Semantic segmentation of PolSAR image data using advanced deep learning model

Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly veg...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 15365 - 18
Main Authors Garg, Rajat, Kumar, Anil, Bansal, Nikunj, Prateek, Manish, Kumar, Shashi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.07.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-94422-y

Cover

Abstract Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.
AbstractList Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.
Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.
Abstract Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.
ArticleNumber 15365
Author Garg, Rajat
Bansal, Nikunj
Kumar, Anil
Prateek, Manish
Kumar, Shashi
Author_xml – sequence: 1
  givenname: Rajat
  surname: Garg
  fullname: Garg, Rajat
  organization: School of Computer Science, University of Petroleum and Energy Studies
– sequence: 2
  givenname: Anil
  surname: Kumar
  fullname: Kumar, Anil
  email: anil.kumar@ddn.upes.ac.in
  organization: School of Computer Science, University of Petroleum and Energy Studies
– sequence: 3
  givenname: Nikunj
  surname: Bansal
  fullname: Bansal, Nikunj
  organization: School of Computer Science, University of Petroleum and Energy Studies
– sequence: 4
  givenname: Manish
  surname: Prateek
  fullname: Prateek, Manish
  organization: Dev Bhoomi Group of Institutions
– sequence: 5
  givenname: Shashi
  surname: Kumar
  fullname: Kumar, Shashi
  organization: Photogrammetry and Remote Sensing Department, Indian Institute of Remote Sensing (IIRS), ISRO
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34321517$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUtFARLaV_gAOKxIVLIP6KnQtSVRWoVASicLZebCdk5diLnRTtv8dpltL2UOGLreeZ8bx5fo4OfPAWoZe4eosrKt8lhnkjy4rgsmGMkHL3BB2RivGSUEIO7pwP0UlKmyovThqGm2fokDJKMMfiCH2-siP4adBFsv1o_QTTEHwRuuJrcFen34phhN4WBiYo5jT4vgBzDV5bUxhrt4WzEP1SHoOx7gV62oFL9mS_H6MfH86_n30qL798vDg7vSx1XdVTCdmIAZG9SMk7SaTUQgIBLnXLJGVadLShhja10LWGuqXCtNjQtjFS2JbQY3Sx6poAG7WN2WTcqQCDuimE2CuIuSlnFdYdlZbIijeUEdM1FeuAUkzrru40WbToqjX7Lex-g3O3grhSS9ZqzVrlrNVN1mqXWe9X1nZuR2t0Ti6Cu2fl_o0ffqo-XCtJ8TKELPBmLxDDr9mmSY1D0tY58DbMSRHOayplTWiGvn4A3YQ5-hzwguJCyJqJjHp119Gtlb-zzgCyAnQMKUXb_V-f8gFJD-sfyV0N7nHqPtiU3_G9jf9sP8L6Axn33fU
CitedBy_id crossref_primary_10_1016_j_rsase_2022_100859
crossref_primary_10_1016_j_rsase_2025_101529
crossref_primary_10_1016_j_scs_2023_104653
crossref_primary_10_3389_fenvs_2022_968120
crossref_primary_10_1007_s11042_023_16205_z
crossref_primary_10_1109_LGRS_2022_3185118
crossref_primary_10_1016_j_bspc_2023_104722
crossref_primary_10_1016_j_rse_2024_114290
crossref_primary_10_1007_s00436_022_07583_8
crossref_primary_10_3390_app12157811
crossref_primary_10_1007_s44288_024_00034_0
crossref_primary_10_3390_rs15245738
crossref_primary_10_1109_JSTARS_2022_3192352
crossref_primary_10_3390_rs16060972
crossref_primary_10_1029_2022EA002796
crossref_primary_10_1038_s41598_022_09871_w
crossref_primary_10_1080_01431161_2022_2135411
crossref_primary_10_1016_j_jag_2024_103657
crossref_primary_10_3390_rs14215533
crossref_primary_10_3390_rs16122222
crossref_primary_10_1016_j_isprsjprs_2024_12_011
crossref_primary_10_1049_rsn2_12389
crossref_primary_10_35940_ijrte_E7987_12060324
crossref_primary_10_1038_s41598_023_34379_2
crossref_primary_10_1109_JSTARS_2024_3437187
crossref_primary_10_1109_JSTARS_2022_3181355
crossref_primary_10_3390_rs17020304
crossref_primary_10_3390_s22031070
crossref_primary_10_1016_j_ecoinf_2022_101745
crossref_primary_10_1016_j_heliyon_2023_e22762
crossref_primary_10_3390_rs16111826
crossref_primary_10_1007_s41324_023_00555_9
crossref_primary_10_1016_j_uclim_2023_101506
crossref_primary_10_3390_land14030649
crossref_primary_10_1109_ACCESS_2023_3321894
crossref_primary_10_3389_fonc_2023_1009681
crossref_primary_10_3390_ijgi11030197
crossref_primary_10_3390_rs14153737
crossref_primary_10_1016_j_asr_2022_07_078
crossref_primary_10_1016_j_scitotenv_2022_153559
crossref_primary_10_3390_rs15051371
crossref_primary_10_3390_data8120185
Cites_doi 10.1109/36.142932
10.1016/j.rse.2006.09.002
10.1103/PhysRevLett.113.130503
10.1109/JSTARS.2019.2959192
10.1186/s13640-015-0071-8
10.1080/07038992.1996.10855182
10.1109/TPAMI.1986.4767851
10.1109/TGRS.2016.2514504
10.1109/TPAMI.2017.2699184
10.1109/PROC.1982.12448
10.1201/9781003049753
10.1109/TGRS.2016.2551720
10.1109/TNNLS.2015.2435783
10.1007/s11263-015-0816-y
10.1109/LGRS.2014.2309695
10.1109/TGRS.2014.2334608
10.1109/TGRS.2012.2201946
10.1109/LGRS.2006.869986
10.1109/36.673687
10.1109/TGRS.2015.2431856
10.3390/s18082620
10.3390/rs11192287
10.1109/MGRS.2016.2540798
10.1117/1.JRS.14.034503
10.1007/s11270-020-04846-x
10.1016/j.asr.2021.02.023
10.1023/A:1010933404324
10.1109/TGRS.2010.2099124
10.1029/2020EA001279
10.1109/LGRS.2014.2386351
10.1109/36.485127
10.1029/2020EA001447
10.1109/36.20273
10.1109/5254.708428
10.1155/2015/538063
10.3390/app8112206
10.1109/LGRS.2010.2058997
10.1162/neco.2006.18.7.1527
10.1109/JSTARS.2019.2911113
10.1080/0143116032000160480
10.1007/978-3-642-02020-9
10.3390/rs71115424
10.1016/j.rse.2014.06.025
10.1109/TPAMI.2016.2644615
10.1007/BF00058655
10.1109/TGRS.2005.852084
10.3390/rs10122060
10.1117/1.JRS.13.044528
10.1109/LGRS.2010.2089427
10.1109/TGRS.2012.2212446
10.3390/rs11131600
10.1109/LGRS.2014.2308328
10.1109/36.193786
10.1080/07038992.2017.1330142
10.3390/rs12030369
10.1109/TGRS.2020.3011638
10.1109/TPAMI.2016.2572683
10.1016/j.patrec.2005.08.004
10.1109/TGRS.2016.2645226
10.1038/nature14539
10.1109/TIT.1967.1053964
10.1117/1.JRS.10.025015
10.1109/TGRS.2016.2528583
10.1109/TGRS.2014.2326955
10.3390/rs10071010
10.23919/URSIAP-RASC.2019.8738217
10.1049/cp.2015.1182
10.1109/CCECE.2014.6901104
10.1109/NSSMIC.1993.373563
10.1007/978-3-319-24574-4_28
10.1201/9781315272573
10.1109/JSTARS.2015.2416255
10.1109/NRC.1988.10937
10.1109/RADAR.2008.4720722
10.1109/CVPR.2017.195
10.1007/978-3-642-75988-8_28
10.1080/01431161.2020.1829155
10.1109/ISCAS.2010.5537907
10.1109/IGARSS.2015.7326520
10.1002/9781118116104
10.1007/978-3-030-01234-2_49
10.1049/ji-3-2.1946.0074
10.1109/IGARSS.2008.4779149
10.1109/IGARSS.2011.6050037
10.1109/MEC.2013.6885296
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-021-94422-y
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (via ProQuest SciTech Premium Collection)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_1cf38e28059342df904fa33136f6fc22
10.1038/s41598-021-94422-y
PMC8319419
34321517
10_1038_s41598_021_94422_y
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c606t-a529da7419885f8288c78a2a58cb4834c7f393d3967c6ca6b37db1d3b9d87eb23
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Fri Oct 03 12:43:27 EDT 2025
Sun Oct 26 03:51:36 EDT 2025
Tue Sep 30 15:57:07 EDT 2025
Thu Oct 02 09:39:21 EDT 2025
Tue Oct 07 09:10:09 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Wed Oct 01 04:28:03 EDT 2025
Fri Feb 21 02:39:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-a529da7419885f8288c78a2a58cb4834c7f393d3967c6ca6b37db1d3b9d87eb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1038%2Fs41598-021-94422-y
PMID 34321517
PQID 2555778647
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_1cf38e28059342df904fa33136f6fc22
unpaywall_primary_10_1038_s41598_021_94422_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319419
proquest_miscellaneous_2556388623
proquest_journals_2555778647
pubmed_primary_34321517
crossref_primary_10_1038_s41598_021_94422_y
crossref_citationtrail_10_1038_s41598_021_94422_y
springer_journals_10_1038_s41598_021_94422_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-28
PublicationDateYYYYMMDD 2021-07-28
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References He, Zhuo, Zhao, Yin, Chen (CR11) 2015; 12
Sun, Huang, Chen, Han (CR68) 2017; 43
Canny (CR82) 1986; 6
Ma, Geng, Wang (CR34) 2015; 2015
Khoshboresh-Masouleh, Alidoost, Arefi (CR5) 2020; 14
Lv (CR38) 2015; 2015
CR36
CR79
Hinton, Osindero, Teh (CR33) 2006; 18
Shibayama, Yamaguchi, Yamada (CR57) 2015; 7
Breiman (CR28) 2001; 45
CR76
CR31
CR30
Maiti, Kumar, Tolpekin, Agrawal (CR72) 2021; 8
CR74
Jung, Park (CR69) 2018; 10
Chen, Xiang, Liu, Pan (CR32) 2014; 11
Li, Ling, Foody, Du (CR19) 2016; 54
Lapini (CR9) 2020; 12
Van, Kim (CR65) 2011
Su, He, Feng, Deng, Sun (CR16) 2011; 8
CR2
Jia, Shen, Li (CR13) 2015; 53
Cigna, Bateson, Jordan, Dashwood (CR61) 2014; 152
Geng, Wang, Fan, Ma (CR10) 2017; 55
CR7
Badrinarayanan, Kendall, Cipolla (CR87) 2017; 39
Dai, Yang, Sun (CR15) 2011; 8
Elachi, Bicknell, Jordan, Wu (CR1) 1982; 70
LeCun, Bengio, Hinton (CR35) 2015; 521
Li, Zhu, Hong, Ming, Wang (CR73) 2018; 18
CR45
CR89
CR44
Touzi, Hawkins, Cote (CR47) 2013; 51
Agrawal, Raghavendra, Kumar, Navalgund, Kumar (CR49) 2018
Loew, Mauser (CR54) 2007; 106
CR42
CR86
Cloude, Pottier (CR23) 1996; 34
Kim, Papathanassiou, Scheiber, Quegan (CR71) 2015; 53
CR84
Zhang, Zhang, Du (CR37) 2016; 4
Small, Schubert (CR59) 2008
CR81
CR80
Huang, Li, Tian (CR55) 2016; 10
Gong, Zhao, Liu, Miao, Jiao (CR40) 2016; 27
Yamaguchi, Moriyama, Ishido, Yamada (CR77) 2005; 43
Wang, Cao, Cui, Liu, Pi (CR6) 2019; 13
Breiman (CR83) 1996; 24
Xu (CR20) 2019; 12
Russakovsky (CR43) 2015; 115
Kumar (CR62) 2021
Camargo, Sano, Almeida, Mura, Almeida (CR8) 2019; 11
Hu, Rao, Alaee-Kerahroodi, Ottersten (CR58) 2021; 59
Kumar, Garg, Govil, Kushwaha (CR22) 2019; 11
Rebentrost, Mohseni, Lloyd (CR92) 2014; 113
Freeman (CR46) 1992; 30
Yamaguchi, Sato, Boerner, Sato, Yamada (CR66) 2011; 49
Sarabandi, Pierce, Ulaby (CR67) 1992; 30
CR14
Cover, Hart (CR27) 1967; 13
CR52
CR51
Chen, Sun, Hu (CR60) 2018; 8
Yamaguchi (CR75) 2020
CR93
CR91
Dibs, Hasab, Al-Rifaie, Al-Ansari (CR18) 2020; 231
CR90
Yang, Qiu, Ding, Lei (CR53) 2018; 10
Richards (CR50) 2009
Freeman, Durden (CR63) 1998; 36
Wang, Liu, Xu, Jiang (CR48) 2019; 12
Warner, Bell, Singhroy (CR56) 1996; 22
Shafai, Kumar (CR64) 2020; 7
Singh, Yamaguchi, Park (CR78) 2013; 51
Gomez-Chova (CR4) 2006; 27
Chust, Ducrot, Pretus (CR17) 2004; 25
van Zyl (CR3) 1989; 27
Chen, Papandreou, Kokkinos, Murphy, Yuille (CR88) 2018; 40
CR24
CR21
Planins̆ic̆, Singh, Gleich (CR12) 2014; 11
Shelhamer, Long, Darrell (CR85) 2017; 39
Chen, Wang, Xu, Jin (CR41) 2016; 54
Villa, Iannini, Giudici, Monti-Guarnieri, Tebaldini (CR70) 2015; 53
Lee, Pottier (CR26) 2009
Liu, Jiao, Hou, Yang (CR39) 2016; 54
Yamaguchi, Yajima, Yamada (CR25) 2006; 3
Hearst, Dumais, Osuna, Platt, Scholkopf (CR29) 1998; 13
L Zhang (94422_CR37) 2016; 4
M Khoshboresh-Masouleh (94422_CR5) 2020; 14
YT Jung (94422_CR69) 2018; 10
M Gong (94422_CR40) 2016; 27
A Freeman (94422_CR46) 1992; 30
X Su (94422_CR16) 2011; 8
A Maiti (94422_CR72) 2021; 8
94422_CR81
Q Lv (94422_CR38) 2015; 2015
94422_CR80
S Jia (94422_CR13) 2015; 53
94422_CR42
94422_CR86
J Geng (94422_CR10) 2017; 55
Y Xu (94422_CR20) 2019; 12
94422_CR84
94422_CR45
94422_CR89
A Loew (94422_CR54) 2007; 106
A Freeman (94422_CR63) 1998; 36
94422_CR44
G Chust (94422_CR17) 2004; 25
Y Yamaguchi (94422_CR75) 2020
L Huang (94422_CR55) 2016; 10
C He (94422_CR11) 2015; 12
JS Kim (94422_CR71) 2015; 53
K Sarabandi (94422_CR67) 1992; 30
E Shelhamer (94422_CR85) 2017; 39
94422_CR7
X Ma (94422_CR34) 2015; 2015
F Wang (94422_CR48) 2019; 12
94422_CR2
MA Hearst (94422_CR29) 1998; 13
JJ van Zyl (94422_CR3) 1989; 27
H Dibs (94422_CR18) 2020; 231
L Breiman (94422_CR83) 1996; 24
S Kumar (94422_CR22) 2019; 11
94422_CR30
Y LeCun (94422_CR35) 2015; 521
94422_CR74
94422_CR31
94422_CR79
94422_CR76
P Rebentrost (94422_CR92) 2014; 113
X Wang (94422_CR6) 2019; 13
94422_CR36
R Hu (94422_CR58) 2021; 59
SR Cloude (94422_CR23) 1996; 34
T Cover (94422_CR27) 1967; 13
L Gomez-Chova (94422_CR4) 2006; 27
F Cigna (94422_CR61) 2014; 152
A Villa (94422_CR70) 2015; 53
A Lapini (94422_CR9) 2020; 12
O Russakovsky (94422_CR43) 2015; 115
X Li (94422_CR19) 2016; 54
D Dai (94422_CR15) 2011; 8
L Breiman (94422_CR28) 2001; 45
Y Yamaguchi (94422_CR77) 2005; 43
C Elachi (94422_CR1) 1982; 70
D Small (94422_CR59) 2008
P Planins̆ic̆ (94422_CR12) 2014; 11
S Kumar (94422_CR62) 2021
94422_CR24
94422_CR21
J Yang (94422_CR53) 2018; 10
R Touzi (94422_CR47) 2013; 51
G Sun (94422_CR68) 2017; 43
S Agrawal (94422_CR49) 2018
T Shibayama (94422_CR57) 2015; 7
G Singh (94422_CR78) 2013; 51
GE Hinton (94422_CR33) 2006; 18
Y Yamaguchi (94422_CR66) 2011; 49
J Canny (94422_CR82) 1986; 6
L Li (94422_CR73) 2018; 18
X Chen (94422_CR32) 2014; 11
S Chen (94422_CR41) 2016; 54
Y Yamaguchi (94422_CR25) 2006; 3
V Badrinarayanan (94422_CR87) 2017; 39
F Liu (94422_CR39) 2016; 54
94422_CR93
94422_CR90
ZJ Van (94422_CR65) 2011
94422_CR91
J-S Lee (94422_CR26) 2009
94422_CR52
JA Richards (94422_CR50) 2009
94422_CR51
T Warner (94422_CR56) 1996; 22
SS Shafai (94422_CR64) 2020; 7
X Chen (94422_CR60) 2018; 8
94422_CR14
FF Camargo (94422_CR8) 2019; 11
L-C Chen (94422_CR88) 2018; 40
References_xml – ident: CR45
– volume: 30
  start-page: 540
  year: 1992
  end-page: 549
  ident: CR67
  article-title: Calibration of a polarimetric imaging SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.142932
– volume: 106
  start-page: 337
  year: 2007
  end-page: 349
  ident: CR54
  article-title: Generation of geometrically and radiometrically terrain corrected SAR image products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.09.002
– ident: CR74
– volume: 113
  start-page: 130503
  year: 2014
  ident: CR92
  article-title: Quantum support vector machine for big data classification
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.130503
– ident: CR93
– ident: CR51
– volume: 12
  start-page: 5345
  year: 2019
  end-page: 5359
  ident: CR48
  article-title: A Method for estimating and validating polarimetric distortion parameters using corner reflectors and its applicability analysis
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2959192
– volume: 2015
  start-page: 20
  year: 2015
  ident: CR34
  article-title: Hyperspectral image classification via contextual deep learning
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-015-0071-8
– volume: 22
  start-page: 269
  year: 1996
  end-page: 279
  ident: CR56
  article-title: Local incidence angle effects on X- and C-band radar backscatter of boreal forest communities
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1996.10855182
– volume: 6
  start-page: 679
  year: 1986
  end-page: 698
  ident: CR82
  article-title: A Computational approach to edge detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– ident: CR80
– year: 2009
  ident: CR26
  publication-title: Polarimetric Radar Imaging From Basics to Applications
– ident: CR84
– volume: 54
  start-page: 3292
  year: 2016
  end-page: 3308
  ident: CR39
  article-title: POL-SAR image classification based on wishart DBN and local spatial information
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2514504
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: CR88
  article-title: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: CR42
– volume: 70
  start-page: 1174
  year: 1982
  end-page: 1209
  ident: CR1
  article-title: Spaceborne synthetic-aperture imaging radars: applications, techniques, and technology
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1982.12448
– ident: CR21
– year: 2020
  ident: CR75
  publication-title: Polarimetric SAR Imaging Theory and Applications
  doi: 10.1201/9781003049753
– volume: 54
  start-page: 4806
  year: 2016
  end-page: 4817
  ident: CR41
  article-title: Target classification using the deep convolutional networks for SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2551720
– volume: 27
  start-page: 125
  year: 2016
  end-page: 138
  ident: CR40
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2435783
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: CR43
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 11
  start-page: 1797
  year: 2014
  end-page: 1801
  ident: CR32
  article-title: Vehicle detection in satellite images by hybrid deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2309695
– volume: 53
  start-page: 1118
  year: 2015
  end-page: 1129
  ident: CR13
  article-title: Gabor feature-based collaborative representation for hyperspectral imagery classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2334608
– ident: CR36
– volume: 51
  start-page: 487
  year: 2013
  end-page: 503
  ident: CR47
  article-title: High-precision assessment and calibration of polarimetric RADARSAT-2 SAR using transponder measurements
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2201946
– ident: CR81
– volume: 3
  start-page: 292
  year: 2006
  end-page: 296
  ident: CR25
  article-title: A four-component decomposition of POLSAR images based on the coherency matrix
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2006.869986
– volume: 36
  start-page: 963
  year: 1998
  end-page: 973
  ident: CR63
  article-title: A three-component scattering model for polarimetric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.673687
– volume: 53
  start-page: 6319
  year: 2015
  end-page: 6335
  ident: CR71
  article-title: Correcting distortion of polarimetric SAR data induced by ionospheric scintillation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2431856
– volume: 18
  start-page: 2620
  year: 2018
  ident: CR73
  article-title: Design and implementation of a novel polarimetric active radar calibrator for Gaofen-3 SAR
  publication-title: Sensors
  doi: 10.3390/s18082620
– volume: 11
  start-page: 1
  year: 2019
  end-page: 27
  ident: CR22
  article-title: PolSAR-decomposition-based extended water cloud modeling for forest aboveground biomass estimation
  publication-title: Remote Sens.
  doi: 10.3390/rs11192287
– volume: 4
  start-page: 22
  year: 2016
  end-page: 40
  ident: CR37
  article-title: Deep learning for remote sensing data: a technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– volume: 14
  start-page: 1
  year: 2020
  end-page: 21
  ident: CR5
  article-title: Multiscale building segmentation based on deep learning for remote sensing RGB images from different sensors
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.14.034503
– volume: 231
  start-page: 488
  year: 2020
  ident: CR18
  article-title: An optimal approach for land-use/land-cover mapping by integration and fusion of multispectral landsat OLI images: case study in Baghdad
  publication-title: Iraq. Water Air Soil Pollut.
  doi: 10.1007/s11270-020-04846-x
– year: 2021
  ident: CR62
  article-title: Polarimetric calibration of spaceborne and airborne multifrequency SAR data for scattering-based characterization of manmade and natural features
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2021.02.023
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR28
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 49
  start-page: 2251
  year: 2011
  end-page: 2258
  ident: CR66
  article-title: Four-component scattering power decomposition with rotation of coherency matrix
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2099124
– volume: 7
  start-page: 1
  year: 2020
  end-page: 17
  ident: CR64
  article-title: PolInSAR coherence and entropy-based hybrid decomposition mode
  publication-title: Earth Space Sci.
  doi: 10.1029/2020EA001279
– volume: 12
  start-page: 1141
  year: 2015
  end-page: 1145
  ident: CR11
  article-title: Particle filter sample texton feature for SAR image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2386351
– ident: CR91
– volume: 34
  start-page: 498
  year: 1996
  end-page: 518
  ident: CR23
  article-title: A review of target decomposition theorems in radar polarimetry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.485127
– volume: 8
  start-page: 1
  year: 2021
  end-page: 22
  ident: CR72
  article-title: A computationally efficient hybrid framework for polarimetric calibration of quad-pol SAR data
  publication-title: Earth Space Sci.
  doi: 10.1029/2020EA001447
– volume: 27
  start-page: 36
  year: 1989
  end-page: 45
  ident: CR3
  article-title: Unsupervised classification of scattering behavior using radar polarimetry data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.20273
– volume: 13
  start-page: 18
  year: 1998
  end-page: 28
  ident: CR29
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. their Appl.
  doi: 10.1109/5254.708428
– volume: 2015
  start-page: 538063
  year: 2015
  ident: CR38
  article-title: Urban land use and land cover classification using remotely sensed SAR data through deep belief networks
  publication-title: J. Sens.
  doi: 10.1155/2015/538063
– ident: CR14
– volume: 8
  start-page: 2206
  year: 2018
  ident: CR60
  article-title: Generation of complete SAR geometric distortion maps based on DEM and neighbor gradient algorithm
  publication-title: Appl. Sci.
  doi: 10.3390/app8112206
– ident: CR2
– ident: CR89
– ident: CR30
– start-page: 471
  year: 2018
  end-page: 500
  ident: CR49
  article-title: Geospatial data for the himalayan region: requirements, availability, and challenges
  publication-title: Remote Sensing of Northwest Himalayan Ecosystems
– volume: 8
  start-page: 225
  year: 2011
  end-page: 229
  ident: CR15
  article-title: Multilevel local pattern histogram for SAR image classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2058997
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: CR33
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 12
  start-page: 1709
  year: 2019
  end-page: 1724
  ident: CR20
  article-title: Advanced multi-sensor optical remote sensing for urban land use and land cover classification: outcome of the 2018 IEEE GRSS data fusion contest
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2911113
– volume: 25
  start-page: 3513
  year: 2004
  end-page: 3528
  ident: CR17
  article-title: Land cover discrimination potential of radar multitemporal series and optical multispectral images in a Mediterranean cultural landscape
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116032000160480
– ident: CR79
– year: 2009
  ident: CR50
  publication-title: Remote Sensing with Imaging Radar
  doi: 10.1007/978-3-642-02020-9
– volume: 7
  start-page: 15424
  year: 2015
  end-page: 15442
  ident: CR57
  article-title: Polarimetric scattering properties of landslides in forested areas and the dependence on the local incidence angle
  publication-title: Remote Sens.
  doi: 10.3390/rs71115424
– volume: 152
  start-page: 441
  year: 2014
  end-page: 466
  ident: CR61
  article-title: Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.025
– ident: CR86
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: CR87
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: CR83
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 43
  start-page: 1699
  year: 2005
  end-page: 1706
  ident: CR77
  article-title: Four-component scattering model for polarimetric SAR image decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.852084
– volume: 10
  start-page: 2060
  year: 2018
  ident: CR69
  article-title: Comparative analysis of polarimetric SAR calibration methods
  publication-title: Remote Sens.
  doi: 10.3390/rs10122060
– ident: CR44
– volume: 13
  start-page: 1
  year: 2019
  end-page: 17
  ident: CR6
  article-title: PolSAR image classification based on deep polarimetric feature and contextual information
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.13.044528
– volume: 8
  start-page: 497
  year: 2011
  end-page: 501
  ident: CR16
  article-title: A Supervised classification method based on conditional random fields with multiscale region connection calculus model for SAR image
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2089427
– volume: 51
  start-page: 3014
  year: 2013
  end-page: 3022
  ident: CR78
  article-title: General four-component scattering power decomposition with unitary transformation of coherency matrix
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2212446
– ident: CR90
– volume: 11
  start-page: 1600
  year: 2019
  ident: CR8
  article-title: A comparative assessment of machine-learning techniques for land use and land cover classification of the brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images
  publication-title: Remote Sens.
  doi: 10.3390/rs11131600
– volume: 11
  start-page: 1757
  year: 2014
  end-page: 1761
  ident: CR12
  article-title: SAR Image categorization using parametric and nonparametric approaches within a dual tree CWT
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2308328
– ident: CR52
– ident: CR31
– volume: 30
  start-page: 1107
  year: 1992
  end-page: 1121
  ident: CR46
  article-title: SAR calibration: an overview
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.193786
– volume: 43
  start-page: 286
  year: 2017
  end-page: 296
  ident: CR68
  article-title: An efficient polarimetric SAR calibration algorithm using corner reflectors
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2017.1330142
– volume: 12
  start-page: 369
  year: 2020
  ident: CR9
  article-title: Comparison of machine learning methods applied to SAR images for forest classification in mediterranean areas
  publication-title: Remote Sens.
  doi: 10.3390/rs12030369
– volume: 59
  start-page: 3999
  year: 2021
  end-page: 4007
  ident: CR58
  article-title: Orthorectified polar format algorithm for generalized spotlight SAR imaging with DEM
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3011638
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: CR85
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– year: 2008
  ident: CR59
  publication-title: Guide to ASAR Geocoding
– volume: 27
  start-page: 234
  year: 2006
  end-page: 243
  ident: CR4
  article-title: Urban monitoring using multi-temporal SAR and multi-spectral data
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.08.004
– volume: 55
  start-page: 2442
  year: 2017
  end-page: 2459
  ident: CR10
  article-title: Deep supervised and contractive neural network for SAR image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2645226
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR35
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2011
  ident: CR65
  publication-title: Synthetic Aperture Radar Polarimetry
– ident: CR7
– ident: CR76
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: CR27
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 10
  start-page: 1
  year: 2016
  end-page: 14
  ident: CR55
  article-title: Local incidence angle referenced classification on polarimetric synthetic aperture radar images in mountain glacier areas
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.10.025015
– volume: 54
  start-page: 3822
  year: 2016
  end-page: 3841
  ident: CR19
  article-title: A superresolution land-cover change detection method using remotely sensed images with different spatial resolutions
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2528583
– volume: 53
  start-page: 674
  year: 2015
  end-page: 686
  ident: CR70
  article-title: Calibration of SAR Polarimetric images by means of a covariance matching approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2326955
– ident: CR24
– volume: 10
  start-page: 1010
  year: 2018
  ident: CR53
  article-title: Identification of stable backscattering features, suitable for maintaining absolute synthetic aperture radar (SAR) radiometric calibration of sentinel-1
  publication-title: Remote Sens.
  doi: 10.3390/rs10071010
– volume: 54
  start-page: 4806
  year: 2016
  ident: 94422_CR41
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2551720
– volume: 106
  start-page: 337
  year: 2007
  ident: 94422_CR54
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.09.002
– volume: 12
  start-page: 369
  year: 2020
  ident: 94422_CR9
  publication-title: Remote Sens.
  doi: 10.3390/rs12030369
– volume: 13
  start-page: 21
  year: 1967
  ident: 94422_CR27
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 55
  start-page: 2442
  year: 2017
  ident: 94422_CR10
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2645226
– volume: 152
  start-page: 441
  year: 2014
  ident: 94422_CR61
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.025
– volume: 8
  start-page: 225
  year: 2011
  ident: 94422_CR15
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2058997
– ident: 94422_CR2
  doi: 10.23919/URSIAP-RASC.2019.8738217
– volume: 10
  start-page: 1
  year: 2016
  ident: 94422_CR55
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.10.025015
– volume-title: Polarimetric Radar Imaging From Basics to Applications
  year: 2009
  ident: 94422_CR26
– volume: 13
  start-page: 1
  year: 2019
  ident: 94422_CR6
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.13.044528
– volume: 115
  start-page: 211
  year: 2015
  ident: 94422_CR43
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 10
  start-page: 1010
  year: 2018
  ident: 94422_CR53
  publication-title: Remote Sens.
  doi: 10.3390/rs10071010
– year: 2021
  ident: 94422_CR62
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2021.02.023
– volume: 6
  start-page: 679
  year: 1986
  ident: 94422_CR82
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– volume: 521
  start-page: 436
  year: 2015
  ident: 94422_CR35
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 39
  start-page: 2481
  year: 2017
  ident: 94422_CR87
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 11
  start-page: 1797
  year: 2014
  ident: 94422_CR32
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2309695
– ident: 94422_CR36
  doi: 10.1049/cp.2015.1182
– volume: 12
  start-page: 1141
  year: 2015
  ident: 94422_CR11
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2386351
– volume: 36
  start-page: 963
  year: 1998
  ident: 94422_CR63
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.673687
– volume: 11
  start-page: 1757
  year: 2014
  ident: 94422_CR12
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2308328
– ident: 94422_CR21
– volume: 43
  start-page: 286
  year: 2017
  ident: 94422_CR68
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2017.1330142
– volume: 11
  start-page: 1
  year: 2019
  ident: 94422_CR22
  publication-title: Remote Sens.
  doi: 10.3390/rs11192287
– volume-title: Guide to ASAR Geocoding
  year: 2008
  ident: 94422_CR59
– volume: 54
  start-page: 3822
  year: 2016
  ident: 94422_CR19
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2528583
– volume: 30
  start-page: 540
  year: 1992
  ident: 94422_CR67
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.142932
– ident: 94422_CR52
  doi: 10.1109/CCECE.2014.6901104
– volume: 12
  start-page: 5345
  year: 2019
  ident: 94422_CR48
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2959192
– volume: 7
  start-page: 15424
  year: 2015
  ident: 94422_CR57
  publication-title: Remote Sens.
  doi: 10.3390/rs71115424
– volume: 49
  start-page: 2251
  year: 2011
  ident: 94422_CR66
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2099124
– volume-title: Polarimetric SAR Imaging Theory and Applications
  year: 2020
  ident: 94422_CR75
  doi: 10.1201/9781003049753
– volume: 39
  start-page: 640
  year: 2017
  ident: 94422_CR85
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– ident: 94422_CR80
  doi: 10.1109/NSSMIC.1993.373563
– volume: 2015
  start-page: 20
  year: 2015
  ident: 94422_CR34
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/s13640-015-0071-8
– ident: 94422_CR86
  doi: 10.1007/978-3-319-24574-4_28
– volume: 45
  start-page: 5
  year: 2001
  ident: 94422_CR28
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 30
  start-page: 1107
  year: 1992
  ident: 94422_CR46
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.193786
– volume: 51
  start-page: 3014
  year: 2013
  ident: 94422_CR78
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2212446
– volume-title: Remote Sensing with Imaging Radar
  year: 2009
  ident: 94422_CR50
  doi: 10.1007/978-3-642-02020-9
– volume: 59
  start-page: 3999
  year: 2021
  ident: 94422_CR58
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3011638
– volume: 70
  start-page: 1174
  year: 1982
  ident: 94422_CR1
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1982.12448
– ident: 94422_CR91
– volume: 27
  start-page: 36
  year: 1989
  ident: 94422_CR3
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.20273
– ident: 94422_CR51
  doi: 10.1201/9781315272573
– volume: 113
  start-page: 130503
  year: 2014
  ident: 94422_CR92
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.130503
– volume: 53
  start-page: 1118
  year: 2015
  ident: 94422_CR13
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2334608
– volume: 7
  start-page: 1
  year: 2020
  ident: 94422_CR64
  publication-title: Earth Space Sci.
  doi: 10.1029/2020EA001279
– volume: 40
  start-page: 834
  year: 2018
  ident: 94422_CR88
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 8
  start-page: 1
  year: 2021
  ident: 94422_CR72
  publication-title: Earth Space Sci.
  doi: 10.1029/2020EA001447
– ident: 94422_CR84
  doi: 10.1109/JSTARS.2015.2416255
– ident: 94422_CR45
  doi: 10.1109/NRC.1988.10937
– volume: 27
  start-page: 125
  year: 2016
  ident: 94422_CR40
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2435783
– ident: 94422_CR93
  doi: 10.1109/RADAR.2008.4720722
– volume: 18
  start-page: 2620
  year: 2018
  ident: 94422_CR73
  publication-title: Sensors
  doi: 10.3390/s18082620
– ident: 94422_CR90
  doi: 10.1109/CVPR.2017.195
– volume: 10
  start-page: 2060
  year: 2018
  ident: 94422_CR69
  publication-title: Remote Sens.
  doi: 10.3390/rs10122060
– volume: 53
  start-page: 6319
  year: 2015
  ident: 94422_CR71
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2431856
– volume: 13
  start-page: 18
  year: 1998
  ident: 94422_CR29
  publication-title: IEEE Intell. Syst. their Appl.
  doi: 10.1109/5254.708428
– volume: 53
  start-page: 674
  year: 2015
  ident: 94422_CR70
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2326955
– volume: 11
  start-page: 1600
  year: 2019
  ident: 94422_CR8
  publication-title: Remote Sens.
  doi: 10.3390/rs11131600
– ident: 94422_CR89
  doi: 10.1007/978-3-642-75988-8_28
– volume: 43
  start-page: 1699
  year: 2005
  ident: 94422_CR77
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.852084
– volume: 14
  start-page: 1
  year: 2020
  ident: 94422_CR5
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.14.034503
– ident: 94422_CR24
  doi: 10.1080/01431161.2020.1829155
– ident: 94422_CR44
– volume: 24
  start-page: 123
  year: 1996
  ident: 94422_CR83
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 3
  start-page: 292
  year: 2006
  ident: 94422_CR25
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2006.869986
– ident: 94422_CR31
  doi: 10.1109/ISCAS.2010.5537907
– start-page: 471
  volume-title: Remote Sensing of Northwest Himalayan Ecosystems
  year: 2018
  ident: 94422_CR49
– volume: 51
  start-page: 487
  year: 2013
  ident: 94422_CR47
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2201946
– volume: 27
  start-page: 234
  year: 2006
  ident: 94422_CR4
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.08.004
– volume: 25
  start-page: 3513
  year: 2004
  ident: 94422_CR17
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116032000160480
– ident: 94422_CR7
  doi: 10.1109/IGARSS.2015.7326520
– volume: 18
  start-page: 1527
  year: 2006
  ident: 94422_CR33
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume-title: Synthetic Aperture Radar Polarimetry
  year: 2011
  ident: 94422_CR65
  doi: 10.1002/9781118116104
– volume: 34
  start-page: 498
  year: 1996
  ident: 94422_CR23
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.485127
– volume: 4
  start-page: 22
  year: 2016
  ident: 94422_CR37
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– ident: 94422_CR42
  doi: 10.1007/978-3-030-01234-2_49
– volume: 22
  start-page: 269
  year: 1996
  ident: 94422_CR56
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1996.10855182
– ident: 94422_CR79
  doi: 10.1049/ji-3-2.1946.0074
– ident: 94422_CR76
– ident: 94422_CR14
  doi: 10.1109/IGARSS.2008.4779149
– ident: 94422_CR74
  doi: 10.1109/IGARSS.2011.6050037
– volume: 231
  start-page: 488
  year: 2020
  ident: 94422_CR18
  publication-title: Iraq. Water Air Soil Pollut.
  doi: 10.1007/s11270-020-04846-x
– ident: 94422_CR30
– ident: 94422_CR81
  doi: 10.1109/MEC.2013.6885296
– volume: 12
  start-page: 1709
  year: 2019
  ident: 94422_CR20
  publication-title: IEEE J Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2911113
– volume: 8
  start-page: 497
  year: 2011
  ident: 94422_CR16
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2089427
– volume: 54
  start-page: 3292
  year: 2016
  ident: 94422_CR39
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2514504
– volume: 8
  start-page: 2206
  year: 2018
  ident: 94422_CR60
  publication-title: Appl. Sci.
  doi: 10.3390/app8112206
– volume: 2015
  start-page: 538063
  year: 2015
  ident: 94422_CR38
  publication-title: J. Sens.
  doi: 10.1155/2015/538063
SSID ssj0000529419
Score 2.5413826
Snippet Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge...
Abstract Urban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15365
SubjectTerms 639/166
639/705/1042
639/705/1046
639/705/117
639/705/531
639/766/259
704/172/4081
704/525/2810
Accuracy
Algorithms
Datasets
Deep learning
Humanities and Social Sciences
Image processing
Land use
Learning algorithms
Machine learning
multidisciplinary
Radar
Remote sensing
Science
Science (multidisciplinary)
Segmentation
Semantics
Support vector machines
Transfer learning
Urban areas
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9KYXR7GFv3UW9d0WBvq6ltKfp47MZKGbSUdYW-CUmWskDihCVh5L_fSXbchI2uD3u1ziD_7nS6s06_A_hQcC85r10ubIUJimM2Nx4VYgtPZXDBiUTqc3HJz2_Y19vB7Uarr1gT1tIDt8CdlC5Q6SsZW8-xqg6qYMFQWlIeeHBV8r6FVBvJVMvqXSlWqu6WTEHlyRx3qnibLFYkMIYZ2GprJ0qE_X-LMv8sluxPTJ_A3rKZmdUvMx5vbEpnz-BpF02S0_YrnsOOb_bhUdtfcvUCLq79BJEbOTL3w0l3y6gh00CupuPr029kNEF3QmKVKIkF8EOyLgkgtfcz0rWUGJLUL-cl3Jx9-f75PO_6J-QO05JFbhCE2mDIoKQcBEytpBPSVGYgnY3_EJ0IVNGaKi4cd4ZbKmpb1tSqWgrMuOkr2G2mjT8AkoZ87GoU-QALa0urrEdRZpwpnM-gXGOpXUcuHntcjHU65KZSt_hrxF8n_PUqg4_9O7OWWuNe6U9RRb1kpMVOD9BYdGcs-l_GksHhWsG6W6tzjUnVILLoMZHB-34YV1k8OjGNny6TDDoqzP5oBq9be-hnEq_mYtyEb4stS9ma6vZIM_qRmLwlOkBUTwbHa5u6m9Z9UBz3dvcA5N78D-TewuMqrp1C5JU8hN3Fz6V_h-HYwh6llfcbf5subA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED66lLHtYex3vXVDg72tprblWPLDGO1oKYOG0q7QNyPJchZI7LRJGPnvdyfL7sJG2Gskg3K6k-50d98H8CnKrMyy0oRCJxigmFSHyuKG6MhyWZnKCAfqcz7Kzq7T7zfDmx0Ydb0wVFbZnYnuoC4bQ2_kh-j6DgnrLBVf57chsUZRdrWj0FCeWqH84iDGHsBuQshYA9g9PhldXPavLpTXSuPcd89EXB4u8AajLjOqVEhTjMzWGzeUA_L_l_f5dxFln0l9Ao9W9Vytf6np9I_L6vQZPPVeJjtq1eI57Nj6BTxseSfXL-H8ys5QohPDFnY8891HNWsqdtFMr44u2WSGxwyj6lFGhfFj1pUKsNLaOfNUE2PmeHRewfXpyY9vZ6HnVQgNhivLUKEQSoWuRC7lsMKQSxohVaKG0mh6WzSi4jkveZ4JkxmVaS5KHZdc56UUGInz1zCom9ruAXNDltiOCCcw0jrWubY4NVVGRcYGEHeyLIwHHSfui2nhkt9cFq38C5R_4eRfrAP43H8zbyE3ts4-pi3qZxJctvuhuRsX3vqK2FRc2kQSf2GalFUepZXiPOZZlVUmSQLY7za48Da8KO41LoCP_TBaH6VUVG2blZuDBxhGhTyAN60-9Cuhll30p_BrsaEpG0vdHKknPx3Ct8SDEbcngINOp-6XtU0UB73e_Yfk3m7_0-_gcUJWEYkwkfswWN6t7Ht0wJb6g7eq3xhsLTE
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFD6sK6I-LN6tu0oE39xq23Sa9GFZVnFZhBFxHdi3kKTJONBpx7mg_feepBcdHBZ9nSQlnEtyzuSc7wN4FWWGZ1mhQ6YSTFB0qkJpUCEqMpRbbTXzoD7jT9nFJP14Nbrag57uqBPgamdq5_ikJsvyzc_vzSk6_EnbMs7frvASco1irtggTTG5am7ATbypckflMO7C_RbrO8nTOO96Z3Yv3bqfPIz_rtjz7xLK4R31LtzeVAvZ_JBl-cdVdX4PDroYk5y1RnEf9kz1AG61rJPNQxhfmjnKc6bJykznXe9RRWpLPtfl5dkXMpvjIUNc7ShxZfFT0hcKkMKYBemIJqbEs-g8gsn5h6_vL8KOVSHUmKysQ4lCKCQGEjnnI4sJF9eMy0SOuFbun0XNLM1pQfOM6UzLTFFWqLigKi84wzycPob9qq7MUyB-yDiuI4cSGCkVq1wZnJpKLSNtAoh7WQrdQY475otS-KdvykUrf4HyF17-ogng9bBm0QJuXDv7nVPRMNOBZfsf6uVUdL4nYm0pNwl37IVpUtg8Sq2kNKaZzaxOkgCOegWL3gAFplojh62XsgBeDsPoe-5BRVam3vg5eHxhTkgDeNLaw7AT17CL0RSuZluWsrXV7ZFq9s3je3M8FlE9ARz3NvV7W9eJ4niwu3-Q3LP_-_oh3Emcl0QsTPgR7K-XG_Mcw7G1euF97BdvhS6G
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44PsjMJCReGPpEjtxnMeCmCakTROjYjxFtmOXijap1lao_PWcnQ8oTBN7jc-SfXc-38V3vwN4E3EjOC91mCmKAYpOVCgNCkRFhgmrrc48qM_xCT8aJx_P0_Md4F0tjE_a95CW3kx32WEHS7xoXDGYSyhIEgygNsNFaW_ALk_RBx_A7vjkdPTVdZJDHyVEN4G2FTIRE5dM3rqFPFj_ZR7mv4mS_WvpHbi1rhZy80POZn9cSIf34Eu3lSYP5ftwvVJD_fMvlMfr7_U-3G19VDJqKB_Ajqkews2ma-XmERyfmTnKY6rJ0kzmbe1SRWpLTuvZ2egTmc7RSBGXe0pcWv2EdIkGpDRmQdpGFRPiu_A8hvHhh8_vj8K2K0OoMdhZhTKleSnREcmFSC0GbEJnQlKZCq3cn0mdWZazkuU801xLrlhWqrhkKi9FhnE8ewKDqq7MMyB-yLheSQ5lMFIqVrkySJpILSNtAog7KRW6hSx3nTNmhX86Z6JoWFUgqwrPqmITwNt-zqIB7LiS-p0Tfk_pwLb9h_piUrQCKWJtmTBUuO6HCS1tHiVWMhYzbrnVlAaw16lO0VqAZYGhWuqw-ZIsgNf9MJ5d9yAjK1OvPQ2aP4wpWQBPG03rV-IKftEbw9nZlg5uLXV7pJp-8_jgAs0qiieA_U5bfy_rKlbs9xr9H5x7fj3yF3CbOoWOspCKPRisLtbmJbpzK_WqPbu_AK9qRKU
  priority: 102
  providerName: Unpaywall
Title Semantic segmentation of PolSAR image data using advanced deep learning model
URI https://link.springer.com/article/10.1038/s41598-021-94422-y
https://www.ncbi.nlm.nih.gov/pubmed/34321517
https://www.proquest.com/docview/2555778647
https://www.proquest.com/docview/2556388623
https://pubmed.ncbi.nlm.nih.gov/PMC8319419
https://www.nature.com/articles/s41598-021-94422-y.pdf
https://doaj.org/article/1cf38e28059342df904fa33136f6fc22
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Nature Publishing (Free internet resource, activated by CARLI)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (WRLC)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1da9sw8GhTxraHse9664IGe1vMbMux5Ec3tJRAQmgWyJ6MJMtpIHHCklDy73eSPzbTUbYXG3ySEfch3em-AL54keZRlCmXyQANFBVKV2gkiPQ05bnKFbNFfUbj6GYWDuf9-Qn06lyYlv_elu7e4RFj0sBMKEEYoul0PIUzjozJO3CWJMPpsLlTMV6r0I-r3Bic_u3h5Nb5Y8v0_023fBgi2fhJn8PTQ7EVx3uxWv1xFF2_hBeVDkmSkuiv4EQXr-FJ2VXy-AZGU71GfC0V2enFusotKsgmJ5PNaprckuUaNxFiYkOJCXtfkDoQgGRab0nVSGJBbJectzC7vvo-uHGrrgmuQmNk7wpEQiZQUYg57-doUHHFuAhEnytpbg4Vy2lMMxpHTEVKRJKyTPoZlXHGGdrZ9B10ik2hz4FYkDa9jEwVQE9KX8ZS49BQKOEp7YBf4zJVVUlx09lilVrXNuVpif8U8Z9a_KdHB742c7ZlQY1HR18aEjUjTTFs-wF5JK1kK_VVTrkOuOlOGAZZHnthLij1aZRHuQoCBy5qAqeVhO5SNKX6pnZeyBz43IBRtozDRBR6c7BjcHtCm4868L7kh2YlJiEXtSWczVqc0lpqG1Is72z9bo7bHpLHgV7NU7-X9Rgqeg3f_QPmPvzf3z_Cs8BIicfcgF9AZ__zoD-hurWXXThlc9atZA3fl1fjyS1-HUSDrr3CwOco5AiZjSfJj19xOSiv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWjwgPgmMMBI8MSipXaaOA8T2mDTxtZq2oe0N892nFKpTcraauo_x9_G2XUyKlDFy15jJ3Luzuc738cP4GOUGJ4kuQ5TRdFB0bEKpUGGqMgwXuhCp66pT6ebHFzE3y_blyvwq66FsWmVtU50ijqvtL0j30LTt217ncXpl9HP0KJG2ehqDaEhPbRCvu1ajPnCjiMzu0EXbrx9-A35_YnS_b3zrwehRxkINRrvk1C2aZZLPFgzztsFOiBcp1xS2eZa2Zs2nRYsYznLklQnWiaKpblq5UxlOU_RL2X43XuwFrM4Q-dvbXeve3La3PLYOBp-2VfrRIxvjfHEtFVtNjMijtETnC2ciA444F_W7t9Jm03k9iGsT8uRnN3IweCPw3H_MTzyVi3ZmYvhE1gx5VO4P8e5nD2DzpkZIgf7moxNb-irnUpSFeSkGpztnJL-ENUasdmqxCbi90idmkByY0bEQ1v0iMPteQ4Xd0LhF7BaVqV5BcQNGYuuZPsSRkq1VKYMTo2llpE2AbRqWgrtm5xbrI2BcMF2xsWc_gLpLxz9xSyAz807o3mLj6Wzdy2Lmpm2Pbd7UF33hN_toqULxg3lFi8xpnmRRXEhGWuxpEgKTWkAGzWDhdcZY3Er4QF8aIZxt9sQjixNNXVzUGGiF8oCeDmXh2YltkQY7Td8O12QlIWlLo6U_R-uozhHRYzsCWCzlqnbZS0jxWYjd_9BudfLf_o9rB-cd47F8WH36A08oHaHRGlI-QasTq6n5i0afxP1zu8wAld3val_A7ZZads
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIb4eEN8EBhgJnljU1E5j5wGhwag2xqaJMalvnu04pVKblLXV1H-Nv46z8zEqUMXLXmMncu7Ld77z_QDeRIkVSZKZkGuKAYqJdagsMkRHlonc5Ib7pj6HR8neafxl0BtswK_mLowrq2xsojfUWWncGXkHXd-e63UW805el0Uc7_Y_TH-GDkHKZVobOI1KRA7s8gLDt9n7_V3k9VtK-5-_f9oLa4SB0KDjPg9Vj6aZwk01FaKXY_AhDBeKqp4w2p2yGZ6zlGUsTbhJjEo045nuZkynmeAYkzL87jW4zhlLXTkhH_D2fMdl0PC79T2diInODPdKd5_N1UTEMcaAy5W90EMG_MvP_btcs83Z3oFbi2KqlhdqPP5jW-zfg7u1P0t2KgG8Dxu2eAA3KoTL5UM4PLET5N3IkJkdTup7TgUpc3Jcjk92vpHRBA0acXWqxJXgD0lTlEAya6ekBrUYEo_Y8whOr4S-j2GzKAv7FIgfsg5XyXUkjLTu6lRbnBoroyJjA-g2tJSmbm_uUDbG0qfZmZAV_SXSX3r6y2UA79p3plVzj7WzPzoWtTNdY27_oDwfylrPZdfkTFgqHFJiTLM8jeJcMdZlSZ7khtIAthoGy9pazOSlbAfwuh1GPXfJG1XYcuHnoKnE-JMF8KSSh3Yl7nIwem74Nl-RlJWlro4Uox--l7hAE4zsCWC7kanLZa0jxXYrd_9BuWfrf_oV3ERVll_3jw6ew23qFCTiIRVbsDk_X9gX6PXN9UuvXgTOrlqffwPBCmd1
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTgh44PsjMJCReGPpEjtxnMeCmCakTROjYjxFtmOXijap1lao_PWcnQ8oTBN7jc-SfXc-38V3vwN4E3EjOC91mCmKAYpOVCgNCkRFhgmrrc48qM_xCT8aJx_P0_Md4F0tjE_a95CW3kx32WEHS7xoXDGYSyhIEgygNsNFaW_ALk_RBx_A7vjkdPTVdZJDHyVEN4G2FTIRE5dM3rqFPFj_ZR7mv4mS_WvpHbi1rhZy80POZn9cSIf34Eu3lSYP5ftwvVJD_fMvlMfr7_U-3G19VDJqKB_Ajqkews2ma-XmERyfmTnKY6rJ0kzmbe1SRWpLTuvZ2egTmc7RSBGXe0pcWv2EdIkGpDRmQdpGFRPiu_A8hvHhh8_vj8K2K0OoMdhZhTKleSnREcmFSC0GbEJnQlKZCq3cn0mdWZazkuU801xLrlhWqrhkKi9FhnE8ewKDqq7MMyB-yLheSQ5lMFIqVrkySJpILSNtAog7KRW6hSx3nTNmhX86Z6JoWFUgqwrPqmITwNt-zqIB7LiS-p0Tfk_pwLb9h_piUrQCKWJtmTBUuO6HCS1tHiVWMhYzbrnVlAaw16lO0VqAZYGhWuqw-ZIsgNf9MJ5d9yAjK1OvPQ2aP4wpWQBPG03rV-IKftEbw9nZlg5uLXV7pJp-8_jgAs0qiieA_U5bfy_rKlbs9xr9H5x7fj3yF3CbOoWOspCKPRisLtbmJbpzK_WqPbu_AK9qRKU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+segmentation+of+PolSAR+image+data+using+advanced+deep+learning+model&rft.jtitle=Scientific+reports&rft.au=Garg%2C+Rajat&rft.au=Kumar%2C+Anil&rft.au=Bansal%2C+Nikunj&rft.au=Prateek%2C+Manish&rft.date=2021-07-28&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-94422-y&rft.externalDocID=10_1038_s41598_021_94422_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon