Semantic segmentation of PolSAR image data using advanced deep learning model
Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly veg...
Saved in:
| Published in | Scientific reports Vol. 11; no. 1; pp. 15365 - 18 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
28.07.2021
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-021-94422-y |
Cover
| Abstract | Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively. |
|---|---|
| AbstractList | Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively. Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively. Abstract Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively. |
| ArticleNumber | 15365 |
| Author | Garg, Rajat Bansal, Nikunj Kumar, Anil Prateek, Manish Kumar, Shashi |
| Author_xml | – sequence: 1 givenname: Rajat surname: Garg fullname: Garg, Rajat organization: School of Computer Science, University of Petroleum and Energy Studies – sequence: 2 givenname: Anil surname: Kumar fullname: Kumar, Anil email: anil.kumar@ddn.upes.ac.in organization: School of Computer Science, University of Petroleum and Energy Studies – sequence: 3 givenname: Nikunj surname: Bansal fullname: Bansal, Nikunj organization: School of Computer Science, University of Petroleum and Energy Studies – sequence: 4 givenname: Manish surname: Prateek fullname: Prateek, Manish organization: Dev Bhoomi Group of Institutions – sequence: 5 givenname: Shashi surname: Kumar fullname: Kumar, Shashi organization: Photogrammetry and Remote Sensing Department, Indian Institute of Remote Sensing (IIRS), ISRO |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34321517$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAUtFARLaV_gAOKxIVLIP6KnQtSVRWoVASicLZebCdk5diLnRTtv8dpltL2UOGLreeZ8bx5fo4OfPAWoZe4eosrKt8lhnkjy4rgsmGMkHL3BB2RivGSUEIO7pwP0UlKmyovThqGm2fokDJKMMfiCH2-siP4adBFsv1o_QTTEHwRuuJrcFen34phhN4WBiYo5jT4vgBzDV5bUxhrt4WzEP1SHoOx7gV62oFL9mS_H6MfH86_n30qL798vDg7vSx1XdVTCdmIAZG9SMk7SaTUQgIBLnXLJGVadLShhja10LWGuqXCtNjQtjFS2JbQY3Sx6poAG7WN2WTcqQCDuimE2CuIuSlnFdYdlZbIijeUEdM1FeuAUkzrru40WbToqjX7Lex-g3O3grhSS9ZqzVrlrNVN1mqXWe9X1nZuR2t0Ti6Cu2fl_o0ffqo-XCtJ8TKELPBmLxDDr9mmSY1D0tY58DbMSRHOayplTWiGvn4A3YQ5-hzwguJCyJqJjHp119Gtlb-zzgCyAnQMKUXb_V-f8gFJD-sfyV0N7nHqPtiU3_G9jf9sP8L6Axn33fU |
| CitedBy_id | crossref_primary_10_1016_j_rsase_2022_100859 crossref_primary_10_1016_j_rsase_2025_101529 crossref_primary_10_1016_j_scs_2023_104653 crossref_primary_10_3389_fenvs_2022_968120 crossref_primary_10_1007_s11042_023_16205_z crossref_primary_10_1109_LGRS_2022_3185118 crossref_primary_10_1016_j_bspc_2023_104722 crossref_primary_10_1016_j_rse_2024_114290 crossref_primary_10_1007_s00436_022_07583_8 crossref_primary_10_3390_app12157811 crossref_primary_10_1007_s44288_024_00034_0 crossref_primary_10_3390_rs15245738 crossref_primary_10_1109_JSTARS_2022_3192352 crossref_primary_10_3390_rs16060972 crossref_primary_10_1029_2022EA002796 crossref_primary_10_1038_s41598_022_09871_w crossref_primary_10_1080_01431161_2022_2135411 crossref_primary_10_1016_j_jag_2024_103657 crossref_primary_10_3390_rs14215533 crossref_primary_10_3390_rs16122222 crossref_primary_10_1016_j_isprsjprs_2024_12_011 crossref_primary_10_1049_rsn2_12389 crossref_primary_10_35940_ijrte_E7987_12060324 crossref_primary_10_1038_s41598_023_34379_2 crossref_primary_10_1109_JSTARS_2024_3437187 crossref_primary_10_1109_JSTARS_2022_3181355 crossref_primary_10_3390_rs17020304 crossref_primary_10_3390_s22031070 crossref_primary_10_1016_j_ecoinf_2022_101745 crossref_primary_10_1016_j_heliyon_2023_e22762 crossref_primary_10_3390_rs16111826 crossref_primary_10_1007_s41324_023_00555_9 crossref_primary_10_1016_j_uclim_2023_101506 crossref_primary_10_3390_land14030649 crossref_primary_10_1109_ACCESS_2023_3321894 crossref_primary_10_3389_fonc_2023_1009681 crossref_primary_10_3390_ijgi11030197 crossref_primary_10_3390_rs14153737 crossref_primary_10_1016_j_asr_2022_07_078 crossref_primary_10_1016_j_scitotenv_2022_153559 crossref_primary_10_3390_rs15051371 crossref_primary_10_3390_data8120185 |
| Cites_doi | 10.1109/36.142932 10.1016/j.rse.2006.09.002 10.1103/PhysRevLett.113.130503 10.1109/JSTARS.2019.2959192 10.1186/s13640-015-0071-8 10.1080/07038992.1996.10855182 10.1109/TPAMI.1986.4767851 10.1109/TGRS.2016.2514504 10.1109/TPAMI.2017.2699184 10.1109/PROC.1982.12448 10.1201/9781003049753 10.1109/TGRS.2016.2551720 10.1109/TNNLS.2015.2435783 10.1007/s11263-015-0816-y 10.1109/LGRS.2014.2309695 10.1109/TGRS.2014.2334608 10.1109/TGRS.2012.2201946 10.1109/LGRS.2006.869986 10.1109/36.673687 10.1109/TGRS.2015.2431856 10.3390/s18082620 10.3390/rs11192287 10.1109/MGRS.2016.2540798 10.1117/1.JRS.14.034503 10.1007/s11270-020-04846-x 10.1016/j.asr.2021.02.023 10.1023/A:1010933404324 10.1109/TGRS.2010.2099124 10.1029/2020EA001279 10.1109/LGRS.2014.2386351 10.1109/36.485127 10.1029/2020EA001447 10.1109/36.20273 10.1109/5254.708428 10.1155/2015/538063 10.3390/app8112206 10.1109/LGRS.2010.2058997 10.1162/neco.2006.18.7.1527 10.1109/JSTARS.2019.2911113 10.1080/0143116032000160480 10.1007/978-3-642-02020-9 10.3390/rs71115424 10.1016/j.rse.2014.06.025 10.1109/TPAMI.2016.2644615 10.1007/BF00058655 10.1109/TGRS.2005.852084 10.3390/rs10122060 10.1117/1.JRS.13.044528 10.1109/LGRS.2010.2089427 10.1109/TGRS.2012.2212446 10.3390/rs11131600 10.1109/LGRS.2014.2308328 10.1109/36.193786 10.1080/07038992.2017.1330142 10.3390/rs12030369 10.1109/TGRS.2020.3011638 10.1109/TPAMI.2016.2572683 10.1016/j.patrec.2005.08.004 10.1109/TGRS.2016.2645226 10.1038/nature14539 10.1109/TIT.1967.1053964 10.1117/1.JRS.10.025015 10.1109/TGRS.2016.2528583 10.1109/TGRS.2014.2326955 10.3390/rs10071010 10.23919/URSIAP-RASC.2019.8738217 10.1049/cp.2015.1182 10.1109/CCECE.2014.6901104 10.1109/NSSMIC.1993.373563 10.1007/978-3-319-24574-4_28 10.1201/9781315272573 10.1109/JSTARS.2015.2416255 10.1109/NRC.1988.10937 10.1109/RADAR.2008.4720722 10.1109/CVPR.2017.195 10.1007/978-3-642-75988-8_28 10.1080/01431161.2020.1829155 10.1109/ISCAS.2010.5537907 10.1109/IGARSS.2015.7326520 10.1002/9781118116104 10.1007/978-3-030-01234-2_49 10.1049/ji-3-2.1946.0074 10.1109/IGARSS.2008.4779149 10.1109/IGARSS.2011.6050037 10.1109/MEC.2013.6885296 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-021-94422-y |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (via ProQuest SciTech Premium Collection) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_1cf38e28059342df904fa33136f6fc22 10.1038/s41598-021-94422-y PMC8319419 34321517 10_1038_s41598_021_94422_y |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c606t-a529da7419885f8288c78a2a58cb4834c7f393d3967c6ca6b37db1d3b9d87eb23 |
| IEDL.DBID | AAJSJ |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:43:27 EDT 2025 Sun Oct 26 03:51:36 EDT 2025 Tue Sep 30 15:57:07 EDT 2025 Thu Oct 02 09:39:21 EDT 2025 Tue Oct 07 09:10:09 EDT 2025 Mon Jul 21 06:03:07 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Wed Oct 01 04:28:03 EDT 2025 Fri Feb 21 02:39:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-a529da7419885f8288c78a2a58cb4834c7f393d3967c6ca6b37db1d3b9d87eb23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doi.org/10.1038%2Fs41598-021-94422-y |
| PMID | 34321517 |
| PQID | 2555778647 |
| PQPubID | 2041939 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1cf38e28059342df904fa33136f6fc22 unpaywall_primary_10_1038_s41598_021_94422_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319419 proquest_miscellaneous_2556388623 proquest_journals_2555778647 pubmed_primary_34321517 crossref_primary_10_1038_s41598_021_94422_y crossref_citationtrail_10_1038_s41598_021_94422_y springer_journals_10_1038_s41598_021_94422_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-28 |
| PublicationDateYYYYMMDD | 2021-07-28 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | He, Zhuo, Zhao, Yin, Chen (CR11) 2015; 12 Sun, Huang, Chen, Han (CR68) 2017; 43 Canny (CR82) 1986; 6 Ma, Geng, Wang (CR34) 2015; 2015 Khoshboresh-Masouleh, Alidoost, Arefi (CR5) 2020; 14 Lv (CR38) 2015; 2015 CR36 CR79 Hinton, Osindero, Teh (CR33) 2006; 18 Shibayama, Yamaguchi, Yamada (CR57) 2015; 7 Breiman (CR28) 2001; 45 CR76 CR31 CR30 Maiti, Kumar, Tolpekin, Agrawal (CR72) 2021; 8 CR74 Jung, Park (CR69) 2018; 10 Chen, Xiang, Liu, Pan (CR32) 2014; 11 Li, Ling, Foody, Du (CR19) 2016; 54 Lapini (CR9) 2020; 12 Van, Kim (CR65) 2011 Su, He, Feng, Deng, Sun (CR16) 2011; 8 CR2 Jia, Shen, Li (CR13) 2015; 53 Cigna, Bateson, Jordan, Dashwood (CR61) 2014; 152 Geng, Wang, Fan, Ma (CR10) 2017; 55 CR7 Badrinarayanan, Kendall, Cipolla (CR87) 2017; 39 Dai, Yang, Sun (CR15) 2011; 8 Elachi, Bicknell, Jordan, Wu (CR1) 1982; 70 LeCun, Bengio, Hinton (CR35) 2015; 521 Li, Zhu, Hong, Ming, Wang (CR73) 2018; 18 CR45 CR89 CR44 Touzi, Hawkins, Cote (CR47) 2013; 51 Agrawal, Raghavendra, Kumar, Navalgund, Kumar (CR49) 2018 Loew, Mauser (CR54) 2007; 106 CR42 CR86 Cloude, Pottier (CR23) 1996; 34 Kim, Papathanassiou, Scheiber, Quegan (CR71) 2015; 53 CR84 Zhang, Zhang, Du (CR37) 2016; 4 Small, Schubert (CR59) 2008 CR81 CR80 Huang, Li, Tian (CR55) 2016; 10 Gong, Zhao, Liu, Miao, Jiao (CR40) 2016; 27 Yamaguchi, Moriyama, Ishido, Yamada (CR77) 2005; 43 Wang, Cao, Cui, Liu, Pi (CR6) 2019; 13 Breiman (CR83) 1996; 24 Xu (CR20) 2019; 12 Russakovsky (CR43) 2015; 115 Kumar (CR62) 2021 Camargo, Sano, Almeida, Mura, Almeida (CR8) 2019; 11 Hu, Rao, Alaee-Kerahroodi, Ottersten (CR58) 2021; 59 Kumar, Garg, Govil, Kushwaha (CR22) 2019; 11 Rebentrost, Mohseni, Lloyd (CR92) 2014; 113 Freeman (CR46) 1992; 30 Yamaguchi, Sato, Boerner, Sato, Yamada (CR66) 2011; 49 Sarabandi, Pierce, Ulaby (CR67) 1992; 30 CR14 Cover, Hart (CR27) 1967; 13 CR52 CR51 Chen, Sun, Hu (CR60) 2018; 8 Yamaguchi (CR75) 2020 CR93 CR91 Dibs, Hasab, Al-Rifaie, Al-Ansari (CR18) 2020; 231 CR90 Yang, Qiu, Ding, Lei (CR53) 2018; 10 Richards (CR50) 2009 Freeman, Durden (CR63) 1998; 36 Wang, Liu, Xu, Jiang (CR48) 2019; 12 Warner, Bell, Singhroy (CR56) 1996; 22 Shafai, Kumar (CR64) 2020; 7 Singh, Yamaguchi, Park (CR78) 2013; 51 Gomez-Chova (CR4) 2006; 27 Chust, Ducrot, Pretus (CR17) 2004; 25 van Zyl (CR3) 1989; 27 Chen, Papandreou, Kokkinos, Murphy, Yuille (CR88) 2018; 40 CR24 CR21 Planins̆ic̆, Singh, Gleich (CR12) 2014; 11 Shelhamer, Long, Darrell (CR85) 2017; 39 Chen, Wang, Xu, Jin (CR41) 2016; 54 Villa, Iannini, Giudici, Monti-Guarnieri, Tebaldini (CR70) 2015; 53 Lee, Pottier (CR26) 2009 Liu, Jiao, Hou, Yang (CR39) 2016; 54 Yamaguchi, Yajima, Yamada (CR25) 2006; 3 Hearst, Dumais, Osuna, Platt, Scholkopf (CR29) 1998; 13 L Zhang (94422_CR37) 2016; 4 M Khoshboresh-Masouleh (94422_CR5) 2020; 14 YT Jung (94422_CR69) 2018; 10 M Gong (94422_CR40) 2016; 27 A Freeman (94422_CR46) 1992; 30 X Su (94422_CR16) 2011; 8 A Maiti (94422_CR72) 2021; 8 94422_CR81 Q Lv (94422_CR38) 2015; 2015 94422_CR80 S Jia (94422_CR13) 2015; 53 94422_CR42 94422_CR86 J Geng (94422_CR10) 2017; 55 Y Xu (94422_CR20) 2019; 12 94422_CR84 94422_CR45 94422_CR89 A Loew (94422_CR54) 2007; 106 A Freeman (94422_CR63) 1998; 36 94422_CR44 G Chust (94422_CR17) 2004; 25 Y Yamaguchi (94422_CR75) 2020 L Huang (94422_CR55) 2016; 10 C He (94422_CR11) 2015; 12 JS Kim (94422_CR71) 2015; 53 K Sarabandi (94422_CR67) 1992; 30 E Shelhamer (94422_CR85) 2017; 39 94422_CR7 X Ma (94422_CR34) 2015; 2015 F Wang (94422_CR48) 2019; 12 94422_CR2 MA Hearst (94422_CR29) 1998; 13 JJ van Zyl (94422_CR3) 1989; 27 H Dibs (94422_CR18) 2020; 231 L Breiman (94422_CR83) 1996; 24 S Kumar (94422_CR22) 2019; 11 94422_CR30 Y LeCun (94422_CR35) 2015; 521 94422_CR74 94422_CR31 94422_CR79 94422_CR76 P Rebentrost (94422_CR92) 2014; 113 X Wang (94422_CR6) 2019; 13 94422_CR36 R Hu (94422_CR58) 2021; 59 SR Cloude (94422_CR23) 1996; 34 T Cover (94422_CR27) 1967; 13 L Gomez-Chova (94422_CR4) 2006; 27 F Cigna (94422_CR61) 2014; 152 A Villa (94422_CR70) 2015; 53 A Lapini (94422_CR9) 2020; 12 O Russakovsky (94422_CR43) 2015; 115 X Li (94422_CR19) 2016; 54 D Dai (94422_CR15) 2011; 8 L Breiman (94422_CR28) 2001; 45 Y Yamaguchi (94422_CR77) 2005; 43 C Elachi (94422_CR1) 1982; 70 D Small (94422_CR59) 2008 P Planins̆ic̆ (94422_CR12) 2014; 11 S Kumar (94422_CR62) 2021 94422_CR24 94422_CR21 J Yang (94422_CR53) 2018; 10 R Touzi (94422_CR47) 2013; 51 G Sun (94422_CR68) 2017; 43 S Agrawal (94422_CR49) 2018 T Shibayama (94422_CR57) 2015; 7 G Singh (94422_CR78) 2013; 51 GE Hinton (94422_CR33) 2006; 18 Y Yamaguchi (94422_CR66) 2011; 49 J Canny (94422_CR82) 1986; 6 L Li (94422_CR73) 2018; 18 X Chen (94422_CR32) 2014; 11 S Chen (94422_CR41) 2016; 54 Y Yamaguchi (94422_CR25) 2006; 3 V Badrinarayanan (94422_CR87) 2017; 39 F Liu (94422_CR39) 2016; 54 94422_CR93 94422_CR90 ZJ Van (94422_CR65) 2011 94422_CR91 J-S Lee (94422_CR26) 2009 94422_CR52 JA Richards (94422_CR50) 2009 94422_CR51 T Warner (94422_CR56) 1996; 22 SS Shafai (94422_CR64) 2020; 7 X Chen (94422_CR60) 2018; 8 94422_CR14 FF Camargo (94422_CR8) 2019; 11 L-C Chen (94422_CR88) 2018; 40 |
| References_xml | – ident: CR45 – volume: 30 start-page: 540 year: 1992 end-page: 549 ident: CR67 article-title: Calibration of a polarimetric imaging SAR publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.142932 – volume: 106 start-page: 337 year: 2007 end-page: 349 ident: CR54 article-title: Generation of geometrically and radiometrically terrain corrected SAR image products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.002 – ident: CR74 – volume: 113 start-page: 130503 year: 2014 ident: CR92 article-title: Quantum support vector machine for big data classification publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.130503 – ident: CR93 – ident: CR51 – volume: 12 start-page: 5345 year: 2019 end-page: 5359 ident: CR48 article-title: A Method for estimating and validating polarimetric distortion parameters using corner reflectors and its applicability analysis publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2959192 – volume: 2015 start-page: 20 year: 2015 ident: CR34 article-title: Hyperspectral image classification via contextual deep learning publication-title: EURASIP J. Image Video Process. doi: 10.1186/s13640-015-0071-8 – volume: 22 start-page: 269 year: 1996 end-page: 279 ident: CR56 article-title: Local incidence angle effects on X- and C-band radar backscatter of boreal forest communities publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1996.10855182 – volume: 6 start-page: 679 year: 1986 end-page: 698 ident: CR82 article-title: A Computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – ident: CR80 – year: 2009 ident: CR26 publication-title: Polarimetric Radar Imaging From Basics to Applications – ident: CR84 – volume: 54 start-page: 3292 year: 2016 end-page: 3308 ident: CR39 article-title: POL-SAR image classification based on wishart DBN and local spatial information publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2514504 – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: CR88 article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: CR42 – volume: 70 start-page: 1174 year: 1982 end-page: 1209 ident: CR1 article-title: Spaceborne synthetic-aperture imaging radars: applications, techniques, and technology publication-title: Proc. IEEE doi: 10.1109/PROC.1982.12448 – ident: CR21 – year: 2020 ident: CR75 publication-title: Polarimetric SAR Imaging Theory and Applications doi: 10.1201/9781003049753 – volume: 54 start-page: 4806 year: 2016 end-page: 4817 ident: CR41 article-title: Target classification using the deep convolutional networks for SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2551720 – volume: 27 start-page: 125 year: 2016 end-page: 138 ident: CR40 article-title: Change detection in synthetic aperture radar images based on deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2435783 – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: CR43 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 11 start-page: 1797 year: 2014 end-page: 1801 ident: CR32 article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2309695 – volume: 53 start-page: 1118 year: 2015 end-page: 1129 ident: CR13 article-title: Gabor feature-based collaborative representation for hyperspectral imagery classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2334608 – ident: CR36 – volume: 51 start-page: 487 year: 2013 end-page: 503 ident: CR47 article-title: High-precision assessment and calibration of polarimetric RADARSAT-2 SAR using transponder measurements publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2201946 – ident: CR81 – volume: 3 start-page: 292 year: 2006 end-page: 296 ident: CR25 article-title: A four-component decomposition of POLSAR images based on the coherency matrix publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2006.869986 – volume: 36 start-page: 963 year: 1998 end-page: 973 ident: CR63 article-title: A three-component scattering model for polarimetric SAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.673687 – volume: 53 start-page: 6319 year: 2015 end-page: 6335 ident: CR71 article-title: Correcting distortion of polarimetric SAR data induced by ionospheric scintillation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2431856 – volume: 18 start-page: 2620 year: 2018 ident: CR73 article-title: Design and implementation of a novel polarimetric active radar calibrator for Gaofen-3 SAR publication-title: Sensors doi: 10.3390/s18082620 – volume: 11 start-page: 1 year: 2019 end-page: 27 ident: CR22 article-title: PolSAR-decomposition-based extended water cloud modeling for forest aboveground biomass estimation publication-title: Remote Sens. doi: 10.3390/rs11192287 – volume: 4 start-page: 22 year: 2016 end-page: 40 ident: CR37 article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – volume: 14 start-page: 1 year: 2020 end-page: 21 ident: CR5 article-title: Multiscale building segmentation based on deep learning for remote sensing RGB images from different sensors publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.14.034503 – volume: 231 start-page: 488 year: 2020 ident: CR18 article-title: An optimal approach for land-use/land-cover mapping by integration and fusion of multispectral landsat OLI images: case study in Baghdad publication-title: Iraq. Water Air Soil Pollut. doi: 10.1007/s11270-020-04846-x – year: 2021 ident: CR62 article-title: Polarimetric calibration of spaceborne and airborne multifrequency SAR data for scattering-based characterization of manmade and natural features publication-title: Adv. Space Res. doi: 10.1016/j.asr.2021.02.023 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR28 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 49 start-page: 2251 year: 2011 end-page: 2258 ident: CR66 article-title: Four-component scattering power decomposition with rotation of coherency matrix publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2099124 – volume: 7 start-page: 1 year: 2020 end-page: 17 ident: CR64 article-title: PolInSAR coherence and entropy-based hybrid decomposition mode publication-title: Earth Space Sci. doi: 10.1029/2020EA001279 – volume: 12 start-page: 1141 year: 2015 end-page: 1145 ident: CR11 article-title: Particle filter sample texton feature for SAR image classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2386351 – ident: CR91 – volume: 34 start-page: 498 year: 1996 end-page: 518 ident: CR23 article-title: A review of target decomposition theorems in radar polarimetry publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.485127 – volume: 8 start-page: 1 year: 2021 end-page: 22 ident: CR72 article-title: A computationally efficient hybrid framework for polarimetric calibration of quad-pol SAR data publication-title: Earth Space Sci. doi: 10.1029/2020EA001447 – volume: 27 start-page: 36 year: 1989 end-page: 45 ident: CR3 article-title: Unsupervised classification of scattering behavior using radar polarimetry data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.20273 – volume: 13 start-page: 18 year: 1998 end-page: 28 ident: CR29 article-title: Support vector machines publication-title: IEEE Intell. Syst. their Appl. doi: 10.1109/5254.708428 – volume: 2015 start-page: 538063 year: 2015 ident: CR38 article-title: Urban land use and land cover classification using remotely sensed SAR data through deep belief networks publication-title: J. Sens. doi: 10.1155/2015/538063 – ident: CR14 – volume: 8 start-page: 2206 year: 2018 ident: CR60 article-title: Generation of complete SAR geometric distortion maps based on DEM and neighbor gradient algorithm publication-title: Appl. Sci. doi: 10.3390/app8112206 – ident: CR2 – ident: CR89 – ident: CR30 – start-page: 471 year: 2018 end-page: 500 ident: CR49 article-title: Geospatial data for the himalayan region: requirements, availability, and challenges publication-title: Remote Sensing of Northwest Himalayan Ecosystems – volume: 8 start-page: 225 year: 2011 end-page: 229 ident: CR15 article-title: Multilevel local pattern histogram for SAR image classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2058997 – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: CR33 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 12 start-page: 1709 year: 2019 end-page: 1724 ident: CR20 article-title: Advanced multi-sensor optical remote sensing for urban land use and land cover classification: outcome of the 2018 IEEE GRSS data fusion contest publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2911113 – volume: 25 start-page: 3513 year: 2004 end-page: 3528 ident: CR17 article-title: Land cover discrimination potential of radar multitemporal series and optical multispectral images in a Mediterranean cultural landscape publication-title: Int. J. Remote Sens. doi: 10.1080/0143116032000160480 – ident: CR79 – year: 2009 ident: CR50 publication-title: Remote Sensing with Imaging Radar doi: 10.1007/978-3-642-02020-9 – volume: 7 start-page: 15424 year: 2015 end-page: 15442 ident: CR57 article-title: Polarimetric scattering properties of landslides in forested areas and the dependence on the local incidence angle publication-title: Remote Sens. doi: 10.3390/rs71115424 – volume: 152 start-page: 441 year: 2014 end-page: 466 ident: CR61 article-title: Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.025 – ident: CR86 – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: CR87 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: CR83 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 43 start-page: 1699 year: 2005 end-page: 1706 ident: CR77 article-title: Four-component scattering model for polarimetric SAR image decomposition publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.852084 – volume: 10 start-page: 2060 year: 2018 ident: CR69 article-title: Comparative analysis of polarimetric SAR calibration methods publication-title: Remote Sens. doi: 10.3390/rs10122060 – ident: CR44 – volume: 13 start-page: 1 year: 2019 end-page: 17 ident: CR6 article-title: PolSAR image classification based on deep polarimetric feature and contextual information publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.13.044528 – volume: 8 start-page: 497 year: 2011 end-page: 501 ident: CR16 article-title: A Supervised classification method based on conditional random fields with multiscale region connection calculus model for SAR image publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2089427 – volume: 51 start-page: 3014 year: 2013 end-page: 3022 ident: CR78 article-title: General four-component scattering power decomposition with unitary transformation of coherency matrix publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2212446 – ident: CR90 – volume: 11 start-page: 1600 year: 2019 ident: CR8 article-title: A comparative assessment of machine-learning techniques for land use and land cover classification of the brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images publication-title: Remote Sens. doi: 10.3390/rs11131600 – volume: 11 start-page: 1757 year: 2014 end-page: 1761 ident: CR12 article-title: SAR Image categorization using parametric and nonparametric approaches within a dual tree CWT publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2308328 – ident: CR52 – ident: CR31 – volume: 30 start-page: 1107 year: 1992 end-page: 1121 ident: CR46 article-title: SAR calibration: an overview publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.193786 – volume: 43 start-page: 286 year: 2017 end-page: 296 ident: CR68 article-title: An efficient polarimetric SAR calibration algorithm using corner reflectors publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2017.1330142 – volume: 12 start-page: 369 year: 2020 ident: CR9 article-title: Comparison of machine learning methods applied to SAR images for forest classification in mediterranean areas publication-title: Remote Sens. doi: 10.3390/rs12030369 – volume: 59 start-page: 3999 year: 2021 end-page: 4007 ident: CR58 article-title: Orthorectified polar format algorithm for generalized spotlight SAR imaging with DEM publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3011638 – volume: 39 start-page: 640 year: 2017 end-page: 651 ident: CR85 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2572683 – year: 2008 ident: CR59 publication-title: Guide to ASAR Geocoding – volume: 27 start-page: 234 year: 2006 end-page: 243 ident: CR4 article-title: Urban monitoring using multi-temporal SAR and multi-spectral data publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.08.004 – volume: 55 start-page: 2442 year: 2017 end-page: 2459 ident: CR10 article-title: Deep supervised and contractive neural network for SAR image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2645226 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR35 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2011 ident: CR65 publication-title: Synthetic Aperture Radar Polarimetry – ident: CR7 – ident: CR76 – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: CR27 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 10 start-page: 1 year: 2016 end-page: 14 ident: CR55 article-title: Local incidence angle referenced classification on polarimetric synthetic aperture radar images in mountain glacier areas publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.10.025015 – volume: 54 start-page: 3822 year: 2016 end-page: 3841 ident: CR19 article-title: A superresolution land-cover change detection method using remotely sensed images with different spatial resolutions publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2528583 – volume: 53 start-page: 674 year: 2015 end-page: 686 ident: CR70 article-title: Calibration of SAR Polarimetric images by means of a covariance matching approach publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2326955 – ident: CR24 – volume: 10 start-page: 1010 year: 2018 ident: CR53 article-title: Identification of stable backscattering features, suitable for maintaining absolute synthetic aperture radar (SAR) radiometric calibration of sentinel-1 publication-title: Remote Sens. doi: 10.3390/rs10071010 – volume: 54 start-page: 4806 year: 2016 ident: 94422_CR41 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2551720 – volume: 106 start-page: 337 year: 2007 ident: 94422_CR54 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.002 – volume: 12 start-page: 369 year: 2020 ident: 94422_CR9 publication-title: Remote Sens. doi: 10.3390/rs12030369 – volume: 13 start-page: 21 year: 1967 ident: 94422_CR27 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 55 start-page: 2442 year: 2017 ident: 94422_CR10 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2645226 – volume: 152 start-page: 441 year: 2014 ident: 94422_CR61 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.025 – volume: 8 start-page: 225 year: 2011 ident: 94422_CR15 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2058997 – ident: 94422_CR2 doi: 10.23919/URSIAP-RASC.2019.8738217 – volume: 10 start-page: 1 year: 2016 ident: 94422_CR55 publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.10.025015 – volume-title: Polarimetric Radar Imaging From Basics to Applications year: 2009 ident: 94422_CR26 – volume: 13 start-page: 1 year: 2019 ident: 94422_CR6 publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.13.044528 – volume: 115 start-page: 211 year: 2015 ident: 94422_CR43 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 10 start-page: 1010 year: 2018 ident: 94422_CR53 publication-title: Remote Sens. doi: 10.3390/rs10071010 – year: 2021 ident: 94422_CR62 publication-title: Adv. Space Res. doi: 10.1016/j.asr.2021.02.023 – volume: 6 start-page: 679 year: 1986 ident: 94422_CR82 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – volume: 521 start-page: 436 year: 2015 ident: 94422_CR35 publication-title: Nature doi: 10.1038/nature14539 – volume: 39 start-page: 2481 year: 2017 ident: 94422_CR87 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 11 start-page: 1797 year: 2014 ident: 94422_CR32 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2309695 – ident: 94422_CR36 doi: 10.1049/cp.2015.1182 – volume: 12 start-page: 1141 year: 2015 ident: 94422_CR11 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2386351 – volume: 36 start-page: 963 year: 1998 ident: 94422_CR63 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.673687 – volume: 11 start-page: 1757 year: 2014 ident: 94422_CR12 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2308328 – ident: 94422_CR21 – volume: 43 start-page: 286 year: 2017 ident: 94422_CR68 publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2017.1330142 – volume: 11 start-page: 1 year: 2019 ident: 94422_CR22 publication-title: Remote Sens. doi: 10.3390/rs11192287 – volume-title: Guide to ASAR Geocoding year: 2008 ident: 94422_CR59 – volume: 54 start-page: 3822 year: 2016 ident: 94422_CR19 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2528583 – volume: 30 start-page: 540 year: 1992 ident: 94422_CR67 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.142932 – ident: 94422_CR52 doi: 10.1109/CCECE.2014.6901104 – volume: 12 start-page: 5345 year: 2019 ident: 94422_CR48 publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2959192 – volume: 7 start-page: 15424 year: 2015 ident: 94422_CR57 publication-title: Remote Sens. doi: 10.3390/rs71115424 – volume: 49 start-page: 2251 year: 2011 ident: 94422_CR66 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2099124 – volume-title: Polarimetric SAR Imaging Theory and Applications year: 2020 ident: 94422_CR75 doi: 10.1201/9781003049753 – volume: 39 start-page: 640 year: 2017 ident: 94422_CR85 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2572683 – ident: 94422_CR80 doi: 10.1109/NSSMIC.1993.373563 – volume: 2015 start-page: 20 year: 2015 ident: 94422_CR34 publication-title: EURASIP J. Image Video Process. doi: 10.1186/s13640-015-0071-8 – ident: 94422_CR86 doi: 10.1007/978-3-319-24574-4_28 – volume: 45 start-page: 5 year: 2001 ident: 94422_CR28 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 30 start-page: 1107 year: 1992 ident: 94422_CR46 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.193786 – volume: 51 start-page: 3014 year: 2013 ident: 94422_CR78 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2212446 – volume-title: Remote Sensing with Imaging Radar year: 2009 ident: 94422_CR50 doi: 10.1007/978-3-642-02020-9 – volume: 59 start-page: 3999 year: 2021 ident: 94422_CR58 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3011638 – volume: 70 start-page: 1174 year: 1982 ident: 94422_CR1 publication-title: Proc. IEEE doi: 10.1109/PROC.1982.12448 – ident: 94422_CR91 – volume: 27 start-page: 36 year: 1989 ident: 94422_CR3 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.20273 – ident: 94422_CR51 doi: 10.1201/9781315272573 – volume: 113 start-page: 130503 year: 2014 ident: 94422_CR92 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.130503 – volume: 53 start-page: 1118 year: 2015 ident: 94422_CR13 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2334608 – volume: 7 start-page: 1 year: 2020 ident: 94422_CR64 publication-title: Earth Space Sci. doi: 10.1029/2020EA001279 – volume: 40 start-page: 834 year: 2018 ident: 94422_CR88 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – volume: 8 start-page: 1 year: 2021 ident: 94422_CR72 publication-title: Earth Space Sci. doi: 10.1029/2020EA001447 – ident: 94422_CR84 doi: 10.1109/JSTARS.2015.2416255 – ident: 94422_CR45 doi: 10.1109/NRC.1988.10937 – volume: 27 start-page: 125 year: 2016 ident: 94422_CR40 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2435783 – ident: 94422_CR93 doi: 10.1109/RADAR.2008.4720722 – volume: 18 start-page: 2620 year: 2018 ident: 94422_CR73 publication-title: Sensors doi: 10.3390/s18082620 – ident: 94422_CR90 doi: 10.1109/CVPR.2017.195 – volume: 10 start-page: 2060 year: 2018 ident: 94422_CR69 publication-title: Remote Sens. doi: 10.3390/rs10122060 – volume: 53 start-page: 6319 year: 2015 ident: 94422_CR71 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2431856 – volume: 13 start-page: 18 year: 1998 ident: 94422_CR29 publication-title: IEEE Intell. Syst. their Appl. doi: 10.1109/5254.708428 – volume: 53 start-page: 674 year: 2015 ident: 94422_CR70 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2326955 – volume: 11 start-page: 1600 year: 2019 ident: 94422_CR8 publication-title: Remote Sens. doi: 10.3390/rs11131600 – ident: 94422_CR89 doi: 10.1007/978-3-642-75988-8_28 – volume: 43 start-page: 1699 year: 2005 ident: 94422_CR77 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.852084 – volume: 14 start-page: 1 year: 2020 ident: 94422_CR5 publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.14.034503 – ident: 94422_CR24 doi: 10.1080/01431161.2020.1829155 – ident: 94422_CR44 – volume: 24 start-page: 123 year: 1996 ident: 94422_CR83 publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 3 start-page: 292 year: 2006 ident: 94422_CR25 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2006.869986 – ident: 94422_CR31 doi: 10.1109/ISCAS.2010.5537907 – start-page: 471 volume-title: Remote Sensing of Northwest Himalayan Ecosystems year: 2018 ident: 94422_CR49 – volume: 51 start-page: 487 year: 2013 ident: 94422_CR47 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2201946 – volume: 27 start-page: 234 year: 2006 ident: 94422_CR4 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.08.004 – volume: 25 start-page: 3513 year: 2004 ident: 94422_CR17 publication-title: Int. J. Remote Sens. doi: 10.1080/0143116032000160480 – ident: 94422_CR7 doi: 10.1109/IGARSS.2015.7326520 – volume: 18 start-page: 1527 year: 2006 ident: 94422_CR33 publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume-title: Synthetic Aperture Radar Polarimetry year: 2011 ident: 94422_CR65 doi: 10.1002/9781118116104 – volume: 34 start-page: 498 year: 1996 ident: 94422_CR23 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.485127 – volume: 4 start-page: 22 year: 2016 ident: 94422_CR37 publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – ident: 94422_CR42 doi: 10.1007/978-3-030-01234-2_49 – volume: 22 start-page: 269 year: 1996 ident: 94422_CR56 publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1996.10855182 – ident: 94422_CR79 doi: 10.1049/ji-3-2.1946.0074 – ident: 94422_CR76 – ident: 94422_CR14 doi: 10.1109/IGARSS.2008.4779149 – ident: 94422_CR74 doi: 10.1109/IGARSS.2011.6050037 – volume: 231 start-page: 488 year: 2020 ident: 94422_CR18 publication-title: Iraq. Water Air Soil Pollut. doi: 10.1007/s11270-020-04846-x – ident: 94422_CR30 – ident: 94422_CR81 doi: 10.1109/MEC.2013.6885296 – volume: 12 start-page: 1709 year: 2019 ident: 94422_CR20 publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2911113 – volume: 8 start-page: 497 year: 2011 ident: 94422_CR16 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2089427 – volume: 54 start-page: 3292 year: 2016 ident: 94422_CR39 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2514504 – volume: 8 start-page: 2206 year: 2018 ident: 94422_CR60 publication-title: Appl. Sci. doi: 10.3390/app8112206 – volume: 2015 start-page: 538063 year: 2015 ident: 94422_CR38 publication-title: J. Sens. doi: 10.1155/2015/538063 |
| SSID | ssj0000529419 |
| Score | 2.5413826 |
| Snippet | Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge... Abstract Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 15365 |
| SubjectTerms | 639/166 639/705/1042 639/705/1046 639/705/117 639/705/531 639/766/259 704/172/4081 704/525/2810 Accuracy Algorithms Datasets Deep learning Humanities and Social Sciences Image processing Land use Learning algorithms Machine learning multidisciplinary Radar Remote sensing Science Science (multidisciplinary) Segmentation Semantics Support vector machines Transfer learning Urban areas Vegetation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9KYXR7GFv3UW9d0WBvq6ltKfp47MZKGbSUdYW-CUmWskDihCVh5L_fSXbchI2uD3u1ziD_7nS6s06_A_hQcC85r10ubIUJimM2Nx4VYgtPZXDBiUTqc3HJz2_Y19vB7Uarr1gT1tIDt8CdlC5Q6SsZW8-xqg6qYMFQWlIeeHBV8r6FVBvJVMvqXSlWqu6WTEHlyRx3qnibLFYkMIYZ2GprJ0qE_X-LMv8sluxPTJ_A3rKZmdUvMx5vbEpnz-BpF02S0_YrnsOOb_bhUdtfcvUCLq79BJEbOTL3w0l3y6gh00CupuPr029kNEF3QmKVKIkF8EOyLgkgtfcz0rWUGJLUL-cl3Jx9-f75PO_6J-QO05JFbhCE2mDIoKQcBEytpBPSVGYgnY3_EJ0IVNGaKi4cd4ZbKmpb1tSqWgrMuOkr2G2mjT8AkoZ87GoU-QALa0urrEdRZpwpnM-gXGOpXUcuHntcjHU65KZSt_hrxF8n_PUqg4_9O7OWWuNe6U9RRb1kpMVOD9BYdGcs-l_GksHhWsG6W6tzjUnVILLoMZHB-34YV1k8OjGNny6TDDoqzP5oBq9be-hnEq_mYtyEb4stS9ma6vZIM_qRmLwlOkBUTwbHa5u6m9Z9UBz3dvcA5N78D-TewuMqrp1C5JU8hN3Fz6V_h-HYwh6llfcbf5subA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED66lLHtYex3vXVDg72tprblWPLDGO1oKYOG0q7QNyPJchZI7LRJGPnvdyfL7sJG2Gskg3K6k-50d98H8CnKrMyy0oRCJxigmFSHyuKG6MhyWZnKCAfqcz7Kzq7T7zfDmx0Ydb0wVFbZnYnuoC4bQ2_kh-j6DgnrLBVf57chsUZRdrWj0FCeWqH84iDGHsBuQshYA9g9PhldXPavLpTXSuPcd89EXB4u8AajLjOqVEhTjMzWGzeUA_L_l_f5dxFln0l9Ao9W9Vytf6np9I_L6vQZPPVeJjtq1eI57Nj6BTxseSfXL-H8ys5QohPDFnY8891HNWsqdtFMr44u2WSGxwyj6lFGhfFj1pUKsNLaOfNUE2PmeHRewfXpyY9vZ6HnVQgNhivLUKEQSoWuRC7lsMKQSxohVaKG0mh6WzSi4jkveZ4JkxmVaS5KHZdc56UUGInz1zCom9ruAXNDltiOCCcw0jrWubY4NVVGRcYGEHeyLIwHHSfui2nhkt9cFq38C5R_4eRfrAP43H8zbyE3ts4-pi3qZxJctvuhuRsX3vqK2FRc2kQSf2GalFUepZXiPOZZlVUmSQLY7za48Da8KO41LoCP_TBaH6VUVG2blZuDBxhGhTyAN60-9Cuhll30p_BrsaEpG0vdHKknPx3Ct8SDEbcngINOp-6XtU0UB73e_Yfk3m7_0-_gcUJWEYkwkfswWN6t7Ht0wJb6g7eq3xhsLTE priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFD6sK6I-LN6tu0oE39xq23Sa9GFZVnFZhBFxHdi3kKTJONBpx7mg_feepBcdHBZ9nSQlnEtyzuSc7wN4FWWGZ1mhQ6YSTFB0qkJpUCEqMpRbbTXzoD7jT9nFJP14Nbrag57uqBPgamdq5_ikJsvyzc_vzSk6_EnbMs7frvASco1irtggTTG5am7ATbypckflMO7C_RbrO8nTOO96Z3Yv3bqfPIz_rtjz7xLK4R31LtzeVAvZ_JBl-cdVdX4PDroYk5y1RnEf9kz1AG61rJPNQxhfmjnKc6bJykznXe9RRWpLPtfl5dkXMpvjIUNc7ShxZfFT0hcKkMKYBemIJqbEs-g8gsn5h6_vL8KOVSHUmKysQ4lCKCQGEjnnI4sJF9eMy0SOuFbun0XNLM1pQfOM6UzLTFFWqLigKi84wzycPob9qq7MUyB-yDiuI4cSGCkVq1wZnJpKLSNtAoh7WQrdQY475otS-KdvykUrf4HyF17-ogng9bBm0QJuXDv7nVPRMNOBZfsf6uVUdL4nYm0pNwl37IVpUtg8Sq2kNKaZzaxOkgCOegWL3gAFplojh62XsgBeDsPoe-5BRVam3vg5eHxhTkgDeNLaw7AT17CL0RSuZluWsrXV7ZFq9s3je3M8FlE9ARz3NvV7W9eJ4niwu3-Q3LP_-_oh3Emcl0QsTPgR7K-XG_Mcw7G1euF97BdvhS6G priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44PsjMJCReGPpEjtxnMeCmCakTROjYjxFtmOXijap1lao_PWcnQ8oTBN7jc-SfXc-38V3vwN4E3EjOC91mCmKAYpOVCgNCkRFhgmrrc48qM_xCT8aJx_P0_Md4F0tjE_a95CW3kx32WEHS7xoXDGYSyhIEgygNsNFaW_ALk_RBx_A7vjkdPTVdZJDHyVEN4G2FTIRE5dM3rqFPFj_ZR7mv4mS_WvpHbi1rhZy80POZn9cSIf34Eu3lSYP5ftwvVJD_fMvlMfr7_U-3G19VDJqKB_Ajqkews2ma-XmERyfmTnKY6rJ0kzmbe1SRWpLTuvZ2egTmc7RSBGXe0pcWv2EdIkGpDRmQdpGFRPiu_A8hvHhh8_vj8K2K0OoMdhZhTKleSnREcmFSC0GbEJnQlKZCq3cn0mdWZazkuU801xLrlhWqrhkKi9FhnE8ewKDqq7MMyB-yLheSQ5lMFIqVrkySJpILSNtAog7KRW6hSx3nTNmhX86Z6JoWFUgqwrPqmITwNt-zqIB7LiS-p0Tfk_pwLb9h_piUrQCKWJtmTBUuO6HCS1tHiVWMhYzbrnVlAaw16lO0VqAZYGhWuqw-ZIsgNf9MJ5d9yAjK1OvPQ2aP4wpWQBPG03rV-IKftEbw9nZlg5uLXV7pJp-8_jgAs0qiieA_U5bfy_rKlbs9xr9H5x7fj3yF3CbOoWOspCKPRisLtbmJbpzK_WqPbu_AK9qRKU priority: 102 providerName: Unpaywall |
| Title | Semantic segmentation of PolSAR image data using advanced deep learning model |
| URI | https://link.springer.com/article/10.1038/s41598-021-94422-y https://www.ncbi.nlm.nih.gov/pubmed/34321517 https://www.proquest.com/docview/2555778647 https://www.proquest.com/docview/2556388623 https://pubmed.ncbi.nlm.nih.gov/PMC8319419 https://www.nature.com/articles/s41598-021-94422-y.pdf https://doaj.org/article/1cf38e28059342df904fa33136f6fc22 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Nature Publishing (Free internet resource, activated by CARLI) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (WRLC) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1da9sw8GhTxraHse9664IGe1vMbMux5Ec3tJRAQmgWyJ6MJMtpIHHCklDy73eSPzbTUbYXG3ySEfch3em-AL54keZRlCmXyQANFBVKV2gkiPQ05bnKFbNFfUbj6GYWDuf9-Qn06lyYlv_elu7e4RFj0sBMKEEYoul0PIUzjozJO3CWJMPpsLlTMV6r0I-r3Bic_u3h5Nb5Y8v0_023fBgi2fhJn8PTQ7EVx3uxWv1xFF2_hBeVDkmSkuiv4EQXr-FJ2VXy-AZGU71GfC0V2enFusotKsgmJ5PNaprckuUaNxFiYkOJCXtfkDoQgGRab0nVSGJBbJectzC7vvo-uHGrrgmuQmNk7wpEQiZQUYg57-doUHHFuAhEnytpbg4Vy2lMMxpHTEVKRJKyTPoZlXHGGdrZ9B10ik2hz4FYkDa9jEwVQE9KX8ZS49BQKOEp7YBf4zJVVUlx09lilVrXNuVpif8U8Z9a_KdHB742c7ZlQY1HR18aEjUjTTFs-wF5JK1kK_VVTrkOuOlOGAZZHnthLij1aZRHuQoCBy5qAqeVhO5SNKX6pnZeyBz43IBRtozDRBR6c7BjcHtCm4868L7kh2YlJiEXtSWczVqc0lpqG1Is72z9bo7bHpLHgV7NU7-X9Rgqeg3f_QPmPvzf3z_Cs8BIicfcgF9AZ__zoD-hurWXXThlc9atZA3fl1fjyS1-HUSDrr3CwOco5AiZjSfJj19xOSiv |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWjwgPgmMMBI8MSipXaaOA8T2mDTxtZq2oe0N892nFKpTcraauo_x9_G2XUyKlDFy15jJ3Luzuc738cP4GOUGJ4kuQ5TRdFB0bEKpUGGqMgwXuhCp66pT6ebHFzE3y_blyvwq66FsWmVtU50ijqvtL0j30LTt217ncXpl9HP0KJG2ehqDaEhPbRCvu1ajPnCjiMzu0EXbrx9-A35_YnS_b3zrwehRxkINRrvk1C2aZZLPFgzztsFOiBcp1xS2eZa2Zs2nRYsYznLklQnWiaKpblq5UxlOU_RL2X43XuwFrM4Q-dvbXeve3La3PLYOBp-2VfrRIxvjfHEtFVtNjMijtETnC2ciA444F_W7t9Jm03k9iGsT8uRnN3IweCPw3H_MTzyVi3ZmYvhE1gx5VO4P8e5nD2DzpkZIgf7moxNb-irnUpSFeSkGpztnJL-ENUasdmqxCbi90idmkByY0bEQ1v0iMPteQ4Xd0LhF7BaVqV5BcQNGYuuZPsSRkq1VKYMTo2llpE2AbRqWgrtm5xbrI2BcMF2xsWc_gLpLxz9xSyAz807o3mLj6Wzdy2Lmpm2Pbd7UF33hN_toqULxg3lFi8xpnmRRXEhGWuxpEgKTWkAGzWDhdcZY3Er4QF8aIZxt9sQjixNNXVzUGGiF8oCeDmXh2YltkQY7Td8O12QlIWlLo6U_R-uozhHRYzsCWCzlqnbZS0jxWYjd_9BudfLf_o9rB-cd47F8WH36A08oHaHRGlI-QasTq6n5i0afxP1zu8wAld3val_A7ZZads |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIb4eEN8EBhgJnljU1E5j5wGhwag2xqaJMalvnu04pVKblLXV1H-Nv46z8zEqUMXLXmMncu7Ld77z_QDeRIkVSZKZkGuKAYqJdagsMkRHlonc5Ib7pj6HR8neafxl0BtswK_mLowrq2xsojfUWWncGXkHXd-e63UW805el0Uc7_Y_TH-GDkHKZVobOI1KRA7s8gLDt9n7_V3k9VtK-5-_f9oLa4SB0KDjPg9Vj6aZwk01FaKXY_AhDBeKqp4w2p2yGZ6zlGUsTbhJjEo045nuZkynmeAYkzL87jW4zhlLXTkhH_D2fMdl0PC79T2diInODPdKd5_N1UTEMcaAy5W90EMG_MvP_btcs83Z3oFbi2KqlhdqPP5jW-zfg7u1P0t2KgG8Dxu2eAA3KoTL5UM4PLET5N3IkJkdTup7TgUpc3Jcjk92vpHRBA0acXWqxJXgD0lTlEAya6ekBrUYEo_Y8whOr4S-j2GzKAv7FIgfsg5XyXUkjLTu6lRbnBoroyJjA-g2tJSmbm_uUDbG0qfZmZAV_SXSX3r6y2UA79p3plVzj7WzPzoWtTNdY27_oDwfylrPZdfkTFgqHFJiTLM8jeJcMdZlSZ7khtIAthoGy9pazOSlbAfwuh1GPXfJG1XYcuHnoKnE-JMF8KSSh3Yl7nIwem74Nl-RlJWlro4Uox--l7hAE4zsCWC7kanLZa0jxXYrd_9BuWfrf_oV3ERVll_3jw6ew23qFCTiIRVbsDk_X9gX6PXN9UuvXgTOrlqffwPBCmd1 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44PsjMJCReGPpEjtxnMeCmCakTROjYjxFtmOXijap1lao_PWcnQ8oTBN7jc-SfXc-38V3vwN4E3EjOC91mCmKAYpOVCgNCkRFhgmrrc48qM_xCT8aJx_P0_Md4F0tjE_a95CW3kx32WEHS7xoXDGYSyhIEgygNsNFaW_ALk_RBx_A7vjkdPTVdZJDHyVEN4G2FTIRE5dM3rqFPFj_ZR7mv4mS_WvpHbi1rhZy80POZn9cSIf34Eu3lSYP5ftwvVJD_fMvlMfr7_U-3G19VDJqKB_Ajqkews2ma-XmERyfmTnKY6rJ0kzmbe1SRWpLTuvZ2egTmc7RSBGXe0pcWv2EdIkGpDRmQdpGFRPiu_A8hvHhh8_vj8K2K0OoMdhZhTKleSnREcmFSC0GbEJnQlKZCq3cn0mdWZazkuU801xLrlhWqrhkKi9FhnE8ewKDqq7MMyB-yLheSQ5lMFIqVrkySJpILSNtAog7KRW6hSx3nTNmhX86Z6JoWFUgqwrPqmITwNt-zqIB7LiS-p0Tfk_pwLb9h_piUrQCKWJtmTBUuO6HCS1tHiVWMhYzbrnVlAaw16lO0VqAZYGhWuqw-ZIsgNf9MJ5d9yAjK1OvPQ2aP4wpWQBPG03rV-IKftEbw9nZlg5uLXV7pJp-8_jgAs0qiieA_U5bfy_rKlbs9xr9H5x7fj3yF3CbOoWOspCKPRisLtbmJbpzK_WqPbu_AK9qRKU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+segmentation+of+PolSAR+image+data+using+advanced+deep+learning+model&rft.jtitle=Scientific+reports&rft.au=Garg%2C+Rajat&rft.au=Kumar%2C+Anil&rft.au=Bansal%2C+Nikunj&rft.au=Prateek%2C+Manish&rft.date=2021-07-28&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-94422-y&rft.externalDocID=10_1038_s41598_021_94422_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |