Bio-inspired vertebral design for scalable and flexible perovskite solar cells
The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrate...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 3016 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.06.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-020-16831-3 |
Cover
Abstract | The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm
2
and 31.20 cm
2
respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics.
Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al. solve this by inserting a conductive and glued polymer layer between ITO and perovskite layers and obtain efficiency of 17% for 30 cm
2
devices. |
---|---|
AbstractList | The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm
and 31.20 cm
respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics. Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al. solve this by inserting a conductive and glued polymer layer between ITO and perovskite layers and obtain efficiency of 17% for 30 cm2 devices. The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm 2 and 31.20 cm 2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics. Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al. solve this by inserting a conductive and glued polymer layer between ITO and perovskite layers and obtain efficiency of 17% for 30 cm 2 devices. The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm2 and 31.20 cm2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics.Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al. solve this by inserting a conductive and glued polymer layer between ITO and perovskite layers and obtain efficiency of 17% for 30 cm2 devices. The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm2 and 31.20 cm2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics.The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm2 and 31.20 cm2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics. The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm 2 and 31.20 cm 2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics. |
ArticleNumber | 3016 |
Author | Hu, Ting Huang, Zengqi Song, Yanlin Zhang, Lin Su, Meng Meng, Xiangchuan Xing, Zhi Huang, Zhandong Cui, Yongjie Chen, Yiwang Hu, Xiaotian Liao, Xunfan Wang, Fuyi Cai, Zheren Zhang, Yanyan |
Author_xml | – sequence: 1 givenname: Xiangchuan orcidid: 0000-0002-9540-5240 surname: Meng fullname: Meng, Xiangchuan organization: College of Chemistry, Nanchang University, Institute of Polymers and Energy Chemistry, Nanchang University – sequence: 2 givenname: Zheren orcidid: 0000-0003-0232-8213 surname: Cai fullname: Cai, Zheren organization: Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS) – sequence: 3 givenname: Yanyan orcidid: 0000-0002-2048-145X surname: Zhang fullname: Zhang, Yanyan organization: CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS) – sequence: 4 givenname: Xiaotian orcidid: 0000-0001-5483-8800 surname: Hu fullname: Hu, Xiaotian email: xiaotian@iccas.ac.cn organization: College of Chemistry, Nanchang University, Institute of Polymers and Energy Chemistry, Nanchang University – sequence: 5 givenname: Zhi orcidid: 0000-0003-0197-2664 surname: Xing fullname: Xing, Zhi organization: College of Chemistry, Nanchang University – sequence: 6 givenname: Zengqi orcidid: 0000-0001-5435-1744 surname: Huang fullname: Huang, Zengqi organization: College of Chemistry, Nanchang University – sequence: 7 givenname: Zhandong surname: Huang fullname: Huang, Zhandong organization: Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS) – sequence: 8 givenname: Yongjie orcidid: 0000-0003-2202-0697 surname: Cui fullname: Cui, Yongjie organization: College of Materials Science and Engineering, Donghua University – sequence: 9 givenname: Ting orcidid: 0000-0001-5261-9858 surname: Hu fullname: Hu, Ting organization: College of Chemistry, Nanchang University, Institute of Polymers and Energy Chemistry, Nanchang University – sequence: 10 givenname: Meng orcidid: 0000-0001-8485-2590 surname: Su fullname: Su, Meng organization: Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS) – sequence: 11 givenname: Xunfan orcidid: 0000-0002-6649-5865 surname: Liao fullname: Liao, Xunfan organization: College of Materials Science and Engineering, Donghua University, Institute of Advanced Scientific Research (iASR), Jiangxi Normal University – sequence: 12 givenname: Lin orcidid: 0000-0002-8251-2987 surname: Zhang fullname: Zhang, Lin organization: Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University – sequence: 13 givenname: Fuyi orcidid: 0000-0003-0962-1260 surname: Wang fullname: Wang, Fuyi organization: CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS) – sequence: 14 givenname: Yanlin surname: Song fullname: Song, Yanlin email: ylsong@iccas.ac.cn organization: Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS) – sequence: 15 givenname: Yiwang orcidid: 0000-0003-4709-7623 surname: Chen fullname: Chen, Yiwang email: ywchen@ncu.edu.cn organization: College of Chemistry, Nanchang University, Institute of Polymers and Energy Chemistry, Nanchang University, Institute of Advanced Scientific Research (iASR), Jiangxi Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32541859$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URMvQP8ACRWLDJhA_EtsbJKh4VKpgA2vrxrkZPHjswc6M4N_jTFpou6g3fp3z-ej6PiUnIQYk5DltXtOGqzdZUNHJumFNTTvFac0fkTPWCFpTyfjJrfUpOc9505TBNVVCPCGnnLWCqlafkS_vXaxdyDuXcKgOmCbsE_hqwOzWoRpjqrIFD73HCsJQjR5_u3mzwxQP-aebsMrRQ6osep-fkccj-Izn1_OKfP_44dvF5_rq66fLi3dXte2abqq11T0DYGA1UBxboXoq-CAYKjroQcKoOVMIY2-Ro2CSK-Cd1bJTtqe94ityuXCHCBuzS24L6Y-J4MzxIKa1gTQ569GI0bZWoixwKVR50Aqmh06NXdsDL_wVebuwdvt-i4PFMJUK3IHevQnuh1nHg5FMt1qzAnh1DUjx1x7zZLYuz-WAgHGfDROUa91KzYv05T3pJu5TKKU6qhjnqmuL6sXtRP-i3HxbEahFYFPMOeForJtgcnEO6LyhjZmbxCxNYkqTmGOTmDkBu2e9oT9o4ospF3FYY_of-wHXX5Ehz1k |
CitedBy_id | crossref_primary_10_1002_anie_202307225 crossref_primary_10_1002_admi_202002255 crossref_primary_10_1002_anie_202116602 crossref_primary_10_1007_s11465_023_0749_z crossref_primary_10_1002_adfm_202300396 crossref_primary_10_1002_adfm_202419067 crossref_primary_10_1002_smll_202105184 crossref_primary_10_1002_adma_202201681 crossref_primary_10_1002_adom_202401131 crossref_primary_10_1002_smll_202410716 crossref_primary_10_1002_aisy_202200307 crossref_primary_10_1021_acs_energyfuels_4c03168 crossref_primary_10_1002_adfm_202106495 crossref_primary_10_1002_adfm_202302336 crossref_primary_10_1039_D4EE03503H crossref_primary_10_1002_solr_202400844 crossref_primary_10_1016_j_nanoen_2024_109523 crossref_primary_10_1016_j_mtsust_2021_100090 crossref_primary_10_1038_s41578_022_00503_3 crossref_primary_10_1002_aenm_202101291 crossref_primary_10_1039_D0NA00852D crossref_primary_10_1002_adma_202403531 crossref_primary_10_1021_acs_energyfuels_0c03342 crossref_primary_10_1002_adom_202301623 crossref_primary_10_1002_adma_202211806 crossref_primary_10_1002_adfm_202310860 crossref_primary_10_1007_s40243_024_00257_8 crossref_primary_10_1007_s11814_024_00280_5 crossref_primary_10_1002_adma_202417251 crossref_primary_10_1002_adma_202300302 crossref_primary_10_1016_j_mseb_2024_117367 crossref_primary_10_1002_smll_202402425 crossref_primary_10_1016_j_mattod_2023_06_009 crossref_primary_10_1021_acsenergylett_2c01391 crossref_primary_10_1002_inf2_12358 crossref_primary_10_1002_aenm_202101973 crossref_primary_10_1016_j_cej_2022_135647 crossref_primary_10_1016_j_nanoen_2020_105701 crossref_primary_10_1002_aenm_202103236 crossref_primary_10_1088_2752_5724_ad37cf crossref_primary_10_1002_nano_202100163 crossref_primary_10_1039_D3EE01546G crossref_primary_10_1016_j_csite_2024_105499 crossref_primary_10_1021_acsenergylett_2c01602 crossref_primary_10_1016_j_xinn_2021_100135 crossref_primary_10_1021_acsami_1c18939 crossref_primary_10_1002_aenm_202201436 crossref_primary_10_1007_s42765_022_00174_3 crossref_primary_10_1021_acsaelm_3c01638 crossref_primary_10_1016_j_solener_2023_04_011 crossref_primary_10_1002_adma_202105539 crossref_primary_10_1016_j_cej_2025_161624 crossref_primary_10_1088_1674_4926_42_10_101605 crossref_primary_10_1002_ange_202112673 crossref_primary_10_1002_aenm_202300603 crossref_primary_10_1002_advs_202304733 crossref_primary_10_1016_j_jpowsour_2021_229586 crossref_primary_10_1002_adfm_202206412 crossref_primary_10_1021_acsami_2c01481 crossref_primary_10_1002_adfm_202300113 crossref_primary_10_1016_j_nanoen_2021_106853 crossref_primary_10_1016_j_joule_2021_04_014 crossref_primary_10_1016_j_joule_2022_12_013 crossref_primary_10_1002_adfm_202202408 crossref_primary_10_1039_D1QM00616A crossref_primary_10_1063_5_0197154 crossref_primary_10_1002_adfm_202203730 crossref_primary_10_1038_s41528_023_00253_4 crossref_primary_10_1002_adma_202211731 crossref_primary_10_1021_acsami_1c21041 crossref_primary_10_1002_adfm_202316550 crossref_primary_10_1016_j_nanoen_2021_105882 crossref_primary_10_1016_j_orgel_2021_106295 crossref_primary_10_1126_sciadv_adr2290 crossref_primary_10_1002_adfm_202104396 crossref_primary_10_1021_acsenergylett_1c01193 crossref_primary_10_1002_anie_202112673 crossref_primary_10_1016_j_optmat_2023_113566 crossref_primary_10_1002_ange_202116602 crossref_primary_10_1063_5_0084596 crossref_primary_10_34133_energymatadv_0002 crossref_primary_10_1016_j_dyepig_2023_111843 crossref_primary_10_1016_j_solmat_2024_112734 crossref_primary_10_1016_j_jechem_2024_11_078 crossref_primary_10_1002_adfm_202408487 crossref_primary_10_1002_advs_202101418 crossref_primary_10_1016_j_cej_2021_132426 crossref_primary_10_1039_D2TA07593H crossref_primary_10_34133_2021_7065907 crossref_primary_10_1002_adma_202408036 crossref_primary_10_1039_D2YA00303A crossref_primary_10_1002_solr_202100458 crossref_primary_10_1038_s41467_023_36938_7 crossref_primary_10_1002_aenm_202101383 crossref_primary_10_1002_pssa_202100066 crossref_primary_10_1021_acsnano_2c06118 crossref_primary_10_1039_D1RA05399J crossref_primary_10_1016_j_nantod_2021_101081 crossref_primary_10_1002_adom_202402521 crossref_primary_10_1039_D2EE01879A crossref_primary_10_1016_j_nanoen_2023_109112 crossref_primary_10_1002_adma_202311473 crossref_primary_10_1021_acsami_1c00813 crossref_primary_10_3390_nano12183125 crossref_primary_10_1002_adfm_202205009 crossref_primary_10_1016_j_nanoen_2021_106285 crossref_primary_10_1016_j_jpowsour_2022_231518 crossref_primary_10_1016_j_cej_2022_134805 crossref_primary_10_1021_acsami_2c04790 crossref_primary_10_1039_D1CC03854K crossref_primary_10_1002_pssa_202200736 crossref_primary_10_1016_j_isci_2023_107248 crossref_primary_10_1002_adma_202201840 crossref_primary_10_3389_fmats_2021_634353 crossref_primary_10_1021_acsami_1c22454 crossref_primary_10_1039_D2TC01412B crossref_primary_10_1002_solr_202000672 crossref_primary_10_1021_acsami_3c13008 crossref_primary_10_29026_oea_2024_230210 crossref_primary_10_1002_solr_202200798 crossref_primary_10_1039_D4EE05613B crossref_primary_10_1016_j_mtelec_2024_100095 crossref_primary_10_1039_D2SE00162D crossref_primary_10_1002_admt_202101124 crossref_primary_10_1002_solr_202100702 crossref_primary_10_1039_D1TA02493K crossref_primary_10_1021_acsenergylett_1c02768 crossref_primary_10_1039_D2TC01178F crossref_primary_10_1002_adom_202100390 crossref_primary_10_1016_j_nantod_2021_101155 crossref_primary_10_1002_aenm_202304062 crossref_primary_10_1039_D4EE01230E crossref_primary_10_1002_solr_202300860 crossref_primary_10_3390_nano11112975 crossref_primary_10_1002_advs_202101856 crossref_primary_10_1016_j_nanoen_2022_107058 crossref_primary_10_1039_D2MA00431C crossref_primary_10_1002_aenm_202200975 crossref_primary_10_1002_ange_202107020 crossref_primary_10_1021_acsaem_4c01226 crossref_primary_10_1021_jacsau_4c00615 crossref_primary_10_1021_acsenergylett_3c01167 crossref_primary_10_1039_D0CE01509A crossref_primary_10_1038_s41467_024_55652_6 crossref_primary_10_1002_aenm_202001920 crossref_primary_10_6023_A21030106 crossref_primary_10_1038_s41560_022_01045_2 crossref_primary_10_1002_adfm_202210063 crossref_primary_10_1007_s11664_023_10533_4 crossref_primary_10_1002_adfm_202306199 crossref_primary_10_1002_smll_202207817 crossref_primary_10_1002_adom_202202809 crossref_primary_10_1002_inf2_12522 crossref_primary_10_1002_adfm_202313715 crossref_primary_10_1039_D3TA02692B crossref_primary_10_1002_adfm_202011133 crossref_primary_10_1002_lpor_202200641 crossref_primary_10_1016_j_psep_2024_08_123 crossref_primary_10_1039_D3TA05069F crossref_primary_10_1016_j_scib_2022_11_003 crossref_primary_10_1039_D1TA01763B crossref_primary_10_1002_admt_202400661 crossref_primary_10_1002_aenm_202100672 crossref_primary_10_1039_D2EE00966H crossref_primary_10_1364_OME_450214 crossref_primary_10_1002_adfm_202301043 crossref_primary_10_1002_anie_202421063 crossref_primary_10_1016_j_pmatsci_2023_101189 crossref_primary_10_1002_ange_202104201 crossref_primary_10_1002_anie_202215799 crossref_primary_10_1016_j_solener_2022_08_070 crossref_primary_10_1021_acs_jpclett_3c02356 crossref_primary_10_1039_D4EE02925A crossref_primary_10_1002_adfm_202309323 crossref_primary_10_1002_anie_202107020 crossref_primary_10_23919_IEN_2024_0001 crossref_primary_10_1002_adma_202211324 crossref_primary_10_1016_j_nanoen_2022_107017 crossref_primary_10_1007_s40820_022_00859_9 crossref_primary_10_1021_acsnano_1c02719 crossref_primary_10_1002_solr_202100991 crossref_primary_10_1007_s40820_023_01165_8 crossref_primary_10_1016_j_nanoen_2024_110259 crossref_primary_10_1002_cssc_202002095 crossref_primary_10_1039_D2TA04502H crossref_primary_10_1002_ange_202421063 crossref_primary_10_1002_advs_202203640 crossref_primary_10_1016_j_ijhydene_2025_01_280 crossref_primary_10_1021_acsaem_1c00892 crossref_primary_10_1002_solr_202200814 crossref_primary_10_1002_adfm_202107042 crossref_primary_10_1039_D2EE01326F crossref_primary_10_1021_acs_chemrev_2c00429 crossref_primary_10_1002_ange_202307225 crossref_primary_10_1002_adfm_202107726 crossref_primary_10_1038_s41467_025_57102_3 crossref_primary_10_1002_smll_202304273 crossref_primary_10_1002_cnma_202200377 crossref_primary_10_1002_adma_202312041 crossref_primary_10_1002_sstr_202200338 crossref_primary_10_1002_adfm_202313910 crossref_primary_10_1002_anie_202104201 crossref_primary_10_1002_aenm_202202298 crossref_primary_10_1016_j_nanoen_2024_109933 crossref_primary_10_1039_D1TC00433F crossref_primary_10_1002_ange_202215799 |
Cites_doi | 10.1063/1.106786 10.1002/aenm.201702915 10.1016/j.joule.2019.06.011 10.1016/j.nanoen.2019.104018 10.1016/j.joule.2017.10.014 10.1002/adma.201801418 10.1002/adma.201900390 10.1002/aenm.201900834 10.1016/j.joule.2018.12.022 10.1002/smll.201602581 10.1002/adma.201704876 10.1021/jacs.8b13091 10.1039/C8TA10585E 10.1002/adfm.201900092 10.1002/adfm.201902629 10.1002/aenm.201901204 10.1016/j.solener.2019.05.061 10.1002/aenm.201903108 10.1002/adma.201404598 10.1002/adfm.201809194 10.1016/j.nanoen.2019.103964 10.1002/app.2266 10.1021/acs.nanolett.8b03685 10.1021/acs.nanolett.5b02126 10.1039/C8EE03025A 10.1002/aenm.201701791 10.1126/science.aau5701 10.1021/jacs.8b07927 10.1002/adfm.201900557 10.1002/aenm.201800504 10.1002/adma.201870329 10.1126/science.1254763 10.1038/nenergy.2016.142 10.1002/adfm.201902974 10.1002/adfm.201303518 10.1002/adma.201904408 10.1002/aenm.201703054 10.1002/aenm.201903609 10.1002/adma.201605903 10.1002/aenm.201901419 10.1021/acsnano.8b05731 10.1038/s41467-018-07099-9 10.1002/adma.201703236 10.1021/jacs.7b03967 10.1016/j.joule.2019.07.023 10.1016/j.nanoen.2017.03.048 10.1002/aenm.201500328 10.1002/advs.201802094 10.1039/C9EE02391G 10.1021/acsnano.5b07043 10.1038/nenergy.2017.38 10.1002/aenm.201901719 10.1002/adma.201902902 10.1038/s41560-018-0153-9 10.1038/s41467-018-05760-x 10.3390/polym11030427 10.1063/1.1510179 10.1002/adma.201503740 10.1002/adma.201601745 10.1039/C6TA01715K 10.1038/natrevmats.2018.17 10.1021/acsami.8b05172 10.1126/science.aax3294 10.1039/C9TA06317J 10.1002/adfm.201807604 10.1021/acsenergylett.7b00644 10.1002/adma.201901519 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-16831-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_4fc5c7e742e748c9ac429d68f65ba3ce PMC7295992 32541859 10_1038_s41467_020_16831_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation of China | International Cooperation and Exchange Programme grantid: 51425304 funderid: https://doi.org/10.13039/501100010896 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 51973032; 51803217; 51803085; 51833004 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 51973032; 51803217; 51803085; 51833004 – fundername: ; grantid: 51425304 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c606t-9c9b2aa2ac9a1ef548b143d42e81d9d7af9328eafbce3e42738a36c9768cb1b83 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:28:09 EDT 2025 Thu Aug 21 13:53:44 EDT 2025 Fri Sep 05 10:10:06 EDT 2025 Wed Aug 13 09:30:32 EDT 2025 Thu Apr 03 07:06:29 EDT 2025 Tue Jul 01 04:08:58 EDT 2025 Thu Apr 24 22:50:29 EDT 2025 Fri Feb 21 02:40:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-9c9b2aa2ac9a1ef548b143d42e81d9d7af9328eafbce3e42738a36c9768cb1b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8485-2590 0000-0001-5483-8800 0000-0002-9540-5240 0000-0003-0197-2664 0000-0003-0232-8213 0000-0002-8251-2987 0000-0003-4709-7623 0000-0002-2048-145X 0000-0003-0962-1260 0000-0001-5435-1744 0000-0003-2202-0697 0000-0001-5261-9858 0000-0002-6649-5865 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-16831-3 |
PMID | 32541859 |
PQID | 2413233865 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4fc5c7e742e748c9ac429d68f65ba3ce pubmedcentral_primary_oai_pubmedcentral_nih_gov_7295992 proquest_miscellaneous_2413995793 proquest_journals_2413233865 pubmed_primary_32541859 crossref_citationtrail_10_1038_s41467_020_16831_3 crossref_primary_10_1038_s41467_020_16831_3 springer_journals_10_1038_s41467_020_16831_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang (CR11) 2017; 35 Kim (CR60) 2019; 6 Huang (CR33) 2019; 9 Li (CR17) 2019; 188 Knutson (CR67) 1972; 3 Wang, Mahmoudi, Rho, Hahn (CR21) 2019; 64 Jung, Han, Park, Ko (CR1) 2019; 3 Sannicolo (CR39) 2016; 12 Yang (CR24) 2017; 2 Hu (CR47) 2019; 29 Wang (CR63) 2019; 31 Takemoto, Kajiyama, Mizumachi, Takemura, Ono (CR66) 2002; 83 Wang, Zhang, Kan, Zhao (CR55) 2018; 140 Mei (CR29) 2014; 345 Deng (CR23) 2018; 3 Huang, Li, Siffalovic, Cao, Tian (CR48) 2019; 12 Shao (CR42) 2018; 30 Sanchez, Hua, Phung, Steiner, Abate (CR46) 2018; 8 Liang (CR49) 2018; 8 Hu (CR18) 2017; 29 Zhang (CR15) 2016; 10 Ding (CR28) 2019; 3 Kang (CR34) 2019; 7 Tran (CR61) 2019; 65 Yin, Lin, Zhang, Li, Zheng (CR26) 2018; 10 Wang (CR65) 2020; 10 Li (CR25) 2018; 2 Chen, Zhao, Kim, Park (CR51) 2019; 31 Chen (CR9) 2019; 29 Xu (CR8) 2015; 15 Yang (CR14) 2015; 5 Zhu (CR16) 2016; 28 Dai (CR3) 2020; 10 Xu (CR7) 2018; 8 Liu (CR64) 2017; 139 Hu (CR5) 2019; 3 Wang (CR41) 2016; 28 O’keeffe (CR50) 2019; 19 Bi (CR22) 2016; 1 Hwang (CR27) 2015; 27 Liu (CR59) 2019; 29 Yang (CR53) 2019; 365 Bu (CR4) 2018; 9 Kim (CR57) 2019; 29 Wang (CR62) 2019; 363 Liu (CR13) 2019; 11 Ng (CR19) 2018; 30 Tong, Mehregany, Matus (CR69) 1992; 60 Li (CR12) 2019; 31 Yang (CR52) 2019; 141 Huang (CR30) 2019; 29 Xu (CR44) 2019; 31 Xie (CR54) 2019; 7 Sanchez, Hua, Phung, Steiner, Abate (CR20) 2018; 8 Jeon (CR36) 2019; 9 Chiang, Wu (CR45) 2018; 12 Zhang (CR6) 2019; 12 Yao (CR40) 2017; 29 Li, Xu, Cui, Li (CR38) 2018; 8 Luo (CR37) 2016; 4 Yang (CR32) 2018; 9 Jang (CR43) 2019; 9 Li (CR2) 2018; 3 Kim, Won, Woo, Jeong, Moon (CR35) 2014; 24 Wang (CR10) 2017; 2 Dong (CR56) 2019; 9 Beghi (CR68) 2002; 81 Feng (CR31) 2018; 30 Wu (CR58) 2019; 29 S Kang (16831_CR34) 2019; 7 A Kim (16831_CR35) 2014; 24 WX Liu (16831_CR64) 2017; 139 H Li (16831_CR17) 2019; 188 H Hu (16831_CR47) 2019; 29 A Mei (16831_CR29) 2014; 345 H Wang (16831_CR63) 2019; 31 S Sanchez (16831_CR20) 2018; 8 C Shao (16831_CR42) 2018; 30 Z Huang (16831_CR30) 2019; 29 K Huang (16831_CR33) 2019; 9 M Takemoto (16831_CR66) 2002; 83 C Wang (16831_CR10) 2017; 2 G Jang (16831_CR43) 2019; 9 D Bi (16831_CR22) 2016; 1 L Wang (16831_CR62) 2019; 363 G Xu (16831_CR7) 2018; 8 F Huang (16831_CR48) 2019; 12 J Chen (16831_CR51) 2019; 31 X Dai (16831_CR3) 2020; 10 T Sannicolo (16831_CR39) 2016; 12 J Liang (16831_CR49) 2018; 8 X Liu (16831_CR13) 2019; 11 H Zhang (16831_CR15) 2016; 10 Y Li (16831_CR38) 2018; 8 X Hu (16831_CR18) 2017; 29 Y Deng (16831_CR23) 2018; 3 YY Kim (16831_CR60) 2019; 6 A Ng (16831_CR19) 2018; 30 X Wang (16831_CR41) 2016; 28 CH Chiang (16831_CR45) 2018; 12 J Yin (16831_CR26) 2018; 10 Y Wang (16831_CR55) 2018; 140 C Wang (16831_CR11) 2017; 35 J Ding (16831_CR28) 2019; 3 X Xu (16831_CR8) 2015; 15 S Yao (16831_CR40) 2017; 29 Z Yang (16831_CR14) 2015; 5 S Sanchez (16831_CR46) 2018; 8 S Yang (16831_CR53) 2019; 365 Z Zhu (16831_CR16) 2016; 28 Z Xu (16831_CR44) 2019; 31 L Tong (16831_CR69) 1992; 60 T Bu (16831_CR4) 2018; 9 HS Jung (16831_CR1) 2019; 3 D Yang (16831_CR32) 2018; 9 S Yang (16831_CR52) 2019; 141 C Liu (16831_CR59) 2019; 29 GM Knutson (16831_CR67) 1972; 3 C Chen (16831_CR9) 2019; 29 C Zhang (16831_CR6) 2019; 12 JE Kim (16831_CR57) 2019; 29 P O’keeffe (16831_CR50) 2019; 19 Y Wang (16831_CR21) 2019; 64 L Xie (16831_CR54) 2019; 7 Q Dong (16831_CR56) 2019; 9 C Wu (16831_CR58) 2019; 29 M Li (16831_CR12) 2019; 31 VD Tran (16831_CR61) 2019; 65 Y Wang (16831_CR65) 2020; 10 J Li (16831_CR25) 2018; 2 J Feng (16831_CR31) 2018; 30 Z Li (16831_CR2) 2018; 3 I Jeon (16831_CR36) 2019; 9 X Hu (16831_CR5) 2019; 3 M Yang (16831_CR24) 2017; 2 Q Luo (16831_CR37) 2016; 4 MG Beghi (16831_CR68) 2002; 81 K Hwang (16831_CR27) 2015; 27 |
References_xml | – volume: 60 start-page: 2992 year: 1992 end-page: 2994 ident: CR69 article-title: Mechanical properties of 3C silicon carbide publication-title: Appl. Phys. Lett. doi: 10.1063/1.106786 – volume: 8 start-page: 1702915 year: 2018 ident: CR46 article-title: Flash infrared annealing for antisolvent-free highly efficient perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702915 – volume: 3 start-page: 2205 year: 2019 end-page: 2218 ident: CR5 article-title: A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells publication-title: Joule doi: 10.1016/j.joule.2019.06.011 – volume: 65 start-page: 104018 year: 2019 ident: CR61 article-title: Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104018 – volume: 2 start-page: 1 year: 2018 end-page: 18 ident: CR25 article-title: Phase transition control for high-performance blade-coated perovskite solar cells publication-title: Joule doi: 10.1016/j.joule.2017.10.014 – volume: 30 start-page: 1801418 year: 2018 ident: CR31 article-title: Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy publication-title: Adv. Mater. doi: 10.1002/adma.201801418 – volume: 31 start-page: 1900390 year: 2019 ident: CR44 article-title: A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201900390 – volume: 9 start-page: 1900834 year: 2019 ident: CR56 article-title: Improved SnO electron transport layers solution-deposited at near room temperature for rigid or flexible perovskite solar cells with high efficiencies publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900834 – volume: 3 start-page: 1 year: 2019 end-page: 15 ident: CR28 article-title: Fully air-bladed high-efficiency perovskite photovoltaics publication-title: Joule doi: 10.1016/j.joule.2018.12.022 – volume: 12 start-page: 6052 year: 2016 end-page: 6075 ident: CR39 article-title: Metallic nanowire‐based transparent electrodes for next generation flexible devices: a review publication-title: Small doi: 10.1002/smll.201602581 – volume: 30 start-page: 1704876 year: 2018 ident: CR42 article-title: Citrate improves collagen mineralization via interface wetting: a physicochemical understanding of biomineralization control publication-title: Adv. Mater. doi: 10.1002/adma.201704876 – volume: 141 start-page: 5781 year: 2019 end-page: 5787 ident: CR52 article-title: Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13091 – volume: 7 start-page: 1107 year: 2019 end-page: 1114 ident: CR34 article-title: Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10585E – volume: 29 start-page: 1900092 year: 2019 ident: CR47 article-title: Room-temperature meniscus coating of >20% perovskite solar cells: a film formation mechanism investigation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900092 – volume: 29 start-page: 1902629 year: 2019 ident: CR30 article-title: Water‐resistant and flexible perovskite solar cells via a glued interfacial layer publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902629 – volume: 9 start-page: 1901204 year: 2019 ident: CR36 article-title: High‐performance solution‐processed double‐walled carbon nanotube transparent electrode for perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901204 – volume: 188 start-page: 158 year: 2019 end-page: 163 ident: CR17 article-title: Ultra flexible and biodegradable perovskite solar cells utilizing ultrathin cellophane paper substrates and TiO /Ag/TiO transparent electrodes publication-title: Sol. Energy doi: 10.1016/j.solener.2019.05.061 – volume: 10 start-page: 1903108 year: 2020 ident: CR3 article-title: Scalable fabrication of efficient perovskite solar modules on flexible glass substrates publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903108 – volume: 27 start-page: 1241 year: 2015 end-page: 1247 ident: CR27 article-title: Toward large scale roll-to-roll production of fully printed perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201404598 – volume: 29 start-page: 1809194 year: 2019 ident: CR57 article-title: Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive-assisted hot slot die deposition publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201809194 – volume: 64 start-page: 103964 year: 2019 ident: CR21 article-title: Fully-ambient-air and antisolvent-free-processed stable perovskite solar cells with perovskite-based composites and interface engineering publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103964 – volume: 83 start-page: 719 year: 2002 end-page: 725 ident: CR66 article-title: Miscibility and adhesive properties of ethylene vinyl acetate copolymer (EVA)-based hot-melt adhesives publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.2266 – volume: 19 start-page: 684 year: 2019 end-page: 691 ident: CR50 article-title: Graphene-induced improvements of perovskite solar cell stability: effects on hot-carriers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03685 – volume: 8 start-page: 1702915 year: 2018 ident: CR20 article-title: Flash infrared annealing for antisolvent‐free highly efficient perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702915 – volume: 15 start-page: 6514 year: 2015 end-page: 6520 ident: CR8 article-title: Working mechanism for flexible perovskite solar cells with simplified architecture publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02126 – volume: 12 start-page: 518 year: 2019 end-page: 549 ident: CR48 article-title: From scalable solution fabrication of perovskite films towards commercialization of solar cells publication-title: Energ. Environ. Sci. doi: 10.1039/C8EE03025A – volume: 8 start-page: 1701791 year: 2018 ident: CR38 article-title: Flexible and semitransparent organic solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701791 – volume: 363 start-page: 265 year: 2019 end-page: 270 ident: CR62 article-title: A Eu -Eu ion redox shuttle imparts operational durability to Pb-I perovskite solar cells publication-title: Science doi: 10.1126/science.aau5701 – volume: 140 start-page: 12345 year: 2018 end-page: 12348 ident: CR55 article-title: Bifunctional stabilization of all-inorganic α‑CsPbI3 perovskite for 17% efficiency photovoltaics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07927 – volume: 29 start-page: 1900557 year: 2019 ident: CR9 article-title: Solvent-assisted low-temperature crystallization of SnO electron-transfer layer for high-efficiency planar perovskite solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900557 – volume: 8 start-page: 1800504 year: 2018 ident: CR49 article-title: Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by mn substitution for high‐stability all-inorganic perovskite solar cells with carbon electrodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800504 – volume: 30 start-page: 1870329 year: 2018 ident: CR19 article-title: Perovskite solar cells: a cryogenic process for antisolvent‐free high‐performance perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201870329 – volume: 345 start-page: 295 year: 2014 end-page: 298 ident: CR29 article-title: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability publication-title: Science doi: 10.1126/science.1254763 – volume: 1 start-page: 16142 year: 2016 ident: CR22 article-title: Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% publication-title: Nat. Energy doi: 10.1038/nenergy.2016.142 – volume: 29 start-page: 1902974 year: 2019 ident: CR58 article-title: FAPbI flexible solar cells with a record efficiency of 19.38% fabricated in air via ligand and additive synergetic process publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902974 – volume: 24 start-page: 2462 year: 2014 end-page: 2471 ident: CR35 article-title: All‐solution-processed indium‐free transparent composite electrodes based on Ag nanowire and metal oxide for thin‐film solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303518 – volume: 31 start-page: 1904408 year: 2019 ident: CR63 article-title: Interfacial residual stress relaxation in perovskite solar cells with improved stability publication-title: Adv. Mater. doi: 10.1002/adma.201904408 – volume: 8 start-page: 1703054 year: 2018 ident: CR7 article-title: New strategy for two-step sequential deposition: incorporation of hydrophilic fullerene in second precursor for high-performance p-i-n planar perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703054 – volume: 10 start-page: 1903609 year: 2020 ident: CR65 article-title: Sequential blade-coated acceptor and donor enables simultaneous enhancement of efficiency, stability, and mechanical properties for organic solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903609 – volume: 29 start-page: 1605903 year: 2017 ident: CR40 article-title: Biomineralization: from material tactics to biological strategy publication-title: Adv. Mater. doi: 10.1002/adma.201605903 – volume: 9 start-page: 1901419 year: 2019 ident: CR33 article-title: High-performance flexible perovskite solar cells via precise control of electron transport layer publication-title: Adv. Energy Mater doi: 10.1002/aenm.201901419 – volume: 12 start-page: 10355 year: 2018 end-page: 10364 ident: CR45 article-title: A method for the preparation of highly oriented MAPbI3 crystallites for high efficiency perovskite solar cells to achieve an 86% fill factor publication-title: ACS Nano doi: 10.1021/acsnano.8b05731 – volume: 3 start-page: 661 year: 1972 ident: CR67 article-title: Ethylene-vinyl acetate copolymer adhesive composition and method of preparation publication-title: U. S. Pat. – volume: 9 year: 2018 ident: CR4 article-title: Universal passivation strategy to slot-die printed SnO for hysteresis-free efficient flexible perovskite solar module publication-title: Nat. Commun. doi: 10.1038/s41467-018-07099-9 – volume: 29 start-page: 1703236 year: 2017 ident: CR18 article-title: Wearable large-scale perovskite solar-power source via nanocellular Scaffold publication-title: Adv. Mater. doi: 10.1002/adma.201703236 – volume: 139 start-page: 8678 year: 2017 end-page: 8684 ident: CR64 article-title: Oxime-based and catalyst-free dynamic covalent polyurethanes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03967 – volume: 3 start-page: 1850 year: 2019 end-page: 1880 ident: CR1 article-title: Flexible perovskite solar cells publication-title: Joule doi: 10.1016/j.joule.2019.07.023 – volume: 35 start-page: 223 year: 2017 end-page: 232 ident: CR11 article-title: Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.048 – volume: 5 start-page: 1500328 year: 2015 ident: CR14 article-title: High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500328 – volume: 6 start-page: 1802094 year: 2019 ident: CR60 article-title: Gravure-printed flexible perovskite solar cells: toward roll-to-roll manufacturing publication-title: Adv. Sci. doi: 10.1002/advs.201802094 – volume: 12 start-page: 3585 year: 2019 end-page: 3594 ident: CR6 article-title: Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design publication-title: Energ. Environ. Sci. doi: 10.1039/C9EE02391G – volume: 10 start-page: 1503 year: 2016 end-page: 1511 ident: CR15 article-title: Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility publication-title: ACS Nano doi: 10.1021/acsnano.5b07043 – volume: 2 start-page: 17038 year: 2017 ident: CR24 article-title: Perovskite ink with wide processing window for scalable high-efficiency solar cells publication-title: Nat. Energy doi: 10.1038/nenergy.2017.38 – volume: 9 start-page: 1901719 year: 2019 ident: CR43 article-title: Cold antisolvent bathing derived highly efficient large-area perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901719 – volume: 31 start-page: 1902902 year: 2019 ident: CR51 article-title: Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201902902 – volume: 3 start-page: 560 year: 2018 end-page: 566 ident: CR23 article-title: Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules publication-title: Nat. Energy doi: 10.1038/s41560-018-0153-9 – volume: 9 year: 2018 ident: CR32 article-title: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO publication-title: Nat. Commun. doi: 10.1038/s41467-018-05760-x – volume: 11 start-page: 427 year: 2019 ident: CR13 article-title: Flexible perovskite solar cells via surface-confined silver nanoparticles on transparent polyimide substrates publication-title: Polymers doi: 10.3390/polym11030427 – volume: 81 start-page: 3804 year: 2002 end-page: 3806 ident: CR68 article-title: Bonding and mechanical properties of ultrathin diamond-like carbon films publication-title: Appl. Phys. Lett. doi: 10.1063/1.1510179 – volume: 28 start-page: 694 year: 2016 end-page: 700 ident: CR41 article-title: Vaccine engineering with dual‐functional mineral shell: a promising strategy to overcome preexisting immunity publication-title: Adv. Mater. doi: 10.1002/adma.201503740 – volume: 28 start-page: 10786 year: 2016 end-page: 10793 ident: CR16 article-title: A low-temperature, solution-processable organic electron transporting layer based on planar coronene for high performance conventional perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201601745 – volume: 4 start-page: 5569 year: 2016 end-page: 5577 ident: CR37 article-title: Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01715K – volume: 3 start-page: 18017 year: 2018 ident: CR2 article-title: Scalable fabrication of perovskite solar cells publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.17 – volume: 10 start-page: 23103 year: 2018 end-page: 23111 ident: CR26 article-title: Growth dynamic controllable rapid crystallization boosts the perovskite photovoltaics’ robust preparation: from blade coating to painting publication-title: ACS Appl. Mater. Inter doi: 10.1021/acsami.8b05172 – volume: 365 start-page: 473 year: 2019 end-page: 478 ident: CR53 article-title: Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts publication-title: Science doi: 10.1126/science.aax3294 – volume: 7 start-page: 18626 year: 2019 end-page: 18633 ident: CR54 article-title: Low-cost coenzyme Q10 as efficient electron transport layer for inverted perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06317J – volume: 29 start-page: 1807604 year: 2019 ident: CR59 article-title: Hydrothermally treated SnO as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 17.3% publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807604 – volume: 2 start-page: 2118 year: 2017 end-page: 2124 ident: CR10 article-title: Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00644 – volume: 31 start-page: 1901519 year: 2019 ident: CR12 article-title: Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability publication-title: Adv. Mater. doi: 10.1002/adma.201901519 – volume: 29 start-page: 1809194 year: 2019 ident: 16831_CR57 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201809194 – volume: 29 start-page: 1902629 year: 2019 ident: 16831_CR30 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902629 – volume: 28 start-page: 694 year: 2016 ident: 16831_CR41 publication-title: Adv. Mater. doi: 10.1002/adma.201503740 – volume: 9 start-page: 1901204 year: 2019 ident: 16831_CR36 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901204 – volume: 363 start-page: 265 year: 2019 ident: 16831_CR62 publication-title: Science doi: 10.1126/science.aau5701 – volume: 12 start-page: 10355 year: 2018 ident: 16831_CR45 publication-title: ACS Nano doi: 10.1021/acsnano.8b05731 – volume: 10 start-page: 1503 year: 2016 ident: 16831_CR15 publication-title: ACS Nano doi: 10.1021/acsnano.5b07043 – volume: 7 start-page: 18626 year: 2019 ident: 16831_CR54 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06317J – volume: 64 start-page: 103964 year: 2019 ident: 16831_CR21 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103964 – volume: 4 start-page: 5569 year: 2016 ident: 16831_CR37 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01715K – volume: 139 start-page: 8678 year: 2017 ident: 16831_CR64 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03967 – volume: 10 start-page: 1903609 year: 2020 ident: 16831_CR65 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903609 – volume: 365 start-page: 473 year: 2019 ident: 16831_CR53 publication-title: Science doi: 10.1126/science.aax3294 – volume: 6 start-page: 1802094 year: 2019 ident: 16831_CR60 publication-title: Adv. Sci. doi: 10.1002/advs.201802094 – volume: 3 start-page: 560 year: 2018 ident: 16831_CR23 publication-title: Nat. Energy doi: 10.1038/s41560-018-0153-9 – volume: 30 start-page: 1801418 year: 2018 ident: 16831_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.201801418 – volume: 11 start-page: 427 year: 2019 ident: 16831_CR13 publication-title: Polymers doi: 10.3390/polym11030427 – volume: 3 start-page: 1 year: 2019 ident: 16831_CR28 publication-title: Joule doi: 10.1016/j.joule.2018.12.022 – volume: 60 start-page: 2992 year: 1992 ident: 16831_CR69 publication-title: Appl. Phys. Lett. doi: 10.1063/1.106786 – volume: 8 start-page: 1702915 year: 2018 ident: 16831_CR46 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702915 – volume: 29 start-page: 1900557 year: 2019 ident: 16831_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900557 – volume: 19 start-page: 684 year: 2019 ident: 16831_CR50 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03685 – volume: 140 start-page: 12345 year: 2018 ident: 16831_CR55 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07927 – volume: 3 start-page: 18017 year: 2018 ident: 16831_CR2 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.17 – volume: 3 start-page: 1850 year: 2019 ident: 16831_CR1 publication-title: Joule doi: 10.1016/j.joule.2019.07.023 – volume: 9 start-page: 1901719 year: 2019 ident: 16831_CR43 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901719 – volume: 2 start-page: 1 year: 2018 ident: 16831_CR25 publication-title: Joule doi: 10.1016/j.joule.2017.10.014 – volume: 2 start-page: 2118 year: 2017 ident: 16831_CR10 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00644 – volume: 8 start-page: 1800504 year: 2018 ident: 16831_CR49 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800504 – volume: 10 start-page: 23103 year: 2018 ident: 16831_CR26 publication-title: ACS Appl. Mater. Inter doi: 10.1021/acsami.8b05172 – volume: 5 start-page: 1500328 year: 2015 ident: 16831_CR14 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500328 – volume: 27 start-page: 1241 year: 2015 ident: 16831_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201404598 – volume: 8 start-page: 1702915 year: 2018 ident: 16831_CR20 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702915 – volume: 81 start-page: 3804 year: 2002 ident: 16831_CR68 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1510179 – volume: 12 start-page: 518 year: 2019 ident: 16831_CR48 publication-title: Energ. Environ. Sci. doi: 10.1039/C8EE03025A – volume: 29 start-page: 1902974 year: 2019 ident: 16831_CR58 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902974 – volume: 29 start-page: 1900092 year: 2019 ident: 16831_CR47 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900092 – volume: 29 start-page: 1605903 year: 2017 ident: 16831_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.201605903 – volume: 35 start-page: 223 year: 2017 ident: 16831_CR11 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.048 – volume: 15 start-page: 6514 year: 2015 ident: 16831_CR8 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02126 – volume: 30 start-page: 1704876 year: 2018 ident: 16831_CR42 publication-title: Adv. Mater. doi: 10.1002/adma.201704876 – volume: 31 start-page: 1900390 year: 2019 ident: 16831_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.201900390 – volume: 65 start-page: 104018 year: 2019 ident: 16831_CR61 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104018 – volume: 1 start-page: 16142 year: 2016 ident: 16831_CR22 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.142 – volume: 9 year: 2018 ident: 16831_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05760-x – volume: 30 start-page: 1870329 year: 2018 ident: 16831_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201870329 – volume: 9 year: 2018 ident: 16831_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07099-9 – volume: 345 start-page: 295 year: 2014 ident: 16831_CR29 publication-title: Science doi: 10.1126/science.1254763 – volume: 3 start-page: 661 year: 1972 ident: 16831_CR67 publication-title: U. S. Pat. – volume: 31 start-page: 1902902 year: 2019 ident: 16831_CR51 publication-title: Adv. Mater. doi: 10.1002/adma.201902902 – volume: 7 start-page: 1107 year: 2019 ident: 16831_CR34 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10585E – volume: 10 start-page: 1903108 year: 2020 ident: 16831_CR3 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903108 – volume: 29 start-page: 1703236 year: 2017 ident: 16831_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201703236 – volume: 83 start-page: 719 year: 2002 ident: 16831_CR66 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.2266 – volume: 141 start-page: 5781 year: 2019 ident: 16831_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13091 – volume: 12 start-page: 6052 year: 2016 ident: 16831_CR39 publication-title: Small doi: 10.1002/smll.201602581 – volume: 29 start-page: 1807604 year: 2019 ident: 16831_CR59 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807604 – volume: 9 start-page: 1900834 year: 2019 ident: 16831_CR56 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900834 – volume: 31 start-page: 1904408 year: 2019 ident: 16831_CR63 publication-title: Adv. Mater. doi: 10.1002/adma.201904408 – volume: 31 start-page: 1901519 year: 2019 ident: 16831_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201901519 – volume: 3 start-page: 2205 year: 2019 ident: 16831_CR5 publication-title: Joule doi: 10.1016/j.joule.2019.06.011 – volume: 188 start-page: 158 year: 2019 ident: 16831_CR17 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.05.061 – volume: 9 start-page: 1901419 year: 2019 ident: 16831_CR33 publication-title: Adv. Energy Mater doi: 10.1002/aenm.201901419 – volume: 8 start-page: 1703054 year: 2018 ident: 16831_CR7 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703054 – volume: 2 start-page: 17038 year: 2017 ident: 16831_CR24 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.38 – volume: 24 start-page: 2462 year: 2014 ident: 16831_CR35 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303518 – volume: 8 start-page: 1701791 year: 2018 ident: 16831_CR38 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701791 – volume: 28 start-page: 10786 year: 2016 ident: 16831_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.201601745 – volume: 12 start-page: 3585 year: 2019 ident: 16831_CR6 publication-title: Energ. Environ. Sci. doi: 10.1039/C9EE02391G |
SSID | ssj0000391844 |
Score | 2.6695652 |
Snippet | The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible... Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3016 |
SubjectTerms | 140/146 147/135 147/3 639/301/1005/1007 639/301/299/946 Biomimetics Bionics Brittleness Crystal growth Crystal structure Crystallization Efficiency Energy conversion efficiency Flexible components Flexible structures Humanities and Social Sciences Indium tin oxides Modules multidisciplinary Perovskites Photovoltaic cells Polymers Science Science (multidisciplinary) Solar cells Spine Substrates Tin Vertebrae |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEB1EELyI31ZXieBNi9smbZOjiiKCnhS8hSRNcWGpYncF_70zaXd1_bx4KGy3KQwvk-S9TjIDcICMQOEqJ2JpvIlFhmPOWBSuqpQG16NM-YqE4vVNfnknru6z-w-lvmhPWJseuAXuWFQuc4VHBYeXdMo4nEHLXFZ5Zg13nmbfvup_EFNhDuYKpYvoTsn0uTxuRJgTSC0lueRJzGdWopCw_zuW-XWz5KeIaViILpZhqWOQ7KS1fAXmfL0KC21Nydc1uMFf8aCmALovGVVbptDwkJVhqwZDjsoa7Bc6McVMXbKKMmLSDWUMf2noYy5rSO8y-qbfrMPdxfnt2WXcFU2IHWqRUaycsqkxqUGoEl-hILFIiUqED5mpKgtTIWOT3lTWee4FncwxPHfYX9LZxEq-AfP1Y-23gPUNvpSnRWLTUlhZKC-Mz7hHklY45D0RJBMAtesyilNhi6EOkW0udQu6RtB1AF3zCA6n7zy1-TR-bX1K_TJtSbmwwx_oIbrzEP2Xh0TQm_Sq7gZooymcmHIqeBrB_vQxDi3C1tT-cdy2URTGRDs2WyeYWsJRWCPVUREUM-4xY-rsk3rwENJ3o5zJlEojOJo40rtZP0Ox_R9Q7MBiSiOAai9lPZgfPY_9LpKqkd0L4-cNWHsdTw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SDYVeSt91khYVemtN1pZkS4cSkpIQCl1KaSA3oZebQPCm8aaQf58Z-RG2jxwM67UM8mhG830aaQbgPSICjV5O5MpGmwuJNmcdElcdlEV_JHVsiCh-XVTHJ-LLqTzdgMV4Foa2VY5zYpqow9LTGvkuxX9KThUq9y5_5VQ1iqKrYwkNO5RWCJ9SirEHsIlTspzPYPPgcPHt-7TqQvnQlRDD6Zk5V7udSHMFsaiiUrzI-ZqHSon8_4U-_95E-UckNTmooyfweECWbL9XhaewEdtn8LCvNXnzHBb4Kz9vKbAeA6MqzBQyvmAhbeFgiF1Zh-NFJ6mYbQNrKFMm3VAm8d8dLfKyjngwo7X-7gWcHB3--HycD8UUco8cZZVrr11pbWm9tkVskKg4hEpBlBERqw61bRDJqWgb5yOPgk7sWF55HEflXeEUfwmzdtnG18DmFl-qyrpwZRBO1ToKGyWPCN5qj3gog2IUoPFDpnEqeHFhUsSbK9ML3aDQTRK64Rl8mN657PNs3Nv6gMZlakk5stMfy6ufZjA5IxovfR2R--Ol8LM9-t5QqaaSznIfM9gZR9UMhtuZOzXL4N30GE2OZGvbuLzu22gKb2I_XvVKMPWEI-FGCKQzqNfUY62r60_a87OU1htpjtS6zODjqEh33fq_KLbu_4pteFSSblO1JbkDs9XVdXyDMGrl3g62cQsDkRpS priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qRfBFrJ-rrUTwTRe7-dhNHvWwFME-WehbSLKzWih70r0W-t87k_2Q0yr4cHB3m8DcZObm98skMwBvCBE4inK6tAFDqQ35XIhEXF1rA8Uj47BjovjlpD4-1Z_PzNkOyPkuTD60n0ta5r_p-XTY-0Fnl2ayU9VWVaW6A3dtowxb9apeLfsqXPHcaj3djzlU9papWzEol-q_DV_-eUzyt1xpDkFHD-HBhB3Fh1HaPdjB_hHcG7tJ3jyGE3pXnvecOsdWcJ9lTgpfiDYf0hCETsVAK8J3pUToW9FxLUz-wLXCrwfexhUDM13Bu_nDEzg9-vR1dVxO7RLKRCxkU7rkogxBhuRChR1RkUhgqNUSCZO6tgkdYTWLoYsJFWq-kxNUnWilbIpVtOop7PbrHp-DOAw0qZZNFWWro20c6oBGIcGzJhHiKaCaFejTVEucW1pc-JzTVtaPSvekdJ-V7lUBb5c5P8ZKGv8c_ZHXZRnJVbDzF-vLb36yCq-7ZFKDxO7pZelnJ4qubW272sSgEhawP6-qn1xz8JxIlIpbnRbwenlMTsW6DT2ur8YxjhOYJMez0QgWSRRRagI5roBmyzy2RN1-0p9_z4W7icgY52QB72ZD-iXW31Xx4v-Gv4T7km2d-yuZfdjdXF7hAQGnTXyVPeUnD7sRjw priority: 102 providerName: Springer Nature |
Title | Bio-inspired vertebral design for scalable and flexible perovskite solar cells |
URI | https://link.springer.com/article/10.1038/s41467-020-16831-3 https://www.ncbi.nlm.nih.gov/pubmed/32541859 https://www.proquest.com/docview/2413233865 https://www.proquest.com/docview/2413995793 https://pubmed.ncbi.nlm.nih.gov/PMC7295992 https://doaj.org/article/4fc5c7e742e748c9ac429d68f65ba3ce |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8THwvMCoj8QYBEjuJ_TBNXbUyVaJCQKW-WbbjwKQqhaZD7L_nzkmKCgWJh34ltuSe73K_n8--A3iOiEChlxOxNN7EIkObMxaJqyqlQX-UKV8RUXw3zS9nYjLP5nvQlzvqBNjspHZUT2q2Wrz68e3mDA3-tD0yLl83Ipg7EaEklzyJ-T4chngRbeXr4H54MnOFhEZ0Z2d2d93yTyGN_y7s-ecWyt_iqME9je_AUYcr2bBVhLuw5-t7cKutNHlzH6b4Lb6qKazuS0Y1mClgvGBl2MDBELmyBmeLzlExU5esojyZ9IPyiH9vaImXNSQqRiv9zQOYjS8-jS7jrpRC7JChrGPllE2NSY1TJvEV0hSLQKkUqUe8qsrCVIjjpDeVdZ57Qed1DM8dzqJ0NrGSP4SDeln7Y2BvDHbK0yKxaSmsLJQXxmfcI3QrHKKhCJJegNp1ecap3MVCh3g3l7oVukah6yB0zSN4senztc2y8c_W5zQvm5aUITtcWK4-687gtKhc5gqPzB9fEv-2Q89b5rLKM2u48xGc9LOqe63TpDQppzKoETzb3EaDI9ma2i-v2zaKgps4jketEmxGwpFuIwBSERRb6rE11O079dWXkNQbSU6mVBrBy16Rfg3r76J4_H_Nn8DtlHSdai9lJ3CwXl37pwiq1nYA-8W8wHc5fjuAw-Fw8nGCn-cX0_cf8OooHw3CcsUgWNRPx9wh7Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4ja2E5iHypEodWWtiuEWqk3YzsOVKqypdmC-uf4bcw4yVbLo7fedjfOyh7P2N94PPMBvEREoHGXk6mywaYyR5uzDh1XXSmL-1GuQ02O4t6kGB_Ij4f54RL8GnJh6FrlsCbGhbqaejojX6X4DxfEUPn25HtKrFEUXR0oNGxPrVCtxxJjfWLHTjj_iS5cu779Aef7Fedbm_vvx2nPMpB6BO-zVHvtuLXcem2zUCOCd4ghKskDQjldlbZGiKOCrZ0PIkhKZbGi8DhA5V3mlMD_vQbLkg5QRrC8sTn59Hl-ykP115WUfbbOmlCrrYxrE3ltWaFEloqFHTESB_wL7f59afOPyG3cELduw60eybJ3nerdgaXQ3IXrHbfl-T2Y4Kf0qKFAfqgYsT5TiPqYVfHKCEOszFrUD8rcYrapWE2VOekLVS7_0dKhMmvJ72YUW2jvw8GViPUBjJppEx4BW7P4UsHLzPFKOlXqIG3IRUCwWHrEXwlkgwCN7yubE8HGsYkRdqFMJ3SDQjdR6EYk8Hr-zklX1-PS1hs0L_OWVJM7_jA9_Wp6Ezey9rkvQ4lDLKXCYXvc66tC1UXurPAhgZVhVk2_ULTmQq0TeDF_jCZOsrVNmJ51bTSFU7EfDzslmPdEoIOPkEsnUC6ox0JXF580R99iGXF0q3KteQJvBkW66Nb_RfH48lE8hxvj_b1ds7s92XkCNznpOTE95Sswmp2ehacI4WbuWW8nDL5ctWn-BvpWWJc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJThBtYzuxfUAIKKuWwooDlfZmHMeBSlW2NFtQ_xq_jhnnUS2P3nrb3Tgrezzj-cZjzwfwFBGBQS8nU-2CS2WONudKDFxNpR36o9yEmgLFj7NiZ1--n-fzNfg13IWhY5XDmhgX6mrhaY98QvkfLoihclL3xyI-bU9fHX1PiUGKMq0DnUanInvh9CeGb-3L3W2c62ecT999fruT9gwDqUfgvkyNNyV3jjtvXBZqRO8l4odK8oAwzlTK1QhvdHB16YMIkq6xOFF4HJz2ZVZqgf97CS4rISXRRqi5Gvd3qPK6lrK_p7Ml9KSVcVWieC0rtMhSseILI2XAv3Du38c1_8jZRlc4vQHXewzLXndKdxPWQnMLrnSslqe3YYaf0oOGUvihYsT3TMnpQ1bFwyIMUTJrUTPozhZzTcVqqslJX6hm-Y-WtpNZSxE3o6xCewf2L0Sod2G9WTThHrAthy8VXGUlr2SplQnShVwEhInKI_JKIBsEaH1f05yoNQ5tzK0LbTuhWxS6jUK3IoHn4ztHXUWPc1u_oXkZW1I17vjD4vir7Y3bytrnXgWFQ1RS47A9evmq0HWRl074kMDmMKu2XyJae6bQCTwZH6Nxk2xdExYnXRtDiVTsx0anBGNPBIb2CLZMAmpFPVa6uvqkOfgWC4hjQJUbwxN4MSjSWbf-L4r754_iMVxFg7Qfdmd7D-AaJzUniqd8E9aXxyfhIWK3ZfkoGgmDLxdtlb8BlKFWMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-inspired+vertebral+design+for+scalable+and+flexible+perovskite+solar+cells&rft.jtitle=Nature+communications&rft.au=Meng%2C+Xiangchuan&rft.au=Cai%2C+Zheren&rft.au=Zhang%2C+Yanyan&rft.au=Hu%2C+Xiaotian&rft.date=2020-06-15&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-16831-3&rft.externalDocID=10_1038_s41467_020_16831_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |