Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin

Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced c...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 29; no. 26; pp. 3574 - 3582
Main Authors Koh, H.S., Yong, Thomas, Chan, C.K., Ramakrishna, S.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.09.2008
Subjects
Online AccessGet full text
ISSN0142-9612
1878-5905
1878-5905
DOI10.1016/j.biomaterials.2008.05.014

Cover

Abstract Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly( l-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications.
AbstractList Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly(L-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications.Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly(L-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications.
Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly( l-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications.
Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly(l-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications.
Abstract Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly( l -lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications.
Author Chan, C.K.
Ramakrishna, S.
Koh, H.S.
Yong, Thomas
Author_xml – sequence: 1
  givenname: H.S.
  surname: Koh
  fullname: Koh, H.S.
  email: g0501943@nus.edu.sg
  organization: NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
– sequence: 2
  givenname: Thomas
  surname: Yong
  fullname: Yong, Thomas
  organization: Division of Bioengineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
– sequence: 3
  givenname: C.K.
  surname: Chan
  fullname: Chan, C.K.
  organization: Division of Bioengineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
– sequence: 4
  givenname: S.
  surname: Ramakrishna
  fullname: Ramakrishna, S.
  organization: NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18533251$$D View this record in MEDLINE/PubMed
BookMark eNqVUltrFDEYDVKx29W_IIMPvs2Yy1wyCqK29QIFH6zPIZtLmzWTbHNx2X_fDLugFKTrQwj5OOdwcr5zBk6cdwqAVwg2CKL-zbpZGT_xpILhNjYYQtrAroGofQIWiA607kbYnYBFmeB67BE-BWcxrmF5wxY_A6eIdoTgDi3Az0t3y51Qk3Kp8rpyKgeTVOVzugl-m26rHI27qRx3vo4pZJFyULKKgmvtrYyV8Hljy2RrCtjyyTjjnoOnulhTLw73Elx_vrw-_1pfff_y7fzjVS162KdaQi2pxriV7UqjYeSDRK3QA-8kRhTxkax0qwc9UCxGSiXGuh_blnQckVZRsgTv9rLZbfhuy61lm2AmHnYMQTZnxdbs76zYnBWDHStJFPbrPXsT_F1WMbHJRKGs5U75HFk_Eogg6R4FEkLHsYT7KBBDimmPxgJ8eQDm1aTkH9eHvRTA2z1ABB9jUPr_PvbhAVmYxJPxLgVu7HESF3sJVbb326jAojCq9ESaoERi0pvjZN4_kBG29ENw-0vtVFz7HNzMQSxiBtmPubBzXyGFkAzlLMGnfwsc6-IeHfUDTA
CitedBy_id crossref_primary_10_1007_s12221_021_0560_6
crossref_primary_10_1021_acsami_7b00882
crossref_primary_10_1007_s42242_020_00111_6
crossref_primary_10_1016_j_progpolymsci_2017_12_001
crossref_primary_10_3390_ijms15023088
crossref_primary_10_1089_ten_teb_2010_0648
crossref_primary_10_1089_ten_tec_2024_0099
crossref_primary_10_13005_msri_150304
crossref_primary_10_1016_j_nano_2018_05_004
crossref_primary_10_1016_j_eurpolymj_2012_09_016
crossref_primary_10_1002_ange_201400653
crossref_primary_10_1016_j_msec_2016_03_107
crossref_primary_10_1016_j_ceramint_2012_05_038
crossref_primary_10_1116_1_4857295
crossref_primary_10_1002_mabi_201700251
crossref_primary_10_1016_j_msec_2016_01_057
crossref_primary_10_1021_am900048t
crossref_primary_10_2217_17435889_4_1_65
crossref_primary_10_1155_2013_328763
crossref_primary_10_1063_1_5120738
crossref_primary_10_1007_s10856_009_3855_5
crossref_primary_10_4155_tde_11_54
crossref_primary_10_1002_term_2860
crossref_primary_10_1039_c3nr00957b
crossref_primary_10_1002_jbm_a_34691
crossref_primary_10_1039_c3bm60150a
crossref_primary_10_1089_ten_tea_2013_0008
crossref_primary_10_1039_D0TB01842B
crossref_primary_10_1016_j_pneurobio_2010_10_002
crossref_primary_10_1039_c3tb21336f
crossref_primary_10_1007_s12010_014_1388_y
crossref_primary_10_1002_biot_201300191
crossref_primary_10_1002_mabi_202300557
crossref_primary_10_1002_pi_4380
crossref_primary_10_1177_10915818211002468
crossref_primary_10_1002_pat_4313
crossref_primary_10_1002_jbm_b_33547
crossref_primary_10_1007_s11705_011_1202_0
crossref_primary_10_1007_s13758_012_0022_1
crossref_primary_10_1021_bm100221h
crossref_primary_10_1002_smll_201101172
crossref_primary_10_1039_C4TB00493K
crossref_primary_10_1088_1748_6041_10_6_065013
crossref_primary_10_3390_nano10010119
crossref_primary_10_1007_s12640_021_00391_5
crossref_primary_10_1002_jbm_a_36861
crossref_primary_10_1007_s10544_009_9284_x
crossref_primary_10_1002_adma_201000262
crossref_primary_10_1089_ten_tec_2016_0228
crossref_primary_10_1155_2013_981695
crossref_primary_10_1089_ten_tea_2013_0277
crossref_primary_10_1002_jbm_a_37013
crossref_primary_10_1080_00914037_2016_1180619
crossref_primary_10_1002_term_2053
crossref_primary_10_1177_039139880903200305
crossref_primary_10_1088_1748_6041_8_1_014101
crossref_primary_10_1016_j_biomaterials_2008_08_007
crossref_primary_10_1002_ppap_201100077
crossref_primary_10_1039_C7RA07189B
crossref_primary_10_1007_s42765_022_00198_9
crossref_primary_10_1016_j_msec_2015_06_024
crossref_primary_10_1586_17434440_6_1_61
crossref_primary_10_1002_term_2859
crossref_primary_10_5213_inj_1836154_077
crossref_primary_10_1002_adfm_201100067
crossref_primary_10_1007_s40242_021_1104_8
crossref_primary_10_1016_j_jiec_2010_10_024
crossref_primary_10_1039_D2TB01106A
crossref_primary_10_1116_1_3526140
crossref_primary_10_1021_acsabm_8b00783
crossref_primary_10_1166_sam_2021_4036
crossref_primary_10_1016_j_carbpol_2011_04_066
crossref_primary_10_1089_scd_2015_0104
crossref_primary_10_4252_wjsc_v1_i1_55
crossref_primary_10_1021_acsami_6b06403
crossref_primary_10_1021_la100443d
crossref_primary_10_1111_cpr_12588
crossref_primary_10_5301_ijao_5000317
crossref_primary_10_1021_acsbiomaterials_1c01102
crossref_primary_10_1039_c1sm06430d
crossref_primary_10_1089_ten_tea_2013_0382
crossref_primary_10_1016_j_matchemphys_2018_10_010
crossref_primary_10_1089_biores_2016_0025
crossref_primary_10_3390_polym3041684
crossref_primary_10_1002_pat_5669
crossref_primary_10_1039_D3RA00851G
crossref_primary_10_1088_1758_5082_6_2_025008
crossref_primary_10_1016_j_apsusc_2010_12_011
crossref_primary_10_1021_acs_nanolett_6b00131
crossref_primary_10_1088_1758_5082_2_4_045002
crossref_primary_10_1088_1741_2560_7_4_046003
crossref_primary_10_1002_cbic_201800118
crossref_primary_10_1016_j_biomaterials_2009_04_030
crossref_primary_10_1088_1758_5090_aa68ed
crossref_primary_10_1021_acs_chemrev_0c00816
crossref_primary_10_1080_09205063_2019_1697170
crossref_primary_10_1038_s41598_021_98840_w
crossref_primary_10_3934_matersci_2017_3_638
crossref_primary_10_1016_j_actbio_2010_02_006
crossref_primary_10_1016_j_msec_2015_11_026
crossref_primary_10_1002_mabi_202300244
crossref_primary_10_1016_j_actbio_2012_02_006
crossref_primary_10_1007_s10856_022_06669_0
crossref_primary_10_1002_adem_201080099
crossref_primary_10_1021_am300045y
crossref_primary_10_1088_1741_2560_11_4_046002
crossref_primary_10_1007_s11426_010_3180_3
crossref_primary_10_1088_1741_2560_12_4_046010
crossref_primary_10_1007_s12257_021_0364_y
crossref_primary_10_3390_ma13071692
crossref_primary_10_1021_acsabm_0c00026
crossref_primary_10_1021_acschemneuro_8b00286
crossref_primary_10_1021_acsnano_3c09892
crossref_primary_10_1007_s00441_013_1693_8
crossref_primary_10_1002_jbm_a_36933
crossref_primary_10_1007_s11270_015_2317_6
crossref_primary_10_1089_ten_tea_2014_0173
crossref_primary_10_1007_s10856_014_5366_2
crossref_primary_10_1371_journal_pone_0057157
crossref_primary_10_1016_j_actbio_2022_12_048
crossref_primary_10_1080_09205063_2014_884427
crossref_primary_10_1097_WNQ_0b013e3181a361c6
crossref_primary_10_1016_j_jneumeth_2013_01_023
crossref_primary_10_1021_acs_biomac_9b01550
crossref_primary_10_1002_smll_200900445
crossref_primary_10_1016_j_msec_2016_03_035
crossref_primary_10_1007_s12221_013_0718_y
crossref_primary_10_1089_ten_tea_2008_0689
crossref_primary_10_1021_am5037719
crossref_primary_10_1016_j_actbio_2014_06_033
crossref_primary_10_1021_acschemneuro_5b00189
crossref_primary_10_1186_s13036_017_0058_3
crossref_primary_10_1039_b921932c
crossref_primary_10_1002_jbm_a_35614
crossref_primary_10_1177_0040517513481870
crossref_primary_10_3892_etm_2018_6343
crossref_primary_10_3390_polym12051087
crossref_primary_10_1097_SCS_0000000000001566
crossref_primary_10_1016_j_actbio_2012_01_026
crossref_primary_10_1016_j_carbpol_2017_01_050
crossref_primary_10_1039_C6TB03330J
crossref_primary_10_1016_j_apsusc_2019_04_109
crossref_primary_10_1039_D0QM00279H
crossref_primary_10_1088_1741_2552_aac77f
crossref_primary_10_1016_j_actbio_2013_04_038
crossref_primary_10_1080_00405167_2016_1201934
crossref_primary_10_1007_s12640_020_00276_z
crossref_primary_10_1039_C4TB01464B
crossref_primary_10_1021_nn102461w
crossref_primary_10_1007_s11064_022_03584_2
crossref_primary_10_12677_MS_2013_36046
crossref_primary_10_1021_acsbiomaterials_7b00524
crossref_primary_10_1016_j_carbpol_2013_08_050
crossref_primary_10_3390_s22228661
crossref_primary_10_1007_s10570_012_9698_0
crossref_primary_10_1007_s10856_018_6105_x
crossref_primary_10_1002_adhm_201500864
crossref_primary_10_1016_j_pnsc_2020_09_007
crossref_primary_10_1039_C5RA24303C
crossref_primary_10_4103_ATN_ATN_D_24_00017
crossref_primary_10_1021_am403895k
crossref_primary_10_1007_s10529_017_2494_z
crossref_primary_10_1016_j_memsci_2013_08_007
crossref_primary_10_1021_acsbiomaterials_9b01829
crossref_primary_10_2217_nnm_14_70
crossref_primary_10_1007_s12015_013_9474_z
crossref_primary_10_1016_j_jmrt_2023_05_076
crossref_primary_10_1021_acsomega_8b01698
crossref_primary_10_1016_j_biomaterials_2010_01_084
crossref_primary_10_1002_anie_201400653
crossref_primary_10_1016_j_msec_2013_02_039
crossref_primary_10_3934_molsci_2016_4_661
crossref_primary_10_1002_adhm_201200233
crossref_primary_10_1002_jbm_b_32676
crossref_primary_10_1021_acs_biomac_3c00976
crossref_primary_10_1021_acsami_7b09258
crossref_primary_10_1038_s41598_018_23958_3
crossref_primary_10_1016_j_actbio_2017_01_023
crossref_primary_10_1002_mabi_202100021
crossref_primary_10_1088_2631_7990_ada7a8
crossref_primary_10_1039_c2jm32332j
crossref_primary_10_1002_term_2355
crossref_primary_10_3390_polym3010413
crossref_primary_10_1039_B9NR00243J
crossref_primary_10_1002_dneu_20792
crossref_primary_10_1002_pat_5263
crossref_primary_10_3390_polym15051202
crossref_primary_10_1016_j_msec_2014_10_020
crossref_primary_10_1016_S1452_3981_23_11025_X
crossref_primary_10_1093_rb_rbv012
crossref_primary_10_3390_bios13050551
crossref_primary_10_1021_acs_biomac_9b00018
crossref_primary_10_1007_s11706_013_0188_6
crossref_primary_10_1186_1475_925X_9_70
crossref_primary_10_1016_j_nano_2010_07_004
crossref_primary_10_1016_j_eurpolymj_2013_10_021
crossref_primary_10_1186_s40580_020_00237_4
crossref_primary_10_1007_s12209_013_1947_2
crossref_primary_10_1080_00222348_2010_541002
crossref_primary_10_1016_S1773_2247_11_50075_9
crossref_primary_10_1016_j_nano_2014_11_001
crossref_primary_10_1002_term_2237
crossref_primary_10_1089_ten_tea_2012_0124
crossref_primary_10_3390_nano10050887
crossref_primary_10_1007_s11434_014_0336_0
crossref_primary_10_1089_neu_2015_4165
crossref_primary_10_1089_ten_tea_2010_0369
crossref_primary_10_2217_nnm_2016_0323
crossref_primary_10_1016_j_msec_2019_110521
crossref_primary_10_3390_ijms18112242
crossref_primary_10_1039_c0jm04502k
crossref_primary_10_1007_s11706_012_0157_5
crossref_primary_10_1098_rsif_2015_0254
crossref_primary_10_1021_acsbiomaterials_0c00698
crossref_primary_10_1021_acsami_0c01893
crossref_primary_10_1177_0040517511420756
crossref_primary_10_1021_acsbiomaterials_1c01525
crossref_primary_10_1039_C5RA05773F
crossref_primary_10_1007_s40883_015_0003_2
crossref_primary_10_1016_j_biomaterials_2009_11_084
crossref_primary_10_3390_ma12142296
crossref_primary_10_1088_1468_6996_13_3_035002
crossref_primary_10_4028_www_scientific_net_AMR_418_420_303
crossref_primary_10_4028_www_scientific_net_AMM_152_154_609
crossref_primary_10_1016_j_jneumeth_2011_08_036
crossref_primary_10_1039_D0MA00733A
crossref_primary_10_1089_ten_tea_2010_0377
crossref_primary_10_1002_jbm_a_33291
crossref_primary_10_1016_j_ijbiomac_2022_10_089
crossref_primary_10_1039_C7BM00309A
crossref_primary_10_1080_00914037_2016_1163562
crossref_primary_10_1155_2021_8857486
crossref_primary_10_1016_j_msec_2018_06_065
crossref_primary_10_1163_016942409X12538865055953
crossref_primary_10_1016_j_mee_2010_12_054
crossref_primary_10_1098_rsfs_2012_0016
crossref_primary_10_1002_jbm_a_37092
crossref_primary_10_1016_j_ijpharm_2019_118871
crossref_primary_10_1146_annurev_bioeng_070909_105351
crossref_primary_10_1002_app_35071
crossref_primary_10_1016_j_bioactmat_2023_02_002
crossref_primary_10_1021_acs_langmuir_7b03311
crossref_primary_10_4028_www_scientific_net_AMM_554_52
crossref_primary_10_1039_C5RA13576A
crossref_primary_10_1016_j_biomaterials_2012_08_021
crossref_primary_10_1088_1748_605X_ab2856
crossref_primary_10_1115_1_4004305
crossref_primary_10_1039_C6TB02441F
crossref_primary_10_3390_nano8030165
crossref_primary_10_1002_jbm_a_33044
crossref_primary_10_1002_mame_201200290
crossref_primary_10_1016_j_actbio_2016_05_035
crossref_primary_10_2139_ssrn_4200782
crossref_primary_10_1016_j_msec_2010_06_004
crossref_primary_10_1155_2019_2393481
crossref_primary_10_1364_BOE_530876
crossref_primary_10_13005_bbra_2766
crossref_primary_10_3389_fbioe_2020_595096
crossref_primary_10_3390_nano10091781
crossref_primary_10_54856_jiswa_202005113
crossref_primary_10_1002_admt_201600015
crossref_primary_10_1002_jbm_a_33063
crossref_primary_10_1002_jnr_23594
crossref_primary_10_1039_C2TB00157H
crossref_primary_10_1080_00914037_2013_800983
crossref_primary_10_1515_nf_2010_0303
crossref_primary_10_1016_j_addr_2009_07_009
crossref_primary_10_1371_journal_pone_0136780
crossref_primary_10_3389_fmats_2018_00062
crossref_primary_10_1021_nn900070z
crossref_primary_10_1080_00914037_2023_2282994
crossref_primary_10_15406_atroa_2017_02_00033
crossref_primary_10_2217_rme_11_39
crossref_primary_10_1016_j_addr_2009_07_007
crossref_primary_10_1016_j_colsurfb_2016_10_014
crossref_primary_10_1016_j_actbio_2010_08_015
crossref_primary_10_1016_j_jiec_2018_01_014
crossref_primary_10_1016_j_nano_2014_04_008
crossref_primary_10_1371_journal_pone_0059022
crossref_primary_10_4028_www_scientific_net_AMR_1015_336
crossref_primary_10_1007_s40204_014_0020_0
crossref_primary_10_1039_C7NJ04914E
crossref_primary_10_1002_jbm_a_35117
crossref_primary_10_1016_j_colsurfb_2017_01_001
crossref_primary_10_1016_j_medengphy_2010_02_002
crossref_primary_10_1039_D0MH00542H
crossref_primary_10_1002_cnma_201700063
crossref_primary_10_1016_j_compositesb_2019_05_074
crossref_primary_10_1179_1753555712Y_0000000055
crossref_primary_10_1016_j_msec_2018_10_069
crossref_primary_10_1080_09205063_2017_1358549
crossref_primary_10_1039_c2nr30220a
crossref_primary_10_1089_ten_tea_2011_0725
crossref_primary_10_1016_j_scr_2017_10_010
crossref_primary_10_3390_nano12081377
crossref_primary_10_1016_j_drudis_2022_01_005
crossref_primary_10_1038_pj_2012_234
crossref_primary_10_1002_term_1623
crossref_primary_10_1007_s13233_012_0012_7
crossref_primary_10_1016_j_wneu_2018_11_035
crossref_primary_10_3390_polym7020186
crossref_primary_10_1021_acsami_5b12379
crossref_primary_10_1080_21592535_2015_1005527
crossref_primary_10_1088_0960_1317_25_12_125001
crossref_primary_10_1007_s12551_017_0327_x
crossref_primary_10_1016_j_biomaterials_2013_09_097
crossref_primary_10_3389_fbioe_2020_580135
crossref_primary_10_1016_j_actbio_2018_05_052
crossref_primary_10_1021_acsami_8b00129
crossref_primary_10_1002_mabi_201200318
crossref_primary_10_1007_s10924_019_01497_w
crossref_primary_10_1002_smll_201100046
crossref_primary_10_1016_j_msec_2017_04_083
crossref_primary_10_1002_adfm_202302251
crossref_primary_10_1002_jbm_a_34802
crossref_primary_10_1002_chem_201101064
crossref_primary_10_1089_ten_tec_2023_0054
crossref_primary_10_1016_j_apsusc_2013_08_089
crossref_primary_10_1016_j_reactfunctpolym_2022_105202
crossref_primary_10_4103_1673_5374_191195
crossref_primary_10_1002_jbm_b_32931
crossref_primary_10_1016_j_msec_2009_01_006
crossref_primary_10_3390_jfb3030497
crossref_primary_10_1002_jbm_b_33223
crossref_primary_10_3389_fnins_2024_1410988
crossref_primary_10_1016_j_nano_2012_08_009
crossref_primary_10_1155_2016_5309484
crossref_primary_10_1007_s00289_017_1947_9
crossref_primary_10_1063_1_4818914
crossref_primary_10_1039_c3sc50697e
crossref_primary_10_1080_00914037_2018_1482461
crossref_primary_10_1002_ange_201105789
crossref_primary_10_1016_j_actbio_2013_01_025
crossref_primary_10_3390_polym9120713
crossref_primary_10_1016_j_biomaterials_2013_10_079
crossref_primary_10_1016_j_nantod_2008_10_014
crossref_primary_10_1007_s13233_013_1155_x
crossref_primary_10_1111_aor_13485
crossref_primary_10_1039_C3BM60255A
crossref_primary_10_1002_adma_201706785
crossref_primary_10_1177_0883911512440536
crossref_primary_10_3390_biom12010025
crossref_primary_10_2217_nnm_2017_0389
crossref_primary_10_1021_acs_nanolett_5b04033
crossref_primary_10_1039_c2ra21085a
crossref_primary_10_1177_0885328212443297
crossref_primary_10_1002_mabi_201300177
crossref_primary_10_1002_jbm_b_33014
crossref_primary_10_3390_membranes9010012
crossref_primary_10_1021_acs_langmuir_8b00529
crossref_primary_10_1016_j_ijbiomac_2011_05_004
crossref_primary_10_1007_s13770_021_00398_1
crossref_primary_10_1002_adem_201080140
crossref_primary_10_1002_adhm_201300603
crossref_primary_10_1080_00914037_2020_1857383
crossref_primary_10_1093_milmed_usx158
crossref_primary_10_1002_anie_201105789
crossref_primary_10_1021_acsomega_8b00524
crossref_primary_10_3389_fbioe_2020_00481
crossref_primary_10_1021_acsnano_0c09382
crossref_primary_10_1016_j_heliyon_2023_e14626
crossref_primary_10_1088_1361_6528_aa6316
crossref_primary_10_1088_1748_605X_aab693
crossref_primary_10_1016_j_carbon_2018_04_064
crossref_primary_10_1088_1748_6041_4_4_044106
crossref_primary_10_1039_C5TB00057B
crossref_primary_10_1039_b9nr00132h
crossref_primary_10_1070_RCR4435
Cites_doi 10.1016/S0142-9612(02)00635-X
10.3171/jns.1988.69.2.0155
10.1016/j.biomaterials.2004.05.012
10.1089/ten.2005.11.101
10.1016/0006-8993(95)00412-J
10.1083/jcb.200307068
10.1016/j.actbio.2006.02.005
10.1002/jbm.10167
10.1016/S0165-0173(96)00013-6
10.1073/pnas.94.17.8948
10.1002/jbm.b.30128
10.1089/107632702760184646
10.1007/s10856-005-4428-x
10.1021/bm015533u
10.1023/A:1026363018805
10.1016/j.biomaterials.2005.05.049
10.1163/1568562042459733
10.1163/156856207779996931
10.1017/S1740925X05000347
10.1021/nl071182z
10.1126/science.274.5290.1123
10.1002/(SICI)1097-4636(199808)41:2<278::AID-JBM13>3.0.CO;2-H
10.1016/S0142-9612(98)00099-4
10.1016/S0142-9612(99)00010-1
10.1016/j.biomaterials.2007.03.009
10.1038/nmat1092
10.1016/j.biomaterials.2004.06.051
10.1002/1097-4636(20000915)51:4<625::AID-JBM10>3.0.CO;2-U
10.1163/156856200744066
10.1002/jnr.10570
10.1089/ten.2005.11.1574
10.1002/jbm.a.20050
10.1006/exnr.1997.6650
10.1089/ten.2005.11.1085
10.1016/S0021-9258(19)83607-4
10.1088/1748-6041/1/3/R01
10.1089/ten.2006.12.3265
10.1006/dbio.1997.8547
10.1089/ten.1999.5.291
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7X8
ADTOC
UNPAY
DOI 10.1016/j.biomaterials.2008.05.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
Engineering Research Database

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 3582
ExternalDocumentID oai:scholarbank.nus.edu.sg:10635/51403
18533251
10_1016_j_biomaterials_2008_05_014
S0142961208003700
1_s2_0_S0142961208003700
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7X8
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c606t-d0fd8f224d4bf179a7d14cf7a5d2181a93bf4f7f782c988d22f694435a134e83
IEDL.DBID AIKHN
ISSN 0142-9612
1878-5905
IngestDate Tue Aug 26 13:12:14 EDT 2025
Wed Oct 01 13:25:41 EDT 2025
Sun Sep 28 00:02:50 EDT 2025
Mon Oct 06 18:05:56 EDT 2025
Wed Feb 19 01:45:42 EST 2025
Thu Oct 02 04:33:31 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Fri Feb 23 02:17:07 EST 2024
Sun Feb 23 10:18:55 EST 2025
Tue Oct 14 19:35:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords Electrospinning
Laminin
Neurite
Nanofibers
Tissue engineering
Nerve regeneration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-d0fd8f224d4bf179a7d14cf7a5d2181a93bf4f7f782c988d22f694435a134e83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/51403
PMID 18533251
PQID 20828619
PQPubID 23462
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_biomaterials_2008_05_014
proquest_miscellaneous_69301035
proquest_miscellaneous_33899001
proquest_miscellaneous_20828619
pubmed_primary_18533251
crossref_primary_10_1016_j_biomaterials_2008_05_014
crossref_citationtrail_10_1016_j_biomaterials_2008_05_014
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2008_05_014
elsevier_clinicalkeyesjournals_1_s2_0_S0142961208003700
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2008_05_014
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2008
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Huber, Heiduschka, Kienle, Pavlidis, Mack, Walk (bib39) 1998; 41
McDonald, Cheng, Chen, Zochodne (bib23) 2006; 2
Bini, Gao, Xu, Wang, Ramakrishna, Leong (bib12) 2004; 68A
Labrador, Buti, Navarro (bib29) 1998; 149
TessierLavigne, Goodman (bib20) 1996; 274
Chen, Strickland (bib26) 2003; 163
Li, Laurencin, Caterson, Tuan, Ko (bib3) 2002; 60
Rangappa, Romero, Nelson, Eberhart, Smith (bib17) 2000; 51
Luckenbill-Edds (bib24) 1997; 23
Liao, Li, Ma, He, Chan, Ramakrishna (bib33) 2006; 1
Milner, Wilby, Nishimura, Boylen, Edwards, Fawcett (bib25) 1997; 185
Ingber, Mow, Butler, Niklason, Huard, Mao (bib1) 2006; 12
Ngo, Waggoner, Romero, Nelson, Eberhart, Smith (bib16) 2003; 72
Ma, Kotaki, Inai, Ramakrishna (bib4) 2005; 11
Yang, Murugan, Wang, Ramakrishna (bib7) 2005; 26
Li, Cooper, Mauck, Tuan (bib8) 2006; 2
Yang, Xu, Kotaki, Wang, Ramakrishna (bib34) 2004; 15
He, Yong, Teo, Ma, Ramakrishna (bib5) 2005; 11
Matthews, Wnek, Simpson, Bowlin (bib9) 2002; 3
Evans, Brandt, Widmer, Lu, Meszlenyi, Gupta (bib14) 1999; 20
Yoshimoto, Shin, Terai, Vacanti (bib6) 2003; 24
Miller, Jeftinija, Mallapragada (bib28) 2002; 8
Yu, Dillon, Bellamkonda (bib27) 1999; 5
Luo, Shoichet (bib37) 2004; 3
Timpl, Rohde, Robey, Rennard, Foidart, Martin (bib21) 1979; 254
Schmidt, Shastri, Vacanti, Langer (bib30) 1997; 94
Schnell, Klinkhammer, Balzer, Brook, Klee, Dalton (bib36) 2007; 28
Goldberg, Langer, Jia (bib2) 2007; 18
Walsh, Manwaring, Tresco (bib19) 2005; 11
Zhang, Ouyang, Lim, Ramakrishna, Huang (bib10) 2005; 72B
Rutka, Apodaca, Stern, Rosenblum (bib22) 1988; 69
Evans, Brandt, Niederbichler, Chauvin, Hermann, Bogle (bib15) 2000; 11
Attiah, Kopher, Desai (bib31) 2003; 14
Patel, Kurpinski, Quigley, Gao, Hsiao, Poo (bib35) 2007; 7
He, Ma, Yong, Teo, Ramakrishna (bib11) 2005; 26
Widmer, Gupta, Lu, Meszlenyi, Evans, Brandt (bib13) 1998; 19
Yu, Shoichet (bib38) 2005; 26
Villegas, Haustein, Villegas (bib32) 1995; 685
Zhang, Lim, Ramakrishna, Huang (bib18) 2005; 16
Widmer (10.1016/j.biomaterials.2008.05.014_bib13) 1998; 19
Rangappa (10.1016/j.biomaterials.2008.05.014_bib17) 2000; 51
Liao (10.1016/j.biomaterials.2008.05.014_bib33) 2006; 1
Yoshimoto (10.1016/j.biomaterials.2008.05.014_bib6) 2003; 24
Evans (10.1016/j.biomaterials.2008.05.014_bib14) 1999; 20
Villegas (10.1016/j.biomaterials.2008.05.014_bib32) 1995; 685
Ingber (10.1016/j.biomaterials.2008.05.014_bib1) 2006; 12
Evans (10.1016/j.biomaterials.2008.05.014_bib15) 2000; 11
Li (10.1016/j.biomaterials.2008.05.014_bib8) 2006; 2
Walsh (10.1016/j.biomaterials.2008.05.014_bib19) 2005; 11
TessierLavigne (10.1016/j.biomaterials.2008.05.014_bib20) 1996; 274
Zhang (10.1016/j.biomaterials.2008.05.014_bib10) 2005; 72B
Bini (10.1016/j.biomaterials.2008.05.014_bib12) 2004; 68A
Ma (10.1016/j.biomaterials.2008.05.014_bib4) 2005; 11
Ngo (10.1016/j.biomaterials.2008.05.014_bib16) 2003; 72
Rutka (10.1016/j.biomaterials.2008.05.014_bib22) 1988; 69
Chen (10.1016/j.biomaterials.2008.05.014_bib26) 2003; 163
Patel (10.1016/j.biomaterials.2008.05.014_bib35) 2007; 7
Miller (10.1016/j.biomaterials.2008.05.014_bib28) 2002; 8
Huber (10.1016/j.biomaterials.2008.05.014_bib39) 1998; 41
Matthews (10.1016/j.biomaterials.2008.05.014_bib9) 2002; 3
Attiah (10.1016/j.biomaterials.2008.05.014_bib31) 2003; 14
Goldberg (10.1016/j.biomaterials.2008.05.014_bib2) 2007; 18
Li (10.1016/j.biomaterials.2008.05.014_bib3) 2002; 60
He (10.1016/j.biomaterials.2008.05.014_bib5) 2005; 11
Yu (10.1016/j.biomaterials.2008.05.014_bib38) 2005; 26
Timpl (10.1016/j.biomaterials.2008.05.014_bib21) 1979; 254
Yang (10.1016/j.biomaterials.2008.05.014_bib34) 2004; 15
Schnell (10.1016/j.biomaterials.2008.05.014_bib36) 2007; 28
Milner (10.1016/j.biomaterials.2008.05.014_bib25) 1997; 185
Luo (10.1016/j.biomaterials.2008.05.014_bib37) 2004; 3
He (10.1016/j.biomaterials.2008.05.014_bib11) 2005; 26
Zhang (10.1016/j.biomaterials.2008.05.014_bib18) 2005; 16
Luckenbill-Edds (10.1016/j.biomaterials.2008.05.014_bib24) 1997; 23
Yang (10.1016/j.biomaterials.2008.05.014_bib7) 2005; 26
Yu (10.1016/j.biomaterials.2008.05.014_bib27) 1999; 5
McDonald (10.1016/j.biomaterials.2008.05.014_bib23) 2006; 2
Labrador (10.1016/j.biomaterials.2008.05.014_bib29) 1998; 149
Schmidt (10.1016/j.biomaterials.2008.05.014_bib30) 1997; 94
References_xml – volume: 15
  start-page: 1483
  year: 2004
  end-page: 1497
  ident: bib34
  article-title: Characterization of neural stem cells on electrospun poly(
  publication-title: J Biomater Sci Polym Ed
– volume: 26
  start-page: 2603
  year: 2005
  end-page: 2610
  ident: bib7
  article-title: Electrospinning of nano/micro scale poly(
  publication-title: Biomaterials
– volume: 68A
  start-page: 286
  year: 2004
  end-page: 295
  ident: bib12
  article-title: Peripheral nerve regeneration by microbraided poly(
  publication-title: J Biomed Mater Res Part A
– volume: 41
  start-page: 278
  year: 1998
  end-page: 288
  ident: bib39
  article-title: Modification of glassy carbon surfaces with synthetic laminin-derived peptides for nerve cell attachment and neurite growth
  publication-title: J Biomed Mater Res
– volume: 69
  start-page: 155
  year: 1988
  end-page: 170
  ident: bib22
  article-title: The extracellular-matrix of the central and peripheral nervous systems – structure and function
  publication-title: J Neurosurg
– volume: 19
  start-page: 1945
  year: 1998
  end-page: 1955
  ident: bib13
  article-title: Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration
  publication-title: Biomaterials
– volume: 185
  start-page: 215
  year: 1997
  end-page: 228
  ident: bib25
  article-title: Division of labor of Schwann cell integrins during migration on peripheral nerve extracellular matrix ligands
  publication-title: Developmental Biol
– volume: 23
  start-page: 1
  year: 1997
  end-page: 27
  ident: bib24
  article-title: Laminin and the mechanism of neuronal outgrowth
  publication-title: Brain Res Rev
– volume: 26
  start-page: 7606
  year: 2005
  end-page: 7615
  ident: bib11
  article-title: Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth
  publication-title: Biomaterials
– volume: 8
  start-page: 367
  year: 2002
  end-page: 378
  ident: bib28
  article-title: Synergistic effects of physical and chemical guidance cues on neurite alignment and outgrowth on biodegradable polymer substrates
  publication-title: Tissue Engin
– volume: 1
  start-page: R45
  year: 2006
  end-page: R53
  ident: bib33
  article-title: Biomimetic electrospun nanofibers for tissue regeneration
  publication-title: Biomed Mater
– volume: 685
  start-page: 77
  year: 1995
  end-page: 90
  ident: bib32
  article-title: Neuronal differentiation of PC12 and chick-embryo ganglion-cells induced by a sciatic-nerve conditioned medium – characterization of the neurotrophic activity
  publication-title: Brain Res
– volume: 16
  start-page: 933
  year: 2005
  end-page: 946
  ident: bib18
  article-title: Recent development of polymer nanofibers for biomedical and biotechnological applications
  publication-title: J Mater Sci Mater Med
– volume: 72B
  start-page: 156
  year: 2005
  end-page: 165
  ident: bib10
  article-title: Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds
  publication-title: J Biomed Mater Res Part B
– volume: 254
  start-page: 9933
  year: 1979
  end-page: 9937
  ident: bib21
  article-title: Laminin – a glycoprotein from basement membranes
  publication-title: J Biol Chem
– volume: 5
  start-page: 291
  year: 1999
  end-page: 304
  ident: bib27
  article-title: A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension
  publication-title: Tissue Engin
– volume: 3
  start-page: 232
  year: 2002
  end-page: 238
  ident: bib9
  article-title: Electrospinning of collagen nanofibers
  publication-title: Biomacromolecules
– volume: 2
  start-page: 377
  year: 2006
  end-page: 385
  ident: bib8
  article-title: Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications
  publication-title: Acta Biomaterialia
– volume: 11
  start-page: 1085
  year: 2005
  end-page: 1094
  ident: bib19
  article-title: Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates
  publication-title: Tissue Eng
– volume: 18
  start-page: 241
  year: 2007
  end-page: 268
  ident: bib2
  article-title: Nanostructured materials for applications in drug delivery and tissue engineering
  publication-title: J Biomater Sci Polym Ed
– volume: 11
  start-page: 101
  year: 2005
  end-page: 109
  ident: bib4
  article-title: Potential of nanofiber matrix as tissue-engineering scaffolds
  publication-title: Tissue Eng
– volume: 20
  start-page: 1109
  year: 1999
  end-page: 1115
  ident: bib14
  article-title: In vivo evaluation of poly(
  publication-title: Biomaterials
– volume: 24
  start-page: 2077
  year: 2003
  end-page: 2082
  ident: bib6
  article-title: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
  publication-title: Biomaterials
– volume: 51
  start-page: 625
  year: 2000
  end-page: 634
  ident: bib17
  article-title: Laminin-coated poly(
  publication-title: J Biomed Mater Res
– volume: 11
  start-page: 869
  year: 2000
  end-page: 878
  ident: bib15
  article-title: Clinical long-term in vivo evaluation of poly(
  publication-title: J Biomater Sci Polym Ed
– volume: 94
  start-page: 8948
  year: 1997
  end-page: 8953
  ident: bib30
  article-title: Stimulation of neurite outgrowth using an electrically conducting polymer
  publication-title: Proc Natl Acad Sci U S A
– volume: 11
  start-page: 1574
  year: 2005
  end-page: 1588
  ident: bib5
  article-title: Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering
  publication-title: Tissue Eng
– volume: 3
  start-page: 249
  year: 2004
  end-page: 253
  ident: bib37
  article-title: A photolabile hydrogel for guided three-dimensional cell growth and migration
  publication-title: Nature Mater
– volume: 26
  start-page: 1507
  year: 2005
  end-page: 1514
  ident: bib38
  article-title: Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering
  publication-title: Biomaterials
– volume: 72
  start-page: 227
  year: 2003
  end-page: 238
  ident: bib16
  article-title: Poly(
  publication-title: J Neurosci Res
– volume: 28
  start-page: 3012
  year: 2007
  end-page: 3025
  ident: bib36
  article-title: Guidance of glial cell. Migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend
  publication-title: Biomaterials
– volume: 60
  start-page: 613
  year: 2002
  end-page: 621
  ident: bib3
  article-title: Electrospun nanofibrous structure: a novel scaffold for tissue engineering
  publication-title: J Biomed Mater Res
– volume: 2
  start-page: 139
  year: 2006
  end-page: 147
  ident: bib23
  article-title: Early events of peripheral nerve regeneration
  publication-title: Neuron Glia Biol
– volume: 14
  start-page: 1005
  year: 2003
  end-page: 1009
  ident: bib31
  article-title: Characterization of PC12 cell proliferation and differentiation-stimulated by ECM adhesion proteins and neurotrophic factors
  publication-title: J Mater Sci Mater Med
– volume: 12
  start-page: 3265
  year: 2006
  end-page: 3283
  ident: bib1
  article-title: Tissue engineering and developmental biology: going biomimetic
  publication-title: Tissue Eng
– volume: 7
  start-page: 2122
  year: 2007
  end-page: 2128
  ident: bib35
  article-title: Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance
  publication-title: Nano Letters
– volume: 163
  start-page: 889
  year: 2003
  end-page: 899
  ident: bib26
  article-title: Laminin gamma 1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve
  publication-title: J Cell Biol
– volume: 274
  start-page: 1123
  year: 1996
  end-page: 1133
  ident: bib20
  article-title: The molecular biology of axon guidance
  publication-title: Science
– volume: 149
  start-page: 243
  year: 1998
  end-page: 252
  ident: bib29
  article-title: Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair
  publication-title: Exp Neurol
– volume: 24
  start-page: 2077
  year: 2003
  ident: 10.1016/j.biomaterials.2008.05.014_bib6
  article-title: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00635-X
– volume: 69
  start-page: 155
  year: 1988
  ident: 10.1016/j.biomaterials.2008.05.014_bib22
  article-title: The extracellular-matrix of the central and peripheral nervous systems – structure and function
  publication-title: J Neurosurg
  doi: 10.3171/jns.1988.69.2.0155
– volume: 26
  start-page: 1507
  year: 2005
  ident: 10.1016/j.biomaterials.2008.05.014_bib38
  article-title: Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.05.012
– volume: 11
  start-page: 101
  year: 2005
  ident: 10.1016/j.biomaterials.2008.05.014_bib4
  article-title: Potential of nanofiber matrix as tissue-engineering scaffolds
  publication-title: Tissue Eng
  doi: 10.1089/ten.2005.11.101
– volume: 685
  start-page: 77
  year: 1995
  ident: 10.1016/j.biomaterials.2008.05.014_bib32
  article-title: Neuronal differentiation of PC12 and chick-embryo ganglion-cells induced by a sciatic-nerve conditioned medium – characterization of the neurotrophic activity
  publication-title: Brain Res
  doi: 10.1016/0006-8993(95)00412-J
– volume: 163
  start-page: 889
  year: 2003
  ident: 10.1016/j.biomaterials.2008.05.014_bib26
  article-title: Laminin gamma 1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200307068
– volume: 2
  start-page: 377
  year: 2006
  ident: 10.1016/j.biomaterials.2008.05.014_bib8
  article-title: Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2006.02.005
– volume: 60
  start-page: 613
  year: 2002
  ident: 10.1016/j.biomaterials.2008.05.014_bib3
  article-title: Electrospun nanofibrous structure: a novel scaffold for tissue engineering
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.10167
– volume: 23
  start-page: 1
  year: 1997
  ident: 10.1016/j.biomaterials.2008.05.014_bib24
  article-title: Laminin and the mechanism of neuronal outgrowth
  publication-title: Brain Res Rev
  doi: 10.1016/S0165-0173(96)00013-6
– volume: 94
  start-page: 8948
  year: 1997
  ident: 10.1016/j.biomaterials.2008.05.014_bib30
  article-title: Stimulation of neurite outgrowth using an electrically conducting polymer
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.17.8948
– volume: 72B
  start-page: 156
  year: 2005
  ident: 10.1016/j.biomaterials.2008.05.014_bib10
  article-title: Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds
  publication-title: J Biomed Mater Res Part B
  doi: 10.1002/jbm.b.30128
– volume: 8
  start-page: 367
  year: 2002
  ident: 10.1016/j.biomaterials.2008.05.014_bib28
  article-title: Synergistic effects of physical and chemical guidance cues on neurite alignment and outgrowth on biodegradable polymer substrates
  publication-title: Tissue Engin
  doi: 10.1089/107632702760184646
– volume: 16
  start-page: 933
  year: 2005
  ident: 10.1016/j.biomaterials.2008.05.014_bib18
  article-title: Recent development of polymer nanofibers for biomedical and biotechnological applications
  publication-title: J Mater Sci Mater Med
  doi: 10.1007/s10856-005-4428-x
– volume: 3
  start-page: 232
  year: 2002
  ident: 10.1016/j.biomaterials.2008.05.014_bib9
  article-title: Electrospinning of collagen nanofibers
  publication-title: Biomacromolecules
  doi: 10.1021/bm015533u
– volume: 14
  start-page: 1005
  year: 2003
  ident: 10.1016/j.biomaterials.2008.05.014_bib31
  article-title: Characterization of PC12 cell proliferation and differentiation-stimulated by ECM adhesion proteins and neurotrophic factors
  publication-title: J Mater Sci Mater Med
  doi: 10.1023/A:1026363018805
– volume: 26
  start-page: 7606
  year: 2005
  ident: 10.1016/j.biomaterials.2008.05.014_bib11
  article-title: Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.05.049
– volume: 15
  start-page: 1483
  year: 2004
  ident: 10.1016/j.biomaterials.2008.05.014_bib34
  article-title: Characterization of neural stem cells on electrospun poly(l-lactic acid) nanofibrous scaffold
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1163/1568562042459733
– volume: 18
  start-page: 241
  year: 2007
  ident: 10.1016/j.biomaterials.2008.05.014_bib2
  article-title: Nanostructured materials for applications in drug delivery and tissue engineering
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1163/156856207779996931
– volume: 2
  start-page: 139
  year: 2006
  ident: 10.1016/j.biomaterials.2008.05.014_bib23
  article-title: Early events of peripheral nerve regeneration
  publication-title: Neuron Glia Biol
  doi: 10.1017/S1740925X05000347
– volume: 7
  start-page: 2122
  year: 2007
  ident: 10.1016/j.biomaterials.2008.05.014_bib35
  article-title: Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance
  publication-title: Nano Letters
  doi: 10.1021/nl071182z
– volume: 274
  start-page: 1123
  year: 1996
  ident: 10.1016/j.biomaterials.2008.05.014_bib20
  article-title: The molecular biology of axon guidance
  publication-title: Science
  doi: 10.1126/science.274.5290.1123
– volume: 41
  start-page: 278
  year: 1998
  ident: 10.1016/j.biomaterials.2008.05.014_bib39
  article-title: Modification of glassy carbon surfaces with synthetic laminin-derived peptides for nerve cell attachment and neurite growth
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(199808)41:2<278::AID-JBM13>3.0.CO;2-H
– volume: 19
  start-page: 1945
  year: 1998
  ident: 10.1016/j.biomaterials.2008.05.014_bib13
  article-title: Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(98)00099-4
– volume: 20
  start-page: 1109
  year: 1999
  ident: 10.1016/j.biomaterials.2008.05.014_bib14
  article-title: In vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00010-1
– volume: 28
  start-page: 3012
  year: 2007
  ident: 10.1016/j.biomaterials.2008.05.014_bib36
  article-title: Guidance of glial cell. Migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.03.009
– volume: 3
  start-page: 249
  year: 2004
  ident: 10.1016/j.biomaterials.2008.05.014_bib37
  article-title: A photolabile hydrogel for guided three-dimensional cell growth and migration
  publication-title: Nature Mater
  doi: 10.1038/nmat1092
– volume: 26
  start-page: 2603
  year: 2005
  ident: 10.1016/j.biomaterials.2008.05.014_bib7
  article-title: Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.06.051
– volume: 51
  start-page: 625
  year: 2000
  ident: 10.1016/j.biomaterials.2008.05.014_bib17
  article-title: Laminin-coated poly(l-lactide) filaments induce robust neurite growth while providing directional orientation
  publication-title: J Biomed Mater Res
  doi: 10.1002/1097-4636(20000915)51:4<625::AID-JBM10>3.0.CO;2-U
– volume: 11
  start-page: 869
  year: 2000
  ident: 10.1016/j.biomaterials.2008.05.014_bib15
  article-title: Clinical long-term in vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration
  publication-title: J Biomater Sci Polym Ed
  doi: 10.1163/156856200744066
– volume: 72
  start-page: 227
  year: 2003
  ident: 10.1016/j.biomaterials.2008.05.014_bib16
  article-title: Poly(l-lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.10570
– volume: 11
  start-page: 1574
  year: 2005
  ident: 10.1016/j.biomaterials.2008.05.014_bib5
  article-title: Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering
  publication-title: Tissue Eng
  doi: 10.1089/ten.2005.11.1574
– volume: 68A
  start-page: 286
  year: 2004
  ident: 10.1016/j.biomaterials.2008.05.014_bib12
  article-title: Peripheral nerve regeneration by microbraided poly(l-lactide-co-glycolide) biodegradable polymer fibers
  publication-title: J Biomed Mater Res Part A
  doi: 10.1002/jbm.a.20050
– volume: 149
  start-page: 243
  year: 1998
  ident: 10.1016/j.biomaterials.2008.05.014_bib29
  article-title: Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair
  publication-title: Exp Neurol
  doi: 10.1006/exnr.1997.6650
– volume: 11
  start-page: 1085
  year: 2005
  ident: 10.1016/j.biomaterials.2008.05.014_bib19
  article-title: Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates
  publication-title: Tissue Eng
  doi: 10.1089/ten.2005.11.1085
– volume: 254
  start-page: 9933
  year: 1979
  ident: 10.1016/j.biomaterials.2008.05.014_bib21
  article-title: Laminin – a glycoprotein from basement membranes
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)83607-4
– volume: 1
  start-page: R45
  year: 2006
  ident: 10.1016/j.biomaterials.2008.05.014_bib33
  article-title: Biomimetic electrospun nanofibers for tissue regeneration
  publication-title: Biomed Mater
  doi: 10.1088/1748-6041/1/3/R01
– volume: 12
  start-page: 3265
  year: 2006
  ident: 10.1016/j.biomaterials.2008.05.014_bib1
  article-title: Tissue engineering and developmental biology: going biomimetic
  publication-title: Tissue Eng
  doi: 10.1089/ten.2006.12.3265
– volume: 185
  start-page: 215
  year: 1997
  ident: 10.1016/j.biomaterials.2008.05.014_bib25
  article-title: Division of labor of Schwann cell integrins during migration on peripheral nerve extracellular matrix ligands
  publication-title: Developmental Biol
  doi: 10.1006/dbio.1997.8547
– volume: 5
  start-page: 291
  year: 1999
  ident: 10.1016/j.biomaterials.2008.05.014_bib27
  article-title: A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension
  publication-title: Tissue Engin
  doi: 10.1089/ten.1999.5.291
SSID ssj0014042
Score 2.4822383
Snippet Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that...
Abstract Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue....
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3574
SubjectTerms Advanced Basic Science
Animals
Biocompatible Materials - chemistry
Dentistry
Electrospinning
Extracellular Matrix - chemistry
Lactic Acid - chemistry
Laminin
Laminin - metabolism
Materials Testing
Nanofibers
Nanostructures
Nanotechnology - instrumentation
Nanotechnology - methods
Nerve regeneration
Neurite
Neurites - physiology
Polymers - chemistry
Rats
Surface Properties
Tissue engineering
Tissue Engineering - instrumentation
Tissue Engineering - methods
Tissue Scaffolds
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDbTNoY-0TbdPH3r1xg_JD0oPoSSEQkMLWUhPQtZjQ2PkJbYp7a_vTGRvF9KFba9Gg7A1mvnG-vQNwDuW60TrxIYmj6qQaaZCabI4JJ0XXZqU0hSxLc6y0zn7dMEvdmBsgjhUdJV0VzPXeyXBdnHoFQdwh2N6POQkMXcHdjOO6HsCu_OzL0ffPFMxCcvMH3AWWBzxMuKjzugNpYtutMvOr-xAoyTRTrYpJ93GnHtwr3dL-fOHrOu1PHTyEL6Ot3k8_eRq1nfVTP26Le649Ss-ggcDKA2OvBc9hh3j9mFvTapwH-5-Hg7hn8D82F2Sr9B_xaCxAUliInANmr5bYFHfXQZEpl8ETrom9Pq0_bXRQauktU2t20A1_bLGJ_QTOECXpCYVT-H85Pj842k4dGcIFRY9XagjqwuLCECzyuK2lrmOmbK55JpggyzTyjKbW4QgqiwKnSQ2KxmiMxmnzBTpM5i4xpnnEDCFNWiWFKrUFePcFFYWueElrzD-4ARTKMflEWpQLqcGGrUYKWrfxfrSDq01ucClnUK6sl16_Y6trN6PXiDGG6oYUwWmma2s879Zm3YID62IRZuI6IZZl5DHEmxP8yiawoeV5YCAPLLZeua3o8sKDBN09iOdaXoaRHoBcbl5REpKiwhaNo-grplxlPIpHPjd8OeLIuhLESlPga22xz987hf_Z_YS7o_snSh-BRN0aPMaIWJXvRmiwm-DT2cd
  priority: 102
  providerName: Unpaywall
Title Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961208003700
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961208003700
https://dx.doi.org/10.1016/j.biomaterials.2008.05.014
https://www.ncbi.nlm.nih.gov/pubmed/18533251
https://www.proquest.com/docview/20828619
https://www.proquest.com/docview/33899001
https://www.proquest.com/docview/69301035
http://scholarbank.nus.edu.sg/handle/10635/51403
UnpaywallVersion submittedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 1878-5905
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 1878-5905
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 1878-5905
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014042
  issn: 1878-5905
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrQT0gKA8Gh7FB65h83A2sRCHVdVqAbHi0JXKyXJiuy2KklWTCHHhtzOzcZZFZaVFnCJFHjnxjGc-2-NvAN7wVEdaR9Y3aZD7XPPCV2YS-sTzooWJKUxRtsV8MlvwjxfJxR6cDHdhKK3S-f7ep6-8tXszdqM5Xl5fjyktKRIYoAnzxGmA6_Z9jD9ZNoL96YdPs_n6MIEHqxo61N4ngYF7dJXmRbfcVdtr26VWEpEn3xanbuPQA7jXVUv147sqy43YdPYQHjhQyab9dz-CPVMdwsEG1eAh3P3sDtEfw-K0uiJd074gqy0jSksEnqzu2ktclLdXjJLhL1mlqtrv-WW7G6NZUyhr61I3rKi7ZYlvaBOXoUlRkYkncH52en4y8111Bb_ARUvr68DqzGIE1zy3OC1VqkNe2FQlmsK-EnFuuU0tQohCZJmOIjsRHNGVCmNusvgpjKq6MkfAeIFryEmUFULnPElMZlWWmkQkOfoP7MADMQylLBzzOBXAKOWQYvZNbqrBlcZMJKrBg3gtu-z5N3aSejdoTA43TNEnSgwTO0mnf5M2jZvejQxlE8lA3jJBD96vJf-w4p17fj2Yl8RpTmc3qjJ1R43ovn8otreIiSkRrX17C6p6GQZx4sGz3nJ_jyiCthiRrgd8bcr_MNzP__O3X8D9IQ0nCF_CCC3bvEKs1-bHcOftz_DYzWh8LuZfpl9_ARHMWAU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRaL0gKC8wqs-cDWbOM4mEeKAqlYLtD1tpd4sJ7b7UJSsSCLEhd_OzMZZFpWVFnG1PEriGc_D-fwNwDuZGmGMcNymYcGlkSXXdhpx4nkxuY0pTBHa4nw6u5BfLpPLHTga78IQrNL7_sGnL721H5n41Zwsbm4mBEsSOQZoynniNMS6_Z5MREoV2PufK5wH0ceIAccoOE0fmUeXIC-64667QdceWEk0nnJTlLqbhe7DXl8v9I_vuqrWItPJI3joU0r2aXjrx7Bj6wPYXyMaPID7Z_4X-hO4OK6vSdN0Ksgax4jQEtNO1vTdFZbk3TUjKPwVq3Xd8IFdtv9mDWtL7VxTmZaVTb-ocISOcBkaFLWYeArzk-P50Yz73gq8xJKl4yZ0JnMYv40sHG5KnZpIli7ViaGgr_O4cNKlDhOIMs8yI4Sb5hJzKx3F0mbxM9itm9q-ACZLrCCnIitzU8gksZnTWWqTPCnQe-ADAsjHpVSl5x2n9heVGgFmt2pdDb4xZqJQDQHEK9nFwL6xldSHUWNqvF-KHlFhkNhKOv2btG395m5VpFqhQnXHAAP4uJL8w4a3fvLhaF4KNzn9udG1bXqaRLf9o3zzjJh4EtHaN8-gnpdRGCcBPB8s9_eKYsoWY54bgFyZ8j8s98v__OxD2JvNz07V6efzr6_gwQjICaPXsItWbt9g1tcVb5e7-hdFAFcd
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDbTNoY-0TbdPH3r1xg_JD0oPoSSEQkMLWUhPQtZjQ2PkJbYp7a_vTGRvF9KFba9Gg7A1mvnG-vQNwDuW60TrxIYmj6qQaaZCabI4JJ0XXZqU0hSxLc6y0zn7dMEvdmBsgjhUdJV0VzPXeyXBdnHoFQdwh2N6POQkMXcHdjOO6HsCu_OzL0ffPFMxCcvMH3AWWBzxMuKjzugNpYtutMvOr-xAoyTRTrYpJ93GnHtwr3dL-fOHrOu1PHTyEL6Ot3k8_eRq1nfVTP26Le649Ss-ggcDKA2OvBc9hh3j9mFvTapwH-5-Hg7hn8D82F2Sr9B_xaCxAUliInANmr5bYFHfXQZEpl8ETrom9Pq0_bXRQauktU2t20A1_bLGJ_QTOECXpCYVT-H85Pj842k4dGcIFRY9XagjqwuLCECzyuK2lrmOmbK55JpggyzTyjKbW4QgqiwKnSQ2KxmiMxmnzBTpM5i4xpnnEDCFNWiWFKrUFePcFFYWueElrzD-4ARTKMflEWpQLqcGGrUYKWrfxfrSDq01ucClnUK6sl16_Y6trN6PXiDGG6oYUwWmma2s879Zm3YID62IRZuI6IZZl5DHEmxP8yiawoeV5YCAPLLZeua3o8sKDBN09iOdaXoaRHoBcbl5REpKiwhaNo-grplxlPIpHPjd8OeLIuhLESlPga22xz987hf_Z_YS7o_snSh-BRN0aPMaIWJXvRmiwm-DT2cd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+neurite+outgrowth+using+nano-structured+scaffolds+coupled+with+laminin&rft.jtitle=Biomaterials&rft.au=Koh%2C+H.S.&rft.au=Yong%2C+Thomas&rft.au=Chan%2C+C.K.&rft.au=Ramakrishna%2C+S.&rft.date=2008-09-01&rft.issn=0142-9612&rft.volume=29&rft.issue=26&rft.spage=3574&rft.epage=3582&rft_id=info:doi/10.1016%2Fj.biomaterials.2008.05.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2008_05_014
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961208X00171%2Fcov150h.gif