5G as a wireless power grid
5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges fa...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 636 - 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.01.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-020-79500-x |
Cover
Abstract | 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP). |
---|---|
AbstractList | 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity-in both planar and bent conditions-and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP).5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity-in both planar and bent conditions-and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP). 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP). Abstract 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP). 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP). |
ArticleNumber | 636 |
Author | Tentzeris, Manos M. Hester, Jimmy G. D. Eid, Aline |
Author_xml | – sequence: 1 givenname: Aline surname: Eid fullname: Eid, Aline email: aeid7@gatech.edu organization: School of Electrical and Computer Engineering, Georgia Institute of Technology – sequence: 2 givenname: Jimmy G. D. surname: Hester fullname: Hester, Jimmy G. D. organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atheraxon – sequence: 3 givenname: Manos M. surname: Tentzeris fullname: Tentzeris, Manos M. organization: School of Electrical and Computer Engineering, Georgia Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33436681$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctOHDEQtBAREOAHEikaiUsuk9jt51wiRSghSEi5hLPl8WPj1ex4Y88C-Xu8O4QAB3yx1V1VXe56i_bHNHqE3hH8iWCqPhdGeKdaDLiVHce4vdtDR4AZb4EC7D95H6LTUpa4Hg4dI90BOqSUUSEUOULv-UVjSmOa25j94Etp1unW52aRoztBb4IZij99uI_R9fdvv85_tFc_Ly7Pv161VmAxtcbx4DGA6TDwEHpphAQGou-kU4p0joggqPeSGyDUsp56FQJYz6kU1RI9Rpezrktmqdc5rkz-q5OJeldIeaFNnqIdvBYEB9wrY8EFJqjorLPeOQAicJ0gqtaXWWu96Ve-Nscpm-GZ6PPOGH_rRbrRUmHWsa3AxweBnP5sfJn0Khbrh8GMPm2KBiYlx6AAKvTsBXSZNnmsq9qhcN2HIhX14amjRyv_MqgAmAE2p1KyD48QgvU2az1nrWvWepe1vqsk9YJk42SmmLa_isPrVDpTS50zLnz-b_sV1j3kjbtO |
CitedBy_id | crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1109_TAP_2022_3228708 crossref_primary_10_1088_1361_6528_ac9392 crossref_primary_10_1109_TAP_2023_3313182 crossref_primary_10_1109_JMW_2022_3223254 crossref_primary_10_1109_JMW_2022_3226125 crossref_primary_10_1002_adsr_202200025 crossref_primary_10_1109_TAP_2024_3437218 crossref_primary_10_1038_s41928_022_00898_5 crossref_primary_10_1109_JMW_2021_3110058 crossref_primary_10_1109_JPHOT_2022_3169711 crossref_primary_10_3390_en17051204 crossref_primary_10_1109_LAWP_2024_3387925 crossref_primary_10_1109_MMM_2024_3364572 crossref_primary_10_1016_j_eng_2023_08_010 crossref_primary_10_1109_TMTT_2022_3217073 crossref_primary_10_1109_TMTT_2022_3227925 crossref_primary_10_1109_TMTT_2024_3402067 crossref_primary_10_1109_JPHOT_2021_3079180 crossref_primary_10_1109_TCPMT_2024_3360304 crossref_primary_10_1109_TCSI_2024_3368000 crossref_primary_10_1364_OE_468766 crossref_primary_10_1109_TMTT_2022_3222195 crossref_primary_10_1109_TMTT_2023_3234420 crossref_primary_10_1109_OJAP_2022_3162110 crossref_primary_10_1109_MAP_2022_3208794 crossref_primary_10_1364_OPTCON_463840 crossref_primary_10_1109_ACCESS_2025_3528871 crossref_primary_10_1109_JMW_2023_3255581 crossref_primary_10_1109_JPROC_2021_3125285 crossref_primary_10_3390_sym16101261 crossref_primary_10_1109_JIOT_2023_3301536 crossref_primary_10_1109_JIOT_2021_3107594 crossref_primary_10_1109_LMWC_2022_3212599 |
Cites_doi | 10.1109/APMC.2017.8251447 10.1109/APUSNCURSINRSM.2019.8888600 10.1109/TCSI.2014.2338616 10.1109/CAIS.2019.8769475 10.1109/TAP.2015.2414475 10.1109/TMTT.2017.2666810 10.1109/TMTT.2018.2825374 10.1109/MWSYM.2019.8700750 10.1109/TAP.1963.1138114 10.1109/JPROC.2016.2515122 10.2528/PIERB16082704 10.1109/MWSYM.2019.8700758 10.1109/WPT.2017.7953871 10.1109/MWSYM.2017.8058927 10.1109/TAP.2016.2618479 10.1109/MWSYM.2015.7167129 10.1109/MCOM.2014.6894456 10.1016/j.crhy.2016.12.002 10.1109/TMTT.2017.2660481 10.1049/cp.2018.1010 10.1109/TMTT.2017.2678498 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-020-79500-x |
DatabaseName | SpringerLink Open Access Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_610f0b8ac2df46369cdcedd22160ee76 PMC7804946 33436681 10_1038_s41598_020_79500_x |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c606t-ad5fe022a9025ffb7a672426b97d8819d16f63ee75a213c4b3e8ff2ce53765293 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:10:05 EDT 2025 Thu Aug 21 14:31:58 EDT 2025 Fri Sep 05 14:56:02 EDT 2025 Wed Aug 13 07:17:37 EDT 2025 Mon Jul 21 06:02:10 EDT 2025 Tue Jul 01 01:07:10 EDT 2025 Thu Apr 24 23:44:06 EDT 2025 Fri Feb 21 02:39:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-ad5fe022a9025ffb7a672426b97d8819d16f63ee75a213c4b3e8ff2ce53765293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-020-79500-x |
PMID | 33436681 |
PQID | 2477090281 |
PQPubID | 2041939 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_610f0b8ac2df46369cdcedd22160ee76 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7804946 proquest_miscellaneous_2477502822 proquest_journals_2477090281 pubmed_primary_33436681 crossref_primary_10_1038_s41598_020_79500_x crossref_citationtrail_10_1038_s41598_020_79500_x springer_journals_10_1038_s41598_020_79500_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-12 |
PublicationDateYYYYMMDD | 2021-01-12 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Parks, A. N. & Smith, J. R. Active power summation for efficient multiband RF energy harvesting. In 2015 IEEE MTT-S International Microwave Symposium (IMS) 1–4 (2015). OkbaATakacsAAubertHCharlotSCalmonP-FMultiband rectenna for microwave applicationsC. R. Phys.2017181071172017CRPhy..18..107O1:CAS:528:DC%2BC28XitV2rsLvF10.1016/j.crhy.2016.12.002 Eid, A., Hester, J., Tehrani, B. & Tentzeris, M. Flexible w-band rectifiers for 5g-powered IoT autonomous modules. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting 1163–1164 (2019). HesterJGDTentzerisMMInkjet-printed flexible mm-wave Van-Atta reflectarrays: A solution for ultra-long-range dense multi-tag and multi-sensing chipless RFID implementations for IoT smart skinsIEEE Trans. Microw. Theory Tech.20175713031309 Kuek, J. et al. A compact butler matrix for wireless power transfer to aid electromagnetic energy harvesting for sensors. In 2017 IEEE Asia Pacific Microwave Conference (APMC) 334–336 (2017). SulymanAIRadio propagation path loss models for 5g cellular networks in the 28 GHz and 38 GHz millimeter-wave bandsIEEE Commun. Mag.201452788610.1109/MCOM.2014.6894456 LeeD-JLeeS-JHwangI-JLeeW-SYuJ-WHybrid power combining rectenna array for wide incident angle coverage in RF energy transferIEEE Trans. Microw. Theory Tech.201765340934182017ITMTT..65.3409L10.1109/TMTT.2017.2678498 TekkoukKEttorreMSauleauRSIW rotman lens antenna with ridged delay lines and reduced footprintIEEE Trans. Microw. Theory Tech.201866313631442018ITMTT..66.3136T10.1109/TMTT.2018.2825374 Rahimian, A., Alfadhl, Y. & Alomainy, A. Design and performance of a flexible 60-GHz rotman lens-based array beamformer. In 12th European Conference on Antennas and Propagation (EuCAP 2018) 1–2 (2018). Vo DaiTKKilicOCompact rotman lens structure configurations to support millimeter wave devicesProg. Electromag. Res. B2016719110610.2528/PIERB16082704 Eid, A., Hester, J. & Tentzeris, M. M. A scalable high-gain and large-beamwidth mm-wave harvesting approach for 5g-powered IoT. In 2019 IEEE MTT-S International Microwave Symposium (IMS) 1309–1312 (2019). WangKGuJ-FRenFWuKA multitarget active backscattering 2-d positioning system with superresolution time series post-processing techniqueIEEE Trans. Microw. Theory Tech.201765175117662017ITMTT..65.1751W10.1109/TMTT.2017.2660481 Hassanien, M. A., Hahnel, R. & Plettemeier, D. Wideband rotman lens beamforming technique for 5g wireless applications. In 2019 2nd International Conference on Computer Applications and Information Security (ICCAIS) 1–5 (2019). DarvazehbanAManoochehriOSalariMADehkhodaPTavakoliAUltra-wideband scanning antenna array with rotman lensIEEE Trans. Microw. Theory Tech.201765343534422017ITMTT..65.3435D10.1109/TMTT.2017.2666810 LadanSGuntupalliABWuKA high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmissionIEEE Trans. Circuits Syst. I Regul. Pap.2014613358336610.1109/TCSI.2014.2338616 Gao, H., Leenaerts, D. M. & Baltus, P. A 58-64 GHz transformer-based differential rectifier in 40 nm CMOS with-12 dBm sensitivity for 1 V at 64 GHz. In 2019 IEEE MTT-S International Microwave Symposium (IMS) 1306–1308 (2019). Hester, J. G. & Tentzeris, M. M. A mm-wave ultra-long-range energy-autonomous printed RFID-enabled van-Atta wireless sensor: At the crossroads of 5g and IoT. In 2017 IEEE MTT-S International Microwave Symposium (IMS) 1557–1560 (2017). Bito, J. et al. Millimeter-wave ink-jet printed RF energy harvester for next generation flexible electronics. In 2017 IEEE Wireless Power Transfer Conference (WPTC) 1–4 (2017). RotmanWTurnerRWide-angle microwave lens for line source applicationsIEEE Trans. Antennas Propag.1963116236321963ITAP...11..623R10.1109/TAP.1963.1138114 AttaranARashidzadehRKoukiA60 GHz low phase error rotman lens combined with wideband microstrip antenna array using LTCC technologyIEEE Trans. Antennas Propag.201664517251802016ITAP...64.5172A10.1109/TAP.2016.2618479 JastramNFilipovicDSDesign of a wideband millimeter wave micromachined rotman lensIEEE Trans. Antennas Propag.201563279027962015ITAP...63.2790J335747110.1109/TAP.2015.2414475 RotmanRTurMYaronLTrue time delay in phased arraysProc. IEEE201610450451810.1109/JPROC.2016.2515122 Mercer, D. Global Connected and IoT Device Forecast Update. https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update (2019). BalanisCAAntenna Theory: Analysis and Design2016New YorkWiley 79500_CR5 79500_CR4 CA Balanis (79500_CR12) 2016 79500_CR8 79500_CR20 79500_CR21 79500_CR22 79500_CR1 79500_CR24 79500_CR14 K Wang (79500_CR9) 2017; 65 AI Sulyman (79500_CR23) 2014; 52 JGD Hester (79500_CR2) 2017; 57 A Attaran (79500_CR13) 2016; 64 79500_CR18 TK Vo Dai (79500_CR19) 2016; 71 A Darvazehban (79500_CR17) 2017; 65 W Rotman (79500_CR11) 1963; 11 A Okba (79500_CR7) 2017; 18 R Rotman (79500_CR10) 2016; 104 D-J Lee (79500_CR3) 2017; 65 S Ladan (79500_CR6) 2014; 61 N Jastram (79500_CR16) 2015; 63 K Tekkouk (79500_CR15) 2018; 66 |
References_xml | – reference: Kuek, J. et al. A compact butler matrix for wireless power transfer to aid electromagnetic energy harvesting for sensors. In 2017 IEEE Asia Pacific Microwave Conference (APMC) 334–336 (2017). – reference: Hassanien, M. A., Hahnel, R. & Plettemeier, D. Wideband rotman lens beamforming technique for 5g wireless applications. In 2019 2nd International Conference on Computer Applications and Information Security (ICCAIS) 1–5 (2019). – reference: Mercer, D. Global Connected and IoT Device Forecast Update. https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update (2019). – reference: Bito, J. et al. Millimeter-wave ink-jet printed RF energy harvester for next generation flexible electronics. In 2017 IEEE Wireless Power Transfer Conference (WPTC) 1–4 (2017). – reference: OkbaATakacsAAubertHCharlotSCalmonP-FMultiband rectenna for microwave applicationsC. R. Phys.2017181071172017CRPhy..18..107O1:CAS:528:DC%2BC28XitV2rsLvF10.1016/j.crhy.2016.12.002 – reference: TekkoukKEttorreMSauleauRSIW rotman lens antenna with ridged delay lines and reduced footprintIEEE Trans. Microw. Theory Tech.201866313631442018ITMTT..66.3136T10.1109/TMTT.2018.2825374 – reference: LadanSGuntupalliABWuKA high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmissionIEEE Trans. Circuits Syst. I Regul. Pap.2014613358336610.1109/TCSI.2014.2338616 – reference: HesterJGDTentzerisMMInkjet-printed flexible mm-wave Van-Atta reflectarrays: A solution for ultra-long-range dense multi-tag and multi-sensing chipless RFID implementations for IoT smart skinsIEEE Trans. Microw. Theory Tech.20175713031309 – reference: RotmanWTurnerRWide-angle microwave lens for line source applicationsIEEE Trans. Antennas Propag.1963116236321963ITAP...11..623R10.1109/TAP.1963.1138114 – reference: LeeD-JLeeS-JHwangI-JLeeW-SYuJ-WHybrid power combining rectenna array for wide incident angle coverage in RF energy transferIEEE Trans. Microw. Theory Tech.201765340934182017ITMTT..65.3409L10.1109/TMTT.2017.2678498 – reference: Eid, A., Hester, J. & Tentzeris, M. M. A scalable high-gain and large-beamwidth mm-wave harvesting approach for 5g-powered IoT. In 2019 IEEE MTT-S International Microwave Symposium (IMS) 1309–1312 (2019). – reference: BalanisCAAntenna Theory: Analysis and Design2016New YorkWiley – reference: Rahimian, A., Alfadhl, Y. & Alomainy, A. Design and performance of a flexible 60-GHz rotman lens-based array beamformer. In 12th European Conference on Antennas and Propagation (EuCAP 2018) 1–2 (2018). – reference: WangKGuJ-FRenFWuKA multitarget active backscattering 2-d positioning system with superresolution time series post-processing techniqueIEEE Trans. Microw. Theory Tech.201765175117662017ITMTT..65.1751W10.1109/TMTT.2017.2660481 – reference: SulymanAIRadio propagation path loss models for 5g cellular networks in the 28 GHz and 38 GHz millimeter-wave bandsIEEE Commun. Mag.201452788610.1109/MCOM.2014.6894456 – reference: DarvazehbanAManoochehriOSalariMADehkhodaPTavakoliAUltra-wideband scanning antenna array with rotman lensIEEE Trans. Microw. Theory Tech.201765343534422017ITMTT..65.3435D10.1109/TMTT.2017.2666810 – reference: Hester, J. G. & Tentzeris, M. M. A mm-wave ultra-long-range energy-autonomous printed RFID-enabled van-Atta wireless sensor: At the crossroads of 5g and IoT. In 2017 IEEE MTT-S International Microwave Symposium (IMS) 1557–1560 (2017). – reference: Eid, A., Hester, J., Tehrani, B. & Tentzeris, M. Flexible w-band rectifiers for 5g-powered IoT autonomous modules. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting 1163–1164 (2019). – reference: JastramNFilipovicDSDesign of a wideband millimeter wave micromachined rotman lensIEEE Trans. Antennas Propag.201563279027962015ITAP...63.2790J335747110.1109/TAP.2015.2414475 – reference: RotmanRTurMYaronLTrue time delay in phased arraysProc. IEEE201610450451810.1109/JPROC.2016.2515122 – reference: AttaranARashidzadehRKoukiA60 GHz low phase error rotman lens combined with wideband microstrip antenna array using LTCC technologyIEEE Trans. Antennas Propag.201664517251802016ITAP...64.5172A10.1109/TAP.2016.2618479 – reference: Gao, H., Leenaerts, D. M. & Baltus, P. A 58-64 GHz transformer-based differential rectifier in 40 nm CMOS with-12 dBm sensitivity for 1 V at 64 GHz. In 2019 IEEE MTT-S International Microwave Symposium (IMS) 1306–1308 (2019). – reference: Parks, A. N. & Smith, J. R. Active power summation for efficient multiband RF energy harvesting. In 2015 IEEE MTT-S International Microwave Symposium (IMS) 1–4 (2015). – reference: Vo DaiTKKilicOCompact rotman lens structure configurations to support millimeter wave devicesProg. Electromag. Res. B2016719110610.2528/PIERB16082704 – ident: 79500_CR4 doi: 10.1109/APMC.2017.8251447 – ident: 79500_CR21 doi: 10.1109/APUSNCURSINRSM.2019.8888600 – volume-title: Antenna Theory: Analysis and Design year: 2016 ident: 79500_CR12 – ident: 79500_CR1 – volume: 61 start-page: 3358 year: 2014 ident: 79500_CR6 publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2014.2338616 – ident: 79500_CR14 doi: 10.1109/CAIS.2019.8769475 – volume: 63 start-page: 2790 year: 2015 ident: 79500_CR16 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2015.2414475 – volume: 65 start-page: 3435 year: 2017 ident: 79500_CR17 publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2017.2666810 – volume: 66 start-page: 3136 year: 2018 ident: 79500_CR15 publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2018.2825374 – ident: 79500_CR22 doi: 10.1109/MWSYM.2019.8700750 – volume: 11 start-page: 623 year: 1963 ident: 79500_CR11 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.1963.1138114 – volume: 104 start-page: 504 year: 2016 ident: 79500_CR10 publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2515122 – volume: 71 start-page: 91 year: 2016 ident: 79500_CR19 publication-title: Prog. Electromag. Res. B doi: 10.2528/PIERB16082704 – ident: 79500_CR8 doi: 10.1109/MWSYM.2019.8700758 – ident: 79500_CR5 doi: 10.1109/WPT.2017.7953871 – ident: 79500_CR24 doi: 10.1109/MWSYM.2017.8058927 – volume: 64 start-page: 5172 year: 2016 ident: 79500_CR13 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2016.2618479 – ident: 79500_CR20 doi: 10.1109/MWSYM.2015.7167129 – volume: 57 start-page: 1303 year: 2017 ident: 79500_CR2 publication-title: IEEE Trans. Microw. Theory Tech. – volume: 52 start-page: 78 year: 2014 ident: 79500_CR23 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2014.6894456 – volume: 18 start-page: 107 year: 2017 ident: 79500_CR7 publication-title: C. R. Phys. doi: 10.1016/j.crhy.2016.12.002 – volume: 65 start-page: 1751 year: 2017 ident: 79500_CR9 publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2017.2660481 – ident: 79500_CR18 doi: 10.1049/cp.2018.1010 – volume: 65 start-page: 3409 year: 2017 ident: 79500_CR3 publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2017.2678498 |
SSID | ssj0000529419 |
Score | 2.5675511 |
Snippet | 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power... Abstract 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 636 |
SubjectTerms | 639/166/987 639/4077/4072/4062 Antennas Arrays Design Energy Humanities and Social Sciences Internet of Things Latency multidisciplinary Radio frequency identification Science Science (multidisciplinary) Wave power |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SEHwRa72srbKCbxqa2-byqGJbBH2y0LewuWmhbEvPKdR_35lkz7HH64uvmwSGb5L9JszkG0JemZAzELGhiQVJlVKShugElTEMJjMXVS2i-fRZHx2rjyfDya1WX1gT1uSBG3D7QO-FBTtGkQqKW7mYYk5JCK5ZzqaKbTPHbl2mmqq3cIq7-ZUMk3Z_AUyFr8ngtmTcwBi93mCiKtj_uyjz12LJnzKmlYgOHpD7cwTZv22Wb5M7eXpI7raekt93yO5w2I-LfuxRhPgM_mP9BTZC679enqZH5Pjgw5f3R3TugEAjXCyWdExDycCyIyYDSwlm1AY5NTiTLHB54rpoCTAMo-AyqiCzLUXEjCItAIF8TLam8yk_JT3EOVZFiPdS0YqLYBUvmHJJNjKeg-4IX6Hh4ywPjl0qznxNU0vrG4IeEPQVQX_dkdfrNRdNHOOvs98hyOuZKGxdP4C7_exu_y93d2Rv5SI_n7aFF8oYrC-1vCMv18NwTjD5MU75_KrNGWrRbEeeNI-uLZFSSa1xtdnw9YapmyPT6beqxY36TU6BWW9Wu-KHWX-G4tn_gGKX3BNYYMM45WKPbC0vr_JziJCW4UU9DDc9fgkt priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwRv3u2ygq-aWi-Nsk-iYq1CPpk4d7C5qsWyt55d4X63zuTzW05P_q6SWDymyQzm5n8hpDXxqcEhtjQyLykSilJfegElcG3JrEuqJJE8_WbPjlVX-btvF64rWta5fZMLAd1XAS8Iz8SyhjMIbT83fInxapRGF2tJTRukzscPBEs3WDmZrpjwSiW4l19K8OkPVqDvcI3ZfDPZLqWMXq1Y48Kbf-_fM2_Uyb_iJsWc3T8gNyvfmTzflT8Q3IrDY_I3bGy5K_H5KD93PTrpm-QivgCTrNmieXQmrPVeXxCTo8_ff94QmsdBBrg92JD-9jmBLa2x5Bgzt702qBl9Z2JFix65DprmZJpe8FlUF4mm7MICalaAAL5lOwNiyHtkwa8HasCeH0xa8WFt4pnDLxEGxhPXs8I36LhQiUJx1oVF64Eq6V1I4IOEHQFQXc1I2-mMcuRIuPG3h8Q5Kkn0luXD4vVmau7xYFPl5m3fRAxI6NZFwD4GIXgmsE8QczDrYpc3XNrd71CZuTV1Ay7BUMg_ZAWl2OftqTOzsizUaOTJFIqqTWONju63hF1t2U4_1EYuZHFqVMg1tvtqrgW6_9QPL95FgfknsAEGsYpF4dkb7O6TC_AA9r4l2WZ_wYKNf_I priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_KFcEX8duztazgmwbztUn28RTbclBftNC3sPmqBdkrd1fQ_95J9kNOa8HXzQQmv0kyk53JLwBvtIsRHbEmgTpBpJSCON9wIryrdaSNl6WI5uyzOj2Xy4v6Yg_4eBemFO0XSsuyTY_VYe836GjyZTA87OimppRg3LhvNG6_M9hfLJZfltOflZy7kqwZbshQYW7pvOOFCln_bRHm34WSf2RLixM6fggPhuixWvT6PoK92D2Ge_17kj-fwEF9UrWbqq0yATGOZ1Nd50fQqsv1VXgK58efvn48JcPrB8TjoWJL2lCniB62zYnAlJxulc7-1DU6GPTjgamkRIy6bjkTXjoRTUrcx0zQghCIZzDrVl18ARXGOEZ6jPVCUpJxZyRLOd0SjKcsOjUHNqJh_UANnl-o-G5LiloY2yNoEUFbELQ_5vB26nPdE2PcKf0hgzxJZlLr8mG1vrSDkS1Gcok603oeUuYxazwCHwLnTFEcJ6p5OJrIDittY7nUOteWGjaH11MzrpGc-Gi7uLrpZepSMDuH571FJ02EkEKp3Fvv2HpH1d2W7upb4eHO3E2NRLXejbPit1r_huLl_4kfwH2ey2goI4wfwmy7vomvMA7auqNh4v8CoF3_hQ priority: 102 providerName: Springer Nature |
Title | 5G as a wireless power grid |
URI | https://link.springer.com/article/10.1038/s41598-020-79500-x https://www.ncbi.nlm.nih.gov/pubmed/33436681 https://www.proquest.com/docview/2477090281 https://www.proquest.com/docview/2477502822 https://pubmed.ncbi.nlm.nih.gov/PMC7804946 https://doaj.org/article/610f0b8ac2df46369cdcedd22160ee76 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZpQqGXkvTpJjFb6K1Vu3qspD2U4pikwdBQ2hp8E6tXEjDr1HYg-fcZaXcdnLo99bSgB8x-0uyMdkbfIPROGu_BEEvscsMw55xhY0uKmTWF9HlpeUqi-XYmTsd8NCkmW6grd9QCuNh4tIv1pMbz6ceb37dfQOE_N1fG1acFGKF4UQwOQrIs8hyDT7mT4kUxla919xuub1pyUrZ3ZzZPXbNPicZ_k-_5ZwrlgzhqMk8nu-hp61dmg2Yj7KEtXz9Dj5tKk7fP0X7xNasWWZVFauIpfN2yq1geLTufX7oXaHxy_Gt4itu6CNjCcWOJK1cED7a3iiHCEIyshIyW1pTSKbDwjoggmPeyqChhlhvmVQjU-kjdAhCwl2i7ntX-NcrA-1HcghfoguCEGsVJiIEYp2xOvBE9RDo0tG1Jw2PtiqlOwWumdIOgBgR1QlDf9ND71ZyrhjLjn6OPIsirkZHuOjXM5ue61R4NPl7IjaosdSEynJUWgHeOUiJyeE8Q86BbIt1tIU25lDHrVJEeervqBu2JIZGq9rPrZkyRUml76FWzoitJGONMiDhbrq31mqjrPfXlRWLojqxOJQexPnS74l6sv0Px5n9AsY-e0Jh2kxNM6AHaXs6v_SH4TUvTR4_kRPbRzmAw-jmC59Hx2fcf0DoUw376F9FP6nIHBeEWlw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEG_IEaMvBr9PUNdEn7Rh-7Hb3QdiRMFD4GIMJLyV7ReSkL3j7ojwz_m3OdPdPXJ-8Mbrtk2mM9PObGfmN4S8UcZ7MMSKutQIKqUU1NiSU2FNpnxaWhmTaPaH-eBQfj3KjpbIr64WBtMquzsxXtRuZPGNfJ1LpTCHsGAfxucUu0ZhdLVroVG1rRXcRoQYaws7dv3VT_iFm27sfAZ5v-V8e-vg04C2XQaoBed9RiuXBQ-WrMKAWwhGVblCu2VK5Qqwl47lIRfeq6ziTFhphC9C4NYjEErGEYwJTMCyxAeUHlne3Bp--z5_5cE4mmRlW62TimJ9ChYTq9rgr02VWZrSywWLGBsH_Mvb_Ttp84_IbTSI2yvkfuvJJh8b1XtAlnz9kNxpeltePSKr2ZekmiZVgmDIZ3CfJmNsyJacTE7dY3J4Kzx6Qnr1qPbPSAL-ViEt-J0u5JJxU0gWMPTjCpsyb_I-YR03tG1hyrFbxpmO4XJR6IaDGjioIwf1ZZ-8m68ZNyAdN87eRCbPZyLAdvwwmpzo9rxq8CpDaorKchcQU620wHjnOGd5CvsEMtc6Een21E_1tY72yev5MJxXDMJUtR9dNHOymLzbJ08bic4pEUKKPMfVakHWC6QujtSnPyImOOJIlRLIet9pxTVZ_2fF85t38YrcHRzs7-m9neHuKrnHMZ0nZZTxNdKbTS78C_DHZuZlq_QJOb7tc_YbtyZC2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuqLyXFggSnMDa-JE4OVQIKEtLoeJApb2Z-FUqVdnt7lZt_1p_HTPOo1oevfUa29J4Hp5xZvwNIa-U8R4csaIuNYJKKQU1tuRUWJMpn5ZWxiKab_v5zoH8Ms7GK-SyewuDZZXdmRgPajex-I98yKVSWENYsGFoyyK-b4_eTU8odpDCTGvXTqNRkT1_cQbXt_nW7jbI-jXno08_Pu7QtsMAtRC4L2jlsuDBi1WYbAvBqCpX6LNMqVwBvtKxPOTCe5VVnAkrjfBFCNx6BEHJOAIxwfG_poSU2DZCjVX_fwczaJKV7TudVBTDOfhKfM8G9zVVZmlKz5d8YWwZ8K849-9yzT9yttEVjtbJ3TaGTd43SnePrPj6PrnVdLW8eEA2ss9JNU-qBGGQj-EkTabYii05nB25h-TgRjj0iKzWk9o_IQlEWoW0EHG6kEvGTSFZwKSPK2zKvMkHhHXc0LYFKMc-Gcc6JspFoRsOauCgjhzU5wPypl8zbeA5rp39AZncz0Ro7fhhMjvUraVqiCdDaorKchcQTa20wHjnOGd5CvsEMjc7EenW3uf6SjsH5GU_DJaK6Zeq9pPTZk4Wy3YH5HEj0Z4SIaTIc1ytlmS9ROrySH30K6KBI4JUKYGst51WXJH1f1Y8vX4XL8htsC79dXd_b4Pc4VjHkzLK-CZZXcxO_TMIxBbmedT4hPy8aRP7DdOZQHc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=5G+as+a+wireless+power+grid&rft.jtitle=Scientific+reports&rft.au=Aline+Eid&rft.au=Jimmy+G.+D.+Hester&rft.au=Manos+M.+Tentzeris&rft.date=2021-01-12&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41598-020-79500-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_610f0b8ac2df46369cdcedd22160ee76 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |