5G as a wireless power grid

5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges fa...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 636 - 9
Main Authors Eid, Aline, Hester, Jimmy G. D., Tentzeris, Manos M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.01.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-020-79500-x

Cover

Abstract 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP).
AbstractList 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity-in both planar and bent conditions-and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP).5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity-in both planar and bent conditions-and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP).
5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP).
Abstract 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP).
5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies. However, this potential could only be realized if a fundamental trade-off in wireless energy harvesting could be circumvented. Here, we propose a solution that breaks the usual paradigm, imprisoned in the trade-off between rectenna angular coverage and turn-on sensitivity. The concept relies on the implementation of a Rotman lens between the antennas and the rectifiers. The printed, flexible mm-wave lens allows robust and bending-resilient operation over more than 20 GHz of gain and angular bandwidths. Antenna sub-arrays, rectifiers and DC combiners are then added to the structure to demonstrate its combination of large angular coverage and turn-on sensitivity—in both planar and bent conditions—and a harvesting ability up to a distance of 2.83 m in its current configuration and exceeding 180 m using state-of-the-art rectifiers enabling the harvesting of several μW of DC power (around 6 μW at 180 m with 75 dBm EIRP).
ArticleNumber 636
Author Tentzeris, Manos M.
Hester, Jimmy G. D.
Eid, Aline
Author_xml – sequence: 1
  givenname: Aline
  surname: Eid
  fullname: Eid, Aline
  email: aeid7@gatech.edu
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology
– sequence: 2
  givenname: Jimmy G. D.
  surname: Hester
  fullname: Hester, Jimmy G. D.
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atheraxon
– sequence: 3
  givenname: Manos M.
  surname: Tentzeris
  fullname: Tentzeris, Manos M.
  organization: School of Electrical and Computer Engineering, Georgia Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33436681$$D View this record in MEDLINE/PubMed
BookMark eNp9UctOHDEQtBAREOAHEikaiUsuk9jt51wiRSghSEi5hLPl8WPj1ex4Y88C-Xu8O4QAB3yx1V1VXe56i_bHNHqE3hH8iWCqPhdGeKdaDLiVHce4vdtDR4AZb4EC7D95H6LTUpa4Hg4dI90BOqSUUSEUOULv-UVjSmOa25j94Etp1unW52aRoztBb4IZij99uI_R9fdvv85_tFc_Ly7Pv161VmAxtcbx4DGA6TDwEHpphAQGou-kU4p0joggqPeSGyDUsp56FQJYz6kU1RI9Rpezrktmqdc5rkz-q5OJeldIeaFNnqIdvBYEB9wrY8EFJqjorLPeOQAicJ0gqtaXWWu96Ve-Nscpm-GZ6PPOGH_rRbrRUmHWsa3AxweBnP5sfJn0Khbrh8GMPm2KBiYlx6AAKvTsBXSZNnmsq9qhcN2HIhX14amjRyv_MqgAmAE2p1KyD48QgvU2az1nrWvWepe1vqsk9YJk42SmmLa_isPrVDpTS50zLnz-b_sV1j3kjbtO
CitedBy_id crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_1109_TAP_2022_3228708
crossref_primary_10_1088_1361_6528_ac9392
crossref_primary_10_1109_TAP_2023_3313182
crossref_primary_10_1109_JMW_2022_3223254
crossref_primary_10_1109_JMW_2022_3226125
crossref_primary_10_1002_adsr_202200025
crossref_primary_10_1109_TAP_2024_3437218
crossref_primary_10_1038_s41928_022_00898_5
crossref_primary_10_1109_JMW_2021_3110058
crossref_primary_10_1109_JPHOT_2022_3169711
crossref_primary_10_3390_en17051204
crossref_primary_10_1109_LAWP_2024_3387925
crossref_primary_10_1109_MMM_2024_3364572
crossref_primary_10_1016_j_eng_2023_08_010
crossref_primary_10_1109_TMTT_2022_3217073
crossref_primary_10_1109_TMTT_2022_3227925
crossref_primary_10_1109_TMTT_2024_3402067
crossref_primary_10_1109_JPHOT_2021_3079180
crossref_primary_10_1109_TCPMT_2024_3360304
crossref_primary_10_1109_TCSI_2024_3368000
crossref_primary_10_1364_OE_468766
crossref_primary_10_1109_TMTT_2022_3222195
crossref_primary_10_1109_TMTT_2023_3234420
crossref_primary_10_1109_OJAP_2022_3162110
crossref_primary_10_1109_MAP_2022_3208794
crossref_primary_10_1364_OPTCON_463840
crossref_primary_10_1109_ACCESS_2025_3528871
crossref_primary_10_1109_JMW_2023_3255581
crossref_primary_10_1109_JPROC_2021_3125285
crossref_primary_10_3390_sym16101261
crossref_primary_10_1109_JIOT_2023_3301536
crossref_primary_10_1109_JIOT_2021_3107594
crossref_primary_10_1109_LMWC_2022_3212599
Cites_doi 10.1109/APMC.2017.8251447
10.1109/APUSNCURSINRSM.2019.8888600
10.1109/TCSI.2014.2338616
10.1109/CAIS.2019.8769475
10.1109/TAP.2015.2414475
10.1109/TMTT.2017.2666810
10.1109/TMTT.2018.2825374
10.1109/MWSYM.2019.8700750
10.1109/TAP.1963.1138114
10.1109/JPROC.2016.2515122
10.2528/PIERB16082704
10.1109/MWSYM.2019.8700758
10.1109/WPT.2017.7953871
10.1109/MWSYM.2017.8058927
10.1109/TAP.2016.2618479
10.1109/MWSYM.2015.7167129
10.1109/MCOM.2014.6894456
10.1016/j.crhy.2016.12.002
10.1109/TMTT.2017.2660481
10.1049/cp.2018.1010
10.1109/TMTT.2017.2678498
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-020-79500-x
DatabaseName SpringerLink Open Access Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_610f0b8ac2df46369cdcedd22160ee76
PMC7804946
33436681
10_1038_s41598_020_79500_x
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-ad5fe022a9025ffb7a672426b97d8819d16f63ee75a213c4b3e8ff2ce53765293
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:10:05 EDT 2025
Thu Aug 21 14:31:58 EDT 2025
Fri Sep 05 14:56:02 EDT 2025
Wed Aug 13 07:17:37 EDT 2025
Mon Jul 21 06:02:10 EDT 2025
Tue Jul 01 01:07:10 EDT 2025
Thu Apr 24 23:44:06 EDT 2025
Fri Feb 21 02:39:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-ad5fe022a9025ffb7a672426b97d8819d16f63ee75a213c4b3e8ff2ce53765293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-020-79500-x
PMID 33436681
PQID 2477090281
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_610f0b8ac2df46369cdcedd22160ee76
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7804946
proquest_miscellaneous_2477502822
proquest_journals_2477090281
pubmed_primary_33436681
crossref_primary_10_1038_s41598_020_79500_x
crossref_citationtrail_10_1038_s41598_020_79500_x
springer_journals_10_1038_s41598_020_79500_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-12
PublicationDateYYYYMMDD 2021-01-12
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Parks, A. N. & Smith, J. R. Active power summation for efficient multiband RF energy harvesting. In 2015 IEEE MTT-S International Microwave Symposium (IMS) 1–4 (2015).
OkbaATakacsAAubertHCharlotSCalmonP-FMultiband rectenna for microwave applicationsC. R. Phys.2017181071172017CRPhy..18..107O1:CAS:528:DC%2BC28XitV2rsLvF10.1016/j.crhy.2016.12.002
Eid, A., Hester, J., Tehrani, B. & Tentzeris, M. Flexible w-band rectifiers for 5g-powered IoT autonomous modules. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting 1163–1164 (2019).
HesterJGDTentzerisMMInkjet-printed flexible mm-wave Van-Atta reflectarrays: A solution for ultra-long-range dense multi-tag and multi-sensing chipless RFID implementations for IoT smart skinsIEEE Trans. Microw. Theory Tech.20175713031309
Kuek, J. et al. A compact butler matrix for wireless power transfer to aid electromagnetic energy harvesting for sensors. In 2017 IEEE Asia Pacific Microwave Conference (APMC) 334–336 (2017).
SulymanAIRadio propagation path loss models for 5g cellular networks in the 28 GHz and 38 GHz millimeter-wave bandsIEEE Commun. Mag.201452788610.1109/MCOM.2014.6894456
LeeD-JLeeS-JHwangI-JLeeW-SYuJ-WHybrid power combining rectenna array for wide incident angle coverage in RF energy transferIEEE Trans. Microw. Theory Tech.201765340934182017ITMTT..65.3409L10.1109/TMTT.2017.2678498
TekkoukKEttorreMSauleauRSIW rotman lens antenna with ridged delay lines and reduced footprintIEEE Trans. Microw. Theory Tech.201866313631442018ITMTT..66.3136T10.1109/TMTT.2018.2825374
Rahimian, A., Alfadhl, Y. & Alomainy, A. Design and performance of a flexible 60-GHz rotman lens-based array beamformer. In 12th European Conference on Antennas and Propagation (EuCAP 2018) 1–2 (2018).
Vo DaiTKKilicOCompact rotman lens structure configurations to support millimeter wave devicesProg. Electromag. Res. B2016719110610.2528/PIERB16082704
Eid, A., Hester, J. & Tentzeris, M. M. A scalable high-gain and large-beamwidth mm-wave harvesting approach for 5g-powered IoT. In 2019 IEEE MTT-S International Microwave Symposium (IMS) 1309–1312 (2019).
WangKGuJ-FRenFWuKA multitarget active backscattering 2-d positioning system with superresolution time series post-processing techniqueIEEE Trans. Microw. Theory Tech.201765175117662017ITMTT..65.1751W10.1109/TMTT.2017.2660481
Hassanien, M. A., Hahnel, R. & Plettemeier, D. Wideband rotman lens beamforming technique for 5g wireless applications. In 2019 2nd International Conference on Computer Applications and Information Security (ICCAIS) 1–5 (2019).
DarvazehbanAManoochehriOSalariMADehkhodaPTavakoliAUltra-wideband scanning antenna array with rotman lensIEEE Trans. Microw. Theory Tech.201765343534422017ITMTT..65.3435D10.1109/TMTT.2017.2666810
LadanSGuntupalliABWuKA high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmissionIEEE Trans. Circuits Syst. I Regul. Pap.2014613358336610.1109/TCSI.2014.2338616
Gao, H., Leenaerts, D. M. & Baltus, P. A 58-64 GHz transformer-based differential rectifier in 40 nm CMOS with-12 dBm sensitivity for 1 V at 64 GHz. In 2019 IEEE MTT-S International Microwave Symposium (IMS) 1306–1308 (2019).
Hester, J. G. & Tentzeris, M. M. A mm-wave ultra-long-range energy-autonomous printed RFID-enabled van-Atta wireless sensor: At the crossroads of 5g and IoT. In 2017 IEEE MTT-S International Microwave Symposium (IMS) 1557–1560 (2017).
Bito, J. et al. Millimeter-wave ink-jet printed RF energy harvester for next generation flexible electronics. In 2017 IEEE Wireless Power Transfer Conference (WPTC) 1–4 (2017).
RotmanWTurnerRWide-angle microwave lens for line source applicationsIEEE Trans. Antennas Propag.1963116236321963ITAP...11..623R10.1109/TAP.1963.1138114
AttaranARashidzadehRKoukiA60 GHz low phase error rotman lens combined with wideband microstrip antenna array using LTCC technologyIEEE Trans. Antennas Propag.201664517251802016ITAP...64.5172A10.1109/TAP.2016.2618479
JastramNFilipovicDSDesign of a wideband millimeter wave micromachined rotman lensIEEE Trans. Antennas Propag.201563279027962015ITAP...63.2790J335747110.1109/TAP.2015.2414475
RotmanRTurMYaronLTrue time delay in phased arraysProc. IEEE201610450451810.1109/JPROC.2016.2515122
Mercer, D. Global Connected and IoT Device Forecast Update. https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update (2019).
BalanisCAAntenna Theory: Analysis and Design2016New YorkWiley
79500_CR5
79500_CR4
CA Balanis (79500_CR12) 2016
79500_CR8
79500_CR20
79500_CR21
79500_CR22
79500_CR1
79500_CR24
79500_CR14
K Wang (79500_CR9) 2017; 65
AI Sulyman (79500_CR23) 2014; 52
JGD Hester (79500_CR2) 2017; 57
A Attaran (79500_CR13) 2016; 64
79500_CR18
TK Vo Dai (79500_CR19) 2016; 71
A Darvazehban (79500_CR17) 2017; 65
W Rotman (79500_CR11) 1963; 11
A Okba (79500_CR7) 2017; 18
R Rotman (79500_CR10) 2016; 104
D-J Lee (79500_CR3) 2017; 65
S Ladan (79500_CR6) 2014; 61
N Jastram (79500_CR16) 2015; 63
K Tekkouk (79500_CR15) 2018; 66
References_xml – reference: Kuek, J. et al. A compact butler matrix for wireless power transfer to aid electromagnetic energy harvesting for sensors. In 2017 IEEE Asia Pacific Microwave Conference (APMC) 334–336 (2017).
– reference: Hassanien, M. A., Hahnel, R. & Plettemeier, D. Wideband rotman lens beamforming technique for 5g wireless applications. In 2019 2nd International Conference on Computer Applications and Information Security (ICCAIS) 1–5 (2019).
– reference: Mercer, D. Global Connected and IoT Device Forecast Update. https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update (2019).
– reference: Bito, J. et al. Millimeter-wave ink-jet printed RF energy harvester for next generation flexible electronics. In 2017 IEEE Wireless Power Transfer Conference (WPTC) 1–4 (2017).
– reference: OkbaATakacsAAubertHCharlotSCalmonP-FMultiband rectenna for microwave applicationsC. R. Phys.2017181071172017CRPhy..18..107O1:CAS:528:DC%2BC28XitV2rsLvF10.1016/j.crhy.2016.12.002
– reference: TekkoukKEttorreMSauleauRSIW rotman lens antenna with ridged delay lines and reduced footprintIEEE Trans. Microw. Theory Tech.201866313631442018ITMTT..66.3136T10.1109/TMTT.2018.2825374
– reference: LadanSGuntupalliABWuKA high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmissionIEEE Trans. Circuits Syst. I Regul. Pap.2014613358336610.1109/TCSI.2014.2338616
– reference: HesterJGDTentzerisMMInkjet-printed flexible mm-wave Van-Atta reflectarrays: A solution for ultra-long-range dense multi-tag and multi-sensing chipless RFID implementations for IoT smart skinsIEEE Trans. Microw. Theory Tech.20175713031309
– reference: RotmanWTurnerRWide-angle microwave lens for line source applicationsIEEE Trans. Antennas Propag.1963116236321963ITAP...11..623R10.1109/TAP.1963.1138114
– reference: LeeD-JLeeS-JHwangI-JLeeW-SYuJ-WHybrid power combining rectenna array for wide incident angle coverage in RF energy transferIEEE Trans. Microw. Theory Tech.201765340934182017ITMTT..65.3409L10.1109/TMTT.2017.2678498
– reference: Eid, A., Hester, J. & Tentzeris, M. M. A scalable high-gain and large-beamwidth mm-wave harvesting approach for 5g-powered IoT. In 2019 IEEE MTT-S International Microwave Symposium (IMS) 1309–1312 (2019).
– reference: BalanisCAAntenna Theory: Analysis and Design2016New YorkWiley
– reference: Rahimian, A., Alfadhl, Y. & Alomainy, A. Design and performance of a flexible 60-GHz rotman lens-based array beamformer. In 12th European Conference on Antennas and Propagation (EuCAP 2018) 1–2 (2018).
– reference: WangKGuJ-FRenFWuKA multitarget active backscattering 2-d positioning system with superresolution time series post-processing techniqueIEEE Trans. Microw. Theory Tech.201765175117662017ITMTT..65.1751W10.1109/TMTT.2017.2660481
– reference: SulymanAIRadio propagation path loss models for 5g cellular networks in the 28 GHz and 38 GHz millimeter-wave bandsIEEE Commun. Mag.201452788610.1109/MCOM.2014.6894456
– reference: DarvazehbanAManoochehriOSalariMADehkhodaPTavakoliAUltra-wideband scanning antenna array with rotman lensIEEE Trans. Microw. Theory Tech.201765343534422017ITMTT..65.3435D10.1109/TMTT.2017.2666810
– reference: Hester, J. G. & Tentzeris, M. M. A mm-wave ultra-long-range energy-autonomous printed RFID-enabled van-Atta wireless sensor: At the crossroads of 5g and IoT. In 2017 IEEE MTT-S International Microwave Symposium (IMS) 1557–1560 (2017).
– reference: Eid, A., Hester, J., Tehrani, B. & Tentzeris, M. Flexible w-band rectifiers for 5g-powered IoT autonomous modules. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting 1163–1164 (2019).
– reference: JastramNFilipovicDSDesign of a wideband millimeter wave micromachined rotman lensIEEE Trans. Antennas Propag.201563279027962015ITAP...63.2790J335747110.1109/TAP.2015.2414475
– reference: RotmanRTurMYaronLTrue time delay in phased arraysProc. IEEE201610450451810.1109/JPROC.2016.2515122
– reference: AttaranARashidzadehRKoukiA60 GHz low phase error rotman lens combined with wideband microstrip antenna array using LTCC technologyIEEE Trans. Antennas Propag.201664517251802016ITAP...64.5172A10.1109/TAP.2016.2618479
– reference: Gao, H., Leenaerts, D. M. & Baltus, P. A 58-64 GHz transformer-based differential rectifier in 40 nm CMOS with-12 dBm sensitivity for 1 V at 64 GHz. In 2019 IEEE MTT-S International Microwave Symposium (IMS) 1306–1308 (2019).
– reference: Parks, A. N. & Smith, J. R. Active power summation for efficient multiband RF energy harvesting. In 2015 IEEE MTT-S International Microwave Symposium (IMS) 1–4 (2015).
– reference: Vo DaiTKKilicOCompact rotman lens structure configurations to support millimeter wave devicesProg. Electromag. Res. B2016719110610.2528/PIERB16082704
– ident: 79500_CR4
  doi: 10.1109/APMC.2017.8251447
– ident: 79500_CR21
  doi: 10.1109/APUSNCURSINRSM.2019.8888600
– volume-title: Antenna Theory: Analysis and Design
  year: 2016
  ident: 79500_CR12
– ident: 79500_CR1
– volume: 61
  start-page: 3358
  year: 2014
  ident: 79500_CR6
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2014.2338616
– ident: 79500_CR14
  doi: 10.1109/CAIS.2019.8769475
– volume: 63
  start-page: 2790
  year: 2015
  ident: 79500_CR16
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2015.2414475
– volume: 65
  start-page: 3435
  year: 2017
  ident: 79500_CR17
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2017.2666810
– volume: 66
  start-page: 3136
  year: 2018
  ident: 79500_CR15
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2018.2825374
– ident: 79500_CR22
  doi: 10.1109/MWSYM.2019.8700750
– volume: 11
  start-page: 623
  year: 1963
  ident: 79500_CR11
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1963.1138114
– volume: 104
  start-page: 504
  year: 2016
  ident: 79500_CR10
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2515122
– volume: 71
  start-page: 91
  year: 2016
  ident: 79500_CR19
  publication-title: Prog. Electromag. Res. B
  doi: 10.2528/PIERB16082704
– ident: 79500_CR8
  doi: 10.1109/MWSYM.2019.8700758
– ident: 79500_CR5
  doi: 10.1109/WPT.2017.7953871
– ident: 79500_CR24
  doi: 10.1109/MWSYM.2017.8058927
– volume: 64
  start-page: 5172
  year: 2016
  ident: 79500_CR13
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2016.2618479
– ident: 79500_CR20
  doi: 10.1109/MWSYM.2015.7167129
– volume: 57
  start-page: 1303
  year: 2017
  ident: 79500_CR2
  publication-title: IEEE Trans. Microw. Theory Tech.
– volume: 52
  start-page: 78
  year: 2014
  ident: 79500_CR23
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6894456
– volume: 18
  start-page: 107
  year: 2017
  ident: 79500_CR7
  publication-title: C. R. Phys.
  doi: 10.1016/j.crhy.2016.12.002
– volume: 65
  start-page: 1751
  year: 2017
  ident: 79500_CR9
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2017.2660481
– ident: 79500_CR18
  doi: 10.1049/cp.2018.1010
– volume: 65
  start-page: 3409
  year: 2017
  ident: 79500_CR3
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2017.2678498
SSID ssj0000529419
Score 2.5675511
Snippet 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power...
Abstract 5G has been designed for blazing fast and low-latency communications. To do so, mm-wave frequencies were adopted and allowed unprecedently high...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 636
SubjectTerms 639/166/987
639/4077/4072/4062
Antennas
Arrays
Design
Energy
Humanities and Social Sciences
Internet of Things
Latency
multidisciplinary
Radio frequency identification
Science
Science (multidisciplinary)
Wave power
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SEHwRa72srbKCbxqa2-byqGJbBH2y0LewuWmhbEvPKdR_35lkz7HH64uvmwSGb5L9JszkG0JemZAzELGhiQVJlVKShugElTEMJjMXVS2i-fRZHx2rjyfDya1WX1gT1uSBG3D7QO-FBTtGkQqKW7mYYk5JCK5ZzqaKbTPHbl2mmqq3cIq7-ZUMk3Z_AUyFr8ngtmTcwBi93mCiKtj_uyjz12LJnzKmlYgOHpD7cwTZv22Wb5M7eXpI7raekt93yO5w2I-LfuxRhPgM_mP9BTZC679enqZH5Pjgw5f3R3TugEAjXCyWdExDycCyIyYDSwlm1AY5NTiTLHB54rpoCTAMo-AyqiCzLUXEjCItAIF8TLam8yk_JT3EOVZFiPdS0YqLYBUvmHJJNjKeg-4IX6Hh4ywPjl0qznxNU0vrG4IeEPQVQX_dkdfrNRdNHOOvs98hyOuZKGxdP4C7_exu_y93d2Rv5SI_n7aFF8oYrC-1vCMv18NwTjD5MU75_KrNGWrRbEeeNI-uLZFSSa1xtdnw9YapmyPT6beqxY36TU6BWW9Wu-KHWX-G4tn_gGKX3BNYYMM45WKPbC0vr_JziJCW4UU9DDc9fgkt
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwRv3u2ygq-aWi-Nsk-iYq1CPpk4d7C5qsWyt55d4X63zuTzW05P_q6SWDymyQzm5n8hpDXxqcEhtjQyLykSilJfegElcG3JrEuqJJE8_WbPjlVX-btvF64rWta5fZMLAd1XAS8Iz8SyhjMIbT83fInxapRGF2tJTRukzscPBEs3WDmZrpjwSiW4l19K8OkPVqDvcI3ZfDPZLqWMXq1Y48Kbf-_fM2_Uyb_iJsWc3T8gNyvfmTzflT8Q3IrDY_I3bGy5K_H5KD93PTrpm-QivgCTrNmieXQmrPVeXxCTo8_ff94QmsdBBrg92JD-9jmBLa2x5Bgzt702qBl9Z2JFix65DprmZJpe8FlUF4mm7MICalaAAL5lOwNiyHtkwa8HasCeH0xa8WFt4pnDLxEGxhPXs8I36LhQiUJx1oVF64Eq6V1I4IOEHQFQXc1I2-mMcuRIuPG3h8Q5Kkn0luXD4vVmau7xYFPl5m3fRAxI6NZFwD4GIXgmsE8QczDrYpc3XNrd71CZuTV1Ay7BUMg_ZAWl2OftqTOzsizUaOTJFIqqTWONju63hF1t2U4_1EYuZHFqVMg1tvtqrgW6_9QPL95FgfknsAEGsYpF4dkb7O6TC_AA9r4l2WZ_wYKNf_I
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_KFcEX8duztazgmwbztUn28RTbclBftNC3sPmqBdkrd1fQ_95J9kNOa8HXzQQmv0kyk53JLwBvtIsRHbEmgTpBpJSCON9wIryrdaSNl6WI5uyzOj2Xy4v6Yg_4eBemFO0XSsuyTY_VYe836GjyZTA87OimppRg3LhvNG6_M9hfLJZfltOflZy7kqwZbshQYW7pvOOFCln_bRHm34WSf2RLixM6fggPhuixWvT6PoK92D2Ge_17kj-fwEF9UrWbqq0yATGOZ1Nd50fQqsv1VXgK58efvn48JcPrB8TjoWJL2lCniB62zYnAlJxulc7-1DU6GPTjgamkRIy6bjkTXjoRTUrcx0zQghCIZzDrVl18ARXGOEZ6jPVCUpJxZyRLOd0SjKcsOjUHNqJh_UANnl-o-G5LiloY2yNoEUFbELQ_5vB26nPdE2PcKf0hgzxJZlLr8mG1vrSDkS1Gcok603oeUuYxazwCHwLnTFEcJ6p5OJrIDittY7nUOteWGjaH11MzrpGc-Gi7uLrpZepSMDuH571FJ02EkEKp3Fvv2HpH1d2W7upb4eHO3E2NRLXejbPit1r_huLl_4kfwH2ey2goI4wfwmy7vomvMA7auqNh4v8CoF3_hQ
  priority: 102
  providerName: Springer Nature
Title 5G as a wireless power grid
URI https://link.springer.com/article/10.1038/s41598-020-79500-x
https://www.ncbi.nlm.nih.gov/pubmed/33436681
https://www.proquest.com/docview/2477090281
https://www.proquest.com/docview/2477502822
https://pubmed.ncbi.nlm.nih.gov/PMC7804946
https://doaj.org/article/610f0b8ac2df46369cdcedd22160ee76
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZpQqGXkvTpJjFb6K1Vu3qspD2U4pikwdBQ2hp8E6tXEjDr1HYg-fcZaXcdnLo99bSgB8x-0uyMdkbfIPROGu_BEEvscsMw55xhY0uKmTWF9HlpeUqi-XYmTsd8NCkmW6grd9QCuNh4tIv1pMbz6ceb37dfQOE_N1fG1acFGKF4UQwOQrIs8hyDT7mT4kUxla919xuub1pyUrZ3ZzZPXbNPicZ_k-_5ZwrlgzhqMk8nu-hp61dmg2Yj7KEtXz9Dj5tKk7fP0X7xNasWWZVFauIpfN2yq1geLTufX7oXaHxy_Gt4itu6CNjCcWOJK1cED7a3iiHCEIyshIyW1pTSKbDwjoggmPeyqChhlhvmVQjU-kjdAhCwl2i7ntX-NcrA-1HcghfoguCEGsVJiIEYp2xOvBE9RDo0tG1Jw2PtiqlOwWumdIOgBgR1QlDf9ND71ZyrhjLjn6OPIsirkZHuOjXM5ue61R4NPl7IjaosdSEynJUWgHeOUiJyeE8Q86BbIt1tIU25lDHrVJEeervqBu2JIZGq9rPrZkyRUml76FWzoitJGONMiDhbrq31mqjrPfXlRWLojqxOJQexPnS74l6sv0Px5n9AsY-e0Jh2kxNM6AHaXs6v_SH4TUvTR4_kRPbRzmAw-jmC59Hx2fcf0DoUw376F9FP6nIHBeEWlw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEG_IEaMvBr9PUNdEn7Rh-7Hb3QdiRMFD4GIMJLyV7ReSkL3j7ojwz_m3OdPdPXJ-8Mbrtk2mM9PObGfmN4S8UcZ7MMSKutQIKqUU1NiSU2FNpnxaWhmTaPaH-eBQfj3KjpbIr64WBtMquzsxXtRuZPGNfJ1LpTCHsGAfxucUu0ZhdLVroVG1rRXcRoQYaws7dv3VT_iFm27sfAZ5v-V8e-vg04C2XQaoBed9RiuXBQ-WrMKAWwhGVblCu2VK5Qqwl47lIRfeq6ziTFhphC9C4NYjEErGEYwJTMCyxAeUHlne3Bp--z5_5cE4mmRlW62TimJ9ChYTq9rgr02VWZrSywWLGBsH_Mvb_Ttp84_IbTSI2yvkfuvJJh8b1XtAlnz9kNxpeltePSKr2ZekmiZVgmDIZ3CfJmNsyJacTE7dY3J4Kzx6Qnr1qPbPSAL-ViEt-J0u5JJxU0gWMPTjCpsyb_I-YR03tG1hyrFbxpmO4XJR6IaDGjioIwf1ZZ-8m68ZNyAdN87eRCbPZyLAdvwwmpzo9rxq8CpDaorKchcQU620wHjnOGd5CvsEMtc6Een21E_1tY72yev5MJxXDMJUtR9dNHOymLzbJ08bic4pEUKKPMfVakHWC6QujtSnPyImOOJIlRLIet9pxTVZ_2fF85t38YrcHRzs7-m9neHuKrnHMZ0nZZTxNdKbTS78C_DHZuZlq_QJOb7tc_YbtyZC2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuqLyXFggSnMDa-JE4OVQIKEtLoeJApb2Z-FUqVdnt7lZt_1p_HTPOo1oevfUa29J4Hp5xZvwNIa-U8R4csaIuNYJKKQU1tuRUWJMpn5ZWxiKab_v5zoH8Ms7GK-SyewuDZZXdmRgPajex-I98yKVSWENYsGFoyyK-b4_eTU8odpDCTGvXTqNRkT1_cQbXt_nW7jbI-jXno08_Pu7QtsMAtRC4L2jlsuDBi1WYbAvBqCpX6LNMqVwBvtKxPOTCe5VVnAkrjfBFCNx6BEHJOAIxwfG_poSU2DZCjVX_fwczaJKV7TudVBTDOfhKfM8G9zVVZmlKz5d8YWwZ8K849-9yzT9yttEVjtbJ3TaGTd43SnePrPj6PrnVdLW8eEA2ss9JNU-qBGGQj-EkTabYii05nB25h-TgRjj0iKzWk9o_IQlEWoW0EHG6kEvGTSFZwKSPK2zKvMkHhHXc0LYFKMc-Gcc6JspFoRsOauCgjhzU5wPypl8zbeA5rp39AZncz0Ro7fhhMjvUraVqiCdDaorKchcQTa20wHjnOGd5CvsEMjc7EenW3uf6SjsH5GU_DJaK6Zeq9pPTZk4Wy3YH5HEj0Z4SIaTIc1ytlmS9ROrySH30K6KBI4JUKYGst51WXJH1f1Y8vX4XL8htsC79dXd_b4Pc4VjHkzLK-CZZXcxO_TMIxBbmedT4hPy8aRP7DdOZQHc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=5G+as+a+wireless+power+grid&rft.jtitle=Scientific+reports&rft.au=Aline+Eid&rft.au=Jimmy+G.+D.+Hester&rft.au=Manos+M.+Tentzeris&rft.date=2021-01-12&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41598-020-79500-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_610f0b8ac2df46369cdcedd22160ee76
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon