Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin
Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced c...
        Saved in:
      
    
          | Published in | Biomaterials Vol. 29; no. 26; pp. 3574 - 3582 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier Ltd
    
        01.09.2008
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0142-9612 1878-5905 1878-5905  | 
| DOI | 10.1016/j.biomaterials.2008.05.014 | 
Cover
| Abstract | Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly(
l-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications. | 
    
|---|---|
| AbstractList | Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly(L-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications.Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly(L-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications. Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly( l-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications. Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly(l-lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications. Abstract Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that mimic extracellular matrix (ECM) surface topography, mechanical stiffness, and chemical composition will be advantageous to promote enhanced cell interactions. Electrospinning can easily produce nano-structured synthetic polymer mats with architecture that structurally resembles the ECM of tissue. Although electrospinning can produce sub-micron fibrous scaffolds, modification of electrospun scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation and differentiation. Incorporation of laminin, a neurite promoting ECM protein, onto the nanofibers is an alternative to further mimic the biochemical properties of the nervous tissue to create a biomimetic scaffold. In this study, we investigated the feasibility to functionalize scaffolds by coupling laminin onto poly( l -lactic acid) (PLLA) nanofibers. Laminin was successfully added to nanofibers using covalent binding, physical adsorption or blended electrospinning procedures. PC12 cell viability and neurite outgrowth assays confirmed that the functionalized nanofibers were able to enhance axonal extensions. Significantly, compared to covalent immobilization and physical adsorption, blended electrospinning of laminin and synthetic polymer is a facile and efficient method to modify nanofibers for the fabrication of a biomimetic scaffold. Using these functionalization techniques, nanofibers can be effectively modified with laminin for potential use in peripheral nerve regeneration applications.  | 
    
| Author | Chan, C.K. Ramakrishna, S. Koh, H.S. Yong, Thomas  | 
    
| Author_xml | – sequence: 1 givenname: H.S. surname: Koh fullname: Koh, H.S. email: g0501943@nus.edu.sg organization: NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore – sequence: 2 givenname: Thomas surname: Yong fullname: Yong, Thomas organization: Division of Bioengineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore – sequence: 3 givenname: C.K. surname: Chan fullname: Chan, C.K. organization: Division of Bioengineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore – sequence: 4 givenname: S. surname: Ramakrishna fullname: Ramakrishna, S. organization: NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18533251$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqVUltrFDEYDVKx29W_IIMPvs2Yy1wyCqK29QIFH6zPIZtLmzWTbHNx2X_fDLugFKTrQwj5OOdwcr5zBk6cdwqAVwg2CKL-zbpZGT_xpILhNjYYQtrAroGofQIWiA607kbYnYBFmeB67BE-BWcxrmF5wxY_A6eIdoTgDi3Az0t3y51Qk3Kp8rpyKgeTVOVzugl-m26rHI27qRx3vo4pZJFyULKKgmvtrYyV8Hljy2RrCtjyyTjjnoOnulhTLw73Elx_vrw-_1pfff_y7fzjVS162KdaQi2pxriV7UqjYeSDRK3QA-8kRhTxkax0qwc9UCxGSiXGuh_blnQckVZRsgTv9rLZbfhuy61lm2AmHnYMQTZnxdbs76zYnBWDHStJFPbrPXsT_F1WMbHJRKGs5U75HFk_Eogg6R4FEkLHsYT7KBBDimmPxgJ8eQDm1aTkH9eHvRTA2z1ABB9jUPr_PvbhAVmYxJPxLgVu7HESF3sJVbb326jAojCq9ESaoERi0pvjZN4_kBG29ENw-0vtVFz7HNzMQSxiBtmPubBzXyGFkAzlLMGnfwsc6-IeHfUDTA | 
    
| CitedBy_id | crossref_primary_10_1007_s12221_021_0560_6 crossref_primary_10_1021_acsami_7b00882 crossref_primary_10_1007_s42242_020_00111_6 crossref_primary_10_1016_j_progpolymsci_2017_12_001 crossref_primary_10_3390_ijms15023088 crossref_primary_10_1089_ten_teb_2010_0648 crossref_primary_10_1089_ten_tec_2024_0099 crossref_primary_10_13005_msri_150304 crossref_primary_10_1016_j_nano_2018_05_004 crossref_primary_10_1016_j_eurpolymj_2012_09_016 crossref_primary_10_1002_ange_201400653 crossref_primary_10_1016_j_msec_2016_03_107 crossref_primary_10_1016_j_ceramint_2012_05_038 crossref_primary_10_1116_1_4857295 crossref_primary_10_1002_mabi_201700251 crossref_primary_10_1016_j_msec_2016_01_057 crossref_primary_10_1021_am900048t crossref_primary_10_2217_17435889_4_1_65 crossref_primary_10_1155_2013_328763 crossref_primary_10_1063_1_5120738 crossref_primary_10_1007_s10856_009_3855_5 crossref_primary_10_4155_tde_11_54 crossref_primary_10_1002_term_2860 crossref_primary_10_1039_c3nr00957b crossref_primary_10_1002_jbm_a_34691 crossref_primary_10_1039_c3bm60150a crossref_primary_10_1089_ten_tea_2013_0008 crossref_primary_10_1039_D0TB01842B crossref_primary_10_1016_j_pneurobio_2010_10_002 crossref_primary_10_1039_c3tb21336f crossref_primary_10_1007_s12010_014_1388_y crossref_primary_10_1002_biot_201300191 crossref_primary_10_1002_mabi_202300557 crossref_primary_10_1002_pi_4380 crossref_primary_10_1177_10915818211002468 crossref_primary_10_1002_pat_4313 crossref_primary_10_1002_jbm_b_33547 crossref_primary_10_1007_s11705_011_1202_0 crossref_primary_10_1007_s13758_012_0022_1 crossref_primary_10_1021_bm100221h crossref_primary_10_1002_smll_201101172 crossref_primary_10_1039_C4TB00493K crossref_primary_10_1088_1748_6041_10_6_065013 crossref_primary_10_3390_nano10010119 crossref_primary_10_1007_s12640_021_00391_5 crossref_primary_10_1002_jbm_a_36861 crossref_primary_10_1007_s10544_009_9284_x crossref_primary_10_1002_adma_201000262 crossref_primary_10_1089_ten_tec_2016_0228 crossref_primary_10_1155_2013_981695 crossref_primary_10_1089_ten_tea_2013_0277 crossref_primary_10_1002_jbm_a_37013 crossref_primary_10_1080_00914037_2016_1180619 crossref_primary_10_1002_term_2053 crossref_primary_10_1177_039139880903200305 crossref_primary_10_1088_1748_6041_8_1_014101 crossref_primary_10_1016_j_biomaterials_2008_08_007 crossref_primary_10_1002_ppap_201100077 crossref_primary_10_1039_C7RA07189B crossref_primary_10_1007_s42765_022_00198_9 crossref_primary_10_1016_j_msec_2015_06_024 crossref_primary_10_1586_17434440_6_1_61 crossref_primary_10_1002_term_2859 crossref_primary_10_5213_inj_1836154_077 crossref_primary_10_1002_adfm_201100067 crossref_primary_10_1007_s40242_021_1104_8 crossref_primary_10_1016_j_jiec_2010_10_024 crossref_primary_10_1039_D2TB01106A crossref_primary_10_1116_1_3526140 crossref_primary_10_1021_acsabm_8b00783 crossref_primary_10_1166_sam_2021_4036 crossref_primary_10_1016_j_carbpol_2011_04_066 crossref_primary_10_1089_scd_2015_0104 crossref_primary_10_4252_wjsc_v1_i1_55 crossref_primary_10_1021_acsami_6b06403 crossref_primary_10_1021_la100443d crossref_primary_10_1111_cpr_12588 crossref_primary_10_5301_ijao_5000317 crossref_primary_10_1021_acsbiomaterials_1c01102 crossref_primary_10_1039_c1sm06430d crossref_primary_10_1089_ten_tea_2013_0382 crossref_primary_10_1016_j_matchemphys_2018_10_010 crossref_primary_10_1089_biores_2016_0025 crossref_primary_10_3390_polym3041684 crossref_primary_10_1002_pat_5669 crossref_primary_10_1039_D3RA00851G crossref_primary_10_1088_1758_5082_6_2_025008 crossref_primary_10_1016_j_apsusc_2010_12_011 crossref_primary_10_1021_acs_nanolett_6b00131 crossref_primary_10_1088_1758_5082_2_4_045002 crossref_primary_10_1088_1741_2560_7_4_046003 crossref_primary_10_1002_cbic_201800118 crossref_primary_10_1016_j_biomaterials_2009_04_030 crossref_primary_10_1088_1758_5090_aa68ed crossref_primary_10_1021_acs_chemrev_0c00816 crossref_primary_10_1080_09205063_2019_1697170 crossref_primary_10_1038_s41598_021_98840_w crossref_primary_10_3934_matersci_2017_3_638 crossref_primary_10_1016_j_actbio_2010_02_006 crossref_primary_10_1016_j_msec_2015_11_026 crossref_primary_10_1002_mabi_202300244 crossref_primary_10_1016_j_actbio_2012_02_006 crossref_primary_10_1007_s10856_022_06669_0 crossref_primary_10_1002_adem_201080099 crossref_primary_10_1021_am300045y crossref_primary_10_1088_1741_2560_11_4_046002 crossref_primary_10_1007_s11426_010_3180_3 crossref_primary_10_1088_1741_2560_12_4_046010 crossref_primary_10_1007_s12257_021_0364_y crossref_primary_10_3390_ma13071692 crossref_primary_10_1021_acsabm_0c00026 crossref_primary_10_1021_acschemneuro_8b00286 crossref_primary_10_1021_acsnano_3c09892 crossref_primary_10_1007_s00441_013_1693_8 crossref_primary_10_1002_jbm_a_36933 crossref_primary_10_1007_s11270_015_2317_6 crossref_primary_10_1089_ten_tea_2014_0173 crossref_primary_10_1007_s10856_014_5366_2 crossref_primary_10_1371_journal_pone_0057157 crossref_primary_10_1016_j_actbio_2022_12_048 crossref_primary_10_1080_09205063_2014_884427 crossref_primary_10_1097_WNQ_0b013e3181a361c6 crossref_primary_10_1016_j_jneumeth_2013_01_023 crossref_primary_10_1021_acs_biomac_9b01550 crossref_primary_10_1002_smll_200900445 crossref_primary_10_1016_j_msec_2016_03_035 crossref_primary_10_1007_s12221_013_0718_y crossref_primary_10_1089_ten_tea_2008_0689 crossref_primary_10_1021_am5037719 crossref_primary_10_1016_j_actbio_2014_06_033 crossref_primary_10_1021_acschemneuro_5b00189 crossref_primary_10_1186_s13036_017_0058_3 crossref_primary_10_1039_b921932c crossref_primary_10_1002_jbm_a_35614 crossref_primary_10_1177_0040517513481870 crossref_primary_10_3892_etm_2018_6343 crossref_primary_10_3390_polym12051087 crossref_primary_10_1097_SCS_0000000000001566 crossref_primary_10_1016_j_actbio_2012_01_026 crossref_primary_10_1016_j_carbpol_2017_01_050 crossref_primary_10_1039_C6TB03330J crossref_primary_10_1016_j_apsusc_2019_04_109 crossref_primary_10_1039_D0QM00279H crossref_primary_10_1088_1741_2552_aac77f crossref_primary_10_1016_j_actbio_2013_04_038 crossref_primary_10_1080_00405167_2016_1201934 crossref_primary_10_1007_s12640_020_00276_z crossref_primary_10_1039_C4TB01464B crossref_primary_10_1021_nn102461w crossref_primary_10_1007_s11064_022_03584_2 crossref_primary_10_12677_MS_2013_36046 crossref_primary_10_1021_acsbiomaterials_7b00524 crossref_primary_10_1016_j_carbpol_2013_08_050 crossref_primary_10_3390_s22228661 crossref_primary_10_1007_s10570_012_9698_0 crossref_primary_10_1007_s10856_018_6105_x crossref_primary_10_1002_adhm_201500864 crossref_primary_10_1016_j_pnsc_2020_09_007 crossref_primary_10_1039_C5RA24303C crossref_primary_10_4103_ATN_ATN_D_24_00017 crossref_primary_10_1021_am403895k crossref_primary_10_1007_s10529_017_2494_z crossref_primary_10_1016_j_memsci_2013_08_007 crossref_primary_10_1021_acsbiomaterials_9b01829 crossref_primary_10_2217_nnm_14_70 crossref_primary_10_1007_s12015_013_9474_z crossref_primary_10_1016_j_jmrt_2023_05_076 crossref_primary_10_1021_acsomega_8b01698 crossref_primary_10_1016_j_biomaterials_2010_01_084 crossref_primary_10_1002_anie_201400653 crossref_primary_10_1016_j_msec_2013_02_039 crossref_primary_10_3934_molsci_2016_4_661 crossref_primary_10_1002_adhm_201200233 crossref_primary_10_1002_jbm_b_32676 crossref_primary_10_1021_acs_biomac_3c00976 crossref_primary_10_1021_acsami_7b09258 crossref_primary_10_1038_s41598_018_23958_3 crossref_primary_10_1016_j_actbio_2017_01_023 crossref_primary_10_1002_mabi_202100021 crossref_primary_10_1088_2631_7990_ada7a8 crossref_primary_10_1039_c2jm32332j crossref_primary_10_1002_term_2355 crossref_primary_10_3390_polym3010413 crossref_primary_10_1039_B9NR00243J crossref_primary_10_1002_dneu_20792 crossref_primary_10_1002_pat_5263 crossref_primary_10_3390_polym15051202 crossref_primary_10_1016_j_msec_2014_10_020 crossref_primary_10_1016_S1452_3981_23_11025_X crossref_primary_10_1093_rb_rbv012 crossref_primary_10_3390_bios13050551 crossref_primary_10_1021_acs_biomac_9b00018 crossref_primary_10_1007_s11706_013_0188_6 crossref_primary_10_1186_1475_925X_9_70 crossref_primary_10_1016_j_nano_2010_07_004 crossref_primary_10_1016_j_eurpolymj_2013_10_021 crossref_primary_10_1186_s40580_020_00237_4 crossref_primary_10_1007_s12209_013_1947_2 crossref_primary_10_1080_00222348_2010_541002 crossref_primary_10_1016_S1773_2247_11_50075_9 crossref_primary_10_1016_j_nano_2014_11_001 crossref_primary_10_1002_term_2237 crossref_primary_10_1089_ten_tea_2012_0124 crossref_primary_10_3390_nano10050887 crossref_primary_10_1007_s11434_014_0336_0 crossref_primary_10_1089_neu_2015_4165 crossref_primary_10_1089_ten_tea_2010_0369 crossref_primary_10_2217_nnm_2016_0323 crossref_primary_10_1016_j_msec_2019_110521 crossref_primary_10_3390_ijms18112242 crossref_primary_10_1039_c0jm04502k crossref_primary_10_1007_s11706_012_0157_5 crossref_primary_10_1098_rsif_2015_0254 crossref_primary_10_1021_acsbiomaterials_0c00698 crossref_primary_10_1021_acsami_0c01893 crossref_primary_10_1177_0040517511420756 crossref_primary_10_1021_acsbiomaterials_1c01525 crossref_primary_10_1039_C5RA05773F crossref_primary_10_1007_s40883_015_0003_2 crossref_primary_10_1016_j_biomaterials_2009_11_084 crossref_primary_10_3390_ma12142296 crossref_primary_10_1088_1468_6996_13_3_035002 crossref_primary_10_4028_www_scientific_net_AMR_418_420_303 crossref_primary_10_4028_www_scientific_net_AMM_152_154_609 crossref_primary_10_1016_j_jneumeth_2011_08_036 crossref_primary_10_1039_D0MA00733A crossref_primary_10_1089_ten_tea_2010_0377 crossref_primary_10_1002_jbm_a_33291 crossref_primary_10_1016_j_ijbiomac_2022_10_089 crossref_primary_10_1039_C7BM00309A crossref_primary_10_1080_00914037_2016_1163562 crossref_primary_10_1155_2021_8857486 crossref_primary_10_1016_j_msec_2018_06_065 crossref_primary_10_1163_016942409X12538865055953 crossref_primary_10_1016_j_mee_2010_12_054 crossref_primary_10_1098_rsfs_2012_0016 crossref_primary_10_1002_jbm_a_37092 crossref_primary_10_1016_j_ijpharm_2019_118871 crossref_primary_10_1146_annurev_bioeng_070909_105351 crossref_primary_10_1002_app_35071 crossref_primary_10_1016_j_bioactmat_2023_02_002 crossref_primary_10_1021_acs_langmuir_7b03311 crossref_primary_10_4028_www_scientific_net_AMM_554_52 crossref_primary_10_1039_C5RA13576A crossref_primary_10_1016_j_biomaterials_2012_08_021 crossref_primary_10_1088_1748_605X_ab2856 crossref_primary_10_1115_1_4004305 crossref_primary_10_1039_C6TB02441F crossref_primary_10_3390_nano8030165 crossref_primary_10_1002_jbm_a_33044 crossref_primary_10_1002_mame_201200290 crossref_primary_10_1016_j_actbio_2016_05_035 crossref_primary_10_2139_ssrn_4200782 crossref_primary_10_1016_j_msec_2010_06_004 crossref_primary_10_1155_2019_2393481 crossref_primary_10_1364_BOE_530876 crossref_primary_10_13005_bbra_2766 crossref_primary_10_3389_fbioe_2020_595096 crossref_primary_10_3390_nano10091781 crossref_primary_10_54856_jiswa_202005113 crossref_primary_10_1002_admt_201600015 crossref_primary_10_1002_jbm_a_33063 crossref_primary_10_1002_jnr_23594 crossref_primary_10_1039_C2TB00157H crossref_primary_10_1080_00914037_2013_800983 crossref_primary_10_1515_nf_2010_0303 crossref_primary_10_1016_j_addr_2009_07_009 crossref_primary_10_1371_journal_pone_0136780 crossref_primary_10_3389_fmats_2018_00062 crossref_primary_10_1021_nn900070z crossref_primary_10_1080_00914037_2023_2282994 crossref_primary_10_15406_atroa_2017_02_00033 crossref_primary_10_2217_rme_11_39 crossref_primary_10_1016_j_addr_2009_07_007 crossref_primary_10_1016_j_colsurfb_2016_10_014 crossref_primary_10_1016_j_actbio_2010_08_015 crossref_primary_10_1016_j_jiec_2018_01_014 crossref_primary_10_1016_j_nano_2014_04_008 crossref_primary_10_1371_journal_pone_0059022 crossref_primary_10_4028_www_scientific_net_AMR_1015_336 crossref_primary_10_1007_s40204_014_0020_0 crossref_primary_10_1039_C7NJ04914E crossref_primary_10_1002_jbm_a_35117 crossref_primary_10_1016_j_colsurfb_2017_01_001 crossref_primary_10_1016_j_medengphy_2010_02_002 crossref_primary_10_1039_D0MH00542H crossref_primary_10_1002_cnma_201700063 crossref_primary_10_1016_j_compositesb_2019_05_074 crossref_primary_10_1179_1753555712Y_0000000055 crossref_primary_10_1016_j_msec_2018_10_069 crossref_primary_10_1080_09205063_2017_1358549 crossref_primary_10_1039_c2nr30220a crossref_primary_10_1089_ten_tea_2011_0725 crossref_primary_10_1016_j_scr_2017_10_010 crossref_primary_10_3390_nano12081377 crossref_primary_10_1016_j_drudis_2022_01_005 crossref_primary_10_1038_pj_2012_234 crossref_primary_10_1002_term_1623 crossref_primary_10_1007_s13233_012_0012_7 crossref_primary_10_1016_j_wneu_2018_11_035 crossref_primary_10_3390_polym7020186 crossref_primary_10_1021_acsami_5b12379 crossref_primary_10_1080_21592535_2015_1005527 crossref_primary_10_1088_0960_1317_25_12_125001 crossref_primary_10_1007_s12551_017_0327_x crossref_primary_10_1016_j_biomaterials_2013_09_097 crossref_primary_10_3389_fbioe_2020_580135 crossref_primary_10_1016_j_actbio_2018_05_052 crossref_primary_10_1021_acsami_8b00129 crossref_primary_10_1002_mabi_201200318 crossref_primary_10_1007_s10924_019_01497_w crossref_primary_10_1002_smll_201100046 crossref_primary_10_1016_j_msec_2017_04_083 crossref_primary_10_1002_adfm_202302251 crossref_primary_10_1002_jbm_a_34802 crossref_primary_10_1002_chem_201101064 crossref_primary_10_1089_ten_tec_2023_0054 crossref_primary_10_1016_j_apsusc_2013_08_089 crossref_primary_10_1016_j_reactfunctpolym_2022_105202 crossref_primary_10_4103_1673_5374_191195 crossref_primary_10_1002_jbm_b_32931 crossref_primary_10_1016_j_msec_2009_01_006 crossref_primary_10_3390_jfb3030497 crossref_primary_10_1002_jbm_b_33223 crossref_primary_10_3389_fnins_2024_1410988 crossref_primary_10_1016_j_nano_2012_08_009 crossref_primary_10_1155_2016_5309484 crossref_primary_10_1007_s00289_017_1947_9 crossref_primary_10_1063_1_4818914 crossref_primary_10_1039_c3sc50697e crossref_primary_10_1080_00914037_2018_1482461 crossref_primary_10_1002_ange_201105789 crossref_primary_10_1016_j_actbio_2013_01_025 crossref_primary_10_3390_polym9120713 crossref_primary_10_1016_j_biomaterials_2013_10_079 crossref_primary_10_1016_j_nantod_2008_10_014 crossref_primary_10_1007_s13233_013_1155_x crossref_primary_10_1111_aor_13485 crossref_primary_10_1039_C3BM60255A crossref_primary_10_1002_adma_201706785 crossref_primary_10_1177_0883911512440536 crossref_primary_10_3390_biom12010025 crossref_primary_10_2217_nnm_2017_0389 crossref_primary_10_1021_acs_nanolett_5b04033 crossref_primary_10_1039_c2ra21085a crossref_primary_10_1177_0885328212443297 crossref_primary_10_1002_mabi_201300177 crossref_primary_10_1002_jbm_b_33014 crossref_primary_10_3390_membranes9010012 crossref_primary_10_1021_acs_langmuir_8b00529 crossref_primary_10_1016_j_ijbiomac_2011_05_004 crossref_primary_10_1007_s13770_021_00398_1 crossref_primary_10_1002_adem_201080140 crossref_primary_10_1002_adhm_201300603 crossref_primary_10_1080_00914037_2020_1857383 crossref_primary_10_1093_milmed_usx158 crossref_primary_10_1002_anie_201105789 crossref_primary_10_1021_acsomega_8b00524 crossref_primary_10_3389_fbioe_2020_00481 crossref_primary_10_1021_acsnano_0c09382 crossref_primary_10_1016_j_heliyon_2023_e14626 crossref_primary_10_1088_1361_6528_aa6316 crossref_primary_10_1088_1748_605X_aab693 crossref_primary_10_1016_j_carbon_2018_04_064 crossref_primary_10_1088_1748_6041_4_4_044106 crossref_primary_10_1039_C5TB00057B crossref_primary_10_1039_b9nr00132h crossref_primary_10_1070_RCR4435  | 
    
| Cites_doi | 10.1016/S0142-9612(02)00635-X 10.3171/jns.1988.69.2.0155 10.1016/j.biomaterials.2004.05.012 10.1089/ten.2005.11.101 10.1016/0006-8993(95)00412-J 10.1083/jcb.200307068 10.1016/j.actbio.2006.02.005 10.1002/jbm.10167 10.1016/S0165-0173(96)00013-6 10.1073/pnas.94.17.8948 10.1002/jbm.b.30128 10.1089/107632702760184646 10.1007/s10856-005-4428-x 10.1021/bm015533u 10.1023/A:1026363018805 10.1016/j.biomaterials.2005.05.049 10.1163/1568562042459733 10.1163/156856207779996931 10.1017/S1740925X05000347 10.1021/nl071182z 10.1126/science.274.5290.1123 10.1002/(SICI)1097-4636(199808)41:2<278::AID-JBM13>3.0.CO;2-H 10.1016/S0142-9612(98)00099-4 10.1016/S0142-9612(99)00010-1 10.1016/j.biomaterials.2007.03.009 10.1038/nmat1092 10.1016/j.biomaterials.2004.06.051 10.1002/1097-4636(20000915)51:4<625::AID-JBM10>3.0.CO;2-U 10.1163/156856200744066 10.1002/jnr.10570 10.1089/ten.2005.11.1574 10.1002/jbm.a.20050 10.1006/exnr.1997.6650 10.1089/ten.2005.11.1085 10.1016/S0021-9258(19)83607-4 10.1088/1748-6041/1/3/R01 10.1089/ten.2006.12.3265 10.1006/dbio.1997.8547 10.1089/ten.1999.5.291  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2008 Elsevier Ltd Elsevier Ltd  | 
    
| Copyright_xml | – notice: 2008 Elsevier Ltd – notice: Elsevier Ltd  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1016/j.biomaterials.2008.05.014 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Materials Research Database Engineering Research Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering Dentistry  | 
    
| EISSN | 1878-5905 | 
    
| EndPage | 3582 | 
    
| ExternalDocumentID | oai:scholarbank.nus.edu.sg:10635/51403 18533251 10_1016_j_biomaterials_2008_05_014 S0142961208003700 1_s2_0_S0142961208003700  | 
    
| Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7X8 ADTOC AGCQF UNPAY  | 
    
| ID | FETCH-LOGICAL-c606t-d0fd8f224d4bf179a7d14cf7a5d2181a93bf4f7f782c988d22f694435a134e83 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0142-9612 1878-5905  | 
    
| IngestDate | Tue Aug 26 13:12:14 EDT 2025 Wed Oct 01 13:25:41 EDT 2025 Sun Sep 28 00:02:50 EDT 2025 Mon Oct 06 18:05:56 EDT 2025 Wed Feb 19 01:45:42 EST 2025 Thu Oct 02 04:33:31 EDT 2025 Thu Apr 24 23:12:47 EDT 2025 Fri Feb 23 02:17:07 EST 2024 Sun Feb 23 10:18:55 EST 2025 Tue Oct 14 19:35:37 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 26 | 
    
| Keywords | Electrospinning Laminin Neurite Nanofibers Tissue engineering Nerve regeneration  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c606t-d0fd8f224d4bf179a7d14cf7a5d2181a93bf4f7f782c988d22f694435a134e83 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/51403 | 
    
| PMID | 18533251 | 
    
| PQID | 20828619 | 
    
| PQPubID | 23462 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_biomaterials_2008_05_014 proquest_miscellaneous_69301035 proquest_miscellaneous_33899001 proquest_miscellaneous_20828619 pubmed_primary_18533251 crossref_primary_10_1016_j_biomaterials_2008_05_014 crossref_citationtrail_10_1016_j_biomaterials_2008_05_014 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2008_05_014 elsevier_clinicalkeyesjournals_1_s2_0_S0142961208003700 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2008_05_014  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2008-09-01 | 
    
| PublicationDateYYYYMMDD | 2008-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Biomaterials | 
    
| PublicationTitleAlternate | Biomaterials | 
    
| PublicationYear | 2008 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Huber, Heiduschka, Kienle, Pavlidis, Mack, Walk (bib39) 1998; 41 McDonald, Cheng, Chen, Zochodne (bib23) 2006; 2 Bini, Gao, Xu, Wang, Ramakrishna, Leong (bib12) 2004; 68A Labrador, Buti, Navarro (bib29) 1998; 149 TessierLavigne, Goodman (bib20) 1996; 274 Chen, Strickland (bib26) 2003; 163 Li, Laurencin, Caterson, Tuan, Ko (bib3) 2002; 60 Rangappa, Romero, Nelson, Eberhart, Smith (bib17) 2000; 51 Luckenbill-Edds (bib24) 1997; 23 Liao, Li, Ma, He, Chan, Ramakrishna (bib33) 2006; 1 Milner, Wilby, Nishimura, Boylen, Edwards, Fawcett (bib25) 1997; 185 Ingber, Mow, Butler, Niklason, Huard, Mao (bib1) 2006; 12 Ngo, Waggoner, Romero, Nelson, Eberhart, Smith (bib16) 2003; 72 Ma, Kotaki, Inai, Ramakrishna (bib4) 2005; 11 Yang, Murugan, Wang, Ramakrishna (bib7) 2005; 26 Li, Cooper, Mauck, Tuan (bib8) 2006; 2 Yang, Xu, Kotaki, Wang, Ramakrishna (bib34) 2004; 15 He, Yong, Teo, Ma, Ramakrishna (bib5) 2005; 11 Matthews, Wnek, Simpson, Bowlin (bib9) 2002; 3 Evans, Brandt, Widmer, Lu, Meszlenyi, Gupta (bib14) 1999; 20 Yoshimoto, Shin, Terai, Vacanti (bib6) 2003; 24 Miller, Jeftinija, Mallapragada (bib28) 2002; 8 Yu, Dillon, Bellamkonda (bib27) 1999; 5 Luo, Shoichet (bib37) 2004; 3 Timpl, Rohde, Robey, Rennard, Foidart, Martin (bib21) 1979; 254 Schmidt, Shastri, Vacanti, Langer (bib30) 1997; 94 Schnell, Klinkhammer, Balzer, Brook, Klee, Dalton (bib36) 2007; 28 Goldberg, Langer, Jia (bib2) 2007; 18 Walsh, Manwaring, Tresco (bib19) 2005; 11 Zhang, Ouyang, Lim, Ramakrishna, Huang (bib10) 2005; 72B Rutka, Apodaca, Stern, Rosenblum (bib22) 1988; 69 Evans, Brandt, Niederbichler, Chauvin, Hermann, Bogle (bib15) 2000; 11 Attiah, Kopher, Desai (bib31) 2003; 14 Patel, Kurpinski, Quigley, Gao, Hsiao, Poo (bib35) 2007; 7 He, Ma, Yong, Teo, Ramakrishna (bib11) 2005; 26 Widmer, Gupta, Lu, Meszlenyi, Evans, Brandt (bib13) 1998; 19 Yu, Shoichet (bib38) 2005; 26 Villegas, Haustein, Villegas (bib32) 1995; 685 Zhang, Lim, Ramakrishna, Huang (bib18) 2005; 16 Widmer (10.1016/j.biomaterials.2008.05.014_bib13) 1998; 19 Rangappa (10.1016/j.biomaterials.2008.05.014_bib17) 2000; 51 Liao (10.1016/j.biomaterials.2008.05.014_bib33) 2006; 1 Yoshimoto (10.1016/j.biomaterials.2008.05.014_bib6) 2003; 24 Evans (10.1016/j.biomaterials.2008.05.014_bib14) 1999; 20 Villegas (10.1016/j.biomaterials.2008.05.014_bib32) 1995; 685 Ingber (10.1016/j.biomaterials.2008.05.014_bib1) 2006; 12 Evans (10.1016/j.biomaterials.2008.05.014_bib15) 2000; 11 Li (10.1016/j.biomaterials.2008.05.014_bib8) 2006; 2 Walsh (10.1016/j.biomaterials.2008.05.014_bib19) 2005; 11 TessierLavigne (10.1016/j.biomaterials.2008.05.014_bib20) 1996; 274 Zhang (10.1016/j.biomaterials.2008.05.014_bib10) 2005; 72B Bini (10.1016/j.biomaterials.2008.05.014_bib12) 2004; 68A Ma (10.1016/j.biomaterials.2008.05.014_bib4) 2005; 11 Ngo (10.1016/j.biomaterials.2008.05.014_bib16) 2003; 72 Rutka (10.1016/j.biomaterials.2008.05.014_bib22) 1988; 69 Chen (10.1016/j.biomaterials.2008.05.014_bib26) 2003; 163 Patel (10.1016/j.biomaterials.2008.05.014_bib35) 2007; 7 Miller (10.1016/j.biomaterials.2008.05.014_bib28) 2002; 8 Huber (10.1016/j.biomaterials.2008.05.014_bib39) 1998; 41 Matthews (10.1016/j.biomaterials.2008.05.014_bib9) 2002; 3 Attiah (10.1016/j.biomaterials.2008.05.014_bib31) 2003; 14 Goldberg (10.1016/j.biomaterials.2008.05.014_bib2) 2007; 18 Li (10.1016/j.biomaterials.2008.05.014_bib3) 2002; 60 He (10.1016/j.biomaterials.2008.05.014_bib5) 2005; 11 Yu (10.1016/j.biomaterials.2008.05.014_bib38) 2005; 26 Timpl (10.1016/j.biomaterials.2008.05.014_bib21) 1979; 254 Yang (10.1016/j.biomaterials.2008.05.014_bib34) 2004; 15 Schnell (10.1016/j.biomaterials.2008.05.014_bib36) 2007; 28 Milner (10.1016/j.biomaterials.2008.05.014_bib25) 1997; 185 Luo (10.1016/j.biomaterials.2008.05.014_bib37) 2004; 3 He (10.1016/j.biomaterials.2008.05.014_bib11) 2005; 26 Zhang (10.1016/j.biomaterials.2008.05.014_bib18) 2005; 16 Luckenbill-Edds (10.1016/j.biomaterials.2008.05.014_bib24) 1997; 23 Yang (10.1016/j.biomaterials.2008.05.014_bib7) 2005; 26 Yu (10.1016/j.biomaterials.2008.05.014_bib27) 1999; 5 McDonald (10.1016/j.biomaterials.2008.05.014_bib23) 2006; 2 Labrador (10.1016/j.biomaterials.2008.05.014_bib29) 1998; 149 Schmidt (10.1016/j.biomaterials.2008.05.014_bib30) 1997; 94  | 
    
| References_xml | – volume: 15 start-page: 1483 year: 2004 end-page: 1497 ident: bib34 article-title: Characterization of neural stem cells on electrospun poly( publication-title: J Biomater Sci Polym Ed – volume: 26 start-page: 2603 year: 2005 end-page: 2610 ident: bib7 article-title: Electrospinning of nano/micro scale poly( publication-title: Biomaterials – volume: 68A start-page: 286 year: 2004 end-page: 295 ident: bib12 article-title: Peripheral nerve regeneration by microbraided poly( publication-title: J Biomed Mater Res Part A – volume: 41 start-page: 278 year: 1998 end-page: 288 ident: bib39 article-title: Modification of glassy carbon surfaces with synthetic laminin-derived peptides for nerve cell attachment and neurite growth publication-title: J Biomed Mater Res – volume: 69 start-page: 155 year: 1988 end-page: 170 ident: bib22 article-title: The extracellular-matrix of the central and peripheral nervous systems – structure and function publication-title: J Neurosurg – volume: 19 start-page: 1945 year: 1998 end-page: 1955 ident: bib13 article-title: Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration publication-title: Biomaterials – volume: 185 start-page: 215 year: 1997 end-page: 228 ident: bib25 article-title: Division of labor of Schwann cell integrins during migration on peripheral nerve extracellular matrix ligands publication-title: Developmental Biol – volume: 23 start-page: 1 year: 1997 end-page: 27 ident: bib24 article-title: Laminin and the mechanism of neuronal outgrowth publication-title: Brain Res Rev – volume: 26 start-page: 7606 year: 2005 end-page: 7615 ident: bib11 article-title: Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth publication-title: Biomaterials – volume: 8 start-page: 367 year: 2002 end-page: 378 ident: bib28 article-title: Synergistic effects of physical and chemical guidance cues on neurite alignment and outgrowth on biodegradable polymer substrates publication-title: Tissue Engin – volume: 1 start-page: R45 year: 2006 end-page: R53 ident: bib33 article-title: Biomimetic electrospun nanofibers for tissue regeneration publication-title: Biomed Mater – volume: 685 start-page: 77 year: 1995 end-page: 90 ident: bib32 article-title: Neuronal differentiation of PC12 and chick-embryo ganglion-cells induced by a sciatic-nerve conditioned medium – characterization of the neurotrophic activity publication-title: Brain Res – volume: 16 start-page: 933 year: 2005 end-page: 946 ident: bib18 article-title: Recent development of polymer nanofibers for biomedical and biotechnological applications publication-title: J Mater Sci Mater Med – volume: 72B start-page: 156 year: 2005 end-page: 165 ident: bib10 article-title: Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds publication-title: J Biomed Mater Res Part B – volume: 254 start-page: 9933 year: 1979 end-page: 9937 ident: bib21 article-title: Laminin – a glycoprotein from basement membranes publication-title: J Biol Chem – volume: 5 start-page: 291 year: 1999 end-page: 304 ident: bib27 article-title: A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension publication-title: Tissue Engin – volume: 3 start-page: 232 year: 2002 end-page: 238 ident: bib9 article-title: Electrospinning of collagen nanofibers publication-title: Biomacromolecules – volume: 2 start-page: 377 year: 2006 end-page: 385 ident: bib8 article-title: Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications publication-title: Acta Biomaterialia – volume: 11 start-page: 1085 year: 2005 end-page: 1094 ident: bib19 article-title: Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates publication-title: Tissue Eng – volume: 18 start-page: 241 year: 2007 end-page: 268 ident: bib2 article-title: Nanostructured materials for applications in drug delivery and tissue engineering publication-title: J Biomater Sci Polym Ed – volume: 11 start-page: 101 year: 2005 end-page: 109 ident: bib4 article-title: Potential of nanofiber matrix as tissue-engineering scaffolds publication-title: Tissue Eng – volume: 20 start-page: 1109 year: 1999 end-page: 1115 ident: bib14 article-title: In vivo evaluation of poly( publication-title: Biomaterials – volume: 24 start-page: 2077 year: 2003 end-page: 2082 ident: bib6 article-title: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering publication-title: Biomaterials – volume: 51 start-page: 625 year: 2000 end-page: 634 ident: bib17 article-title: Laminin-coated poly( publication-title: J Biomed Mater Res – volume: 11 start-page: 869 year: 2000 end-page: 878 ident: bib15 article-title: Clinical long-term in vivo evaluation of poly( publication-title: J Biomater Sci Polym Ed – volume: 94 start-page: 8948 year: 1997 end-page: 8953 ident: bib30 article-title: Stimulation of neurite outgrowth using an electrically conducting polymer publication-title: Proc Natl Acad Sci U S A – volume: 11 start-page: 1574 year: 2005 end-page: 1588 ident: bib5 article-title: Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering publication-title: Tissue Eng – volume: 3 start-page: 249 year: 2004 end-page: 253 ident: bib37 article-title: A photolabile hydrogel for guided three-dimensional cell growth and migration publication-title: Nature Mater – volume: 26 start-page: 1507 year: 2005 end-page: 1514 ident: bib38 article-title: Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering publication-title: Biomaterials – volume: 72 start-page: 227 year: 2003 end-page: 238 ident: bib16 article-title: Poly( publication-title: J Neurosci Res – volume: 28 start-page: 3012 year: 2007 end-page: 3025 ident: bib36 article-title: Guidance of glial cell. Migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend publication-title: Biomaterials – volume: 60 start-page: 613 year: 2002 end-page: 621 ident: bib3 article-title: Electrospun nanofibrous structure: a novel scaffold for tissue engineering publication-title: J Biomed Mater Res – volume: 2 start-page: 139 year: 2006 end-page: 147 ident: bib23 article-title: Early events of peripheral nerve regeneration publication-title: Neuron Glia Biol – volume: 14 start-page: 1005 year: 2003 end-page: 1009 ident: bib31 article-title: Characterization of PC12 cell proliferation and differentiation-stimulated by ECM adhesion proteins and neurotrophic factors publication-title: J Mater Sci Mater Med – volume: 12 start-page: 3265 year: 2006 end-page: 3283 ident: bib1 article-title: Tissue engineering and developmental biology: going biomimetic publication-title: Tissue Eng – volume: 7 start-page: 2122 year: 2007 end-page: 2128 ident: bib35 article-title: Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance publication-title: Nano Letters – volume: 163 start-page: 889 year: 2003 end-page: 899 ident: bib26 article-title: Laminin gamma 1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve publication-title: J Cell Biol – volume: 274 start-page: 1123 year: 1996 end-page: 1133 ident: bib20 article-title: The molecular biology of axon guidance publication-title: Science – volume: 149 start-page: 243 year: 1998 end-page: 252 ident: bib29 article-title: Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair publication-title: Exp Neurol – volume: 24 start-page: 2077 year: 2003 ident: 10.1016/j.biomaterials.2008.05.014_bib6 article-title: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00635-X – volume: 69 start-page: 155 year: 1988 ident: 10.1016/j.biomaterials.2008.05.014_bib22 article-title: The extracellular-matrix of the central and peripheral nervous systems – structure and function publication-title: J Neurosurg doi: 10.3171/jns.1988.69.2.0155 – volume: 26 start-page: 1507 year: 2005 ident: 10.1016/j.biomaterials.2008.05.014_bib38 article-title: Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.05.012 – volume: 11 start-page: 101 year: 2005 ident: 10.1016/j.biomaterials.2008.05.014_bib4 article-title: Potential of nanofiber matrix as tissue-engineering scaffolds publication-title: Tissue Eng doi: 10.1089/ten.2005.11.101 – volume: 685 start-page: 77 year: 1995 ident: 10.1016/j.biomaterials.2008.05.014_bib32 article-title: Neuronal differentiation of PC12 and chick-embryo ganglion-cells induced by a sciatic-nerve conditioned medium – characterization of the neurotrophic activity publication-title: Brain Res doi: 10.1016/0006-8993(95)00412-J – volume: 163 start-page: 889 year: 2003 ident: 10.1016/j.biomaterials.2008.05.014_bib26 article-title: Laminin gamma 1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve publication-title: J Cell Biol doi: 10.1083/jcb.200307068 – volume: 2 start-page: 377 year: 2006 ident: 10.1016/j.biomaterials.2008.05.014_bib8 article-title: Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2006.02.005 – volume: 60 start-page: 613 year: 2002 ident: 10.1016/j.biomaterials.2008.05.014_bib3 article-title: Electrospun nanofibrous structure: a novel scaffold for tissue engineering publication-title: J Biomed Mater Res doi: 10.1002/jbm.10167 – volume: 23 start-page: 1 year: 1997 ident: 10.1016/j.biomaterials.2008.05.014_bib24 article-title: Laminin and the mechanism of neuronal outgrowth publication-title: Brain Res Rev doi: 10.1016/S0165-0173(96)00013-6 – volume: 94 start-page: 8948 year: 1997 ident: 10.1016/j.biomaterials.2008.05.014_bib30 article-title: Stimulation of neurite outgrowth using an electrically conducting polymer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.17.8948 – volume: 72B start-page: 156 year: 2005 ident: 10.1016/j.biomaterials.2008.05.014_bib10 article-title: Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds publication-title: J Biomed Mater Res Part B doi: 10.1002/jbm.b.30128 – volume: 8 start-page: 367 year: 2002 ident: 10.1016/j.biomaterials.2008.05.014_bib28 article-title: Synergistic effects of physical and chemical guidance cues on neurite alignment and outgrowth on biodegradable polymer substrates publication-title: Tissue Engin doi: 10.1089/107632702760184646 – volume: 16 start-page: 933 year: 2005 ident: 10.1016/j.biomaterials.2008.05.014_bib18 article-title: Recent development of polymer nanofibers for biomedical and biotechnological applications publication-title: J Mater Sci Mater Med doi: 10.1007/s10856-005-4428-x – volume: 3 start-page: 232 year: 2002 ident: 10.1016/j.biomaterials.2008.05.014_bib9 article-title: Electrospinning of collagen nanofibers publication-title: Biomacromolecules doi: 10.1021/bm015533u – volume: 14 start-page: 1005 year: 2003 ident: 10.1016/j.biomaterials.2008.05.014_bib31 article-title: Characterization of PC12 cell proliferation and differentiation-stimulated by ECM adhesion proteins and neurotrophic factors publication-title: J Mater Sci Mater Med doi: 10.1023/A:1026363018805 – volume: 26 start-page: 7606 year: 2005 ident: 10.1016/j.biomaterials.2008.05.014_bib11 article-title: Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.05.049 – volume: 15 start-page: 1483 year: 2004 ident: 10.1016/j.biomaterials.2008.05.014_bib34 article-title: Characterization of neural stem cells on electrospun poly(l-lactic acid) nanofibrous scaffold publication-title: J Biomater Sci Polym Ed doi: 10.1163/1568562042459733 – volume: 18 start-page: 241 year: 2007 ident: 10.1016/j.biomaterials.2008.05.014_bib2 article-title: Nanostructured materials for applications in drug delivery and tissue engineering publication-title: J Biomater Sci Polym Ed doi: 10.1163/156856207779996931 – volume: 2 start-page: 139 year: 2006 ident: 10.1016/j.biomaterials.2008.05.014_bib23 article-title: Early events of peripheral nerve regeneration publication-title: Neuron Glia Biol doi: 10.1017/S1740925X05000347 – volume: 7 start-page: 2122 year: 2007 ident: 10.1016/j.biomaterials.2008.05.014_bib35 article-title: Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance publication-title: Nano Letters doi: 10.1021/nl071182z – volume: 274 start-page: 1123 year: 1996 ident: 10.1016/j.biomaterials.2008.05.014_bib20 article-title: The molecular biology of axon guidance publication-title: Science doi: 10.1126/science.274.5290.1123 – volume: 41 start-page: 278 year: 1998 ident: 10.1016/j.biomaterials.2008.05.014_bib39 article-title: Modification of glassy carbon surfaces with synthetic laminin-derived peptides for nerve cell attachment and neurite growth publication-title: J Biomed Mater Res doi: 10.1002/(SICI)1097-4636(199808)41:2<278::AID-JBM13>3.0.CO;2-H – volume: 19 start-page: 1945 year: 1998 ident: 10.1016/j.biomaterials.2008.05.014_bib13 article-title: Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration publication-title: Biomaterials doi: 10.1016/S0142-9612(98)00099-4 – volume: 20 start-page: 1109 year: 1999 ident: 10.1016/j.biomaterials.2008.05.014_bib14 article-title: In vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00010-1 – volume: 28 start-page: 3012 year: 2007 ident: 10.1016/j.biomaterials.2008.05.014_bib36 article-title: Guidance of glial cell. Migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.03.009 – volume: 3 start-page: 249 year: 2004 ident: 10.1016/j.biomaterials.2008.05.014_bib37 article-title: A photolabile hydrogel for guided three-dimensional cell growth and migration publication-title: Nature Mater doi: 10.1038/nmat1092 – volume: 26 start-page: 2603 year: 2005 ident: 10.1016/j.biomaterials.2008.05.014_bib7 article-title: Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.06.051 – volume: 51 start-page: 625 year: 2000 ident: 10.1016/j.biomaterials.2008.05.014_bib17 article-title: Laminin-coated poly(l-lactide) filaments induce robust neurite growth while providing directional orientation publication-title: J Biomed Mater Res doi: 10.1002/1097-4636(20000915)51:4<625::AID-JBM10>3.0.CO;2-U – volume: 11 start-page: 869 year: 2000 ident: 10.1016/j.biomaterials.2008.05.014_bib15 article-title: Clinical long-term in vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration publication-title: J Biomater Sci Polym Ed doi: 10.1163/156856200744066 – volume: 72 start-page: 227 year: 2003 ident: 10.1016/j.biomaterials.2008.05.014_bib16 article-title: Poly(l-lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions publication-title: J Neurosci Res doi: 10.1002/jnr.10570 – volume: 11 start-page: 1574 year: 2005 ident: 10.1016/j.biomaterials.2008.05.014_bib5 article-title: Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering publication-title: Tissue Eng doi: 10.1089/ten.2005.11.1574 – volume: 68A start-page: 286 year: 2004 ident: 10.1016/j.biomaterials.2008.05.014_bib12 article-title: Peripheral nerve regeneration by microbraided poly(l-lactide-co-glycolide) biodegradable polymer fibers publication-title: J Biomed Mater Res Part A doi: 10.1002/jbm.a.20050 – volume: 149 start-page: 243 year: 1998 ident: 10.1016/j.biomaterials.2008.05.014_bib29 article-title: Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair publication-title: Exp Neurol doi: 10.1006/exnr.1997.6650 – volume: 11 start-page: 1085 year: 2005 ident: 10.1016/j.biomaterials.2008.05.014_bib19 article-title: Directional neurite outgrowth is enhanced by engineered meningeal cell-coated substrates publication-title: Tissue Eng doi: 10.1089/ten.2005.11.1085 – volume: 254 start-page: 9933 year: 1979 ident: 10.1016/j.biomaterials.2008.05.014_bib21 article-title: Laminin – a glycoprotein from basement membranes publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)83607-4 – volume: 1 start-page: R45 year: 2006 ident: 10.1016/j.biomaterials.2008.05.014_bib33 article-title: Biomimetic electrospun nanofibers for tissue regeneration publication-title: Biomed Mater doi: 10.1088/1748-6041/1/3/R01 – volume: 12 start-page: 3265 year: 2006 ident: 10.1016/j.biomaterials.2008.05.014_bib1 article-title: Tissue engineering and developmental biology: going biomimetic publication-title: Tissue Eng doi: 10.1089/ten.2006.12.3265 – volume: 185 start-page: 215 year: 1997 ident: 10.1016/j.biomaterials.2008.05.014_bib25 article-title: Division of labor of Schwann cell integrins during migration on peripheral nerve extracellular matrix ligands publication-title: Developmental Biol doi: 10.1006/dbio.1997.8547 – volume: 5 start-page: 291 year: 1999 ident: 10.1016/j.biomaterials.2008.05.014_bib27 article-title: A laminin and nerve growth factor-laden three-dimensional scaffold for enhanced neurite extension publication-title: Tissue Engin doi: 10.1089/ten.1999.5.291  | 
    
| SSID | ssj0014042 | 
    
| Score | 2.4822383 | 
    
| Snippet | Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue. Scaffolds that... Abstract Cell interactions with scaffolds are important for cell and tissue development in the process of repairing and regeneration of damaged tissue....  | 
    
| SourceID | unpaywall proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 3574 | 
    
| SubjectTerms | Advanced Basic Science Animals Biocompatible Materials - chemistry Dentistry Electrospinning Extracellular Matrix - chemistry Lactic Acid - chemistry Laminin Laminin - metabolism Materials Testing Nanofibers Nanostructures Nanotechnology - instrumentation Nanotechnology - methods Nerve regeneration Neurite Neurites - physiology Polymers - chemistry Rats Surface Properties Tissue engineering Tissue Engineering - instrumentation Tissue Engineering - methods Tissue Scaffolds  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDbTNoY-0TbdPH3r1xg_JD0oPoSSEQkMLWUhPQtZjQ2PkJbYp7a_vTGRvF9KFba9Gg7A1mvnG-vQNwDuW60TrxIYmj6qQaaZCabI4JJ0XXZqU0hSxLc6y0zn7dMEvdmBsgjhUdJV0VzPXeyXBdnHoFQdwh2N6POQkMXcHdjOO6HsCu_OzL0ffPFMxCcvMH3AWWBzxMuKjzugNpYtutMvOr-xAoyTRTrYpJ93GnHtwr3dL-fOHrOu1PHTyEL6Ot3k8_eRq1nfVTP26Le649Ss-ggcDKA2OvBc9hh3j9mFvTapwH-5-Hg7hn8D82F2Sr9B_xaCxAUliInANmr5bYFHfXQZEpl8ETrom9Pq0_bXRQauktU2t20A1_bLGJ_QTOECXpCYVT-H85Pj842k4dGcIFRY9XagjqwuLCECzyuK2lrmOmbK55JpggyzTyjKbW4QgqiwKnSQ2KxmiMxmnzBTpM5i4xpnnEDCFNWiWFKrUFePcFFYWueElrzD-4ARTKMflEWpQLqcGGrUYKWrfxfrSDq01ucClnUK6sl16_Y6trN6PXiDGG6oYUwWmma2s879Zm3YID62IRZuI6IZZl5DHEmxP8yiawoeV5YCAPLLZeua3o8sKDBN09iOdaXoaRHoBcbl5REpKiwhaNo-grplxlPIpHPjd8OeLIuhLESlPga22xz987hf_Z_YS7o_snSh-BRN0aPMaIWJXvRmiwm-DT2cd priority: 102 providerName: Unpaywall  | 
    
| Title | Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961208003700 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961208003700 https://dx.doi.org/10.1016/j.biomaterials.2008.05.014 https://www.ncbi.nlm.nih.gov/pubmed/18533251 https://www.proquest.com/docview/20828619 https://www.proquest.com/docview/33899001 https://www.proquest.com/docview/69301035 http://scholarbank.nus.edu.sg/handle/10635/51403  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014042 issn: 1878-5905 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014042 issn: 1878-5905 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014042 issn: 1878-5905 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-5905 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014042 issn: 1878-5905 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrQT0gKA8Gh7FB65h83A2sRCHVdVqAbHi0JXKyXJiuy2KklWTCHHhtzOzcZZFZaVFnCJFHjnxjGc-2-NvAN7wVEdaR9Y3aZD7XPPCV2YS-sTzooWJKUxRtsV8MlvwjxfJxR6cDHdhKK3S-f7ep6-8tXszdqM5Xl5fjyktKRIYoAnzxGmA6_Z9jD9ZNoL96YdPs_n6MIEHqxo61N4ngYF7dJXmRbfcVdtr26VWEpEn3xanbuPQA7jXVUv147sqy43YdPYQHjhQyab9dz-CPVMdwsEG1eAh3P3sDtEfw-K0uiJd074gqy0jSksEnqzu2ktclLdXjJLhL1mlqtrv-WW7G6NZUyhr61I3rKi7ZYlvaBOXoUlRkYkncH52en4y8111Bb_ARUvr68DqzGIE1zy3OC1VqkNe2FQlmsK-EnFuuU0tQohCZJmOIjsRHNGVCmNusvgpjKq6MkfAeIFryEmUFULnPElMZlWWmkQkOfoP7MADMQylLBzzOBXAKOWQYvZNbqrBlcZMJKrBg3gtu-z5N3aSejdoTA43TNEnSgwTO0mnf5M2jZvejQxlE8lA3jJBD96vJf-w4p17fj2Yl8RpTmc3qjJ1R43ovn8otreIiSkRrX17C6p6GQZx4sGz3nJ_jyiCthiRrgd8bcr_MNzP__O3X8D9IQ0nCF_CCC3bvEKs1-bHcOftz_DYzWh8LuZfpl9_ARHMWAU | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRaL0gKC8wqs-cDWbOM4mEeKAqlYLtD1tpd4sJ7b7UJSsSCLEhd_OzMZZFpWVFnG1PEriGc_D-fwNwDuZGmGMcNymYcGlkSXXdhpx4nkxuY0pTBHa4nw6u5BfLpPLHTga78IQrNL7_sGnL721H5n41Zwsbm4mBEsSOQZoynniNMS6_Z5MREoV2PufK5wH0ceIAccoOE0fmUeXIC-64667QdceWEk0nnJTlLqbhe7DXl8v9I_vuqrWItPJI3joU0r2aXjrx7Bj6wPYXyMaPID7Z_4X-hO4OK6vSdN0Ksgax4jQEtNO1vTdFZbk3TUjKPwVq3Xd8IFdtv9mDWtL7VxTmZaVTb-ocISOcBkaFLWYeArzk-P50Yz73gq8xJKl4yZ0JnMYv40sHG5KnZpIli7ViaGgr_O4cNKlDhOIMs8yI4Sb5hJzKx3F0mbxM9itm9q-ACZLrCCnIitzU8gksZnTWWqTPCnQe-ADAsjHpVSl5x2n9heVGgFmt2pdDb4xZqJQDQHEK9nFwL6xldSHUWNqvF-KHlFhkNhKOv2btG395m5VpFqhQnXHAAP4uJL8w4a3fvLhaF4KNzn9udG1bXqaRLf9o3zzjJh4EtHaN8-gnpdRGCcBPB8s9_eKYsoWY54bgFyZ8j8s98v__OxD2JvNz07V6efzr6_gwQjICaPXsItWbt9g1tcVb5e7-hdFAFcd | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDbTNoY-0TbdPH3r1xg_JD0oPoSSEQkMLWUhPQtZjQ2PkJbYp7a_vTGRvF9KFba9Gg7A1mvnG-vQNwDuW60TrxIYmj6qQaaZCabI4JJ0XXZqU0hSxLc6y0zn7dMEvdmBsgjhUdJV0VzPXeyXBdnHoFQdwh2N6POQkMXcHdjOO6HsCu_OzL0ffPFMxCcvMH3AWWBzxMuKjzugNpYtutMvOr-xAoyTRTrYpJ93GnHtwr3dL-fOHrOu1PHTyEL6Ot3k8_eRq1nfVTP26Le649Ss-ggcDKA2OvBc9hh3j9mFvTapwH-5-Hg7hn8D82F2Sr9B_xaCxAUliInANmr5bYFHfXQZEpl8ETrom9Pq0_bXRQauktU2t20A1_bLGJ_QTOECXpCYVT-H85Pj842k4dGcIFRY9XagjqwuLCECzyuK2lrmOmbK55JpggyzTyjKbW4QgqiwKnSQ2KxmiMxmnzBTpM5i4xpnnEDCFNWiWFKrUFePcFFYWueElrzD-4ARTKMflEWpQLqcGGrUYKWrfxfrSDq01ucClnUK6sl16_Y6trN6PXiDGG6oYUwWmma2s879Zm3YID62IRZuI6IZZl5DHEmxP8yiawoeV5YCAPLLZeua3o8sKDBN09iOdaXoaRHoBcbl5REpKiwhaNo-grplxlPIpHPjd8OeLIuhLESlPga22xz987hf_Z_YS7o_snSh-BRN0aPMaIWJXvRmiwm-DT2cd | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+neurite+outgrowth+using+nano-structured+scaffolds+coupled+with+laminin&rft.jtitle=Biomaterials&rft.au=Koh%2C+H.S.&rft.au=Yong%2C+Thomas&rft.au=Chan%2C+C.K.&rft.au=Ramakrishna%2C+S.&rft.date=2008-09-01&rft.issn=0142-9612&rft.volume=29&rft.issue=26&rft.spage=3574&rft.epage=3582&rft_id=info:doi/10.1016%2Fj.biomaterials.2008.05.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biomaterials_2008_05_014 | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961208X00171%2Fcov150h.gif |