0470
crossref_primary_10_1016_j_jacr_2020_09_060
crossref_primary_10_1001_jamanetworkopen_2022_12095
crossref_primary_10_1007_s10278_022_00594_y
crossref_primary_10_1016_j_ijmedinf_2023_105159
crossref_primary_10_3389_fdgth_2022_833912
crossref_primary_10_1038_s41598_020_65794_4
crossref_primary_10_3390_diagnostics12081878
crossref_primary_10_1016_j_xcrm_2022_100622
crossref_primary_10_12688_f1000research_138294_2
crossref_primary_10_3390_cancers14133063
crossref_primary_10_1038_s41746_022_00737_z
crossref_primary_10_12688_f1000research_138294_1
crossref_primary_10_1016_j_jvscit_2022_06_018
crossref_primary_10_3390_data6020022
crossref_primary_10_1093_ehjdh_ztab089
crossref_primary_10_1038_s41409_022_01622_9
crossref_primary_10_1016_j_hlpt_2022_100602
crossref_primary_10_1080_0960085X_2023_2251927
crossref_primary_10_3389_fneur_2023_1179250
crossref_primary_10_1007_s10815_024_03215_5
crossref_primary_10_1111_cts_13175
crossref_primary_10_3390_jcm12134209
crossref_primary_10_1007_s13311_023_01358_4
crossref_primary_10_3390_app14020675
crossref_primary_10_1093_bib_bbaa369
crossref_primary_10_1109_TMI_2023_3287361
crossref_primary_10_1016_j_asoc_2021_108391
crossref_primary_10_3348_kjr_2021_0048
crossref_primary_10_1038_s41746_022_00652_3
crossref_primary_10_3390_jcm13247833
crossref_primary_10_1093_ehjdh_ztad021
crossref_primary_10_1016_j_bpsc_2021_02_001
crossref_primary_10_1002_mus_28023
crossref_primary_10_1016_S2589_7500_20_30187_4
crossref_primary_10_1016_S2468_1253_19_30431_5
crossref_primary_10_1056_AIoa2300138
crossref_primary_10_1007_s11606_022_07526_0
crossref_primary_10_1093_jamia_ocac254
crossref_primary_10_1093_jamia_ocad100
crossref_primary_10_1177_02666669241291568
crossref_primary_10_2196_57981
crossref_primary_10_61186_ijbc_15_3_13
crossref_primary_10_1016_j_ajem_2025_03_029
crossref_primary_10_3390_healthcare12040481
crossref_primary_10_4103_ijo_IJO_2583_21
crossref_primary_10_3390_s22208073
crossref_primary_10_1136_medethics_2021_107352
crossref_primary_10_3389_fdgth_2022_932411
crossref_primary_10_3390_jpm14040354
crossref_primary_10_1038_s41551_023_01049_7
crossref_primary_10_1038_s41746_024_01270_x
crossref_primary_10_1016_j_artmed_2024_102861
crossref_primary_10_1186_s12912_024_02571_y
crossref_primary_10_4103_jpi_jpi_84_20
crossref_primary_10_1007_s00134_024_07776_y
crossref_primary_10_1093_jamia_ocab154
crossref_primary_10_1186_s13073_024_01315_6
crossref_primary_10_1111_imj_16519
crossref_primary_10_1016_j_heliyon_2021_e06993
crossref_primary_10_3390_cancers17010028
crossref_primary_10_3389_fradi_2025_1493783
crossref_primary_10_1016_j_jseint_2024_07_002
crossref_primary_10_1088_1757_899X_1020_1_012008
crossref_primary_10_2196_46859
crossref_primary_10_1016_j_ibmed_2025_100237
crossref_primary_10_1016_j_artmed_2024_102850
crossref_primary_10_1016_j_eswa_2022_118083
crossref_primary_10_1097_NMC_0000000000000839
crossref_primary_10_1109_RBME_2021_3131358
crossref_primary_10_1016_j_surg_2022_03_031
crossref_primary_10_3389_fonc_2022_980793
crossref_primary_10_7759_cureus_71148
crossref_primary_10_1016_j_patter_2021_100347
crossref_primary_10_3390_biom14101303
crossref_primary_10_1038_s41380_023_02047_6
crossref_primary_10_1056_NEJMra2212850
crossref_primary_10_1007_s00417_023_06101_5
crossref_primary_10_1371_journal_pdig_0000011
crossref_primary_10_1093_jamia_ocae220
crossref_primary_10_1186_s12967_022_03777_x
crossref_primary_10_29413_ABS_2024_9_5_2
crossref_primary_10_1002_INMD_20230013
crossref_primary_10_1080_15265161_2020_1820111
crossref_primary_10_3390_app14167342
crossref_primary_10_1016_j_eururo_2019_12_006
crossref_primary_10_1186_s12913_021_06861_y
crossref_primary_10_1002_pd_5892
crossref_primary_10_1089_tmj_2022_0405
crossref_primary_10_1016_j_diii_2023_05_007
crossref_primary_10_1016_j_wneu_2024_09_075
crossref_primary_10_1097_BSD_0000000000001520
crossref_primary_10_3390_cancers14153780
crossref_primary_10_1016_j_cels_2021_05_005
crossref_primary_10_1016_j_mehy_2023_111084
crossref_primary_10_1007_s00330_021_07881_2
crossref_primary_10_1136_thoraxjnl_2020_214556
crossref_primary_10_1148_radiol_2021210578
crossref_primary_10_47316_cajmhe_2024_5_4_02
crossref_primary_10_3389_fmed_2024_1506641
crossref_primary_10_1016_j_ajo_2025_02_022
crossref_primary_10_1016_j_lanwpc_2024_101254
crossref_primary_10_1016_j_jorep_2024_100358
crossref_primary_10_1227_NEU_0000000000001736
crossref_primary_10_1007_s10462_023_10525_0
crossref_primary_10_1016_j_eclinm_2023_102312
crossref_primary_10_2196_34678
crossref_primary_10_1016_j_jcmg_2021_04_030
crossref_primary_10_1016_j_preteyeres_2025_101350
crossref_primary_10_1108_IMDS_12_2023_0977
crossref_primary_10_1177_00033197251324630
crossref_primary_10_1371_journal_pdig_0000261
crossref_primary_10_1177_20552076241257014
crossref_primary_10_1016_j_mcpdig_2024_06_009
crossref_primary_10_1016_S2589_7500_24_00198_5
crossref_primary_10_1016_j_ajp_2023_103705
crossref_primary_10_5005_newborn_2_1_iv
crossref_primary_10_1016_j_ejso_2024_108014
crossref_primary_10_1038_s41591_021_01614_0
crossref_primary_10_1182_blood_2023022981
crossref_primary_10_1016_j_artmed_2024_102815
crossref_primary_10_1111_imj_15017
crossref_primary_10_1186_s13045_023_01514_5
crossref_primary_10_1007_s00432_022_04263_z
crossref_primary_10_3390_diagnostics14040397
crossref_primary_10_1016_j_ijmedinf_2022_104866
crossref_primary_10_1016_j_cmpb_2023_107684
crossref_primary_10_2196_22453
crossref_primary_10_1007_s10143_023_02014_3
crossref_primary_10_1186_s12880_025_01604_5
crossref_primary_10_1186_s12903_023_03027_6
crossref_primary_10_1177_20595131211066585
crossref_primary_10_1038_s41467_023_38569_4
crossref_primary_10_1016_j_bspc_2024_107177
crossref_primary_10_1177_20552076241272657
crossref_primary_10_1016_j_jbi_2022_104168
crossref_primary_10_1007_s00330_023_09409_2
crossref_primary_10_2196_57750
crossref_primary_10_3389_fcvm_2022_945726
crossref_primary_10_1111_all_15849
crossref_primary_10_1108_K_01_2024_0222
crossref_primary_10_1016_j_survophthal_2024_09_003
crossref_primary_10_3390_app12073341
crossref_primary_10_1016_j_artmed_2021_102158
crossref_primary_10_2147_JHC_S382310
crossref_primary_10_3346_jkms_2020_35_e379
crossref_primary_10_1108_BPMJ_10_2019_0411
crossref_primary_10_1186_s40885_024_00266_9
crossref_primary_10_1093_aje_kwad107
crossref_primary_10_3233_JAD_210714
crossref_primary_10_1016_j_ejphar_2024_177067
crossref_primary_10_1186_s12903_024_05231_4
crossref_primary_10_1016_j_hbpd_2022_03_001
crossref_primary_10_3389_fphys_2023_1288226
crossref_primary_10_1007_s13218_022_00780_8
crossref_primary_10_7759_cureus_46454
crossref_primary_10_1007_s12072_021_10291_7
crossref_primary_10_1016_j_csbj_2020_08_019
crossref_primary_10_1109_TAI_2024_3353164
crossref_primary_10_1007_s12072_022_10342_7
crossref_primary_10_1016_j_bbe_2021_09_002
crossref_primary_10_1177_00187208251323478
crossref_primary_10_1371_journal_pdig_0000514
crossref_primary_10_1016_j_wneu_2021_11_081
crossref_primary_10_1038_s41467_024_51202_2
crossref_primary_10_1080_1744666X_2022_2017773
crossref_primary_10_2196_33703
crossref_primary_10_38124_ijisrt_IJISRT24OCT089
crossref_primary_10_1097_MOT_0000000000000781
crossref_primary_10_1038_s41390_024_03774_4
crossref_primary_10_1038_s41598_024_81724_0
crossref_primary_10_1016_j_ejcped_2024_100197
crossref_primary_10_1016_j_jval_2021_11_1362
crossref_primary_10_1016_j_jval_2021_11_1360
crossref_primary_10_1038_s41388_023_02826_z
crossref_primary_10_7759_cureus_43192
crossref_primary_10_1038_s41598_022_24356_6
crossref_primary_10_1089_thy_2023_0132
crossref_primary_10_1111_inm_13303
crossref_primary_10_1186_s13073_021_00968_x
crossref_primary_10_3389_fmed_2022_994805
crossref_primary_10_3389_fphys_2021_658583
crossref_primary_10_1227_neu_0000000000001999
crossref_primary_10_2196_28120
crossref_primary_10_5582_irdr_2023_01111
crossref_primary_10_1109_ACCESS_2022_3178382
crossref_primary_10_47992_IJHSP_2581_6411_0097
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_1200_CCI_21_00102
crossref_primary_10_1159_000519960
crossref_primary_10_1186_s12874_025_02463_y
crossref_primary_10_1109_TNNLS_2020_3027314
crossref_primary_10_1007_s00068_020_01444_8
crossref_primary_10_1148_ryai_2020200098
crossref_primary_10_3390_children12030317
crossref_primary_10_7717_peerj_10317
crossref_primary_10_1371_journal_pdig_0000533
crossref_primary_10_2147_IDR_S407202
crossref_primary_10_1002_hsr2_70312
crossref_primary_10_1007_s00737_024_01474_w
crossref_primary_10_3390_brainsci14020186
crossref_primary_10_1016_j_medj_2021_04_006
crossref_primary_10_1002_widm_1379
crossref_primary_10_1186_s11689_022_09438_w
crossref_primary_10_1177_20552076241271803
crossref_primary_10_1111_anae_15212
crossref_primary_10_1016_j_jrras_2024_101282
crossref_primary_10_1371_journal_pone_0274276
crossref_primary_10_1016_j_cpcardiol_2023_102250
crossref_primary_10_1016_j_drudis_2020_12_009
crossref_primary_10_1136_bmjopen_2023_079785
crossref_primary_10_1007_s41019_022_00176_6
crossref_primary_10_1097_RTI_0000000000000622
crossref_primary_10_1007_s11936_023_01022_2
crossref_primary_10_1063_5_0073209
crossref_primary_10_1080_10447318_2023_2291616
crossref_primary_10_61466_ijcmr3020001
crossref_primary_10_17816_socm619132
crossref_primary_10_1111_jonm_13425
crossref_primary_10_1109_TPAMI_2023_3296408
crossref_primary_10_1148_radiol_220182
crossref_primary_10_1038_s41586_023_06160_y
crossref_primary_10_3389_fcvm_2023_1127716
crossref_primary_10_1007_s00464_023_10637_2
crossref_primary_10_5124_jkma_2020_63_11_696
crossref_primary_10_1016_j_jbo_2024_100525
crossref_primary_10_1080_17476348_2021_1894133
crossref_primary_10_1148_radiol_222126
crossref_primary_10_1371_journal_pone_0304069
crossref_primary_10_3389_fmedt_2024_1469852
crossref_primary_10_55544_jrasb_2_5_9
crossref_primary_10_1177_20552076211048654
crossref_primary_10_1097_CCM_0000000000006359
crossref_primary_10_1016_S2589_7500_22_00252_7
crossref_primary_10_1371_journal_pcbi_1011815
crossref_primary_10_1007_s00464_022_09112_1
crossref_primary_10_3389_fpsyg_2024_1422177
crossref_primary_10_1007_s10278_024_01282_9
crossref_primary_10_1136_bmjhci_2021_100495
crossref_primary_10_3389_fneur_2021_711646
crossref_primary_10_1109_TETC_2024_3481035
crossref_primary_10_1016_j_eswa_2024_124888
crossref_primary_10_2196_18599
crossref_primary_10_1111_jonm_13894
crossref_primary_10_1038_s41591_021_01343_4
crossref_primary_10_1186_s12911_023_02103_9
crossref_primary_10_1109_ACCESS_2023_3279732
crossref_primary_10_1097_GOX_0000000000004279
crossref_primary_10_1136_bmjopen_2022_069255
crossref_primary_10_1016_j_patter_2021_100269
crossref_primary_10_1016_j_patter_2023_100864
crossref_primary_10_1038_s41598_021_93967_2
crossref_primary_10_7759_cureus_69555
crossref_primary_10_1177_11795549241311408
crossref_primary_10_1097_CIN_0000000000001197
crossref_primary_10_1093_bjsopen_zrad011
crossref_primary_10_1148_ryai_220074
crossref_primary_10_2196_38178
crossref_primary_10_1038_s41416_021_01689_z
crossref_primary_10_1200_JCO_23_01978
crossref_primary_10_3233_JCB_230118
crossref_primary_10_1007_s13760_024_02682_y
crossref_primary_10_3389_fmolb_2024_1483326
crossref_primary_10_1186_s12911_023_02369_z
crossref_primary_10_2196_50295
crossref_primary_10_1016_j_radi_2024_01_019
crossref_primary_10_1016_j_compbiomed_2022_106043
crossref_primary_10_7759_cureus_45594
crossref_primary_10_1016_j_ejphar_2024_177080
crossref_primary_10_1016_j_medine_2019_11_006
crossref_primary_10_1016_j_medin_2019_11_003
crossref_primary_10_2174_2666782701666220920091940
crossref_primary_10_1371_journal_pone_0276836
crossref_primary_10_1136_bjo_2023_324188
crossref_primary_10_1007_s11606_020_06394_w
crossref_primary_10_1016_j_compbiomed_2021_104850
crossref_primary_10_2174_1389450121666200708120646
crossref_primary_10_1186_s13000_020_00995_z
crossref_primary_10_1016_j_oor_2024_100343
crossref_primary_10_1038_s41746_022_00712_8
crossref_primary_10_1038_s41746_023_00753_7
crossref_primary_10_1002_hsr2_70372
crossref_primary_10_1371_journal_pone_0296456
crossref_primary_10_1186_s42444_022_00075_x
crossref_primary_10_1007_s40615_024_02237_0
crossref_primary_10_1016_j_cll_2022_09_023
crossref_primary_10_1080_15459624_2024_2443198
crossref_primary_10_1093_ptj_pzae137
crossref_primary_10_1111_jebm_12549
crossref_primary_10_1016_j_semcancer_2023_09_005
crossref_primary_10_7759_cureus_46860
crossref_primary_10_1371_journal_pone_0242806
crossref_primary_10_1038_s42256_021_00357_4
crossref_primary_10_1016_j_ccrj_2023_04_003
crossref_primary_10_1002_hsr2_70139
crossref_primary_10_1182_bloodadvances_2023010140
crossref_primary_10_1186_s12911_024_02653_6
crossref_primary_10_1109_TBME_2023_3287514
crossref_primary_10_1055_a_2415_8408
crossref_primary_10_1097_TP_0000000000005312
crossref_primary_10_1007_s10943_024_02206_1
crossref_primary_10_61186_ist_202401_01_12
crossref_primary_10_1002_bies_202100025
crossref_primary_10_3389_fdgth_2021_739327
crossref_primary_10_3390_diagnostics13040743
crossref_primary_10_1016_j_media_2022_102391
crossref_primary_10_2196_49655
crossref_primary_10_3174_ajnr_A7850
crossref_primary_10_1053_j_gastro_2020_04_001
crossref_primary_10_12998_wjcc_v11_i33_7940
crossref_primary_10_1007_s10462_021_10074_4
crossref_primary_10_3390_su14127327
crossref_primary_10_4103_jpi_jpi_54_19
crossref_primary_10_1186_s12880_024_01260_1
crossref_primary_10_47340_mjhss_v2i4_1_2021
crossref_primary_10_1093_ehjdh_ztae034
crossref_primary_10_1016_j_cll_2022_09_004
crossref_primary_10_1007_s10278_022_00601_2
crossref_primary_10_1016_j_xfnr_2020_11_002
crossref_primary_10_1007_s00134_024_07629_8
crossref_primary_10_1038_s41467_021_22989_1
crossref_primary_10_15252_emmm_202216061
crossref_primary_10_1177_15266028231187599
crossref_primary_10_3390_s23218661
crossref_primary_10_1016_j_imu_2023_101352
crossref_primary_10_1186_s12872_023_03665_2
crossref_primary_10_3389_fpsyg_2021_710982
crossref_primary_10_1109_ACCESS_2024_3476436
crossref_primary_10_1038_s41598_021_88226_3
crossref_primary_10_2196_41940
crossref_primary_10_1111_1754_9485_13275
crossref_primary_10_4236_ijis_2023_133005
crossref_primary_10_52711_2231_5713_2024_00061
crossref_primary_10_1016_j_bjae_2023_04_003
crossref_primary_10_1016_j_scs_2024_105907
crossref_primary_10_1002_jac5_1856
crossref_primary_10_1038_s41746_021_00504_6
crossref_primary_10_1016_j_schres_2023_01_014
crossref_primary_10_56083_RCV4N1_158
crossref_primary_10_1016_j_cmpbup_2024_100142
crossref_primary_10_1071_AH21361
crossref_primary_10_1038_s41746_025_01459_8
crossref_primary_10_1053_j_jvca_2020_06_072
crossref_primary_10_1007_s40744_022_00475_4
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_35854_1998_1627_2024_7_819_831
crossref_primary_10_1088_2516_1091_abaaa3
crossref_primary_10_26466_opusjsr_1583315
crossref_primary_10_1177_17531934251322723
crossref_primary_10_4081_btvb_2024_123
crossref_primary_10_1038_s41379_020_00686_6
crossref_primary_10_1038_s41467_021_21896_9
crossref_primary_10_1007_s00439_023_02638_x
crossref_primary_10_1016_j_asoc_2025_112788
crossref_primary_10_1097_JS9_0000000000000979
crossref_primary_10_2196_48156
crossref_primary_10_1016_j_gastha_2022_02_025
crossref_primary_10_1016_j_teler_2023_100097
crossref_primary_10_1186_s13741_024_00480_x
crossref_primary_10_20517_ais_2024_09
crossref_primary_10_2196_36388
crossref_primary_10_1016_j_revmed_2025_02_002
crossref_primary_10_1186_s40246_020_00287_z
crossref_primary_10_3748_wjg_v27_i21_2758
crossref_primary_10_1002_ima_22674
crossref_primary_10_1016_j_cmpb_2022_106754
crossref_primary_10_1111_jdv_17517
crossref_primary_10_3345_cep_2021_00766
crossref_primary_10_1038_s41598_023_28571_7
crossref_primary_10_2196_50201
crossref_primary_10_3390_cells10112924
crossref_primary_10_1097_JCMA_0000000000000824
crossref_primary_10_1016_j_joms_2021_02_031
crossref_primary_10_3389_fmed_2025_1472295
crossref_primary_10_1177_13558196241295970
crossref_primary_10_1016_j_media_2022_102594
crossref_primary_10_1515_jpm_2024_0122
crossref_primary_10_1007_s10278_022_00721_9
crossref_primary_10_3390_jcm12185831
crossref_primary_10_1136_bmj_m3210
crossref_primary_10_1016_S1470_2045_24_00277_8
crossref_primary_10_1016_j_imu_2022_101090
crossref_primary_10_1016_j_jns_2023_122799
crossref_primary_10_5664_jcsm_11362
crossref_primary_10_1161_JAHA_123_030500
crossref_primary_10_1016_j_yamp_2020_07_013
crossref_primary_10_3390_sym17030469
crossref_primary_10_1136_leader_2023_000904
crossref_primary_10_1177_20552076221089099
crossref_primary_10_1177_26334895221112033
crossref_primary_10_3390_curroncol30020168
crossref_primary_10_1016_j_amjsurg_2023_11_019
crossref_primary_10_1016_j_ijmedinf_2023_105201
crossref_primary_10_1038_s41433_023_02680_z
crossref_primary_10_2139_ssrn_3795326
crossref_primary_10_1177_1074248420928651
crossref_primary_10_3390_antibiotics12030523
crossref_primary_10_1016_j_identj_2024_11_009
crossref_primary_10_1515_cclm_2023_1037
crossref_primary_10_7759_cureus_54752
crossref_primary_10_1016_j_artmed_2023_102633
crossref_primary_10_1016_S0140_6736_23_02754_X
crossref_primary_10_1016_j_ijmedinf_2021_104643
crossref_primary_10_3390_app13063693
crossref_primary_10_4103_tjosr_tjosr_83_22
crossref_primary_10_1177_08404704211037995
crossref_primary_10_1186_s12916_020_01613_x
crossref_primary_10_2174_1573405620666230906092310
crossref_primary_10_37126_aige_v2_i2_36
crossref_primary_10_1016_j_ijmedinf_2025_105857
crossref_primary_10_1016_j_techsoc_2024_102469
crossref_primary_10_1186_s13195_020_00757_5
crossref_primary_10_1186_s43057_021_00053_4
crossref_primary_10_3389_fpsyt_2022_1027159
crossref_primary_10_3390_diagnostics14202286
crossref_primary_10_1016_j_eswa_2024_124381
crossref_primary_10_1016_j_cjca_2024_05_025
crossref_primary_10_3389_fonc_2022_852746
crossref_primary_10_1002_ps_8473
crossref_primary_10_1016_j_artmed_2021_102060
crossref_primary_10_14245_ns_2347302_651
crossref_primary_10_4018_IJARPHM_318140
crossref_primary_10_1097_TP_0000000000003640
crossref_primary_10_20517_2394_5079_2024_138
crossref_primary_10_1016_j_otc_2024_05_002
crossref_primary_10_1016_S2589_7500_20_30218_1
crossref_primary_10_2196_18097
crossref_primary_10_3390_diagnostics13111974
crossref_primary_10_35713_aic_v1_i3_45
crossref_primary_10_1016_j_amjcard_2023_06_104
crossref_primary_10_1016_j_semarthrit_2023_152213
crossref_primary_10_1002_hbm_26625
crossref_primary_10_3390_healthcare10101923
crossref_primary_10_1016_j_ajp_2023_103866
crossref_primary_10_3390_children12010014
crossref_primary_10_1016_j_ijis_2024_05_001
crossref_primary_10_1515_revneuro_2023_0050
crossref_primary_10_1080_17469899_2023_2175672
crossref_primary_10_1002_ppap_202300066
crossref_primary_10_1093_ehjdh_ztac025
crossref_primary_10_1016_j_psychres_2024_116193
crossref_primary_10_1016_j_compbiomed_2024_109531
crossref_primary_10_2196_31053
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1016_j_giq_2021_101618
crossref_primary_10_1016_j_crmeth_2021_100107
crossref_primary_10_1007_s00134_021_06446_7
crossref_primary_10_1093_jamia_ocaf033
crossref_primary_10_3389_fonc_2023_1099994
crossref_primary_10_1111_jgh_15378
crossref_primary_10_1016_j_jdent_2024_105091
crossref_primary_10_14366_usg_20078
crossref_primary_10_1016_j_ijmedinf_2023_105073
crossref_primary_10_1016_j_yapd_2024_12_003
crossref_primary_10_1016_j_mcpdig_2023_06_011
crossref_primary_10_1097_TP_0000000000003424
crossref_primary_10_1177_0271678X21991393
crossref_primary_10_1371_journal_pone_0291147
crossref_primary_10_1002_phar_2835
crossref_primary_10_1080_10447318_2024_2345980
crossref_primary_10_1007_s12553_024_00825_y
crossref_primary_10_20517_ais_2024_36
crossref_primary_10_3390_jpm13121703
crossref_primary_10_1007_s41060_021_00300_1
crossref_primary_10_1038_s41746_021_00445_0
crossref_primary_10_1002_mds_29376
crossref_primary_10_1016_j_hlpt_2023_100824
crossref_primary_10_1080_17425247_2024_2429702
crossref_primary_10_1167_tvst_11_7_12
crossref_primary_10_1016_j_mayocpiqo_2021_06_001
crossref_primary_10_17816_socm107908
crossref_primary_10_1016_j_compbiomed_2024_108220
crossref_primary_10_1016_j_blre_2023_101144
crossref_primary_10_1016_j_compbiomed_2024_109555
crossref_primary_10_3389_fpubh_2022_1024203
crossref_primary_10_3390_nursrep13010007
crossref_primary_10_1016_j_mcpdig_2024_10_004
crossref_primary_10_1038_s41746_021_00438_z
crossref_primary_10_1016_j_cmpb_2024_108323
crossref_primary_10_1186_s42836_021_00095_3
crossref_primary_10_2196_48544
crossref_primary_10_1038_s41598_022_26467_6
crossref_primary_10_1108_BPMJ_02_2024_0089
crossref_primary_10_2196_23483
crossref_primary_10_1093_bib_bbaa237
crossref_primary_10_2196_57271
crossref_primary_10_3389_fmed_2024_1411013
crossref_primary_10_3390_diagnostics10110972
crossref_primary_10_3390_s22239101
crossref_primary_10_1016_j_ijcard_2023_131339
crossref_primary_10_3389_fninf_2023_1272791
crossref_primary_10_2147_JPR_S356319
crossref_primary_10_1007_s42979_024_02896_0
crossref_primary_10_12688_wellcomeopenres_20012_1
crossref_primary_10_1016_j_ifacol_2021_10_066
crossref_primary_10_3390_a14010017
crossref_primary_10_1016_j_semcancer_2025_02_009
crossref_primary_10_1093_neuros_nyab337
crossref_primary_10_3390_medicina58040459
crossref_primary_10_1007_s10462_025_11160_7
crossref_primary_10_1016_j_jacr_2020_03_012
crossref_primary_10_31478_202008a
crossref_primary_10_1016_j_ejmp_2021_02_024
crossref_primary_10_1128_JCM_01260_20
crossref_primary_10_2196_59660
crossref_primary_10_2196_58578
crossref_primary_10_1007_s10140_020_01893_z
crossref_primary_10_1111_epi_18082
crossref_primary_10_1371_journal_pone_0282415
crossref_primary_10_1542_hpeds_2021_006094
crossref_primary_10_1007_s00129_021_04890_6
crossref_primary_10_3389_fneur_2023_1093690
crossref_primary_10_3390_su141811698
crossref_primary_10_1016_j_preteyeres_2021_100972
crossref_primary_10_3390_cancers16050862
crossref_primary_10_14260_jemds_2022_54
crossref_primary_10_1148_radiol_211706
crossref_primary_10_1371_journal_pone_0300127
crossref_primary_10_1186_s40658_021_00374_7
crossref_primary_10_1038_s41431_021_00928_4
crossref_primary_10_1002_cam4_5485
crossref_primary_10_1371_journal_pone_0282882
crossref_primary_10_1136_medethics_2020_107166
crossref_primary_10_1016_j_csbj_2023_11_011
crossref_primary_10_26633_RPSP_2024_12
crossref_primary_10_1007_s11154_023_09802_8
crossref_primary_10_26633_RPSP_2024_13
crossref_primary_10_7759_cureus_60119
crossref_primary_10_1093_jamia_ocad222
crossref_primary_10_3342_kjorl_hns_2023_00248
crossref_primary_10_1111_jep_13541
crossref_primary_10_1186_s12911_021_01634_3
crossref_primary_10_1002_mp_15461
crossref_primary_10_1002_14651858_CD015522_pub2
crossref_primary_10_1038_s41379_022_01147_y
crossref_primary_10_1038_s41598_023_45802_z
crossref_primary_10_3389_fpubh_2024_1420032
crossref_primary_10_3389_fcvm_2023_982028
crossref_primary_10_1109_ACCESS_2022_3210468
crossref_primary_10_1109_ACCESS_2025_3529357
crossref_primary_10_1038_s41591_020_1034_x
crossref_primary_10_1200_CCI_23_00142
crossref_primary_10_1016_j_xcrm_2023_101230
crossref_primary_10_3389_fcvm_2022_998558
crossref_primary_10_1016_j_cell_2023_01_035
crossref_primary_10_1016_j_jdent_2024_104871
crossref_primary_10_3390_jpm10030062
crossref_primary_10_1016_j_healthpol_2023_104889
crossref_primary_10_1038_s41596_021_00513_5
crossref_primary_10_3389_fneur_2023_1210974
crossref_primary_10_1016_j_ijmedinf_2022_104758
crossref_primary_10_37489_2588_0527_2023_1_3_5
crossref_primary_10_1038_s41598_022_22233_w
crossref_primary_10_1093_clinchem_hvad136
crossref_primary_10_1007_s12350_022_02994_7
crossref_primary_10_1161_CIRCRESAHA_121_318106
crossref_primary_10_1016_j_engappai_2023_105894
crossref_primary_10_1016_j_heliyon_2021_e06626
crossref_primary_10_1111_bcp_15930
crossref_primary_10_3389_fnins_2021_713760
crossref_primary_10_1097_EJA_0000000000001696
crossref_primary_10_1016_j_jpi_2024_100366
crossref_primary_10_1016_j_pacs_2021_100241
crossref_primary_10_12968_hmed_2024_0312
crossref_primary_10_1002_clc_24148
crossref_primary_10_1371_journal_pone_0260829
crossref_primary_10_4103_mj_mj_45_23
crossref_primary_10_1371_journal_pone_0282619
crossref_primary_10_1038_s41551_022_00898_y
crossref_primary_10_3389_fonc_2022_976168
crossref_primary_10_1016_j_ejim_2023_07_012
crossref_primary_10_1038_s44303_024_00012_8
crossref_primary_10_1016_j_media_2022_102704
crossref_primary_10_1016_j_mcpdig_2024_100189
crossref_primary_10_37349_etat_2023_00160
crossref_primary_10_1016_j_eclinm_2024_102555
crossref_primary_10_3233_THC_231482
crossref_primary_10_2196_55897
crossref_primary_10_1007_s10845_024_02482_4
crossref_primary_10_1109_ACCESS_2021_3137364
crossref_primary_10_1017_sus_2024_21
crossref_primary_10_1016_j_compbiomed_2024_109391
crossref_primary_10_1016_j_mcpdig_2024_100191
crossref_primary_10_1126_sciadv_adj1719
crossref_primary_10_1089_aipo_2024_0051
crossref_primary_10_1007_s10916_024_02104_9
crossref_primary_10_1017_dap_2024_65
crossref_primary_10_1080_10599231_2023_2220603
crossref_primary_10_1007_s11548_020_02222_y
crossref_primary_10_34133_2022_9852872
crossref_primary_10_1177_17531934231152592
crossref_primary_10_1055_a_2403_3103
crossref_primary_10_1016_j_eclinm_2023_102200
crossref_primary_10_2139_ssrn_4828970
crossref_primary_10_2196_34304
crossref_primary_10_1016_j_cmpb_2023_107582
crossref_primary_10_1038_s44259_025_00085_4
crossref_primary_10_1007_s40746_020_00205_4
crossref_primary_10_1038_s41591_023_02562_7
crossref_primary_10_3389_fonc_2020_00680
crossref_primary_10_3748_wjg_v27_i22_2979
crossref_primary_10_1016_j_lanepe_2024_101145
crossref_primary_10_1038_s41598_021_89743_x
crossref_primary_10_1148_ryai_220028
crossref_primary_10_1016_j_jbi_2022_104268
crossref_primary_10_1097_MPA_0000000000001762
crossref_primary_10_1155_2022_3022280
crossref_primary_10_1038_s41698_022_00275_7
crossref_primary_10_1016_j_radi_2020_11_006
crossref_primary_10_1038_s41598_024_56476_6
crossref_primary_10_1016_j_bspc_2023_105831
crossref_primary_10_1016_S2589_7500_20_30216_8
crossref_primary_10_1186_s12911_023_02341_x
crossref_primary_10_1093_ced_llae112
crossref_primary_10_1162_netn_a_00233
crossref_primary_10_1016_j_avsg_2022_12_079
crossref_primary_10_3390_life11030200
crossref_primary_10_1001_jamanetworkopen_2020_32320
crossref_primary_10_1371_journal_pone_0238908
crossref_primary_10_1016_j_procs_2022_08_105
crossref_primary_10_1038_s41746_024_01312_4
crossref_primary_10_7759_cureus_69121
crossref_primary_10_1089_aipo_2024_0031
crossref_primary_10_1093_jamia_ocab065
crossref_primary_10_3390_diagnostics14171866
crossref_primary_10_1016_j_ijmedinf_2022_104983
crossref_primary_10_3389_fnbot_2021_742163
crossref_primary_10_3390_medicina58121743
crossref_primary_10_1016_j_patter_2021_100421
crossref_primary_10_34133_bmef_0054
crossref_primary_10_1016_j_lanepe_2024_101163
crossref_primary_10_1111_adj_12812
crossref_primary_10_1200_CCI_22_00123
crossref_primary_10_5582_bst_2023_01076
crossref_primary_10_1093_jamia_ocae301
crossref_primary_10_1155_jonm_3189531
crossref_primary_10_3390_diagnostics13122056
crossref_primary_10_1371_journal_pone_0265254
crossref_primary_10_3390_app10155135
crossref_primary_10_23736_S2724_5683_24_06288_4
crossref_primary_10_1152_physrev_00033_2022
crossref_primary_10_3390_app122111095
crossref_primary_10_3390_diagnostics11091722
crossref_primary_10_1136_bmj_2024_081554
crossref_primary_10_2196_58723
crossref_primary_10_1016_j_jpha_2025_101194
crossref_primary_10_1161_STROKEAHA_121_036204
crossref_primary_10_1136_bmjopen_2023_076918
crossref_primary_10_3389_fdgth_2020_569178
crossref_primary_10_1038_s41390_022_02387_z
crossref_primary_10_1016_j_jtos_2021_11_004
crossref_primary_10_3390_cells10123266
crossref_primary_10_1136_bjophthalmol_2020_317817
crossref_primary_10_3390_s21237786
crossref_primary_10_1001_jamanetworkopen_2021_44742
crossref_primary_10_1016_j_cjca_2024_07_003
crossref_primary_10_1007_s00234_021_02774_z
crossref_primary_10_1186_s12911_024_02830_7
crossref_primary_10_1093_bmb_ldae025
crossref_primary_10_2196_39114
crossref_primary_10_31260_RepertMedCir_01217372_1585
crossref_primary_10_3390_diagnostics14141477
crossref_primary_10_3390_jcm13072076
crossref_primary_10_1016_j_cogsys_2023_101186
crossref_primary_10_1080_08164622_2021_2008791
crossref_primary_10_1136_ejhpharm_2023_003857
crossref_primary_10_3390_biomedinformatics4020075
crossref_primary_10_1007_s11908_023_00818_4
crossref_primary_10_1097_WNO_0000000000001682
crossref_primary_10_1056_CAT_21_0469
crossref_primary_10_1136_bmjonc_2023_000255
crossref_primary_10_2196_29301
crossref_primary_10_1038_s41390_025_03815_6
crossref_primary_10_26634_jaim_1_2_20044
crossref_primary_10_2196_40589
crossref_primary_10_1136_jme_2022_108447
crossref_primary_10_3390_jpm10030104
crossref_primary_10_2174_0126662558297036240527120451
crossref_primary_10_1109_ACCESS_2020_3037710
crossref_primary_10_1177_23312165211066174
crossref_primary_10_2196_53892
crossref_primary_10_1056_AIcs2300269
crossref_primary_10_1038_s41591_024_03329_4
crossref_primary_10_1038_s41746_020_0286_7
crossref_primary_10_1117_1_JBO_29_2_027004
crossref_primary_10_1016_j_bspc_2021_103325
crossref_primary_10_1016_S2589_7500_22_00088_7
crossref_primary_10_1177_20552076231152167
crossref_primary_10_3390_curroncol31090389
crossref_primary_10_62486_latia202325
crossref_primary_10_1044_2024_PERSP_24_00037
crossref_primary_10_1038_s41551_021_00733_w
crossref_primary_10_1016_j_ibmed_2021_100039
crossref_primary_10_1152_jn_00221_2022
crossref_primary_10_3389_fmed_2022_817549
crossref_primary_10_2196_43838
crossref_primary_10_1109_ACCESS_2024_3520425
crossref_primary_10_1136_bmjhci_2020_100293
crossref_primary_10_3390_s23063062
crossref_primary_10_1002_cai2_9
crossref_primary_10_1016_j_jbi_2023_104531
crossref_primary_10_1016_j_jbi_2022_104013
crossref_primary_10_1016_j_techfore_2024_123568
crossref_primary_10_1109_JBHI_2024_3483577
crossref_primary_10_3390_cancers15092573
crossref_primary_10_7759_cureus_48534
crossref_primary_10_1016_j_brain_2023_100079
crossref_primary_10_1186_s13012_024_01346_y
crossref_primary_10_58496_MJCSC_2023_012
crossref_primary_10_1007_s43681_023_00309_1
crossref_primary_10_2196_28236
crossref_primary_10_2196_40565
crossref_primary_10_7861_fhj_2021_0095
crossref_primary_10_1007_s10462_023_10561_w
crossref_primary_10_1080_01969722_2021_2018548
crossref_primary_10_1002_hbm_26098
crossref_primary_10_1055_a_2451_9046
crossref_primary_10_1134_S1054661823030203
crossref_primary_10_1136_bmjsit_2021_000109
crossref_primary_10_1016_j_patol_2024_04_003
crossref_primary_10_1007_s11831_023_09940_x
crossref_primary_10_1016_j_compbiomed_2023_106668
crossref_primary_10_1097_MJT_0000000000001693
crossref_primary_10_1186_s40537_023_00703_w
crossref_primary_10_1177_0022034521998337
crossref_primary_10_4103_jfcm_jfcm_144_24
crossref_primary_10_1038_s41598_021_90285_5
crossref_primary_10_56294_hl2022121
crossref_primary_10_1053_j_jvca_2024_06_025
crossref_primary_10_1016_j_csbj_2021_09_001
crossref_primary_10_29328_journal_abse_1001015
crossref_primary_10_3390_jcm11216426
crossref_primary_10_1038_s41598_022_13504_7
crossref_primary_10_1038_s41746_020_0253_3
crossref_primary_10_2139_ssrn_4616055
crossref_primary_10_1038_s41392_024_01932_y
crossref_primary_10_1016_j_hjc_2024_07_003
crossref_primary_10_1016_j_identj_2025_02_006
crossref_primary_10_1101_cshperspect_a041584
crossref_primary_10_1016_j_mlwa_2024_100607
crossref_primary_10_3348_kjr_2022_0834
crossref_primary_10_1016_j_heliyon_2023_e22653
crossref_primary_10_3389_fmed_2021_788777
crossref_primary_10_3390_s22041408
crossref_primary_10_17496_kmer_2020_22_2_99
crossref_primary_10_23736_S1824_4785_20_03263_X
crossref_primary_10_1093_jamia_ocaa268
crossref_primary_10_1108_TG_08_2024_0195
crossref_primary_10_1097_TP_0000000000005063
crossref_primary_10_1016_j_imu_2023_101208
crossref_primary_10_1016_j_jad_2021_08_033
crossref_primary_10_22469_jkslp_2022_33_3_142
crossref_primary_10_1016_j_procs_2022_09_532
crossref_primary_10_7759_cureus_56583
crossref_primary_10_1080_15265161_2021_2013977
crossref_primary_10_1371_journal_pgph_0002160
crossref_primary_10_1186_s12911_022_01896_5
crossref_primary_10_3390_diagnostics12061351
crossref_primary_10_14202_vetworld_2023_2143_2149
crossref_primary_10_1093_jamia_ocaa254
crossref_primary_10_2144_fsoa_2021_0074
crossref_primary_10_1007_s12525_022_00606_3
crossref_primary_10_1007_s12195_020_00629_w
crossref_primary_10_1007_s13735_019_00190_x
crossref_primary_10_55662_JST_2024_5405
crossref_primary_10_1097_ACM_0000000000005605
crossref_primary_10_3390_electronics12214411
crossref_primary_10_3390_diagnostics12112794
crossref_primary_10_1007_s13671_024_00436_w
crossref_primary_10_1145_3589961
crossref_primary_10_2139_ssrn_4140234
crossref_primary_10_1016_j_jpedsurg_2024_01_044
crossref_primary_10_3390_jpm13060951
crossref_primary_10_1007_s00595_023_02662_4
crossref_primary_10_1002_emp2_12363
crossref_primary_10_3389_fpubh_2021_755644
crossref_primary_10_1007_s13312_023_2936_8
crossref_primary_10_1016_j_jbi_2023_104504
crossref_primary_10_1016_j_caeai_2024_100251
crossref_primary_10_1148_radiol_222028
crossref_primary_10_1186_s42836_023_00195_2
crossref_primary_10_2196_55855
crossref_primary_10_3389_fmed_2025_1504428
crossref_primary_10_1515_jpem_2023_0554
crossref_primary_10_1016_j_drudis_2024_103889
crossref_primary_10_1093_eurjpc_zwae008
crossref_primary_10_7759_cureus_66398
crossref_primary_10_1527_tjsai_40_2_D_O96
crossref_primary_10_1186_s12911_021_01682_9
crossref_primary_10_1145_3609502
crossref_primary_10_4236_ojanes_2023_137014
crossref_primary_10_3390_ai4020024
crossref_primary_10_1038_s41598_021_90646_0
crossref_primary_10_1186_s12911_024_02656_3
crossref_primary_10_2139_ssrn_4180507
crossref_primary_10_1080_02648725_2023_2196476
crossref_primary_10_1016_j_jointm_2023_10_001
crossref_primary_10_1017_ice_2022_218
crossref_primary_10_1016_j_drudis_2024_104111
crossref_primary_10_1002_path_5565
crossref_primary_10_1089_blr_2020_29183_ks
crossref_primary_10_1136_bmjresp_2021_001165
crossref_primary_10_23736_S1825_859X_24_00224_X
crossref_primary_10_1016_j_compbiomed_2024_108702
crossref_primary_10_1016_j_compbiomed_2023_107569
crossref_primary_10_7759_cureus_21434
crossref_primary_10_1016_j_jtcvs_2023_11_034
crossref_primary_10_1007_s10844_021_00653_w
crossref_primary_10_1016_j_jaad_2021_03_120
crossref_primary_10_3390_diagnostics12092084
crossref_primary_10_1007_s10278_025_01425_6
crossref_primary_10_1016_j_artmed_2024_103052
crossref_primary_10_1016_j_ccell_2021_04_002
crossref_primary_10_1016_j_neubiorev_2023_105137
crossref_primary_10_3390_ijerph18020811
crossref_primary_10_1038_s41592_023_02151_z
crossref_primary_10_1214_23_STS891
crossref_primary_10_1136_jitc_2023_007841
crossref_primary_10_3389_fcvm_2022_983859
crossref_primary_10_1136_bmjopen_2021_059414
crossref_primary_10_47992_IJHSP_2581_6411_0116
crossref_primary_10_1109_TMI_2021_3101985
crossref_primary_10_1016_S2589_7500_20_30240_5
crossref_primary_10_3389_phrs_2022_1604434
crossref_primary_10_1186_s13000_024_01452_x
crossref_primary_10_1016_j_ailsci_2021_100018
crossref_primary_10_1016_j_preteyeres_2021_101034
crossref_primary_10_4103_aam_aam_192_23
crossref_primary_10_3390_cancers16213690
crossref_primary_10_1111_1754_9485_13379
crossref_primary_10_1038_s41746_022_00690_x
crossref_primary_10_1016_j_ccm_2023_08_013
crossref_primary_10_3390_life13102028
crossref_primary_10_1108_IJM_07_2021_0423
crossref_primary_10_1016_j_compbiolchem_2024_108274
crossref_primary_10_3390_onco3030013
crossref_primary_10_1007_s00146_023_01686_1
crossref_primary_10_1002_hep_31603
crossref_primary_10_1177_01945998221110076
crossref_primary_10_1002_lsm_23414
crossref_primary_10_5858_arpa_2021_0635_RA
crossref_primary_10_3389_fmed_2023_1192969
crossref_primary_10_1038_s42256_023_00781_8
crossref_primary_10_1093_bioadv_vbac095
crossref_primary_10_3389_frai_2025_1512910
crossref_primary_10_1038_s41746_020_00343_x
crossref_primary_10_1038_s41591_021_01620_2
crossref_primary_10_1016_j_media_2020_101813
crossref_primary_10_1093_rheumatology_keac645
crossref_primary_10_2106_JBJS_21_01305
crossref_primary_10_1208_s12249_024_02901_y
crossref_primary_10_1136_bmjhci_2022_100643
crossref_primary_10_3389_fdata_2022_850383
crossref_primary_10_1186_s13244_022_01220_9
crossref_primary_10_3389_fnhum_2023_1325154
crossref_primary_10_3390_diagnostics14151691
crossref_primary_10_3389_frai_2021_553987
crossref_primary_10_1016_j_cmpb_2025_108651
crossref_primary_10_3390_cancers15020545
crossref_primary_10_2196_51614
crossref_primary_10_1007_s00467_023_06191_7
crossref_primary_10_1080_17460441_2021_1918096
crossref_primary_10_1136_bmjopen_2021_056369
crossref_primary_10_1016_S2589_7500_21_00252_1
crossref_primary_10_1145_3715115
crossref_primary_10_1038_s41746_022_00700_y
crossref_primary_10_1186_s40662_024_00384_3
crossref_primary_10_1167_tvst_12_11_8
crossref_primary_10_1097_APO_0000000000000400
crossref_primary_10_1038_s41746_020_0295_6
crossref_primary_10_4103_aian_AIAN_1120_20
crossref_primary_10_1177_15266028221102660
crossref_primary_10_1186_s12967_021_02955_7
crossref_primary_10_1177_09720634241246331
crossref_primary_10_31159_ksmrt_2024_34_3_23
crossref_primary_10_3389_fmed_2020_00027
crossref_primary_10_3389_fmedt_2023_1183687
crossref_primary_10_3390_sym13010102
crossref_primary_10_1097_ICU_0000000000000677
crossref_primary_10_1002_pd_6059
crossref_primary_10_1177_17456916231181102
crossref_primary_10_3390_diagnostics13193071
crossref_primary_10_4103_pjiap_pjiap_89_24
crossref_primary_10_3390_ai6010010
crossref_primary_10_1080_20473869_2025_2456800
crossref_primary_10_1111_vcp_13401
crossref_primary_10_1016_j_engappai_2024_108610
crossref_primary_10_1016_j_glmedi_2024_100108
crossref_primary_10_7759_cureus_44515
crossref_primary_10_1155_rrp_9091895
crossref_primary_10_1016_j_jtcvs_2024_08_048
crossref_primary_10_1145_3503488
crossref_primary_10_1016_j_giec_2022_12_001
crossref_primary_10_2196_54705
crossref_primary_10_1016_j_rcsop_2023_100346
crossref_primary_10_1038_s41388_023_02797_1
crossref_primary_10_3390_fi14120356
crossref_primary_10_1016_j_media_2022_102684
crossref_primary_10_1016_j_media_2022_102444
crossref_primary_10_1016_j_patter_2022_100493
crossref_primary_10_1016_j_techsoc_2024_102791
crossref_primary_10_1038_s41598_024_60915_9
crossref_primary_10_3390_jimaging10050117
crossref_primary_10_1007_s10943_024_02140_2
crossref_primary_10_2967_jnumed_124_268156
crossref_primary_10_1109_ACCESS_2024_3524428
crossref_primary_10_3390_diagnostics12112708
crossref_primary_10_3390_cells12131755
crossref_primary_10_1186_s12874_023_01921_9
crossref_primary_10_1016_j_hfc_2021_11_005
crossref_primary_10_4103_jiaphd_jiaphd_111_24
crossref_primary_10_3389_fdgth_2023_1260602
crossref_primary_10_2196_42940
crossref_primary_10_1038_s41598_020_67013_6
crossref_primary_10_1093_bjr_tqad031
crossref_primary_10_1016_j_preteyeres_2023_101227
crossref_primary_10_1038_s41467_022_29153_3
crossref_primary_10_1038_s41746_021_00549_7
crossref_primary_10_56294_ri202473
crossref_primary_10_1016_j_jbi_2022_103996
crossref_primary_10_1097_MCC_0000000000001104
crossref_primary_10_1177_21582440241257682
crossref_primary_10_3389_fonc_2025_1547968
crossref_primary_10_1016_j_glmedi_2024_100135
crossref_primary_10_3390_pathogens13110940
crossref_primary_10_3390_pharmaceutics15071916
crossref_primary_10_1016_j_imu_2025_101633
crossref_primary_10_1016_j_healun_2021_02_016
crossref_primary_10_1038_s41598_025_86536_4
crossref_primary_10_1186_s12911_022_02088_x
Cites_doi 10.1038/538311a
10.2139/ssrn.2477899
10.1038/s41551-018-0195-0
10.1109/isbi.2018.8363515
10.1109/cvpr.2018.00865
10.1038/s41746-019-0103-3
10.1136/amiajnl-2012-001089
10.1038/s41591-018-0300-7
10.1038/s41591-018-0335-9
10.1038/s41551-018-0301-3
10.1001/jamacardio.2019.0640
10.18653/v1/n16-3020
10.1001/jamainternmed.2015.5231
10.1126/scitranslmed.3002564
10.1097/md.0000000000003315
10.1161/circulationaha.114.014508
10.1093/jamia/ocv189
10.1016/j.eclinm.2019.03.001
10.1377/hlthaff.27.3.759
10.1001/jama.2019.10306
10.1097/PAS.0000000000001151
10.1038/s41591-018-0268-3
10.1007/978-3-319-55524-9_14
10.1038/s41746-018-0048-y
10.1038/s41746-019-0096-y
10.1370/afm.1713
10.1016/j.ophtha.2018.11.016
10.1097/MLR.0b013e31829b1dbd
10.1093/annonc/mdy166
10.1001/jamanetworkopen.2018.2665
10.1371/journal.pone.0204155
10.1038/s41591-018-0107-6
10.1001/jamadermatol.2019.1735
10.1093/annonc/mdz015
10.1126/science.aaw4399
10.1136/gutjnl-2018-317500
10.1371/journal.pmed.1002683
10.1148/radiol.2018180237
10.1038/s41746-018-0029-1
10.1148/radiol.2017170706
10.1007/s00439-019-01970-5
10.1002/jhm.2652
10.1007/s12265-013-9498-4
10.1001/jamaneurol.2018.1563
10.1016/j.ahj.2018.09.002
10.4132/jptm.2018.12.16
10.1016/j.jid.2018.01.028
10.1148/radiol.2018180958
10.1017/s0269888900000424
10.1001/jama.2016.17216
10.1016/j.jclinepi.2014.06.018
10.1136/gutjnl-2018-317366
10.1001/jamainternmed.2018.8558
10.1038/s41551-016-0024
10.3348/kjr.2019.0025
10.1038/s41746-018-0040-6
10.1515/jaiscr-2017-0019
10.1016/S2589-7500(19)30004-4
10.1038/s41591-018-0147-y
10.1038/s41591-018-0316-z
10.1093/jamia/ocz127
10.1017/s026988890200019x
10.1073/pnas.1806905115
10.1038/s41591-018-0279-0
10.1016/S0140-6736(19)31721-0
10.21437/interspeech.2018-1318
10.1186/1472-6947-8-53
10.1016/s0140-6736(17)30568-8
10.1038/s41586-019-1390-1
10.1001/jama.2015.13453
10.1001/jamanetworkopen.2019.1095
10.1109/cvpr.2017.369
10.1371/journal.pone.0118432
10.1016/S0140-6736(18)31645-3
10.5858/arpa.2018-0147-oa
10.1093/acprof:oso/9780199563623.003.012
10.1038/s41746-019-0105-1
10.1038/nature21056
10.1016/j.ejca.2019.04.001
10.1016/S0140-6736(19)30037-6
10.7326/m18-0249
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12916-019-1426-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic





Database_xml – sequence: 1
  dbid: C6C
  name: Springer [Accès libre]
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-7015
EndPage 9
ExternalDocumentID oai_doaj_org_article_308c3163b3754ef196702f9b7b52ee55
10.1186/s12916-019-1426-2
PMC6821018
A604550726
31665002
10_1186_s12916_019_1426_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
2VQ
ADTOC
AHSBF
C1A
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c606t-e997ea8756ac2a69ec2bfaf5795c9c2bd200bca96aca813071b4ed0befd083233
IEDL.DBID M48
ISSN 1741-7015
IngestDate Fri Oct 03 12:43:56 EDT 2025
Sun Oct 26 04:14:24 EDT 2025
Tue Sep 30 16:40:42 EDT 2025
Thu Sep 04 16:01:54 EDT 2025
Mon Oct 20 22:10:04 EDT 2025
Mon Oct 20 16:39:07 EDT 2025
Thu May 22 21:07:09 EDT 2025
Thu Apr 03 06:59:00 EDT 2025
Wed Oct 01 03:31:41 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Sat Sep 06 07:29:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Evaluation
Translation
Regulation
Algorithms
Artificial intelligence
Machine learning
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-e997ea8756ac2a69ec2bfaf5795c9c2bd200bca96aca813071b4ed0befd083233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1246-844X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcmedicine.biomedcentral.com/track/pdf/10.1186/s12916-019-1426-2
PMID 31665002
PQID 2310717642
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_308c3163b3754ef196702f9b7b52ee55
unpaywall_primary_10_1186_s12916_019_1426_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6821018
proquest_miscellaneous_2310717642
gale_infotracmisc_A604550726
gale_infotracacademiconefile_A604550726
gale_healthsolutions_A604550726
pubmed_primary_31665002
crossref_primary_10_1186_s12916_019_1426_2
crossref_citationtrail_10_1186_s12916_019_1426_2
springer_journals_10_1186_s12916_019_1426_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-29
PublicationDateYYYYMMDD 2019-10-29
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medicine
PublicationTitleAbbrev BMC Med
PublicationTitleAlternate BMC Med
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References R Poplin (1426_CR45) 2018; 2
Y Gurovich (1426_CR30) 2019; 25
R Shadmi (1426_CR15) 2018
1426_CR89
1426_CR88
CD Lehman (1426_CR94) 2015; 175
1426_CR86
1426_CR81
K Yasaka (1426_CR13) 2018; 286
Y Ding (1426_CR17) 2019; 290
J De Fauw (1426_CR24) 2018; 24
S Phansalkar (1426_CR95) 2013; 20
M Ribeiro (1426_CR72) 2016
CK Zarins (1426_CR46) 2013; 6
1426_CR10
1426_CR98
1426_CR11
IY Chen (1426_CR80) 2018
G Bologna (1426_CR90) 2017; 7
1426_CR93
JJ Titano (1426_CR60) 2018; 24
PA Keane (1426_CR65) 2018; 1
TPA Debray (1426_CR76) 2015; 68
HY Chang (1426_CR18) 2019; 53
E Long (1426_CR55) 2017; 1
A Kannan (1426_CR39) 2018; 2018
DF Steiner (1426_CR52) 2018; 42
1426_CR69
1426_CR7
Y Mori (1426_CR54) 2018; 169
S Chilamkurthy (1426_CR14) 2018; 392
1426_CR67
T Bodenheimer (1426_CR4) 2014; 12
P Wang (1426_CR28) 2018; 2
M Ward-Peterson (1426_CR82) 2016; 95
C Lacave (1426_CR92) 2002; 17
A Esteva (1426_CR19) 2017; 542
Y Liu (1426_CR51) 2018; 143
V Gulshan (1426_CR23) 2016; 316
A Rajkomar (1426_CR42) 2019; 179
H Liang (1426_CR32) 2019; 25
A Rajkomar (1426_CR34) 2018; 1
J Fox (1426_CR91) 1984; 1
A Esteva (1426_CR2) 2019; 25
CD Galloway (1426_CR27) 2019; 4
AJ Vickers (1426_CR68) 2008; 8
GJ Escobar (1426_CR33) 2016; 11
N Tomašev (1426_CR35) 2019; 572
1426_CR74
JC Mandel (1426_CR84) 2016; 23
EA McGlynn (1426_CR43) 2015; 314
SS Han (1426_CR21) 2018; 138
1426_CR73
1426_CR70
1426_CR71
R Sayres (1426_CR96) 2019; 126
AH Beck (1426_CR44) 2011; 3
AY Hannun (1426_CR25) 2019; 25
K Kamnitsas (1426_CR16) 2016
MG Core (1426_CR87) 2006
U Mutlu (1426_CR47) 2018; 75
S Barocas (1426_CR79) 2016
P Wang (1426_CR59) 2019; 68
EJ Hwang (1426_CR5) 2019; 2
A Nelson (1426_CR41) 2019; 2
1426_CR40
Y Kanagasingam (1426_CR49) 2018; 1
MP Turakhia (1426_CR56) 2019; 207
WR Hersh (1426_CR85) 2013; 51
J Xu (1426_CR29) 2019; 138
T Saito (1426_CR66) 2015; 10
V Bellemo (1426_CR50) 2019; 1
1426_CR58
ZI Attia (1426_CR26) 2019; 394
P Craig (1426_CR62) 2009
EJ Topol (1426_CR1) 2019; 25
GS Collins (1426_CR63) 2015; 131
DM Berwick (1426_CR3) 2008; 27
JR Zech (1426_CR75) 2018; 15
H Lin (1426_CR57) 2019; 9
R Singh (1426_CR8) 2018; 13
R Lindsey (1426_CR53) 2018; 115
D Wang (1426_CR97) 2016
K Crawford (1426_CR78) 2016; 538
P Khosravi (1426_CR31) 2019; 2
GS Collins (1426_CR64) 2019; 393
HA Haenssle (1426_CR20) 2018; 29
1426_CR38
X Wang (1426_CR6) 2017
1426_CR36
MD Abràmoff (1426_CR48) 2018; 1
JG Nam (1426_CR9) 2019; 290
1426_CR37
P Brocklehurst (1426_CR61) 2017; 389
K-L Hua (1426_CR12) 2015; 8
DW Kim (1426_CR77) 2019; 20
TJ Brinker (1426_CR22) 2019; 113
SG Finlayson (1426_CR83) 2019; 363
References_xml – volume: 538
  start-page: 311
  year: 2016
  ident: 1426_CR78
  publication-title: Nature.
  doi: 10.1038/538311a
– ident: 1426_CR10
– volume-title: Big Data’s Disparate Impact. 104 California Law Review 671
  year: 2016
  ident: 1426_CR79
  doi: 10.2139/ssrn.2477899
– volume: 2
  start-page: 158
  year: 2018
  ident: 1426_CR45
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0195-0
– volume-title: Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
  year: 2018
  ident: 1426_CR15
  doi: 10.1109/isbi.2018.8363515
– ident: 1426_CR7
  doi: 10.1109/cvpr.2018.00865
– volume: 2
  start-page: 26
  year: 2019
  ident: 1426_CR41
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0103-3
– volume: 20
  start-page: 489
  year: 2013
  ident: 1426_CR95
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-001089
– volume: 25
  start-page: 44
  year: 2019
  ident: 1426_CR1
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 25
  start-page: 433
  year: 2019
  ident: 1426_CR32
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0335-9
– ident: 1426_CR38
– volume: 2
  start-page: 741
  year: 2018
  ident: 1426_CR28
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0301-3
– volume: 4
  start-page: 428
  issue: 5
  year: 2019
  ident: 1426_CR27
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2019.0640
– volume-title: Why Is My Classifier Discriminatory? In: 32nd Conference on Neural Information Processing Systems (NeurIPS)
  year: 2018
  ident: 1426_CR80
– volume-title: “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations
  year: 2016
  ident: 1426_CR72
  doi: 10.18653/v1/n16-3020
– volume: 175
  start-page: 1828
  year: 2015
  ident: 1426_CR94
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2015.5231
– volume: 8
  start-page: 2015
  year: 2015
  ident: 1426_CR12
  publication-title: Onco Targets Ther
– volume: 3
  start-page: 108ra113
  year: 2011
  ident: 1426_CR44
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3002564
– volume: 95
  start-page: e3315
  year: 2016
  ident: 1426_CR82
  publication-title: Medicine.
  doi: 10.1097/md.0000000000003315
– volume: 131
  start-page: 211
  year: 2015
  ident: 1426_CR63
  publication-title: Circulation.
  doi: 10.1161/circulationaha.114.014508
– volume: 23
  start-page: 899
  year: 2016
  ident: 1426_CR84
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocv189
– volume: 9
  start-page: 52
  year: 2019
  ident: 1426_CR57
  publication-title: EClinicalMedicine.
  doi: 10.1016/j.eclinm.2019.03.001
– volume: 27
  start-page: 759
  year: 2008
  ident: 1426_CR3
  publication-title: Health Aff
  doi: 10.1377/hlthaff.27.3.759
– ident: 1426_CR67
  doi: 10.1001/jama.2019.10306
– start-page: 1766
  volume-title: Building Explainable Artificial Intelligence Systems. IAAI'06 Proceedings of the 18th conference on Innovative Applications of Artificial Intelligence. Volume 2
  year: 2006
  ident: 1426_CR87
– volume: 42
  start-page: 1636
  year: 2018
  ident: 1426_CR52
  publication-title: Am J Surg Pathol
  doi: 10.1097/PAS.0000000000001151
– volume: 25
  start-page: 65
  year: 2019
  ident: 1426_CR25
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0268-3
– start-page: 38
  volume-title: International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
  year: 2016
  ident: 1426_CR16
  doi: 10.1007/978-3-319-55524-9_14
– volume: 1
  start-page: 40
  year: 2018
  ident: 1426_CR65
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-018-0048-y
– volume: 2
  start-page: 21
  year: 2019
  ident: 1426_CR31
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0096-y
– volume: 12
  start-page: 573
  year: 2014
  ident: 1426_CR4
  publication-title: Ann Fam Med
  doi: 10.1370/afm.1713
– ident: 1426_CR88
– volume: 126
  start-page: 552
  year: 2019
  ident: 1426_CR96
  publication-title: Ophthalmology.
  doi: 10.1016/j.ophtha.2018.11.016
– volume: 51
  start-page: S30
  issue: 8 Suppl 3
  year: 2013
  ident: 1426_CR85
  publication-title: Med Care
  doi: 10.1097/MLR.0b013e31829b1dbd
– volume: 29
  start-page: 1836
  year: 2018
  ident: 1426_CR20
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdy166
– volume: 1
  start-page: e182665
  year: 2018
  ident: 1426_CR49
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2018.2665
– volume: 13
  start-page: e0204155
  year: 2018
  ident: 1426_CR8
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204155
– volume: 24
  start-page: 1342
  year: 2018
  ident: 1426_CR24
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0107-6
– ident: 1426_CR73
  doi: 10.1001/jamadermatol.2019.1735
– ident: 1426_CR81
  doi: 10.1093/annonc/mdz015
– volume: 363
  start-page: 1287
  year: 2019
  ident: 1426_CR83
  publication-title: Science.
  doi: 10.1126/science.aaw4399
– ident: 1426_CR37
– ident: 1426_CR89
– volume: 68
  start-page: 1813
  issue: 10
  year: 2019
  ident: 1426_CR59
  publication-title: Gut.
  doi: 10.1136/gutjnl-2018-317500
– volume: 15
  start-page: e1002683
  year: 2018
  ident: 1426_CR75
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002683
– volume: 290
  start-page: 218
  year: 2019
  ident: 1426_CR9
  publication-title: Radiology.
  doi: 10.1148/radiol.2018180237
– volume: 1
  start-page: 18
  year: 2018
  ident: 1426_CR34
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-018-0029-1
– volume: 286
  start-page: 887
  year: 2018
  ident: 1426_CR13
  publication-title: Radiology.
  doi: 10.1148/radiol.2017170706
– volume: 138
  start-page: 109
  year: 2019
  ident: 1426_CR29
  publication-title: Hum Genet
  doi: 10.1007/s00439-019-01970-5
– volume: 11
  start-page: S18
  issue: Suppl 1
  year: 2016
  ident: 1426_CR33
  publication-title: J Hosp Med
  doi: 10.1002/jhm.2652
– volume: 6
  start-page: 708
  year: 2013
  ident: 1426_CR46
  publication-title: J Cardiovasc Transl Res
  doi: 10.1007/s12265-013-9498-4
– volume: 75
  start-page: 1256
  year: 2018
  ident: 1426_CR47
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2018.1563
– volume: 207
  start-page: 66
  year: 2019
  ident: 1426_CR56
  publication-title: Am Heart J
  doi: 10.1016/j.ahj.2018.09.002
– volume: 53
  start-page: 1
  year: 2019
  ident: 1426_CR18
  publication-title: J Pathol Transl Med
  doi: 10.4132/jptm.2018.12.16
– volume: 138
  start-page: 1529
  year: 2018
  ident: 1426_CR21
  publication-title: J Invest Dermatol
  doi: 10.1016/j.jid.2018.01.028
– ident: 1426_CR40
– volume-title: Deep Learning for Identifying Metastatic Breast Cancer
  year: 2016
  ident: 1426_CR97
– volume: 290
  start-page: 456
  year: 2019
  ident: 1426_CR17
  publication-title: Radiology.
  doi: 10.1148/radiol.2018180958
– ident: 1426_CR69
– volume: 1
  start-page: 4
  year: 1984
  ident: 1426_CR91
  publication-title: Knowl Eng Rev
  doi: 10.1017/s0269888900000424
– volume: 316
  start-page: 2402
  year: 2016
  ident: 1426_CR23
  publication-title: JAMA.
  doi: 10.1001/jama.2016.17216
– volume: 68
  start-page: 279
  year: 2015
  ident: 1426_CR76
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2014.06.018
– ident: 1426_CR58
  doi: 10.1136/gutjnl-2018-317366
– ident: 1426_CR86
– volume: 179
  start-page: 836
  issue: 6
  year: 2019
  ident: 1426_CR42
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2018.8558
– volume: 1
  start-page: 0024
  year: 2017
  ident: 1426_CR55
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-016-0024
– volume: 20
  start-page: 405
  year: 2019
  ident: 1426_CR77
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2019.0025
– ident: 1426_CR70
– volume: 1
  start-page: 39
  year: 2018
  ident: 1426_CR48
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-018-0040-6
– volume: 7
  start-page: 265
  issue: 4
  year: 2017
  ident: 1426_CR90
  publication-title: J Art Intel Soft Comput Res
  doi: 10.1515/jaiscr-2017-0019
– ident: 1426_CR93
– volume: 1
  start-page: e35
  year: 2019
  ident: 1426_CR50
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(19)30004-4
– volume: 24
  start-page: 1337
  year: 2018
  ident: 1426_CR60
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0147-y
– volume: 25
  start-page: 24
  year: 2019
  ident: 1426_CR2
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0316-z
– ident: 1426_CR71
  doi: 10.1093/jamia/ocz127
– volume: 17
  start-page: 107
  year: 2002
  ident: 1426_CR92
  publication-title: Knowl Eng Rev
  doi: 10.1017/s026988890200019x
– volume: 115
  start-page: 11591
  year: 2018
  ident: 1426_CR53
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1806905115
– volume: 25
  start-page: 60
  year: 2019
  ident: 1426_CR30
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0279-0
– volume: 394
  start-page: 861
  issue: 10201
  year: 2019
  ident: 1426_CR26
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(19)31721-0
– volume: 2018
  start-page: 2077
  year: 2018
  ident: 1426_CR39
  publication-title: Interspeech
  doi: 10.21437/interspeech.2018-1318
– volume: 8
  start-page: 53
  year: 2008
  ident: 1426_CR68
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-8-53
– ident: 1426_CR11
– volume: 389
  start-page: 1719
  year: 2017
  ident: 1426_CR61
  publication-title: Lancet.
  doi: 10.1016/s0140-6736(17)30568-8
– ident: 1426_CR36
– volume: 572
  start-page: 116
  year: 2019
  ident: 1426_CR35
  publication-title: Nature.
  doi: 10.1038/s41586-019-1390-1
– volume: 314
  start-page: 2501
  year: 2015
  ident: 1426_CR43
  publication-title: JAMA.
  doi: 10.1001/jama.2015.13453
– volume: 2
  start-page: e191095
  year: 2019
  ident: 1426_CR5
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.1095
– volume-title: ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2017
  ident: 1426_CR6
  doi: 10.1109/cvpr.2017.369
– volume: 10
  start-page: e0118432
  year: 2015
  ident: 1426_CR66
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118432
– ident: 1426_CR98
– volume: 392
  start-page: 2388
  year: 2018
  ident: 1426_CR14
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(18)31645-3
– volume: 143
  start-page: 859
  issue: 7
  year: 2018
  ident: 1426_CR51
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/arpa.2018-0147-oa
– start-page: 185
  volume-title: Evidence-based Public Health: Effectiveness and Efficiency
  year: 2009
  ident: 1426_CR62
  doi: 10.1093/acprof:oso/9780199563623.003.012
– ident: 1426_CR74
  doi: 10.1038/s41746-019-0105-1
– volume: 542
  start-page: 115
  year: 2017
  ident: 1426_CR19
  publication-title: Nature.
  doi: 10.1038/nature21056
– volume: 113
  start-page: 47
  year: 2019
  ident: 1426_CR22
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2019.04.001
– volume: 393
  start-page: 1577
  year: 2019
  ident: 1426_CR64
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(19)30037-6
– volume: 169
  start-page: 357
  year: 2018
  ident: 1426_CR54
  publication-title: Ann Intern Med
  doi: 10.7326/m18-0249
SSID ssj0025774
Score 2.7146747
SecondaryResourceType review_article
Snippet Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains...
Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains of medicine....
Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various domains...
Abstract Background Artificial intelligence (AI) research in healthcare is accelerating rapidly, with potential applications being demonstrated across various...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 195
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Beyond Big Data to new Biomedical and Health Data Science: moving to next century precision health
Biomedicine
Clinical trials
Delivery of Health Care - trends
Evaluation
Humans
Machine learning
Management
Medical care
Medical care quality
Medicine
Medicine & Public Health
Opinion
Peer Review
Regulation
Retirement benefits
Technology
Translation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlhz4Ooe86TVoVCoUGEVm2JOuYlIaQkp4ayE1IskwDixO6u4T8-8xYslm3kFx6W3ZmF2semhlL8w0hn7XslIbEmMWKO1b7FlxKuJJJA-GhjgI2TnzfcfZTnZzXpxfyYmPUF94JS_DASXAHFW9CBUmDx1mtsQOD0Vx0xmsvRYxyQC_ljRmLqVxqSchq8hlm2aiDJUS1Eitnw0oISUzMotAA1v_vlrwRk_6-Lzkdmj4jT9b9tbu9cYvFRlw6fk62c0JJD9NCXpBHsX9JHp_lI_NX5PRHvKVhHJmypJCk0jYu8DoG_DcdOyNpapek-F6WolQSsgS93IDsfE3Oj7__-nbC8gAFFkD8KxaN0dFBRaJcEE6ZGITvXCe1kcHA5xZcxAdngOwaCGa69HVsuY9dC5mZqKo3ZKu_6uM7QkMjPZ75gruLuhXC-Ia3quO6dU4pGQrCR4HakNHFccjFwg5VRqNs0oEFHVjUgRUF-Tr95DpBa9zHfIRamhgRFXv4AmzFZluxD9lKQT6ijm1qMZ182x4qjs3dWqiCfBk40Lvh8YPLTQogBMTJmnHuzjjBK8OM_Gm0I4skvMrWx6v10mJCDTU01H0FeZvsaloVPDxkzBwoemZxs2XPKf3l7wEUXDUCwdcKsj_aps270fI-qe5P5vuwDnb-hw7ek6di8EPOhNklW6s_67gHed3Kfxhc-A7FkEPr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5KCn0cSt91m7QqFAoNJrJsSdYxDQkhJT01kJuQZJkGFid0dyn5952xZbNOSkpvy87Y2Jq3R_MJ4JOWrdKYGOex5C6vfIMmJVyRS4PhoYoCHSd97zj9ro7PqpNzeZ7AomkWZrN_X9Rqb4nxqKCa1-QFBpMcve19jFGq78uqg6m2kpjGpKblXy-bhZ0enf-2D94IQjc3SE5d0sfwcN1duevfbrHYCERHT-FJyiDZ_iDyZ3Avds_hwWnqkb-Ak2_xmoXxjJQlw6yUNXFB-y_w3mwchWTDfCSjD7GM9GeAkmAXGxidL-Hs6PDHwXGeTkzIA673Ko_G6OiwBFEuCKdMDMK3rpXayGDwd4M24YMzSHY1Ri9d-Co23Me2wVRMlOUr2Oouu_gGWKilpyYv2reoGiGMr3mjWq4b55SSIQM-LqgNCU6cTrVY2L6sqJUdZGBRBpZkYEUGX6ZLrgYsjbuYv5KUJkaCwe7_QO2wyapsyetQYkbp6SDf2KI30Vy0xmsvRYxSZvCBZGyHmdLJmO2-4jTNrYXK4HPPQeaMjx9cmkrARSBgrBnn9owTzTDMyB9HPbJEor1rXbxcLy1l0Fg0Y6GXwetBr6a3wofHFJkjRc80bvbac0p38bNHAVe1ILS1DHZH3bTJ_SzvWtXdSX3_LYO3_3Xvd_BI9AbHc2G2YWv1ax13MGNb-fe9rf4BR2Y00g
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yB348-P1RPbWCIHhkr802SfO4isdxcocPLpxPIUnT87zaXW53kfOvd6ZNy_aUE8G30kxLM5n5zaTJ_ELIa8lLISExpn6SGJrZAlyKmZRyBeEh8wyAE_93HB6J_Vl2cMyPA6UQ1sLY765bVB5vFqBXDWrDhTvbXRRl6-y52F1CvEpxTqxoCsGGAhpvCQ5p-YhszY4-Tb-0BZEplRD3wqrmH58bxKWGvv93kN6IUpd3UPbLqLfIjXW9MBc_TFVtRKq9O-Rb18d2g8rZeL2yY_fzEv3jf1HCXXI75LPxtDXAe-Sar--T64fhvQ_IwUd_EbvuxJZlDDlyXPgKd4NAR-KuMDNuqzVj_C0cozW3xBbx6QZj6EMy2_vw-f0-Dec3UAejv6JeKekNTIiEccwI5R2zpSm5VNwpuC7AQ60zCppNDrFUpjbzRWJ9WUBiyCaTR2RUz2v_hMQu5xaXnAFtWFYwpmyeFKJMZGGMENxFJOlGT7tAbo5nbFS6meTkQrc60qAjjTrSLCJv-0cWLbPHVcLv0CR6QSTlbm7Mz0908HE9SXI3gfzW4rHCvgRskwkrlZWWM-85j8hLNCjdVrj20KKnIsHacslERN40EgguOMwm1EiAEpCmayC5PZAEUHCD5led0Wpswp10tZ-vlxrzeZjCw7QzIo9bI-57BR8PCXsCLXJg3oNuD1vq068NJ7nIGXK_RWSncwQdwHB5lVZ3el_5-xg8_SfpZ-QmaxwioUxtk9HqfO2fQ_64si8CMvwCLAZmAQ
  priority: 102
  providerName: Unpaywall
Title Key challenges for delivering clinical impact with artificial intelligence
URI https://link.springer.com/article/10.1186/s12916-019-1426-2
https://www.ncbi.nlm.nih.gov/pubmed/31665002
https://www.proquest.com/docview/2310717642
https://pubmed.ncbi.nlm.nih.gov/PMC6821018
https://bmcmedicine.biomedcentral.com/track/pdf/10.1186/s12916-019-1426-2
https://doaj.org/article/308c3163b3754ef196702f9b7b52ee55
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: KQ8
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: GX1
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: M48
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: AAJSJ
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer [Accès libre]
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: C6C
  dateStart: 20030112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1rb9Mw8DQ2aYwPiDeBUYyEhMQUSJ3Ejj8g1FabpqFW00SlwhfLdhyYFKWjD0H_Pee81MAYX6q2d4mSe5_PvgN4zeOMcQyMfRsGyo90iipFVd-PBbqHyFI0nG69Yzxhp9PobBbPdqAZb1UTcHltaufmSU0X-btfPzYfUeE_lAqfsPdL9Fl9lxcLv48Ox0eLvIeOSrhJDuOoLSqgcPKoLmxee9kB7Id9hiFLvcbSeKmymf_fJnvLZ_25n7Itqt6B2-viSm1-qjzf8lsn9-BuHXCSQSUh92HHFg9gf1yX1B_C2Se7IaYZqbIkGMSS1OZuuwbemzQnJ0l1nJK4dVvixK3qPEEut1p6PoLpyfHn0alfD1jwDbJn5VshuFWYsTBlqGLCGqozlcVcxEbg9xRVSBslEKwSdHa8ryObBtpmKUZuNAwfw24xL-xTICaJtasJozmgUUqp0EmQsizgqVJIUuNB0BBUmrr7uBuCkcsyC0mYrNghkR3SsUNSD962l1xVrTduQh46LrWIrmt2-cd88U3WSijDIDHI4VC7ub82Q-PDA5oJzXVMrY1jD146HsvqCGqr-3LAAnf4m1PmwZsSw8kjPr5R9SEGJILro9XBPOxgotaaDvhVI0fSgdxWt8LO10vpAm7MsTEv9OBJJVftWzXi6QHvSFzntbuQ4vJ72TScJdQ1Z_PgqJFN2SjbTVQ9asX3_zx49s_nfQ4HtNSzwKfiEHZXi7V9gcHcSvfgFp_xHuwNjyfnF_hrxEa9cmGkVyovfl4MvyJ8OjkffPkNSlVGKQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQJjF4QHwTGMxISEhMEa4T2_FjQUylW_fCJu3Nsh0HJlXptLRC---5S5yoATTEW1VfosR3v_vIfZiQd0pUUoFjnIaM2TR3JUCK20kqNJiHPHBQnPi9Y3EqZ-f5_EJcxD7upq9271OSraZuYV3Ijw1YpglGvzqdgFlJQe_uYo0VoHF3Op1_mw9xlgCXJiYw_3rhyAS1k_r_1MdbBun3YskhY3qf7G3qK3vz0y6XW0bp6CF5EL1JOu3Y_4jcCfVjcncR8-VPyPw43FDfn5fSUPBQaRmWWIsB96Z9WyTteiUpfpSlKEvdWAl6uTWv8yk5P_py9nmWxtMTUg97v06D1ipYCEek9dxKHTx3la2E0sJr-F0CPpy3GpZtAZZMTVweSuZCVYJbxrPsGdmpV3V4QagvhMOEL2Cd5yXn2hWslBVTpbVSCp8Q1m-o8XG0OJ5wsTRtiFFI0_HAAA8M8sDwhHwYLrnq5mrcRvwJuTQQ4kjs9o_V9XcTEWYyVvgMvEuHh_qGCjSLYrzSTjnBQxAiIQfIY9P1lw7ANlPJsLNbcZmQ9y0FQhse39vYoQCbgEOyRpT7I0qApB8tv-3lyOAS1rHVYbVpDHrTEEBD0JeQ551cDW8FDw_uMoMVNZK40WuPV-rLH-1EcFlwnLyWkMNeNk1URc1tu3o4iO-_efDyv-59QPZmZ4sTc_L19PgVucdb8LGU632ys77ehNfgya3dm4jcX6i_PSs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-kQrUP4rfRalcQBEvo3ia7m32sp0dtbfHBQt-W3c1GC0fuaO4o_e-dSTbholLx7bidhGRnfvOR2Zkh5J0SlVTgGKchYzbNXQmQ4naSCg3mIQ8cFCd-7zg9k0fn-fGFuIhzTpv-tHufkuxqGrBLU706WJZVB_FCHjRgpSYYCet0AiYmBR18NwfjhiMMpnI6RFwCnJuYyvzrZSNj1Pbs_1Mzb5im349NDrnTHXJvXS_tzbWdzzfM0-wheRD9SnrYCcIjcifUj8n2acycPyHHJ-GG-n5ySkPBV6VlmOOpDLg37QskaVc1SfHzLEWp6hpM0MuNzp1Pyfns8_fpURrnKKQeuLBKg9YqWAhMpPXcSh08d5WthNLCa_hdAlKctxqWbQE2TU1cHkrmQlWCg8az7BnZqhd1eEGoL4TD1C-gnucl59oVrJQVU6W1UgqfENZvqPGxyTjOupibNtgopOl4YIAHBnlgeEI-DJcsuw4btxF_RC4NhNgcu_1jcfXDRKyZjBU-Az_T4XjfUIGOUYxX2ikneAhCJGQPeWy6StMB4uZQMqzxVlwm5H1LgSCHx_c21irAJmC7rBHl7ogSwOlHy297OTK4hCfa6rBYNwb9agilIfxLyPNOroa3gocHx5nBihpJ3Oi1xyv15c-2N7gsOPZgS8h-L5smKqXmtl3dH8T33zx4-V_33iPb3z7NzNcvZyevyH3eYo-lXO-SrdXVOrwGl27l3rSw_QUMsEAI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yB348-P1RPbWCIHhkr802SfO4isdxcocPLpxPIUnT87zaXW53kfOvd6ZNy_aUE8G30kxLM5n5zaTJ_ELIa8lLISExpn6SGJrZAlyKmZRyBeEh8wyAE_93HB6J_Vl2cMyPA6UQ1sLY765bVB5vFqBXDWrDhTvbXRRl6-y52F1CvEpxTqxoCsGGAhpvCQ5p-YhszY4-Tb-0BZEplRD3wqrmH58bxKWGvv93kN6IUpd3UPbLqLfIjXW9MBc_TFVtRKq9O-Rb18d2g8rZeL2yY_fzEv3jf1HCXXI75LPxtDXAe-Sar--T64fhvQ_IwUd_EbvuxJZlDDlyXPgKd4NAR-KuMDNuqzVj_C0cozW3xBbx6QZj6EMy2_vw-f0-Dec3UAejv6JeKekNTIiEccwI5R2zpSm5VNwpuC7AQ60zCppNDrFUpjbzRWJ9WUBiyCaTR2RUz2v_hMQu5xaXnAFtWFYwpmyeFKJMZGGMENxFJOlGT7tAbo5nbFS6meTkQrc60qAjjTrSLCJv-0cWLbPHVcLv0CR6QSTlbm7Mz0908HE9SXI3gfzW4rHCvgRskwkrlZWWM-85j8hLNCjdVrj20KKnIsHacslERN40EgguOMwm1EiAEpCmayC5PZAEUHCD5led0Wpswp10tZ-vlxrzeZjCw7QzIo9bI-57BR8PCXsCLXJg3oNuD1vq068NJ7nIGXK_RWSncwQdwHB5lVZ3el_5-xg8_SfpZ-QmaxwioUxtk9HqfO2fQ_64si8CMvwCLAZmAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+challenges+for+delivering+clinical+impact+with+artificial+intelligence&rft.jtitle=BMC+medicine&rft.au=Kelly%2C+Christopher+J&rft.au=Karthikesalingam%2C+Alan&rft.au=Suleyman%2C+Mustafa&rft.au=Corrado%2C+Greg&rft.date=2019-10-29&rft.eissn=1741-7015&rft.volume=17&rft.issue=1&rft.spage=195&rft_id=info:doi/10.1186%2Fs12916-019-1426-2&rft_id=info%3Apmid%2F31665002&rft.externalDocID=31665002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7015&client=summon