Dementia subtype prediction models constructed by penalized regression methods for multiclass classification using serum microRNA expression data
There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating microRNAs (miRNAs) have recently gained attention as easily accessible and non-invasive biomarkers. We conducted a comprehensive miRNA express...
Saved in:
| Published in | Scientific reports Vol. 11; no. 1; pp. 20947 - 8 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
22.10.2021
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-021-00424-1 |
Cover
| Abstract | There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating microRNAs (miRNAs) have recently gained attention as easily accessible and non-invasive biomarkers. We conducted a comprehensive miRNA expression analysis of serum samples from 1348 Japanese dementia patients, composed of four subtypes—Alzheimer’s disease (AD), vascular dementia, dementia with Lewy bodies (DLB), and normal pressure hydrocephalus—and 246 control subjects. We used this data to construct dementia subtype prediction models based on penalized regression models with the multiclass classification. We constructed a final prediction model using 46 miRNAs, which classified dementia patients from an independent validation set into four subtypes of dementia. Network analysis of miRNA target genes revealed important hub genes,
SRC
and
CHD3,
associated with the AD pathogenesis. Moreover,
MCU
and
CASP3
, which are known to be associated with DLB pathogenesis, were identified from our DLB-specific target genes. Our study demonstrates the potential of blood-based biomarkers for use in dementia-subtype prediction models. We believe that further investigation using larger sample sizes will contribute to the accurate classification of subtypes of dementia. |
|---|---|
| AbstractList | There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating microRNAs (miRNAs) have recently gained attention as easily accessible and non-invasive biomarkers. We conducted a comprehensive miRNA expression analysis of serum samples from 1348 Japanese dementia patients, composed of four subtypes—Alzheimer’s disease (AD), vascular dementia, dementia with Lewy bodies (DLB), and normal pressure hydrocephalus—and 246 control subjects. We used this data to construct dementia subtype prediction models based on penalized regression models with the multiclass classification. We constructed a final prediction model using 46 miRNAs, which classified dementia patients from an independent validation set into four subtypes of dementia. Network analysis of miRNA target genes revealed important hub genes,
SRC
and
CHD3,
associated with the AD pathogenesis. Moreover,
MCU
and
CASP3
, which are known to be associated with DLB pathogenesis, were identified from our DLB-specific target genes. Our study demonstrates the potential of blood-based biomarkers for use in dementia-subtype prediction models. We believe that further investigation using larger sample sizes will contribute to the accurate classification of subtypes of dementia. There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating microRNAs (miRNAs) have recently gained attention as easily accessible and non-invasive biomarkers. We conducted a comprehensive miRNA expression analysis of serum samples from 1348 Japanese dementia patients, composed of four subtypes-Alzheimer's disease (AD), vascular dementia, dementia with Lewy bodies (DLB), and normal pressure hydrocephalus-and 246 control subjects. We used this data to construct dementia subtype prediction models based on penalized regression models with the multiclass classification. We constructed a final prediction model using 46 miRNAs, which classified dementia patients from an independent validation set into four subtypes of dementia. Network analysis of miRNA target genes revealed important hub genes, SRC and CHD3, associated with the AD pathogenesis. Moreover, MCU and CASP3, which are known to be associated with DLB pathogenesis, were identified from our DLB-specific target genes. Our study demonstrates the potential of blood-based biomarkers for use in dementia-subtype prediction models. We believe that further investigation using larger sample sizes will contribute to the accurate classification of subtypes of dementia.There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating microRNAs (miRNAs) have recently gained attention as easily accessible and non-invasive biomarkers. We conducted a comprehensive miRNA expression analysis of serum samples from 1348 Japanese dementia patients, composed of four subtypes-Alzheimer's disease (AD), vascular dementia, dementia with Lewy bodies (DLB), and normal pressure hydrocephalus-and 246 control subjects. We used this data to construct dementia subtype prediction models based on penalized regression models with the multiclass classification. We constructed a final prediction model using 46 miRNAs, which classified dementia patients from an independent validation set into four subtypes of dementia. Network analysis of miRNA target genes revealed important hub genes, SRC and CHD3, associated with the AD pathogenesis. Moreover, MCU and CASP3, which are known to be associated with DLB pathogenesis, were identified from our DLB-specific target genes. Our study demonstrates the potential of blood-based biomarkers for use in dementia-subtype prediction models. We believe that further investigation using larger sample sizes will contribute to the accurate classification of subtypes of dementia. There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating microRNAs (miRNAs) have recently gained attention as easily accessible and non-invasive biomarkers. We conducted a comprehensive miRNA expression analysis of serum samples from 1348 Japanese dementia patients, composed of four subtypes—Alzheimer’s disease (AD), vascular dementia, dementia with Lewy bodies (DLB), and normal pressure hydrocephalus—and 246 control subjects. We used this data to construct dementia subtype prediction models based on penalized regression models with the multiclass classification. We constructed a final prediction model using 46 miRNAs, which classified dementia patients from an independent validation set into four subtypes of dementia. Network analysis of miRNA target genes revealed important hub genes, SRC and CHD3, associated with the AD pathogenesis. Moreover, MCU and CASP3, which are known to be associated with DLB pathogenesis, were identified from our DLB-specific target genes. Our study demonstrates the potential of blood-based biomarkers for use in dementia-subtype prediction models. We believe that further investigation using larger sample sizes will contribute to the accurate classification of subtypes of dementia. Abstract There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating microRNAs (miRNAs) have recently gained attention as easily accessible and non-invasive biomarkers. We conducted a comprehensive miRNA expression analysis of serum samples from 1348 Japanese dementia patients, composed of four subtypes—Alzheimer’s disease (AD), vascular dementia, dementia with Lewy bodies (DLB), and normal pressure hydrocephalus—and 246 control subjects. We used this data to construct dementia subtype prediction models based on penalized regression models with the multiclass classification. We constructed a final prediction model using 46 miRNAs, which classified dementia patients from an independent validation set into four subtypes of dementia. Network analysis of miRNA target genes revealed important hub genes, SRC and CHD3, associated with the AD pathogenesis. Moreover, MCU and CASP3, which are known to be associated with DLB pathogenesis, were identified from our DLB-specific target genes. Our study demonstrates the potential of blood-based biomarkers for use in dementia-subtype prediction models. We believe that further investigation using larger sample sizes will contribute to the accurate classification of subtypes of dementia. |
| ArticleNumber | 20947 |
| Author | Shigemizu, Daichi Asanomi, Yuya Ozaki, Kouichi Akiyama, Shintaro Sakurai, Takashi Niida, Shumpei Ochiya, Takahiro |
| Author_xml | – sequence: 1 givenname: Yuya surname: Asanomi fullname: Asanomi, Yuya organization: Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology – sequence: 2 givenname: Daichi surname: Shigemizu fullname: Shigemizu, Daichi email: daichi@ncgg.go.jp organization: Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, RIKEN Center for Integrative Medical Sciences – sequence: 3 givenname: Shintaro surname: Akiyama fullname: Akiyama, Shintaro organization: Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology – sequence: 4 givenname: Takashi surname: Sakurai fullname: Sakurai, Takashi organization: Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Department of Cognition and Behavior Science, Nagoya University Graduate School of Medicine – sequence: 5 givenname: Kouichi surname: Ozaki fullname: Ozaki, Kouichi organization: Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, RIKEN Center for Integrative Medical Sciences – sequence: 6 givenname: Takahiro surname: Ochiya fullname: Ochiya, Takahiro organization: Division of Molecular and Cellular Medicine, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University – sequence: 7 givenname: Shumpei surname: Niida fullname: Niida, Shumpei email: sniida@ncgg.go.jp organization: Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34686734$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAUhSNUREvpC7BAkdiwCTi24zgbpKr8VapAQt1b1_bN1KMkDnZSGN6CN8YzmZa2iwovYic55_O9Pn6eHQx-wCx7WZK3JWHyXeRl1ciC0LIghFNelE-yI0p4VVBG6cGd9WF2EuOapFHRhpfNs-yQcSFFzfhR9ucD9jhMDvI462kzYj4GtM5Mzg957y12MTd-iFOYzYQ215t8xAE69zu9BFwFjHEnxenK25i3PuT93E3OdBCTdft0rTOwA87RDas8Ypj7vHcm-O9fT3P8Nd5QLEzwInvaQhfxZD8fZ5efPl6efSkuvn0-Pzu9KIwgYiqsJERIiRorKKXgQgMhrKIVQGUZ1FhDSwzl3GiLSHRbi0Y3prVgpKaaHWfnC9Z6WKsxuB7CRnlwavfBh5WCsG0DVVsmFlDNCbOcEKllpalJh9kw0iARicUW1jyMsPkJXXcLLInaxqWWuFSKS-3iUmVyvV9c46x7tCbFEKC7V8r9P4O7Uit_rWTFhGjqBHizBwT_Y8Y4qd5Fg10HA_o5KlpJXktZC56krx9I134OKcdFJXjVsC3w1d2Kbku5uS5JQBdBii7GgO3_9SkfmIybdvchdeW6x637g41pn2GF4V_Zj7j-Ai3s-S8 |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e36471 crossref_primary_10_1038_s41598_024_58882_2 crossref_primary_10_1002_alz_13441 crossref_primary_10_1038_s41598_024_61365_z crossref_primary_10_3390_ijms25116190 crossref_primary_10_1177_25424823251317177 crossref_primary_10_3389_fgene_2022_880997 crossref_primary_10_57197_JDR_2024_0047 crossref_primary_10_1186_s13293_024_00588_1 crossref_primary_10_3389_fmed_2024_1390803 |
| Cites_doi | 10.3390/cancers11050610 10.1111/cas.12880 10.1111/jnc.13571 10.1111/j.1349-7006.2010.01650.x 10.1186/s13059-019-1629-z 10.1007/s10147-017-1104-3 10.1056/NEJM196507152730301 10.18637/jss.v033.i01 10.1038/s41467-018-06434-4 10.2176/nmc.52.775 10.1016/j.jalz.2011.03.005 10.1212/WNL.43.2.250 10.1212/WNL.0000000000004058 10.1186/s12920-019-0607-3 10.1111/j.1742-4658.2007.05684.x 10.1523/JNEUROSCI.3791-16.2017 10.1101/gr.1239303 10.3389/fncel.2016.00051 10.1016/j.jns.2007.01.045 10.1186/s40035-016-0053-5 10.1074/jbc.M211899200 10.1111/j.1471-4159.2012.07794.x 10.3389/fphar.2019.00665 10.3389/fnins.2018.00523 10.3233/JAD-2008-14103 10.1016/j.jalz.2011.03.008 10.1046/j.1532-5415.2002.50367.x 10.1002/ijc.29041 10.1093/nar/gkz240 10.1186/s40364-016-0076-1 10.1093/nar/gks1147 10.1523/ENEURO.0149-16.2017 10.1038/nrm2632 10.1523/JNEUROSCI.0602-12.2012 10.1016/j.jalz.2018.02.018 10.1073/pnas.0903691106 10.1038/s42003-019-0324-7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-021-00424-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central - New (Subscription) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_f17afa2b403d4008b85b2c5299309e06 10.1038/s41598-021-00424-1 PMC8536697 34686734 10_1038_s41598_021_00424_1 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Japan Foundation for Aging and Health and the Takeda Science Foundation – fundername: grant from the Japan Agency for Medical Research and Development (AMED) grantid: JP18kk0205009 – fundername: grant for Research on Dementia from the Japanese Ministry of Health, Labor and Welfare – fundername: Research Funding for Longevity Sciences from the National Center for Geriatrics and Gerontology grantid: 30-29; 29-45 – fundername: grant for Development of Diagnostic Technology for Detection of miRNA in Body Fluids from the Japan Agency for Medical Research and Development and New Energy and Industrial Technology Development Organization grantid: JP17ae0101013 – fundername: ; – fundername: ; grantid: JP18kk0205009 – fundername: ; grantid: 30-29; 29-45 – fundername: ; grantid: JP17ae0101013 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c606t-d800688ebe5a18646ba003525aa5d3a7e7af0c244cbdee0bf769b9cfdac8b2b3 |
| IEDL.DBID | BENPR |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:09:17 EDT 2025 Sun Oct 26 04:07:29 EDT 2025 Tue Sep 30 16:56:34 EDT 2025 Wed Oct 01 14:03:50 EDT 2025 Tue Oct 07 09:07:56 EDT 2025 Thu Apr 03 07:00:52 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Wed Oct 01 02:17:24 EDT 2025 Fri Feb 21 02:39:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-d800688ebe5a18646ba003525aa5d3a7e7af0c244cbdee0bf769b9cfdac8b2b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2584645937?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 34686734 |
| PQID | 2584645937 |
| PQPubID | 2041939 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f17afa2b403d4008b85b2c5299309e06 unpaywall_primary_10_1038_s41598_021_00424_1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536697 proquest_miscellaneous_2584788764 proquest_journals_2584645937 pubmed_primary_34686734 crossref_primary_10_1038_s41598_021_00424_1 crossref_citationtrail_10_1038_s41598_021_00424_1 springer_journals_10_1038_s41598_021_00424_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-22 |
| PublicationDateYYYYMMDD | 2021-10-22 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | LiuWWangXPrediction of functional microRNA targets by integrative modeling of microRNA binding and target expression dataGenome Biol.201920181:CAS:528:DC%2BC1cXitlyks7zI10.1186/s13059-019-1629-z ZhouGNetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysisNucleic Acids Res.201947W234W2411:CAS:528:DC%2BB3cXktVyiurw%3D10.1093/nar/gkz240 ZekryDHauwJ-JGoldGMixed dementia: Epidemiology, diagnosis, and treatmentJ. Am. Geriatr. Soc.2002501431143810.1046/j.1532-5415.2002.50367.x RománGCVascular dementia: Diagnostic criteria for research studies. Report of the NINDS-AIREN International WorkshopNeurology19934325026010.1212/WNL.43.2.250 MoriEGuidelines for management of idiopathic normal pressure hydrocephalusNeurol. Med. Chir.20125277580910.2176/nmc.52.775 MatsuzakiJOchiyaTCirculating microRNAs and extracellular vesicles as potential cancer biomarkers: A systematic reviewInt. J. Clin. Oncol.2017224134201:CAS:528:DC%2BC2sXjsFGnt7o%3D10.1007/s10147-017-1104-3 DesplatsPInclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synucleinProc. Natl. Acad. Sci. U. S. A.200910613010130152009PNAS..10613010D1:CAS:528:DC%2BD1MXhtVKru7%2FM10.1073/pnas.0903691106 ChauftyJSullivanSEHoAIntracellular amyloid precursor protein sorting and amyloid-β secretion are regulated by Src-mediated phosphorylation of Mint2J. Neurosci.201232961396251:CAS:528:DC%2BC38XhtVGlsbzE10.1523/JNEUROSCI.0602-12.2012 SørensenSSNygaardA-BChristensenTmiRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia: An exploratory studyTransl. Neurodegener.20165610.1186/s40035-016-0053-5 AngelucciFMicroRNAs in Alzheimer’s disease: Diagnostic markers or therapeutic agents?Front. Pharmacol.2019106651:CAS:528:DC%2BB3cXkt12it7s%3D10.3389/fphar.2019.00665 DunningCJRMultisite tyrosine phosphorylation of the N-terminus of Mint1/X11α by Src kinase regulates the trafficking of amyloid precursor proteinJ. Neurochem.20161375185271:CAS:528:DC%2BC28XjtlOhtr0%3D10.1111/jnc.13571 RagusaMmiRNAs plasma profiles in vascular dementia: Biomolecular data and biomedical implicationsFront. Cell. Neurosci.2016105110.3389/fncel.2016.00051 YokoiAIntegrated extracellular microRNA profiling for ovarian cancer screeningNat. Commun.2018943192018NatCo...9.4319Y10.1038/s41467-018-06434-4 KayanoMPlasma microRNA biomarker detection for mild cognitive impairment using differential correlation analysisBiomark. Res.201642210.1186/s40364-016-0076-1 ShannonPCytoscape: A software environment for integrated models of biomolecular interaction networksGenome Res.200313249825041:CAS:528:DC%2BD3sXovFWrtr4%3D10.1101/gr.1239303 CogswellJPIdentification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathwaysJ. Alzheimers. Dis.20081427411:CAS:528:DC%2BD1cXmtlygt78%3D10.3233/JAD-2008-14103 AlbertMSThe diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement.2011727027910.1016/j.jalz.2011.03.008 PastorcicMDasHKThe C-terminal region of CHD3/ZFH interacts with the CIDD region of the Ets transcription factor ERM and represses transcription of the human presenilin 1 geneFEBS J.2007274143414481:CAS:528:DC%2BD2sXjslait7Y%3D10.1111/j.1742-4658.2007.05684.x BreuerKInnateDB: Systems biology of innate immunity and beyond: Recent updates and continuing curationNucleic Acids Res.201341D1228D12331:CAS:528:DC%2BC38XhvV2ksbfM10.1093/nar/gks1147 DasHKTchedreKMuellerBRepression of transcription of presenilin-1 inhibits γ-secretase independent ER Ca2+ leak that is impaired by FAD mutationsJ. Neurochem.20121224875001:CAS:528:DC%2BC38XhtFeis7fJ10.1111/j.1471-4159.2012.07794.x JellingerKAAttemsJNeuropathological evaluation of mixed dementiaJ. Neurol. Sci.200725780871:STN:280:DC%2BD2szktl2ltg%3D%3D10.1016/j.jns.2007.01.045 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical (Computing, Vienna, Austria). (2019). VermaMMitochondrial calcium dysregulation contributes to dendrite degeneration mediated by PD/LBD-associated LRRK2 mutantsJ. Neurosci.20173711151111651:CAS:528:DC%2BC1cXhtlCjsLnE10.1523/JNEUROSCI.3791-16.2017 JackCRNIA-AA research framework: Toward a biological definition of Alzheimer’s diseaseAlzheimers. Dement.20181453556210.1016/j.jalz.2018.02.018 ShimomuraANovel combination of serum microRNA for detecting breast cancer in the early stageCancer Sci.20161073263341:CAS:528:DC%2BC28XjsFKrurs%3D10.1111/cas.12880 VermaMWillsZChuCTExcitatory dendritic mitochondrial calcium toxicity: Implications for Parkinson’s and other neurodegenerative diseasesFront. Neurosci.20181252310.3389/fnins.2018.00523 FalzoneLIdentification of novel microRNAs and their diagnostic and prognostic significance in oral cancerCancers2019116101:CAS:528:DC%2BB3cXitV2msLs%3D10.3390/cancers11050610 ShigemizuDRisk prediction models for dementia constructed by supervised principal component analysis using miRNA expression dataCommun. Biol.201927710.1038/s42003-019-0324-7 KosakaNIguchiHOchiyaTCirculating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosisCancer Sci.2010101208720921:CAS:528:DC%2BC3cXhtlegtrjJ10.1111/j.1349-7006.2010.01650.x KirouacLRajicAJCribbsDHPadmanabhanJActivation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s diseaseeneuro201710.1523/ENEURO.0149-16.2017292798595738865 JiangXSerum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancerInt. J. Cancer20151368548621:CAS:528:DC%2BC2cXhtVOnsrbJ10.1002/ijc.29041 PrinceMWorld Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost And trends2015Published by Alzheimer’s Disease International McKeithIGDiagnosis and management of dementia with Lewy bodiesNeurology2017898810010.1212/WNL.0000000000004058 AdamsRDFisherCMHakimSOjemannRGSweetWHSymptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure: A treatable syndromeN. Engl. J. Med.19652731171261:STN:280:DyaF2M7gvVarsA%3D%3D10.1056/NEJM196507152730301 LeeSDasHKTranscriptional regulation of the presenilin-1 gene controls gamma-secretase activityFront. Biosci. (Elite Ed)201022235 ShigemizuDA comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression dataBMC Med. Genomics20191215010.1186/s12920-019-0607-3 GianniDPlatelet-derived growth factor induces the β-γ-secretase-mediated cleavage of Alzheimer’s amyloid precursor protein through a Src-Rac-dependent pathwayJ. Biol. Chem.2003278929092971:CAS:528:DC%2BD3sXhvV2jt7g%3D10.1074/jbc.M211899200 McKhannGMThe diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement.2011726326910.1016/j.jalz.2011.03.005 FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ. Stat. Softw.20103312210.18637/jss.v033.i01 KimVNHanJSiomiMCBiogenesis of small RNAs in animalsNat. Rev. Mol. Cell Biol.2009101261391:CAS:528:DC%2BD1MXpsVCitA%3D%3D10.1038/nrm2632 M Kayano (424_CR19) 2016; 4 A Shimomura (424_CR11) 2016; 107 M Ragusa (424_CR22) 2016; 10 J Chaufty (424_CR30) 2012; 32 J Friedman (424_CR23) 2010; 33 D Gianni (424_CR29) 2003; 278 D Shigemizu (424_CR21) 2019; 12 E Mori (424_CR6) 2012; 52 MS Albert (424_CR3) 2011; 7 D Zekry (424_CR39) 2002; 50 N Kosaka (424_CR10) 2010; 101 HK Das (424_CR34) 2012; 122 424_CR24 RD Adams (424_CR7) 1965; 273 M Pastorcic (424_CR32) 2007; 274 VN Kim (424_CR9) 2009; 10 IG McKeith (424_CR5) 2017; 89 X Jiang (424_CR15) 2015; 136 SS Sørensen (424_CR17) 2016; 5 W Liu (424_CR25) 2019; 20 L Falzone (424_CR14) 2019; 11 F Angelucci (424_CR18) 2019; 10 J Matsuzaki (424_CR13) 2017; 22 P Shannon (424_CR28) 2003; 13 P Desplats (424_CR37) 2009; 106 CR Jack (424_CR8) 2018; 14 M Verma (424_CR35) 2017; 37 M Verma (424_CR36) 2018; 12 JP Cogswell (424_CR16) 2008; 14 A Yokoi (424_CR12) 2018; 9 S Lee (424_CR33) 2010; 2 KA Jellinger (424_CR40) 2007; 257 GC Román (424_CR4) 1993; 43 CJR Dunning (424_CR31) 2016; 137 D Shigemizu (424_CR20) 2019; 2 G Zhou (424_CR26) 2019; 47 M Prince (424_CR1) 2015 GM McKhann (424_CR2) 2011; 7 L Kirouac (424_CR38) 2017 K Breuer (424_CR27) 2013; 41 |
| References_xml | – reference: KimVNHanJSiomiMCBiogenesis of small RNAs in animalsNat. Rev. Mol. Cell Biol.2009101261391:CAS:528:DC%2BD1MXpsVCitA%3D%3D10.1038/nrm2632 – reference: SørensenSSNygaardA-BChristensenTmiRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia: An exploratory studyTransl. Neurodegener.20165610.1186/s40035-016-0053-5 – reference: FriedmanJHastieTTibshiraniRRegularization paths for generalized linear models via coordinate descentJ. Stat. Softw.20103312210.18637/jss.v033.i01 – reference: YokoiAIntegrated extracellular microRNA profiling for ovarian cancer screeningNat. Commun.2018943192018NatCo...9.4319Y10.1038/s41467-018-06434-4 – reference: VermaMMitochondrial calcium dysregulation contributes to dendrite degeneration mediated by PD/LBD-associated LRRK2 mutantsJ. Neurosci.20173711151111651:CAS:528:DC%2BC1cXhtlCjsLnE10.1523/JNEUROSCI.3791-16.2017 – reference: FalzoneLIdentification of novel microRNAs and their diagnostic and prognostic significance in oral cancerCancers2019116101:CAS:528:DC%2BB3cXitV2msLs%3D10.3390/cancers11050610 – reference: AngelucciFMicroRNAs in Alzheimer’s disease: Diagnostic markers or therapeutic agents?Front. Pharmacol.2019106651:CAS:528:DC%2BB3cXkt12it7s%3D10.3389/fphar.2019.00665 – reference: RománGCVascular dementia: Diagnostic criteria for research studies. Report of the NINDS-AIREN International WorkshopNeurology19934325026010.1212/WNL.43.2.250 – reference: LiuWWangXPrediction of functional microRNA targets by integrative modeling of microRNA binding and target expression dataGenome Biol.201920181:CAS:528:DC%2BC1cXitlyks7zI10.1186/s13059-019-1629-z – reference: VermaMWillsZChuCTExcitatory dendritic mitochondrial calcium toxicity: Implications for Parkinson’s and other neurodegenerative diseasesFront. Neurosci.20181252310.3389/fnins.2018.00523 – reference: JiangXSerum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancerInt. J. Cancer20151368548621:CAS:528:DC%2BC2cXhtVOnsrbJ10.1002/ijc.29041 – reference: ShannonPCytoscape: A software environment for integrated models of biomolecular interaction networksGenome Res.200313249825041:CAS:528:DC%2BD3sXovFWrtr4%3D10.1101/gr.1239303 – reference: DunningCJRMultisite tyrosine phosphorylation of the N-terminus of Mint1/X11α by Src kinase regulates the trafficking of amyloid precursor proteinJ. Neurochem.20161375185271:CAS:528:DC%2BC28XjtlOhtr0%3D10.1111/jnc.13571 – reference: ShigemizuDA comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression dataBMC Med. Genomics20191215010.1186/s12920-019-0607-3 – reference: DesplatsPInclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synucleinProc. Natl. Acad. Sci. U. S. A.200910613010130152009PNAS..10613010D1:CAS:528:DC%2BD1MXhtVKru7%2FM10.1073/pnas.0903691106 – reference: ChauftyJSullivanSEHoAIntracellular amyloid precursor protein sorting and amyloid-β secretion are regulated by Src-mediated phosphorylation of Mint2J. Neurosci.201232961396251:CAS:528:DC%2BC38XhtVGlsbzE10.1523/JNEUROSCI.0602-12.2012 – reference: McKeithIGDiagnosis and management of dementia with Lewy bodiesNeurology2017898810010.1212/WNL.0000000000004058 – reference: PrinceMWorld Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost And trends2015Published by Alzheimer’s Disease International – reference: ShimomuraANovel combination of serum microRNA for detecting breast cancer in the early stageCancer Sci.20161073263341:CAS:528:DC%2BC28XjsFKrurs%3D10.1111/cas.12880 – reference: DasHKTchedreKMuellerBRepression of transcription of presenilin-1 inhibits γ-secretase independent ER Ca2+ leak that is impaired by FAD mutationsJ. Neurochem.20121224875001:CAS:528:DC%2BC38XhtFeis7fJ10.1111/j.1471-4159.2012.07794.x – reference: PastorcicMDasHKThe C-terminal region of CHD3/ZFH interacts with the CIDD region of the Ets transcription factor ERM and represses transcription of the human presenilin 1 geneFEBS J.2007274143414481:CAS:528:DC%2BD2sXjslait7Y%3D10.1111/j.1742-4658.2007.05684.x – reference: AlbertMSThe diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement.2011727027910.1016/j.jalz.2011.03.008 – reference: MoriEGuidelines for management of idiopathic normal pressure hydrocephalusNeurol. Med. Chir.20125277580910.2176/nmc.52.775 – reference: RagusaMmiRNAs plasma profiles in vascular dementia: Biomolecular data and biomedical implicationsFront. Cell. Neurosci.2016105110.3389/fncel.2016.00051 – reference: ZhouGNetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysisNucleic Acids Res.201947W234W2411:CAS:528:DC%2BB3cXktVyiurw%3D10.1093/nar/gkz240 – reference: ShigemizuDRisk prediction models for dementia constructed by supervised principal component analysis using miRNA expression dataCommun. Biol.201927710.1038/s42003-019-0324-7 – reference: ZekryDHauwJ-JGoldGMixed dementia: Epidemiology, diagnosis, and treatmentJ. Am. Geriatr. Soc.2002501431143810.1046/j.1532-5415.2002.50367.x – reference: KosakaNIguchiHOchiyaTCirculating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosisCancer Sci.2010101208720921:CAS:528:DC%2BC3cXhtlegtrjJ10.1111/j.1349-7006.2010.01650.x – reference: CogswellJPIdentification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathwaysJ. Alzheimers. Dis.20081427411:CAS:528:DC%2BD1cXmtlygt78%3D10.3233/JAD-2008-14103 – reference: BreuerKInnateDB: Systems biology of innate immunity and beyond: Recent updates and continuing curationNucleic Acids Res.201341D1228D12331:CAS:528:DC%2BC38XhvV2ksbfM10.1093/nar/gks1147 – reference: KayanoMPlasma microRNA biomarker detection for mild cognitive impairment using differential correlation analysisBiomark. Res.201642210.1186/s40364-016-0076-1 – reference: JackCRNIA-AA research framework: Toward a biological definition of Alzheimer’s diseaseAlzheimers. Dement.20181453556210.1016/j.jalz.2018.02.018 – reference: JellingerKAAttemsJNeuropathological evaluation of mixed dementiaJ. Neurol. Sci.200725780871:STN:280:DC%2BD2szktl2ltg%3D%3D10.1016/j.jns.2007.01.045 – reference: GianniDPlatelet-derived growth factor induces the β-γ-secretase-mediated cleavage of Alzheimer’s amyloid precursor protein through a Src-Rac-dependent pathwayJ. Biol. Chem.2003278929092971:CAS:528:DC%2BD3sXhvV2jt7g%3D10.1074/jbc.M211899200 – reference: McKhannGMThe diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s diseaseAlzheimer’s Dement.2011726326910.1016/j.jalz.2011.03.005 – reference: KirouacLRajicAJCribbsDHPadmanabhanJActivation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s diseaseeneuro201710.1523/ENEURO.0149-16.2017292798595738865 – reference: R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical (Computing, Vienna, Austria). (2019). – reference: LeeSDasHKTranscriptional regulation of the presenilin-1 gene controls gamma-secretase activityFront. Biosci. (Elite Ed)201022235 – reference: AdamsRDFisherCMHakimSOjemannRGSweetWHSymptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure: A treatable syndromeN. Engl. J. Med.19652731171261:STN:280:DyaF2M7gvVarsA%3D%3D10.1056/NEJM196507152730301 – reference: MatsuzakiJOchiyaTCirculating microRNAs and extracellular vesicles as potential cancer biomarkers: A systematic reviewInt. J. Clin. Oncol.2017224134201:CAS:528:DC%2BC2sXjsFGnt7o%3D10.1007/s10147-017-1104-3 – volume: 11 start-page: 610 year: 2019 ident: 424_CR14 publication-title: Cancers doi: 10.3390/cancers11050610 – volume: 107 start-page: 326 year: 2016 ident: 424_CR11 publication-title: Cancer Sci. doi: 10.1111/cas.12880 – volume: 137 start-page: 518 year: 2016 ident: 424_CR31 publication-title: J. Neurochem. doi: 10.1111/jnc.13571 – volume: 101 start-page: 2087 year: 2010 ident: 424_CR10 publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2010.01650.x – ident: 424_CR24 – volume: 20 start-page: 18 year: 2019 ident: 424_CR25 publication-title: Genome Biol. doi: 10.1186/s13059-019-1629-z – volume: 22 start-page: 413 year: 2017 ident: 424_CR13 publication-title: Int. J. Clin. Oncol. doi: 10.1007/s10147-017-1104-3 – volume: 273 start-page: 117 year: 1965 ident: 424_CR7 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM196507152730301 – volume: 33 start-page: 1 year: 2010 ident: 424_CR23 publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – volume: 9 start-page: 4319 year: 2018 ident: 424_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06434-4 – volume: 52 start-page: 775 year: 2012 ident: 424_CR6 publication-title: Neurol. Med. Chir. doi: 10.2176/nmc.52.775 – volume: 7 start-page: 263 year: 2011 ident: 424_CR2 publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2011.03.005 – volume: 43 start-page: 250 year: 1993 ident: 424_CR4 publication-title: Neurology doi: 10.1212/WNL.43.2.250 – volume: 89 start-page: 88 year: 2017 ident: 424_CR5 publication-title: Neurology doi: 10.1212/WNL.0000000000004058 – volume: 12 start-page: 150 year: 2019 ident: 424_CR21 publication-title: BMC Med. Genomics doi: 10.1186/s12920-019-0607-3 – volume: 274 start-page: 1434 year: 2007 ident: 424_CR32 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2007.05684.x – volume: 37 start-page: 11151 year: 2017 ident: 424_CR35 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3791-16.2017 – volume: 13 start-page: 2498 year: 2003 ident: 424_CR28 publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 10 start-page: 51 year: 2016 ident: 424_CR22 publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2016.00051 – volume: 257 start-page: 80 year: 2007 ident: 424_CR40 publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2007.01.045 – volume: 5 start-page: 6 year: 2016 ident: 424_CR17 publication-title: Transl. Neurodegener. doi: 10.1186/s40035-016-0053-5 – volume: 278 start-page: 9290 year: 2003 ident: 424_CR29 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M211899200 – volume: 122 start-page: 487 year: 2012 ident: 424_CR34 publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2012.07794.x – volume: 10 start-page: 665 year: 2019 ident: 424_CR18 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00665 – volume: 12 start-page: 523 year: 2018 ident: 424_CR36 publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00523 – volume: 14 start-page: 27 year: 2008 ident: 424_CR16 publication-title: J. Alzheimers. Dis. doi: 10.3233/JAD-2008-14103 – volume: 7 start-page: 270 year: 2011 ident: 424_CR3 publication-title: Alzheimer’s Dement. doi: 10.1016/j.jalz.2011.03.008 – volume: 2 start-page: 22 year: 2010 ident: 424_CR33 publication-title: Front. Biosci. (Elite Ed) – volume: 50 start-page: 1431 year: 2002 ident: 424_CR39 publication-title: J. Am. Geriatr. Soc. doi: 10.1046/j.1532-5415.2002.50367.x – volume: 136 start-page: 854 year: 2015 ident: 424_CR15 publication-title: Int. J. Cancer doi: 10.1002/ijc.29041 – volume-title: World Alzheimer Report 2015: The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost And trends year: 2015 ident: 424_CR1 – volume: 47 start-page: W234 year: 2019 ident: 424_CR26 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz240 – volume: 4 start-page: 22 year: 2016 ident: 424_CR19 publication-title: Biomark. Res. doi: 10.1186/s40364-016-0076-1 – volume: 41 start-page: D1228 year: 2013 ident: 424_CR27 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1147 – year: 2017 ident: 424_CR38 publication-title: eneuro doi: 10.1523/ENEURO.0149-16.2017 – volume: 10 start-page: 126 year: 2009 ident: 424_CR9 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2632 – volume: 32 start-page: 9613 year: 2012 ident: 424_CR30 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0602-12.2012 – volume: 14 start-page: 535 year: 2018 ident: 424_CR8 publication-title: Alzheimers. Dement. doi: 10.1016/j.jalz.2018.02.018 – volume: 106 start-page: 13010 year: 2009 ident: 424_CR37 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0903691106 – volume: 2 start-page: 77 year: 2019 ident: 424_CR20 publication-title: Commun. Biol. doi: 10.1038/s42003-019-0324-7 |
| SSID | ssj0000529419 |
| Score | 2.404097 |
| Snippet | There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired. Circulating... Abstract There are many subtypes of dementia, and identification of diagnostic biomarkers that are minimally-invasive, low-cost, and efficient is desired.... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 20947 |
| SubjectTerms | 692/53/2421 692/617/375/132 Aged Alzheimer Disease - blood Alzheimer Disease - pathology Alzheimer's disease Amyloid beta-Peptides - metabolism Biomarkers Biomarkers - blood Classification Dementia Dementia - blood Dementia - pathology Dementia disorders Female Humanities and Social Sciences Humans Hydrocephalus Lewy bodies Lewy Body Disease - blood Lewy Body Disease - pathology Male MicroRNAs MicroRNAs - blood miRNA multidisciplinary Neurodegenerative diseases Pathogenesis Prediction models Regression analysis Science Science (multidisciplinary) Vascular dementia |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlENoeSvrMpmlRobfGRJZtWTqmjxAKzaGkkJvQy2lg4zVxlmbzL_KPOyN53V1a0h56WfBKWsua0c43ntE3hLxlXnEGdjHLObgoZbBNpqxUWVNzXzKnihAp878ci6Nv5efT6nSl1BfmhCV64LRw-01em8ZwW7ICBjNpZWW5q-BftGAqJLJtJtWKM5VYvbkqczWckmGF3O_BUuFpMg7eM4b7snzNEkXC_j-hzN-TJceI6UNyf952ZvHDTKcrRulwizwa0CQ9SE_xmNwL7ROymepLLp6S24_x5d-5of3c4stW2l1iYAaFQWMNnJ662cAhGzy1C9oFROY3cHEZzlKOLHSNZaZ7CgCXxgxEh5ibxk9MNYrSpZhCf0ZBpecX9ALz_L4eH9Bw3S1_BZNRn5GTw08nH46yoQZD5sC1ucq8xEMkEkRdmVyKUliTKFSNqXxh6gDSYQ4wgrM-BGabWiirXOONk5bb4jnZaGdt2CbUVtLWAtnqA0OvTAVvvHMKIJ7yeZ1PSL4Uh3YDPzmWyZjqGCcvpE4i1CBCHUWoYcy7cUyX2Dnu7P0epTz2RGbt-AXomx70Tf9N3yZkd6kjetjuveYI48oKoN6EvBmbYaNi9MW0YTZPfTB1U5QT8iKp1DiTohRS1AW01GvKtjbV9Zb2_HskAwe4JYSC--4t1fLXtO5air1Rdf9h5Xb-x8q9JA84bj8w_Jzvkg3Q7fAKEN2VfR0370_JkEep priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGEAIeEN8UBjIS4oUFHCdx7AeExsc0IW0PaJP2FvkrZVKXds0qVv4L_mPu7CRQUVW8VGrtpI7vd7rf5c53hLxiTnEGdjFJObgouTd1ooxUSV1ylzOrMh9K5h8eiYOT_OtpcbpF-nTbbgPbta4d9pM6mU_eXl0sP4DCv49HxuW7FowQHhTj4BhjJC9JX88uEmwshQHYrsvGNXIdjJfC7g6HnQcQy39zlaeqO06z_m4rJitU9l9HR__NqhxCq7fJzUUz08sfejL5y3rt3yV3OtpJ9yJO7pEt39wnN2IjyuUD8utzeEt4pmm7MPhWls7mGMFBqdHQLKeldtoVm_WOmiWFXQIK_xO-zP04JtPC1NCPuqXAhGlIVbRIzmn4xJykAAOKufZjCthfnNNzTAj8drRH_dWsvwtmrT4kx_tfjj8dJF2zhsSCD3SZOImnTSRgotCpFLkwOtZa1bpwmS59qWtmgUxY47xnpi6FMsrWTltpuMkeke1m2vgnhJpCmlJgWXvP0H1T3mlnrQIuqFxapiOS9uKobFfIHPtpTKoQUM9kFUVYgQirIMIKrnkzXDOLZTw2zv6IUh5mYgnu8MN0Pq46ja7qFJ5Ic5OzDFDNpJGF4RbgpDKmPBMjstNjpOphXXHke3kBnHBEXg7DoNEYptGNny7iHMzxFPmIPI6QGlaS5UKKMoORcgVsK0tdHWnOvoeq4cDLhFDwv7s9LP8sa9NW7A7Q_Y-de7r5oZ-RWxwVC2w_5ztkG1DrnwOpuzQvglr-Bp6vSpY priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqrRBwQLxZKMhI3NgIx0kc-7g8qmoleoAi9Wb5lVJpm426XbXLv-AfM-M8ICqq4BJpYzvxZr7RfOMZjwl5w7ziDOxiknJwUfJgq0RZqZKq5D5nTmUhlsz_fCgOvuWL4-J4h8z6vTCj-H0s3b0GE4PbwDi4vRinS8DX2ZUATDkhu_P54utiWFPBqFWeqm5vDAx_d33wyP7EMv1_45bXUySHOOldcntTN2Z7aZbLP0zR_n1yr-OQdN4K_QHZCfVDcqs9VXL7iPz8GJf8Tg1dbywusdLmHMMxKAIaT75ZU7fqKscGT-2WNgH5-A_4cR5O2sxY6BoPl15ToLU05h06ZNo0XjHBKMqUYuL8CQUgb87oGWb3fTmc03DV9E_BFNTH5Gj_09GHg6Q7eSFx4NBcJF7i1hEJAi5MKkUurGkLpxpT-MyUoTQVc8AMnPUhMFuVQlnlKm-ctNxmT8ikXtXhGaG2kLYUWKM-MPTFVPDGO6eA2CmflumUpL04tOuqkuPhGEsdo-OZ1K0INYhQRxFqGPN2GNO0NTlu7P0epTz0xHra8QbATHfqqasU_pHhNmcZQJRJKwvLHcBJZUwFJqZkr8eI7pR8rTmSt7wAgjclr4dmUE-MuZg6rDZtH0zYFPmUPG0hNcwky4UUZQYt5Qhso6mOW-rT77EEOJAsIRS8d9bD8ve0bvoUswG6__Dlnv_f01-QOxwVDQw753tkAigOL4GxXdhXnaL-Aor8On8 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZbxMxELZKKgQ8cB-BgozEG93i9e567cdwVBUSEUKtKE8rXxsq0k2UZAXpv-AfM-M9IFBV9CVS4nHWHs_Yn9fjbwh5wZziDNbFKOawRUm9KSNlpIrKnLuUWZX4QJn_YSwOjtL3x9nxFhHdXZgQtB8oLcM03UWHvVrCQoOXwThsfvG0LoIZxpVXyLbIAIMPyPbR-OPoC2aSA4wSAUzg7Q0ZlshzKm-sQoGs_zyE-W-gZH9aeoNcq6u5Xn_X0-kfC9L-LfK560oTh_Jtr16ZPXv2F8vj5ft6m9xsMSodNZJ3yJav7pKrTdbK9T3y8214pXii6bI2-AqXzhd43INDTENmnSW1s5aZ1jtq1nTuEe-fwZeFnzSRtyAaklcvKcBmGuIaLSJ5Gj4xgCnYDMXA_AkFR6lP6SlGD34aj6j_Me_-BUNc75PD_XeHbw6iNrNDZGHDtIqcxKspEgwo07EUqTC6IWbVOnOJzn2uS2YBeVjjvGemzIUyypZOW2m4SR6QQTWr_CNCTSZNLpAD3zPc6ynvtLNWAXBULs7jIYm7gS5sy3qOyTemRTh9T2TRaLsAbRdB2wXUednXmTecHxdKv0b76SWRrzv8MFtMinZMizKGHmluUpaACzBpZGa4zQALJEx5JoZkp7O-op1ElgVHcJhmACCH5HlfDO6PZzq68rO6kcGAUJEOycPGWPuWJKmQIk-gJN8w442mbpZUJ18DxTiAOCEUPHe3M_jfzbpIFbu9U_yH5h5fTvwJuc7RJwA4cL5DBmDF_ikgwpV51rr_Lwz7XP8 priority: 102 providerName: Unpaywall |
| Title | Dementia subtype prediction models constructed by penalized regression methods for multiclass classification using serum microRNA expression data |
| URI | https://link.springer.com/article/10.1038/s41598-021-00424-1 https://www.ncbi.nlm.nih.gov/pubmed/34686734 https://www.proquest.com/docview/2584645937 https://www.proquest.com/docview/2584788764 https://pubmed.ncbi.nlm.nih.gov/PMC8536697 https://www.nature.com/articles/s41598-021-00424-1.pdf https://doaj.org/article/f17afa2b403d4008b85b2c5299309e06 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature Link Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Vgh4QHwNCqMyEm8sWuIkjv2AUFc2TZVWTWOTylNkO06Z1KWhXQXlv-A_5s75GBWo4iVSYidxcj_7zr7z7wh552eS-aAXvYDBFCWyOvekFtLLE5ZFvpGhdZT5Z2N-ehWNJvFkh4ybvTAYVtmMiW6gzuYG18gPGWrKKAZt-rH85mHWKPSuNik0VJ1aIfvgKMZ2SZchM1aHdI-Ox-cX7aoL-rWiQNa7Z_xQHC5Bg-EuMwazanQDesGGhnJE_v-yPv8Oomw9qQ_J_VVRqvV3NZv9oaxOHpNHtZVJBxUsnpAdWzwl96q8k-tn5Ncntyh4rehypXERlpYLdNigkKjLjbOkZl5zy9qM6jUtLVrsP-FkYadV7CxUdemnlxQMX-oiEw3a4tQdMQTJSZ1iaP2UAtRXN_QG4_8uxgNqf5TNUzBI9Tm5PDm-HJ56dW4Gz8CU59bLBG4uEQCBWAWCR1yrilpVqTgLVWITlfsGbAejM2t9nSdcamnyTBmhmQ73SKeYF_YloToWOuHIYm99nK1Jm6nMGAmmn8yCJOiRoBFHamreckyfMUud_zwUaSXCFESYOhGmcM_79p6yYu3YWvsIpdzWRMZtd2G-mKZ1B07zAL5IMR35IYDYF1rEmhmAkwx9aX3eI_sNRtJ6GFimd6DtkbdtMXRg9Mqows5XVR0M6eRRj7yoINW2JIy44EkIJckG2DaaullSXH91JOFghnEu4b0HDSzvmrXtVxy00P2PP_dq-0e_Jg8YdixQ9Yztkw6g1r4BG-5W98luMkn6pDsYjD6P-nU3hatDPuy7dRE4nkUCSq7G54MvvwEfTU1N |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFRaocIBsRMoMEhwolbt8TqHCrW0VUrbCFVB6m00m0Ol1DFxoxL-gg_i33hvvJQIFHHpxVI8Y2fGb5-3EfLWN5z5IBe9gIGJElmVe1xl3MtTZiJf89C6kvkng6T_Jfp0Fp-tkF9tLgyGVbY80TFqM9F4Rr7FUFJGMUjTD-U3D7tGoXe1baEhm9YKZtuVGGsSO47s_ApMuGr7cA_g_Y6xg_3hx77XdBnwNCjvl57JME0ig83EMsiSKFGyLhIqZWxCmdpU5r4GKaiVsdZXeZpwxXVupM4UUyG89hZZi8KIg-23trs_-HzaHfKgGy0KeJOs44fZVgUCE5PaGBjx6HX0ggWB6PoG_EvZ_Ttms3Pc3iXrs6KU8ys5Hv8hGw_uk3uNUkt3aix8QFZs8ZDcrttczh-Rn3vuDPJc0mqm8MyXllP0DyFOUNeKp6J60pSytYaqOS0tGgg_4MfUjupQXZjqul1XFPRs6gIhNar-1F0x4skhGcVI_hEFyppd0AsMNzwd7FD7vWzfgjGxj8nwJoD0hKwWk8I-I1TFmUoTLJpvfTQOuTXSaM1B0-QmSIMeCVpwCN2UScduHWPh3PVhJmoQCgChcCAU8Mz77pmyLhKydPYuQrmbiQW-3Y3JdCQafiHyAHYkmYr8EGjGz1QWK6YBnXjoc-snPbLR4ohouE4lrmmkR950w8Av0AkkCzuZ1XMwgjSJeuRpjVLdSsIoyZI0hJF0AdkWlro4Upx_dTXJQetLEg7_u9mi5fWyln2KzQ51_-PLPV--6ddkvT88ORbHh4OjF-QOQyIDLYOxDbIKGGxfgvp4qV41REqJuGG28BtBPYTw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEa8D4lFKoICR4ERX2fU-vD4gVAhRSyFCqEi5WbbXm1ZKN0u2UQn_gp_Dv2PG-ygRKOLSS6TE3o135_PM2PN5hpAXfiaYD3bRCxgsUSKrc0_oVHg5Z1nkGxFalzL_0yjZ_xp9GMfjDfKrPQuDtMpWJzpFnc0M7pH3GVrKKAZr2s8bWsTnwfBN-c3DClIYaW3LadQQObTLc1i-Va8PBiDrl4wN3x-92_eaCgOeAcf9zMtSPCKRwoPEKkiTKNGqThCqVJyFiluuct-ABTQ6s9bXOU-EFibPlEk10yHc9gq5ysNQIJuQj3m3vYMBtCgQzTEdP0z7FZhKPM7GYPmO8UYvWDGFrmLAv9zcv9maXcj2FrmxKEq1PFfT6R9WcXiH3G7cWbpX4-8u2bDFPXKtLnC5vE9-Dtzu44mi1ULjbi8t5xgZQjRQV4SnombWJLG1GdVLWlpcGvyAL3M7qUm60NXVua4oeNjUUSANOv3UfSLXycGLIod_QmFOLU7pKRINv4z2qP1etndBNuwWOboMET0gm8WssA8J1XGqeYLp8q2Py0JhM5UZI8DHFFnAgx4JWnFI0yRIxzodU-kC9WEqaxFKEKF0IpRwzavumrJOD7K291uUctcTU3u7H2bziWw0hcwDeCLFdOSHMFv8VKexZgbgJEJfWD_pkZ0WI7LRN5W8mB098rxrBk2B4R9V2Nmi7oPc0STqke0aUt1IwihJEx5CC18B28pQV1uKk2OXjRz8vSQR8L-7LSwvhrXuVex20P2PN_do_UM_I9dBGciPB6PDx-QmwzkG7gVjO2QTAGyfgN94pp-6GUqJvGSN8BuqPYKK |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZbxMxELZKKgQ8cB-BgozEG93i9e567cdwVBUSEUKtKE8rXxsq0k2UZAXpv-AfM-M9IFBV9CVS4nHWHs_Yn9fjbwh5wZziDNbFKOawRUm9KSNlpIrKnLuUWZX4QJn_YSwOjtL3x9nxFhHdXZgQtB8oLcM03UWHvVrCQoOXwThsfvG0LoIZxpVXyLbIAIMPyPbR-OPoC2aSA4wSAUzg7Q0ZlshzKm-sQoGs_zyE-W-gZH9aeoNcq6u5Xn_X0-kfC9L-LfK560oTh_Jtr16ZPXv2F8vj5ft6m9xsMSodNZJ3yJav7pKrTdbK9T3y8214pXii6bI2-AqXzhd43INDTENmnSW1s5aZ1jtq1nTuEe-fwZeFnzSRtyAaklcvKcBmGuIaLSJ5Gj4xgCnYDMXA_AkFR6lP6SlGD34aj6j_Me_-BUNc75PD_XeHbw6iNrNDZGHDtIqcxKspEgwo07EUqTC6IWbVOnOJzn2uS2YBeVjjvGemzIUyypZOW2m4SR6QQTWr_CNCTSZNLpAD3zPc6ynvtLNWAXBULs7jIYm7gS5sy3qOyTemRTh9T2TRaLsAbRdB2wXUednXmTecHxdKv0b76SWRrzv8MFtMinZMizKGHmluUpaACzBpZGa4zQALJEx5JoZkp7O-op1ElgVHcJhmACCH5HlfDO6PZzq68rO6kcGAUJEOycPGWPuWJKmQIk-gJN8w442mbpZUJ18DxTiAOCEUPHe3M_jfzbpIFbu9U_yH5h5fTvwJuc7RJwA4cL5DBmDF_ikgwpV51rr_Lwz7XP8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dementia+subtype+prediction+models+constructed+by+penalized+regression+methods+for+multiclass+classification+using+serum+microRNA+expression+data&rft.jtitle=Scientific+reports&rft.au=Asanomi+Yuya&rft.au=Shigemizu+Daichi&rft.au=Akiyama+Shintaro&rft.au=Sakurai%2C+Takashi&rft.date=2021-10-22&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-00424-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |