Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature

We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular...

Full description

Saved in:
Bibliographic Details
Published inMathematics of operations research Vol. 42; no. 4; pp. 1197 - 1218
Main Authors Sviridenko, Maxim, Vondrák, Jan, Ward, Justin
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.11.2017
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text
ISSN0364-765X
1526-5471
1526-5471
DOI10.1287/moor.2016.0842

Cover

Abstract We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c . Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c , we obtain a (1 − c/e )-approximation—the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a nonnegative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 − c )-approximation for maximization and a 1/(1 − c )-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem.
AbstractList We design new approximation algorithms for the problems of optimizing sub-modular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 - c/e-approximation--the first improvement over the greedy algorithm of of Conforti and Cornuejols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a non-negative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 - c)-approximation for maximization and a 1/(1 - c)-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem. Funding: Justin Ward was supported by ERC Starting Grant [335288-OptApprox] and EPSRC [Grant EP/J021814/1]. Keywords: submodular maximization * supermodular minimization * curvature * matroids * continuous greedy * local search * column-subset selection * maximum entropy sampling
We design new approximation algorithms for the problems of optimizing sub-modular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 - c/e-approximation--the first improvement over the greedy algorithm of of Conforti and Cornuejols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint.
We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 - c/e)-approximation--the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a nonnegative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 - c)-approximation for maximization and a 1/(1 - c)-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem.
We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 - c/e)-approximation—the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a non-negative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 - c)-approximation for maximization and a 1/(1 - c)-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem.
We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c . Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c , we obtain a (1 − c/e )-approximation—the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a nonnegative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 − c )-approximation for maximization and a 1/(1 − c )-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem.
We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a monotone increasing submodular function or minimize a monotone decreasing supermodular function with a bounded total curvature c. Intuitively, the parameter c represents how nonlinear a function f is: when c = 0, f is linear, while for c = 1, f may be an arbitrary monotone increasing submodular function. For the case of submodular maximization with total curvature c, we obtain a (1 − c/e)-approximation—the first improvement over the greedy algorithm of of Conforti and Cornuéjols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint. Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a nonnegative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove that the approximation results we obtain are the best possible in the value oracle model, even in the case of a cardinality constraint. We define an extension of the notion of curvature to general monotone set functions and show a (1 − c)-approximation for maximization and a 1/(1 − c)-approximation for minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem.
Audience Academic
Author Vondrák, Jan
Sviridenko, Maxim
Ward, Justin
Author_xml – sequence: 1
  givenname: Maxim
  surname: Sviridenko
  fullname: Sviridenko, Maxim
– sequence: 2
  givenname: Jan
  surname: Vondrák
  fullname: Vondrák, Jan
– sequence: 3
  givenname: Justin
  surname: Ward
  fullname: Ward, Justin
BookMark eNqFkV1rFDEUhoNUcFu99U4YEAShs01mkuzM5bpYLRQKVkGvQiaTbLPMJGM-bOuvN9Ox1JEtJZCPk-c9yXnPITgw1kgAXiO4REW1OumtdcsCIrqEFS6egQUiBc0JXqEDsIAlxfmKku8vwKH3OwgRWSG8AD8uhqB73mXrYXD2Jm2DtiZT1mWXseltGzvuMm7adBykuw_cqfTvCb7W4Sr7YKNpZZttovvFQ3TyJXiueOflq7_rEfh2-vHr5nN-fvHpbLM-zwWFNOSiERQ1hRISC05U2cIaFUo1RDZVXRNZVgqXRFFYFhSTpuVVUcJKVKoVdYMaUh6BkylvNAO_veZdxwaX6nC3DEE2OsNGZ9joDBudSYq3kyJV_DNKH9jORmfSJxNESoxweuOB2vJOMm2UDY6LXnvB1gRRjFMqmKh8D7WVRjrepf4oncIzfrmHT6OVvRZ7Be9mgsQEeRO2PHrP5uD7x8Gzyy9z9vgftoleG-nT5PX2KvhJMsPxhAtnvXdSMaHDXe_T53X3uM_L_2RPNubNJNj5kC7uaUxSR-q6ejB79M31_ql8fwC03_XT
CitedBy_id crossref_primary_10_1002_cpe_6575
crossref_primary_10_1007_s40305_023_00475_3
crossref_primary_10_1109_LRA_2019_2925301
crossref_primary_10_1109_TKDE_2020_3016293
crossref_primary_10_1109_TRO_2021_3082212
crossref_primary_10_1109_TAC_2020_2980924
crossref_primary_10_1109_TNSE_2018_2805768
crossref_primary_10_1007_s10898_021_01063_6
crossref_primary_10_1016_j_tcs_2021_08_012
crossref_primary_10_1109_TSP_2025_3549301
crossref_primary_10_1007_s10878_021_00827_w
crossref_primary_10_1007_s10898_025_01473_w
crossref_primary_10_1017_S0960129521000372
crossref_primary_10_1007_s11432_020_3420_9
crossref_primary_10_1007_s10878_023_01035_4
crossref_primary_10_1007_s10878_024_01240_9
crossref_primary_10_1287_opre_2022_2370
crossref_primary_10_1016_j_ejor_2024_12_027
crossref_primary_10_1109_TRO_2021_3082021
crossref_primary_10_1007_s40305_022_00393_w
crossref_primary_10_1109_TNET_2021_3102518
crossref_primary_10_1016_j_jebo_2022_03_024
crossref_primary_10_1016_j_peva_2020_102138
crossref_primary_10_1016_j_tcs_2024_114798
crossref_primary_10_1007_s10107_021_01677_4
crossref_primary_10_1287_moor_2018_0982
crossref_primary_10_1007_s11222_023_10280_w
crossref_primary_10_1016_j_engappai_2023_106624
crossref_primary_10_1007_s10898_021_01123_x
crossref_primary_10_1007_s00453_020_00757_9
crossref_primary_10_1007_s10878_023_01026_5
crossref_primary_10_1016_j_fmre_2023_04_001
crossref_primary_10_1109_TAC_2020_3046222
crossref_primary_10_1287_opre_2023_2468
crossref_primary_10_1109_TAC_2020_2997661
crossref_primary_10_1109_TAC_2020_3044284
crossref_primary_10_1109_TPWRS_2023_3290000
crossref_primary_10_1109_TRO_2022_3233341
crossref_primary_10_1007_s10878_022_00914_6
crossref_primary_10_1007_s10878_020_00620_1
crossref_primary_10_1109_TAC_2024_3375252
crossref_primary_10_1016_j_tcs_2024_114409
crossref_primary_10_1080_02331934_2023_2173968
crossref_primary_10_14778_3467861_3467866
crossref_primary_10_1109_TAC_2021_3052497
crossref_primary_10_1287_moor_2022_1271
crossref_primary_10_1016_j_cor_2021_105265
crossref_primary_10_1109_LRA_2023_3248372
crossref_primary_10_1287_mnsc_2020_3585
crossref_primary_10_2139_ssrn_3613755
crossref_primary_10_26599_TST_2022_9010068
crossref_primary_10_2139_ssrn_3542382
crossref_primary_10_1109_ACCESS_2023_3317691
crossref_primary_10_1007_s00453_023_01183_3
crossref_primary_10_1007_s10107_024_02116_w
crossref_primary_10_2139_ssrn_3943667
crossref_primary_10_1007_s40305_023_00525_w
crossref_primary_10_1007_s11590_023_01979_w
crossref_primary_10_1109_TII_2022_3202917
crossref_primary_10_1007_s10878_024_01224_9
crossref_primary_10_1007_s10878_024_01226_7
crossref_primary_10_1007_s10878_021_00717_1
crossref_primary_10_1007_s10898_021_01014_1
crossref_primary_10_1016_j_ifacol_2022_07_626
crossref_primary_10_1287_opre_2022_2398
crossref_primary_10_26599_TST_2023_9010026
crossref_primary_10_1007_s10898_024_01371_7
crossref_primary_10_26599_TST_2023_9010107
crossref_primary_10_1007_s11280_020_00841_8
crossref_primary_10_1016_j_dam_2024_09_022
crossref_primary_10_1016_j_tcs_2020_12_002
crossref_primary_10_1177_09622802231202379
crossref_primary_10_1016_j_orl_2021_09_006
crossref_primary_10_1007_s10898_024_01406_z
crossref_primary_10_1109_TSP_2022_3173726
crossref_primary_10_1007_s10898_021_01103_1
Cites_doi 10.1002/0471722154
10.1145/1374376.1374389
10.1007/BF01584082
10.1007/BFb0121195
10.1007/978-3-540-72792-7_15
10.1007/BF01588971
10.1016/j.tcs.2009.06.018
10.1145/1386790.1386805
10.1109/FOCS.2011.46
10.1145/1989734.1989736
10.1109/FOCS.2010.60
10.1016/0012-365X(83)90011-0
10.1287/opre.43.4.684
10.1017/S000497270004140X
10.1016/S0166-218X(00)00366-8
10.1016/j.geb.2005.02.006
10.1109/FOCS.2009.81
10.1137/130920277
10.1137/1.9781611973082.82
10.1145/2746539.2746628
10.1007/11830924_28
10.1287/moor.3.3.177
10.1145/1127777.1127782
10.1137/080733991
10.1109/FOCS.2010.38
10.1023/B:JOCO.0000038913.96607.c2
10.1137/1.9781611973730.23
10.1137/S0097539793250767
10.1016/0166-218X(84)90003-9
10.1145/1109557.1109675
10.1137/12086755X
10.1145/285055.285059
10.1145/1060590.1060681
10.1145/956750.956769
ContentType Journal Article
Copyright Copyright 2017, Institute for Operations Research and the Management Sciences
COPYRIGHT 2017 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Nov 2017
Copyright_xml – notice: Copyright 2017, Institute for Operations Research and the Management Sciences
– notice: COPYRIGHT 2017 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Nov 2017
DBID AAYXX
CITATION
N95
ISR
JQ2
ADTOC
UNPAY
DOI 10.1287/moor.2016.0842
DatabaseName CrossRef
Gale Business: Insights
Gale In Context: Science
ProQuest Computer Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection




CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1526-5471
EndPage 1218
ExternalDocumentID oai:infoscience.epfl.ch:230096
A516448420
10_1287_moor_2016_0842
45148998
moor.2016.0842
Genre Research Article
GeographicLocations New York
GeographicLocations_xml – name: New York
GroupedDBID 08R
1AW
1OL
29M
3V.
4.4
4S
5GY
7WY
85S
8AL
8AO
8FE
8FG
8FL
8G5
8H
8VB
AAKYL
AAPBV
ABBHK
ABEFU
ABFLS
ABJCF
ABPPZ
ABUWG
ACIWK
ACNCT
ACYGS
ADCOW
ADGDI
ADMHP
ADODI
AEILP
AELPN
AENEX
AEUPB
AFKRA
AFXKK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BDTQF
BENPR
BES
BEZIV
BGLVJ
BHOJU
BKOMP
BPHCQ
CBXGM
CHNMF
CS3
CWXUR
CZBKB
DQDLB
DSRWC
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECEWR
ECR
ECS
EDO
EFSUC
EJD
EMK
EPL
F20
FEDTE
FRNLG
GIFXF
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HECYW
HGD
HQ6
HVGLF
H~9
IAO
ICW
IEA
IGG
IOF
ISR
ITC
JAA
JBU
JMS
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
M0C
M0N
M2O
M7S
MBDVC
MV1
N95
NIEAY
P-O
P2P
P62
PADUT
PQEST
PQQKQ
PQUKI
PRG
PRINS
PROAC
PTHSS
QWB
RNS
RPU
RXW
SA0
TAE
TH9
TN5
TUS
U5U
WH7
X
XFK
XHC
XI7
Y99
ZL0
ZY4
-~X
.DC
18M
2AX
AAOAC
AAWIL
AAWTO
ABAWQ
ABDNZ
ABFAN
ABKVW
ABQDR
ABXSQ
ABYRZ
ABYWD
ABYYQ
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ACUHF
ACVFL
ACXJH
AEGXH
AELLO
AEMOZ
AFVYC
AGLNM
AHAJD
AHQJS
AIAGR
AIHAF
AKBRZ
ALRMG
AMVHM
APTMU
ASMEE
BAAKF
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
8H~
AADHG
AAYXX
ADULT
CCPQU
CITATION
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PUEGO
WHG
XOL
JQ2
ADTOC
UNPAY
ID FETCH-LOGICAL-c606t-cbc61b2fce4ca5f3d0912ffb5eb8995e38f435f6032645bda82308c8fdc9b1b53
IEDL.DBID UNPAY
ISSN 0364-765X
1526-5471
IngestDate Sun Oct 26 04:17:04 EDT 2025
Sat Aug 16 08:52:00 EDT 2025
Mon Oct 20 22:34:53 EDT 2025
Thu Jun 12 23:47:49 EDT 2025
Mon Oct 20 16:44:04 EDT 2025
Thu Oct 16 15:52:25 EDT 2025
Thu Oct 16 14:57:35 EDT 2025
Fri May 23 02:12:39 EDT 2025
Thu Apr 24 23:05:39 EDT 2025
Wed Oct 01 02:52:26 EDT 2025
Thu May 29 09:12:51 EDT 2025
Tue Jan 05 23:25:47 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-cbc61b2fce4ca5f3d0912ffb5eb8995e38f435f6032645bda82308c8fdc9b1b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/230096
PQID 2053414823
PQPubID 37790
PageCount 22
ParticipantIDs jstor_primary_45148998
gale_businessinsightsgauss_A516448420
gale_infotracgeneralonefile_A516448420
informs_primary_10_1287_moor_2016_0842
gale_infotracacademiconefile_A516448420
gale_incontextgauss_ISR_A516448420
unpaywall_primary_10_1287_moor_2016_0842
gale_infotracmisc_A516448420
crossref_primary_10_1287_moor_2016_0842
crossref_citationtrail_10_1287_moor_2016_0842
gale_incontextgauss__A516448420
proquest_journals_2053414823
ProviderPackageCode Y99
RPU
NIEAY
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Mathematics of operations research
PublicationYear 2017
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
Vondrák J (B41) 2010; 23
Krause A (B30) 2009
Schrijver A (B38) 2003
Krause A (B28) 2008; 9
Chekuri C (B10) 2011
Lee J (B31) 2002; 3
Iyer R (B23) 2013
References_xml – ident: B12
– ident: B9
– ident: B35
– ident: B14
– ident: B10
– ident: B3
– ident: B20
– ident: B41
– ident: B1
– ident: B27
– ident: B7
– ident: B5
– ident: B29
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B31
– ident: B33
– ident: B37
– ident: B39
– ident: B8
– ident: B36
– ident: B11
– ident: B13
– ident: B2
– ident: B40
– ident: B26
– ident: B4
– ident: B28
– ident: B6
– ident: B24
– ident: B22
– ident: B17
– ident: B32
– ident: B15
– ident: B30
– ident: B34
– ident: B19
– ident: B38
– ident: B2
  doi: 10.1002/0471722154
– ident: B40
  doi: 10.1145/1374376.1374389
– volume: 3
  start-page: 1229
  volume-title: Encyclopedia of Environmetrics
  year: 2002
  ident: B31
– ident: B16
  doi: 10.1007/BF01584082
– ident: B20
  doi: 10.1007/BFb0121195
– ident: B5
  doi: 10.1007/978-3-540-72792-7_15
– ident: B35
  doi: 10.1007/BF01588971
– ident: B7
  doi: 10.1016/j.tcs.2009.06.018
– ident: B33
  doi: 10.1145/1386790.1386805
– ident: B18
  doi: 10.1109/FOCS.2011.46
– ident: B27
  doi: 10.1145/1989734.1989736
– ident: B8
  doi: 10.1109/FOCS.2010.60
– start-page: 2742
  volume-title: Advances in Neural Information Processing Systems 26 (NIPS 2013), Lake Tahoe, CA
  year: 2013
  ident: B23
– ident: B24
  doi: 10.1016/0012-365X(83)90011-0
– ident: B26
  doi: 10.1287/opre.43.4.684
– ident: B4
  doi: 10.1017/S000497270004140X
– start-page: 783
  volume-title: Proc. 43rd ACM Sympos. Theory Comput., STOC ’11
  year: 2011
  ident: B10
– volume-title: Combinatorial Optimization: Polyhedra and Efficiency
  year: 2003
  ident: B38
– ident: B22
  doi: 10.1016/S0166-218X(00)00366-8
– volume: 23
  start-page: 253
  volume-title: RIMS Kokyuroku Bessatsu
  year: 2010
  ident: B41
– ident: B32
  doi: 10.1016/j.geb.2005.02.006
– volume: 9
  start-page: 235
  year: 2008
  ident: B28
  publication-title: J. Machine Learn. Res.
– ident: B21
  doi: 10.1109/FOCS.2009.81
– ident: B19
  doi: 10.1137/130920277
– ident: B9
  doi: 10.1137/1.9781611973082.82
– ident: B36
  doi: 10.1145/2746539.2746628
– ident: B13
  doi: 10.1007/11830924_28
– ident: B34
  doi: 10.1287/moor.3.3.177
– ident: B29
  doi: 10.1145/1127777.1127782
– ident: B6
  doi: 10.1137/080733991
– ident: B12
  doi: 10.1109/FOCS.2010.38
– ident: B1
  doi: 10.1023/B:JOCO.0000038913.96607.c2
– ident: B39
  doi: 10.1137/1.9781611973730.23
– ident: B37
  doi: 10.1137/S0097539793250767
– ident: B11
  doi: 10.1016/0166-218X(84)90003-9
– ident: B14
  doi: 10.1145/1109557.1109675
– ident: B3
  doi: 10.1137/12086755X
– ident: B17
  doi: 10.1145/285055.285059
– ident: B15
  doi: 10.1145/1060590.1060681
– ident: B25
  doi: 10.1145/956750.956769
– start-page: 181
  volume-title: Proc. 8th Internat. Conf. Inform. Processing Sensor Networks, IPSN ’09
  year: 2009
  ident: B30
SSID ssj0015714
Score 2.580502
Snippet We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint....
We design new approximation algorithms for the problems of optimizing sub-modular and supermodular functions subject to a single matroid constraint....
SourceID unpaywall
proquest
gale
crossref
jstor
informs
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1197
SubjectTerms Algorithms
Analysis
Approximation
column-subset selection
continuous greedy
Curvature
Design optimization
Greedy algorithms
Linear functions
local search
matroids
Maximization
Maximum entropy
maximum entropy sampling
Modifications
Operations research
Optimization
Studies
submodular maximization
supermodular minimization
Title Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature
URI https://www.jstor.org/stable/45148998
https://www.proquest.com/docview/2053414823
http://infoscience.epfl.ch/record/230096
UnpaywallVersion submittedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1526-5471
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015714
  issn: 1526-5471
  databaseCode: AMVHM
  dateStart: 19760201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5BK349MChMFMaIELC9pDSOnaaPZWIqSB0IKOqeItuxB6JNq6URP_567hKnLGKovERK9CWRffblO-f8HcAzHQaWDyTHmaZSnw8GqR-zVPvCGBsHFkdYqcQ0OYnGU_52JmZ_1juoV53rR3ds5z39pa6NhlwZ6fZVaEcCWXcL2tOT96PT6lck9weRmJXSqCzyBTpcp8-I8cDLxXJJwp9B1OvHnDW-P84LX6tESvM6J7HBNm8U2Ur-_C7n8wsfnuOdSgUpL_UKKd_kW69Yq57-9bea49Y23YHbjn16o2q43IUrJuvA9Tr5vQM7dZEHz835Dty6oFh4D07foYtZ0CNIi_zH12rjo4ft8tAFLZYpZbV6MkvxdIVO310o73I7Pj1a-vVeUTknk3pHBS0KF-fmPkyPX386GvuuOoOvMehZ-1rpKFDMasO1FDZMkXkwa5UwCmM4YcLYIhWzUR8JIhcqlfRLL9axTfVQBUqEu9DKlpl5AF5opGU2ZjJiBgO2vgrFUA-54bFFvhoEXfBrmyXaSZdTBY15QiEM2jghGydk44Rs3IWDDX5ViXb8E_mchkDiKn7iIac1kfxMFnmejERA4Stn_S48LXGkmJFRSk4FePPxQwP05DJQA3HgEHaJDdDS7YHAbiAZrgbyRQN5VomQXwbcawDRO-jmc9zg3toTu-XY38A4UmkKxvEF9WRInH_L8TaB9IejSbtwuJkgW17x8P-hj-AmI_5Ubvrcg9b6vDCPkf2t1T60R5PP48m-cwC_ATBEWEo
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5BJ9h4YFA2rTAgQsB4Sdc4dpo-lolpIDEQUKl7imzH3hBtUi2N-PHXc5c4ZRFD5SVSoi-J7LMv3znn7wCe6zCwfCg5zjSV-nw4TP2YpdoXxtg4sDjCKiWm96fRyYS_m4rpn_UO6lXn-tEd21lfXzS10ZArI92-CRuRQNbdgY3J6cfxWf0rkvvDSEwraVQW-QIdrtNnxHjgcJ7nJPwZRP1BzFnr--O88K1apLRochJbbHOzzBby53c5m1358Bxv1ypIRaVXSPkm3_rlUvX1r7_VHNe26R7cdezTG9fD5T7cMFkXbjfJ713Yboo8eG7Od-HOFcXCB3D2AV3MnB5BWuQ_vtYbHz1sl4cuaJ6nlNXqySzF0wU6fXehusvt-PRo6dd7TeWcTOodlbQoXF6aHZgcv_lydOK76gy-xqBn6Wulo0Axqw3XUtgwRebBrFXCKIzhhAlji1TMRgMkiFyoVNIvvVjHNtUjFSgR7kInyzOzB15opGU2ZjJiBgO2gQrFSI-44bFFvhoEPfAbmyXaSZdTBY1ZQiEM2jghGydk44Rs3IODFX5Ri3b8E_mChkDiKn7ioaA1keJclkWRjEVA4Stngx48q3CkmJFRSk4NePv5Uwv09DpQC3HgEDbHBmjp9kBgN5AMVwv5soU8r0XIrwPut4DoHXT7OW5wr-2J3Wrsr2AcqTQF4_iCZjIkzr8VeJtA-sPRpD14tZoga17x8P-hj2CLEX-qNn3uQ2d5WZrHyP6W6omb-L8BdeFWrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Approximation+for+Submodular+and+Supermodular+Optimization+with+Bounded+Curvature&rft.jtitle=Mathematics+of+operations+research&rft.au=Sviridenko%2C+Maxim&rft.au=Vondrak%2C+Jan&rft.au=Ward%2C+Justin&rft.date=2017-11-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0364-765X&rft.volume=42&rft.issue=4&rft.spage=1197&rft_id=info:doi/10.1287%2Fmoor.2016.0842&rft.externalDBID=ISR&rft.externalDocID=A516448420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon