Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature
We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular...
Saved in:
| Published in | Mathematics of operations research Vol. 42; no. 4; pp. 1197 - 1218 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Linthicum
INFORMS
01.11.2017
Institute for Operations Research and the Management Sciences |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0364-765X 1526-5471 1526-5471 |
| DOI | 10.1287/moor.2016.0842 |
Cover
| Abstract | We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to
maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature
c
. Intuitively, the parameter
c
represents how nonlinear a function
f
is: when
c
= 0,
f
is linear, while for
c
= 1,
f
may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature
c
, we obtain a (1 −
c/e
)-approximation—the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint.
Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a nonnegative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint.
We define an extension of the notion of curvature to general monotone set functions and show a (1 −
c
)-approximation for maximization and a 1/(1 −
c
)-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem. |
|---|---|
| AbstractList | We design new approximation algorithms for the problems of optimizing sub-modular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 - c/e-approximation--the first improvement over the greedy algorithm of of Conforti and Cornuejols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a non-negative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 - c)-approximation for maximization and a 1/(1 - c)-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem. Funding: Justin Ward was supported by ERC Starting Grant [335288-OptApprox] and EPSRC [Grant EP/J021814/1]. Keywords: submodular maximization * supermodular minimization * curvature * matroids * continuous greedy * local search * column-subset selection * maximum entropy sampling We design new approximation algorithms for the problems of optimizing sub-modular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 - c/e-approximation--the first improvement over the greedy algorithm of of Conforti and Cornuejols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 - c/e)-approximation--the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a nonnegative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 - c)-approximation for maximization and a 1/(1 - c)-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem. We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 - c/e)-approximation—the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a non-negative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 - c)-approximation for maximization and a 1/(1 - c)-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem. We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c . Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c , we obtain a (1 − c/e )-approximation—the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a nonnegative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 − c )-approximation for maximization and a 1/(1 − c )-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem. We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 − c/e)-approximation—the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a nonnegative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 − c)-approximation for maximization and a 1/(1 − c)-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem. |
| Audience | Academic |
| Author | Vondrák, Jan Sviridenko, Maxim Ward, Justin |
| Author_xml | – sequence: 1 givenname: Maxim surname: Sviridenko fullname: Sviridenko, Maxim – sequence: 2 givenname: Jan surname: Vondrák fullname: Vondrák, Jan – sequence: 3 givenname: Justin surname: Ward fullname: Ward, Justin |
| BookMark | eNqFkV1rFDEUhoNUcFu99U4YEAShs01mkuzM5bpYLRQKVkGvQiaTbLPMJGM-bOuvN9Ox1JEtJZCPk-c9yXnPITgw1kgAXiO4REW1OumtdcsCIrqEFS6egQUiBc0JXqEDsIAlxfmKku8vwKH3OwgRWSG8AD8uhqB73mXrYXD2Jm2DtiZT1mWXseltGzvuMm7adBykuw_cqfTvCb7W4Sr7YKNpZZttovvFQ3TyJXiueOflq7_rEfh2-vHr5nN-fvHpbLM-zwWFNOSiERQ1hRISC05U2cIaFUo1RDZVXRNZVgqXRFFYFhSTpuVVUcJKVKoVdYMaUh6BkylvNAO_veZdxwaX6nC3DEE2OsNGZ9joDBudSYq3kyJV_DNKH9jORmfSJxNESoxweuOB2vJOMm2UDY6LXnvB1gRRjFMqmKh8D7WVRjrepf4oncIzfrmHT6OVvRZ7Be9mgsQEeRO2PHrP5uD7x8Gzyy9z9vgftoleG-nT5PX2KvhJMsPxhAtnvXdSMaHDXe_T53X3uM_L_2RPNubNJNj5kC7uaUxSR-q6ejB79M31_ql8fwC03_XT |
| CitedBy_id | crossref_primary_10_1002_cpe_6575 crossref_primary_10_1007_s40305_023_00475_3 crossref_primary_10_1109_LRA_2019_2925301 crossref_primary_10_1109_TKDE_2020_3016293 crossref_primary_10_1109_TRO_2021_3082212 crossref_primary_10_1109_TAC_2020_2980924 crossref_primary_10_1109_TNSE_2018_2805768 crossref_primary_10_1007_s10898_021_01063_6 crossref_primary_10_1016_j_tcs_2021_08_012 crossref_primary_10_1109_TSP_2025_3549301 crossref_primary_10_1007_s10878_021_00827_w crossref_primary_10_1007_s10898_025_01473_w crossref_primary_10_1017_S0960129521000372 crossref_primary_10_1007_s11432_020_3420_9 crossref_primary_10_1007_s10878_023_01035_4 crossref_primary_10_1007_s10878_024_01240_9 crossref_primary_10_1287_opre_2022_2370 crossref_primary_10_1016_j_ejor_2024_12_027 crossref_primary_10_1109_TRO_2021_3082021 crossref_primary_10_1007_s40305_022_00393_w crossref_primary_10_1109_TNET_2021_3102518 crossref_primary_10_1016_j_jebo_2022_03_024 crossref_primary_10_1016_j_peva_2020_102138 crossref_primary_10_1016_j_tcs_2024_114798 crossref_primary_10_1007_s10107_021_01677_4 crossref_primary_10_1287_moor_2018_0982 crossref_primary_10_1007_s11222_023_10280_w crossref_primary_10_1016_j_engappai_2023_106624 crossref_primary_10_1007_s10898_021_01123_x crossref_primary_10_1007_s00453_020_00757_9 crossref_primary_10_1007_s10878_023_01026_5 crossref_primary_10_1016_j_fmre_2023_04_001 crossref_primary_10_1109_TAC_2020_3046222 crossref_primary_10_1287_opre_2023_2468 crossref_primary_10_1109_TAC_2020_2997661 crossref_primary_10_1109_TAC_2020_3044284 crossref_primary_10_1109_TPWRS_2023_3290000 crossref_primary_10_1109_TRO_2022_3233341 crossref_primary_10_1007_s10878_022_00914_6 crossref_primary_10_1007_s10878_020_00620_1 crossref_primary_10_1109_TAC_2024_3375252 crossref_primary_10_1016_j_tcs_2024_114409 crossref_primary_10_1080_02331934_2023_2173968 crossref_primary_10_14778_3467861_3467866 crossref_primary_10_1109_TAC_2021_3052497 crossref_primary_10_1287_moor_2022_1271 crossref_primary_10_1016_j_cor_2021_105265 crossref_primary_10_1109_LRA_2023_3248372 crossref_primary_10_1287_mnsc_2020_3585 crossref_primary_10_2139_ssrn_3613755 crossref_primary_10_26599_TST_2022_9010068 crossref_primary_10_2139_ssrn_3542382 crossref_primary_10_1109_ACCESS_2023_3317691 crossref_primary_10_1007_s00453_023_01183_3 crossref_primary_10_1007_s10107_024_02116_w crossref_primary_10_2139_ssrn_3943667 crossref_primary_10_1007_s40305_023_00525_w crossref_primary_10_1007_s11590_023_01979_w crossref_primary_10_1109_TII_2022_3202917 crossref_primary_10_1007_s10878_024_01224_9 crossref_primary_10_1007_s10878_024_01226_7 crossref_primary_10_1007_s10878_021_00717_1 crossref_primary_10_1007_s10898_021_01014_1 crossref_primary_10_1016_j_ifacol_2022_07_626 crossref_primary_10_1287_opre_2022_2398 crossref_primary_10_26599_TST_2023_9010026 crossref_primary_10_1007_s10898_024_01371_7 crossref_primary_10_26599_TST_2023_9010107 crossref_primary_10_1007_s11280_020_00841_8 crossref_primary_10_1016_j_dam_2024_09_022 crossref_primary_10_1016_j_tcs_2020_12_002 crossref_primary_10_1177_09622802231202379 crossref_primary_10_1016_j_orl_2021_09_006 crossref_primary_10_1007_s10898_024_01406_z crossref_primary_10_1109_TSP_2022_3173726 crossref_primary_10_1007_s10898_021_01103_1 |
| Cites_doi | 10.1002/0471722154 10.1145/1374376.1374389 10.1007/BF01584082 10.1007/BFb0121195 10.1007/978-3-540-72792-7_15 10.1007/BF01588971 10.1016/j.tcs.2009.06.018 10.1145/1386790.1386805 10.1109/FOCS.2011.46 10.1145/1989734.1989736 10.1109/FOCS.2010.60 10.1016/0012-365X(83)90011-0 10.1287/opre.43.4.684 10.1017/S000497270004140X 10.1016/S0166-218X(00)00366-8 10.1016/j.geb.2005.02.006 10.1109/FOCS.2009.81 10.1137/130920277 10.1137/1.9781611973082.82 10.1145/2746539.2746628 10.1007/11830924_28 10.1287/moor.3.3.177 10.1145/1127777.1127782 10.1137/080733991 10.1109/FOCS.2010.38 10.1023/B:JOCO.0000038913.96607.c2 10.1137/1.9781611973730.23 10.1137/S0097539793250767 10.1016/0166-218X(84)90003-9 10.1145/1109557.1109675 10.1137/12086755X 10.1145/285055.285059 10.1145/1060590.1060681 10.1145/956750.956769 |
| ContentType | Journal Article |
| Copyright | Copyright 2017, Institute for Operations Research and the Management Sciences COPYRIGHT 2017 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Nov 2017 |
| Copyright_xml | – notice: Copyright 2017, Institute for Operations Research and the Management Sciences – notice: COPYRIGHT 2017 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Nov 2017 |
| DBID | AAYXX CITATION N95 ISR JQ2 ADTOC UNPAY |
| DOI | 10.1287/moor.2016.0842 |
| DatabaseName | CrossRef Gale Business: Insights Gale In Context: Science ProQuest Computer Science Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1526-5471 |
| EndPage | 1218 |
| ExternalDocumentID | oai:infoscience.epfl.ch:230096 A516448420 10_1287_moor_2016_0842 45148998 moor.2016.0842 |
| Genre | Research Article |
| GeographicLocations | New York |
| GeographicLocations_xml | – name: New York |
| GroupedDBID | 08R 1AW 1OL 29M 3V. 4.4 4S 5GY 7WY 85S 8AL 8AO 8FE 8FG 8FL 8G5 8H 8VB AAKYL AAPBV ABBHK ABEFU ABFLS ABJCF ABPPZ ABUWG ACIWK ACNCT ACYGS ADCOW ADGDI ADMHP ADODI AEILP AELPN AENEX AEUPB AFKRA AFXKK AKVCP ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BDTQF BENPR BES BEZIV BGLVJ BHOJU BKOMP BPHCQ CBXGM CHNMF CS3 CWXUR CZBKB DQDLB DSRWC DWQXO EBA EBE EBO EBR EBS EBU ECEWR ECR ECS EDO EFSUC EJD EMK EPL F20 FEDTE FRNLG GIFXF GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HECYW HGD HQ6 HVGLF H~9 IAO ICW IEA IGG IOF ISR ITC JAA JBU JMS JPL JSODD JST K6 K60 K6V K7- L6V M0C M0N M2O M7S MBDVC MV1 N95 NIEAY P-O P2P P62 PADUT PQEST PQQKQ PQUKI PRG PRINS PROAC PTHSS QWB RNS RPU RXW SA0 TAE TH9 TN5 TUS U5U WH7 X XFK XHC XI7 Y99 ZL0 ZY4 -~X .DC 18M 2AX AAOAC AAWIL AAWTO ABAWQ ABDNZ ABFAN ABKVW ABQDR ABXSQ ABYRZ ABYWD ABYYQ ACDIW ACGFO ACHJO ACMTB ACTMH ACUHF ACVFL ACXJH AEGXH AELLO AEMOZ AFVYC AGLNM AHAJD AHQJS AIAGR AIHAF AKBRZ ALRMG AMVHM APTMU ASMEE BAAKF IPSME JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ 8H~ AADHG AAYXX ADULT CCPQU CITATION PHGZM PHGZT PQBIZ PQBZA PQGLB PUEGO WHG XOL JQ2 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c606t-cbc61b2fce4ca5f3d0912ffb5eb8995e38f435f6032645bda82308c8fdc9b1b53 |
| IEDL.DBID | UNPAY |
| ISSN | 0364-765X 1526-5471 |
| IngestDate | Sun Oct 26 04:17:04 EDT 2025 Sat Aug 16 08:52:00 EDT 2025 Mon Oct 20 22:34:53 EDT 2025 Thu Jun 12 23:47:49 EDT 2025 Mon Oct 20 16:44:04 EDT 2025 Thu Oct 16 15:52:25 EDT 2025 Thu Oct 16 14:57:35 EDT 2025 Fri May 23 02:12:39 EDT 2025 Thu Apr 24 23:05:39 EDT 2025 Wed Oct 01 02:52:26 EDT 2025 Thu May 29 09:12:51 EDT 2025 Tue Jan 05 23:25:47 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-cbc61b2fce4ca5f3d0912ffb5eb8995e38f435f6032645bda82308c8fdc9b1b53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/230096 |
| PQID | 2053414823 |
| PQPubID | 37790 |
| PageCount | 22 |
| ParticipantIDs | jstor_primary_45148998 gale_businessinsightsgauss_A516448420 gale_infotracgeneralonefile_A516448420 informs_primary_10_1287_moor_2016_0842 gale_infotracacademiconefile_A516448420 gale_incontextgauss_ISR_A516448420 unpaywall_primary_10_1287_moor_2016_0842 gale_infotracmisc_A516448420 crossref_primary_10_1287_moor_2016_0842 crossref_citationtrail_10_1287_moor_2016_0842 gale_incontextgauss__A516448420 proquest_journals_2053414823 |
| ProviderPackageCode | Y99 RPU NIEAY CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Linthicum |
| PublicationPlace_xml | – name: Linthicum |
| PublicationTitle | Mathematics of operations research |
| PublicationYear | 2017 |
| Publisher | INFORMS Institute for Operations Research and the Management Sciences |
| Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
| References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B39 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 Vondrák J (B41) 2010; 23 Krause A (B30) 2009 Schrijver A (B38) 2003 Krause A (B28) 2008; 9 Chekuri C (B10) 2011 Lee J (B31) 2002; 3 Iyer R (B23) 2013 |
| References_xml | – ident: B12 – ident: B9 – ident: B35 – ident: B14 – ident: B10 – ident: B3 – ident: B20 – ident: B41 – ident: B1 – ident: B27 – ident: B7 – ident: B5 – ident: B29 – ident: B25 – ident: B23 – ident: B21 – ident: B18 – ident: B16 – ident: B31 – ident: B33 – ident: B37 – ident: B39 – ident: B8 – ident: B36 – ident: B11 – ident: B13 – ident: B2 – ident: B40 – ident: B26 – ident: B4 – ident: B28 – ident: B6 – ident: B24 – ident: B22 – ident: B17 – ident: B32 – ident: B15 – ident: B30 – ident: B34 – ident: B19 – ident: B38 – ident: B2 doi: 10.1002/0471722154 – ident: B40 doi: 10.1145/1374376.1374389 – volume: 3 start-page: 1229 volume-title: Encyclopedia of Environmetrics year: 2002 ident: B31 – ident: B16 doi: 10.1007/BF01584082 – ident: B20 doi: 10.1007/BFb0121195 – ident: B5 doi: 10.1007/978-3-540-72792-7_15 – ident: B35 doi: 10.1007/BF01588971 – ident: B7 doi: 10.1016/j.tcs.2009.06.018 – ident: B33 doi: 10.1145/1386790.1386805 – ident: B18 doi: 10.1109/FOCS.2011.46 – ident: B27 doi: 10.1145/1989734.1989736 – ident: B8 doi: 10.1109/FOCS.2010.60 – start-page: 2742 volume-title: Advances in Neural Information Processing Systems 26 (NIPS 2013), Lake Tahoe, CA year: 2013 ident: B23 – ident: B24 doi: 10.1016/0012-365X(83)90011-0 – ident: B26 doi: 10.1287/opre.43.4.684 – ident: B4 doi: 10.1017/S000497270004140X – start-page: 783 volume-title: Proc. 43rd ACM Sympos. Theory Comput., STOC ’11 year: 2011 ident: B10 – volume-title: Combinatorial Optimization: Polyhedra and Efficiency year: 2003 ident: B38 – ident: B22 doi: 10.1016/S0166-218X(00)00366-8 – volume: 23 start-page: 253 volume-title: RIMS Kokyuroku Bessatsu year: 2010 ident: B41 – ident: B32 doi: 10.1016/j.geb.2005.02.006 – volume: 9 start-page: 235 year: 2008 ident: B28 publication-title: J. Machine Learn. Res. – ident: B21 doi: 10.1109/FOCS.2009.81 – ident: B19 doi: 10.1137/130920277 – ident: B9 doi: 10.1137/1.9781611973082.82 – ident: B36 doi: 10.1145/2746539.2746628 – ident: B13 doi: 10.1007/11830924_28 – ident: B34 doi: 10.1287/moor.3.3.177 – ident: B29 doi: 10.1145/1127777.1127782 – ident: B6 doi: 10.1137/080733991 – ident: B12 doi: 10.1109/FOCS.2010.38 – ident: B1 doi: 10.1023/B:JOCO.0000038913.96607.c2 – ident: B39 doi: 10.1137/1.9781611973730.23 – ident: B37 doi: 10.1137/S0097539793250767 – ident: B11 doi: 10.1016/0166-218X(84)90003-9 – ident: B14 doi: 10.1145/1109557.1109675 – ident: B3 doi: 10.1137/12086755X – ident: B17 doi: 10.1145/285055.285059 – ident: B15 doi: 10.1145/1060590.1060681 – ident: B25 doi: 10.1145/956750.956769 – start-page: 181 volume-title: Proc. 8th Internat. Conf. Inform. Processing Sensor Networks, IPSN ’09 year: 2009 ident: B30 |
| SSID | ssj0015714 |
| Score | 2.580502 |
| Snippet | We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint.... We design new approximation algorithms for the problems of optimizing sub-modular and supermodular functions subject to a single matroid constraint.... |
| SourceID | unpaywall proquest gale crossref jstor informs |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1197 |
| SubjectTerms | Algorithms Analysis Approximation column-subset selection continuous greedy Curvature Design optimization Greedy algorithms Linear functions local search matroids Maximization Maximum entropy maximum entropy sampling Modifications Operations research Optimization Studies submodular maximization supermodular minimization |
| Title | Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature |
| URI | https://www.jstor.org/stable/45148998 https://www.proquest.com/docview/2053414823 http://infoscience.epfl.ch/record/230096 |
| UnpaywallVersion | submittedVersion |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1526-5471 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015714 issn: 1526-5471 databaseCode: AMVHM dateStart: 19760201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5BK349MChMFMaIELC9pDSOnaaPZWIqSB0IKOqeItuxB6JNq6URP_567hKnLGKovERK9CWRffblO-f8HcAzHQaWDyTHmaZSnw8GqR-zVPvCGBsHFkdYqcQ0OYnGU_52JmZ_1juoV53rR3ds5z39pa6NhlwZ6fZVaEcCWXcL2tOT96PT6lck9weRmJXSqCzyBTpcp8-I8cDLxXJJwp9B1OvHnDW-P84LX6tESvM6J7HBNm8U2Ur-_C7n8wsfnuOdSgUpL_UKKd_kW69Yq57-9bea49Y23YHbjn16o2q43IUrJuvA9Tr5vQM7dZEHz835Dty6oFh4D07foYtZ0CNIi_zH12rjo4ft8tAFLZYpZbV6MkvxdIVO310o73I7Pj1a-vVeUTknk3pHBS0KF-fmPkyPX386GvuuOoOvMehZ-1rpKFDMasO1FDZMkXkwa5UwCmM4YcLYIhWzUR8JIhcqlfRLL9axTfVQBUqEu9DKlpl5AF5opGU2ZjJiBgO2vgrFUA-54bFFvhoEXfBrmyXaSZdTBY15QiEM2jghGydk44Rs3IWDDX5ViXb8E_mchkDiKn7iIac1kfxMFnmejERA4Stn_S48LXGkmJFRSk4FePPxQwP05DJQA3HgEHaJDdDS7YHAbiAZrgbyRQN5VomQXwbcawDRO-jmc9zg3toTu-XY38A4UmkKxvEF9WRInH_L8TaB9IejSbtwuJkgW17x8P-hj-AmI_5Ubvrcg9b6vDCPkf2t1T60R5PP48m-cwC_ATBEWEo |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5BJ9h4YFA2rTAgQsB4Sdc4dpo-lolpIDEQUKl7imzH3hBtUi2N-PHXc5c4ZRFD5SVSoi-J7LMv3znn7wCe6zCwfCg5zjSV-nw4TP2YpdoXxtg4sDjCKiWm96fRyYS_m4rpn_UO6lXn-tEd21lfXzS10ZArI92-CRuRQNbdgY3J6cfxWf0rkvvDSEwraVQW-QIdrtNnxHjgcJ7nJPwZRP1BzFnr--O88K1apLRochJbbHOzzBby53c5m1358Bxv1ypIRaVXSPkm3_rlUvX1r7_VHNe26R7cdezTG9fD5T7cMFkXbjfJ713Yboo8eG7Od-HOFcXCB3D2AV3MnB5BWuQ_vtYbHz1sl4cuaJ6nlNXqySzF0wU6fXehusvt-PRo6dd7TeWcTOodlbQoXF6aHZgcv_lydOK76gy-xqBn6Wulo0Axqw3XUtgwRebBrFXCKIzhhAlji1TMRgMkiFyoVNIvvVjHNtUjFSgR7kInyzOzB15opGU2ZjJiBgO2gQrFSI-44bFFvhoEPfAbmyXaSZdTBY1ZQiEM2jghGydk44Rs3IODFX5Ri3b8E_mChkDiKn7ioaA1keJclkWRjEVA4Stngx48q3CkmJFRSk4NePv5Uwv09DpQC3HgEDbHBmjp9kBgN5AMVwv5soU8r0XIrwPut4DoHXT7OW5wr-2J3Wrsr2AcqTQF4_iCZjIkzr8VeJtA-sPRpD14tZoga17x8P-hj2CLEX-qNn3uQ2d5WZrHyP6W6omb-L8BdeFWrg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Approximation+for+Submodular+and+Supermodular+Optimization+with+Bounded+Curvature&rft.jtitle=Mathematics+of+operations+research&rft.au=Sviridenko%2C+Maxim&rft.au=Vondrak%2C+Jan&rft.au=Ward%2C+Justin&rft.date=2017-11-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0364-765X&rft.volume=42&rft.issue=4&rft.spage=1197&rft_id=info:doi/10.1287%2Fmoor.2016.0842&rft.externalDBID=ISR&rft.externalDocID=A516448420 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon |