Bio-inspired vertebral design for scalable and flexible perovskite solar cells

The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrate...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 3016 - 10
Main Authors Meng, Xiangchuan, Cai, Zheren, Zhang, Yanyan, Hu, Xiaotian, Xing, Zhi, Huang, Zengqi, Huang, Zhandong, Cui, Yongjie, Hu, Ting, Su, Meng, Liao, Xunfan, Zhang, Lin, Wang, Fuyi, Song, Yanlin, Chen, Yiwang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.06.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-020-16831-3

Cover

Abstract The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm 2 and 31.20 cm 2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics. Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al. solve this by inserting a conductive and glued polymer layer between ITO and perovskite layers and obtain efficiency of 17% for 30 cm 2 devices.
AbstractList The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm and 31.20 cm respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics.
Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al. solve this by inserting a conductive and glued polymer layer between ITO and perovskite layers and obtain efficiency of 17% for 30 cm2 devices.
The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm 2 and 31.20 cm 2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics. Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al. solve this by inserting a conductive and glued polymer layer between ITO and perovskite layers and obtain efficiency of 17% for 30 cm 2 devices.
The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm2 and 31.20 cm2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics.Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al. solve this by inserting a conductive and glued polymer layer between ITO and perovskite layers and obtain efficiency of 17% for 30 cm2 devices.
The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm2 and 31.20 cm2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics.The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm2 and 31.20 cm2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics.
The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible perovskite solar cells (PSCs). The degradation is attributed to the brittleness and discrepancy of perovskite crystal growth upon different substrates. Inspired by robust crystallization and flexible structure of vertebrae, herein, we employ a conductive and glued polymer between indium tin oxide and perovskite layers, which simultaneously facilitates oriented crystallization of perovskite and sticks the devices. With the results of experimental characterizations and theoretical simulations, this bionic interface layer accurately controls the crystallization and acts as an adhesive. The flexible PSCs achieve the power conversion efficiencies of 19.87% and 17.55% at effective areas of 1.01 cm 2 and 31.20 cm 2 respectively, retaining over 85% of original efficiency after 7000 narrow bending cycles with negligible angular dependence. Finally, the modules are assembled into a wearable solar-power source, enabling the upscaling of flexible electronics.
ArticleNumber 3016
Author Hu, Ting
Huang, Zengqi
Song, Yanlin
Zhang, Lin
Su, Meng
Meng, Xiangchuan
Xing, Zhi
Huang, Zhandong
Cui, Yongjie
Chen, Yiwang
Hu, Xiaotian
Liao, Xunfan
Wang, Fuyi
Cai, Zheren
Zhang, Yanyan
Author_xml – sequence: 1
  givenname: Xiangchuan
  orcidid: 0000-0002-9540-5240
  surname: Meng
  fullname: Meng, Xiangchuan
  organization: College of Chemistry, Nanchang University, Institute of Polymers and Energy Chemistry, Nanchang University
– sequence: 2
  givenname: Zheren
  orcidid: 0000-0003-0232-8213
  surname: Cai
  fullname: Cai, Zheren
  organization: Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)
– sequence: 3
  givenname: Yanyan
  orcidid: 0000-0002-2048-145X
  surname: Zhang
  fullname: Zhang, Yanyan
  organization: CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)
– sequence: 4
  givenname: Xiaotian
  orcidid: 0000-0001-5483-8800
  surname: Hu
  fullname: Hu, Xiaotian
  email: xiaotian@iccas.ac.cn
  organization: College of Chemistry, Nanchang University, Institute of Polymers and Energy Chemistry, Nanchang University
– sequence: 5
  givenname: Zhi
  orcidid: 0000-0003-0197-2664
  surname: Xing
  fullname: Xing, Zhi
  organization: College of Chemistry, Nanchang University
– sequence: 6
  givenname: Zengqi
  orcidid: 0000-0001-5435-1744
  surname: Huang
  fullname: Huang, Zengqi
  organization: College of Chemistry, Nanchang University
– sequence: 7
  givenname: Zhandong
  surname: Huang
  fullname: Huang, Zhandong
  organization: Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)
– sequence: 8
  givenname: Yongjie
  orcidid: 0000-0003-2202-0697
  surname: Cui
  fullname: Cui, Yongjie
  organization: College of Materials Science and Engineering, Donghua University
– sequence: 9
  givenname: Ting
  orcidid: 0000-0001-5261-9858
  surname: Hu
  fullname: Hu, Ting
  organization: College of Chemistry, Nanchang University, Institute of Polymers and Energy Chemistry, Nanchang University
– sequence: 10
  givenname: Meng
  orcidid: 0000-0001-8485-2590
  surname: Su
  fullname: Su, Meng
  organization: Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)
– sequence: 11
  givenname: Xunfan
  orcidid: 0000-0002-6649-5865
  surname: Liao
  fullname: Liao, Xunfan
  organization: College of Materials Science and Engineering, Donghua University, Institute of Advanced Scientific Research (iASR), Jiangxi Normal University
– sequence: 12
  givenname: Lin
  orcidid: 0000-0002-8251-2987
  surname: Zhang
  fullname: Zhang, Lin
  organization: Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University
– sequence: 13
  givenname: Fuyi
  orcidid: 0000-0003-0962-1260
  surname: Wang
  fullname: Wang, Fuyi
  organization: CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)
– sequence: 14
  givenname: Yanlin
  surname: Song
  fullname: Song, Yanlin
  email: ylsong@iccas.ac.cn
  organization: Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)
– sequence: 15
  givenname: Yiwang
  orcidid: 0000-0003-4709-7623
  surname: Chen
  fullname: Chen, Yiwang
  email: ywchen@ncu.edu.cn
  organization: College of Chemistry, Nanchang University, Institute of Polymers and Energy Chemistry, Nanchang University, Institute of Advanced Scientific Research (iASR), Jiangxi Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32541859$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URMvQP8ACRWLDJhA_EtsbJKh4VKpgA2vrxrkZPHjswc6M4N_jTFpou6g3fp3z-ej6PiUnIQYk5DltXtOGqzdZUNHJumFNTTvFac0fkTPWCFpTyfjJrfUpOc9505TBNVVCPCGnnLWCqlafkS_vXaxdyDuXcKgOmCbsE_hqwOzWoRpjqrIFD73HCsJQjR5_u3mzwxQP-aebsMrRQ6osep-fkccj-Izn1_OKfP_44dvF5_rq66fLi3dXte2abqq11T0DYGA1UBxboXoq-CAYKjroQcKoOVMIY2-Ro2CSK-Cd1bJTtqe94ityuXCHCBuzS24L6Y-J4MzxIKa1gTQ569GI0bZWoixwKVR50Aqmh06NXdsDL_wVebuwdvt-i4PFMJUK3IHevQnuh1nHg5FMt1qzAnh1DUjx1x7zZLYuz-WAgHGfDROUa91KzYv05T3pJu5TKKU6qhjnqmuL6sXtRP-i3HxbEahFYFPMOeForJtgcnEO6LyhjZmbxCxNYkqTmGOTmDkBu2e9oT9o4ospF3FYY_of-wHXX5Ehz1k
CitedBy_id crossref_primary_10_1002_anie_202307225
crossref_primary_10_1002_admi_202002255
crossref_primary_10_1002_anie_202116602
crossref_primary_10_1007_s11465_023_0749_z
crossref_primary_10_1002_adfm_202300396
crossref_primary_10_1002_adfm_202419067
crossref_primary_10_1002_smll_202105184
crossref_primary_10_1002_adma_202201681
crossref_primary_10_1002_adom_202401131
crossref_primary_10_1002_smll_202410716
crossref_primary_10_1002_aisy_202200307
crossref_primary_10_1021_acs_energyfuels_4c03168
crossref_primary_10_1002_adfm_202106495
crossref_primary_10_1002_adfm_202302336
crossref_primary_10_1039_D4EE03503H
crossref_primary_10_1002_solr_202400844
crossref_primary_10_1016_j_nanoen_2024_109523
crossref_primary_10_1016_j_mtsust_2021_100090
crossref_primary_10_1038_s41578_022_00503_3
crossref_primary_10_1002_aenm_202101291
crossref_primary_10_1039_D0NA00852D
crossref_primary_10_1002_adma_202403531
crossref_primary_10_1021_acs_energyfuels_0c03342
crossref_primary_10_1002_adom_202301623
crossref_primary_10_1002_adma_202211806
crossref_primary_10_1002_adfm_202310860
crossref_primary_10_1007_s40243_024_00257_8
crossref_primary_10_1007_s11814_024_00280_5
crossref_primary_10_1002_adma_202417251
crossref_primary_10_1002_adma_202300302
crossref_primary_10_1016_j_mseb_2024_117367
crossref_primary_10_1002_smll_202402425
crossref_primary_10_1016_j_mattod_2023_06_009
crossref_primary_10_1021_acsenergylett_2c01391
crossref_primary_10_1002_inf2_12358
crossref_primary_10_1002_aenm_202101973
crossref_primary_10_1016_j_cej_2022_135647
crossref_primary_10_1016_j_nanoen_2020_105701
crossref_primary_10_1002_aenm_202103236
crossref_primary_10_1088_2752_5724_ad37cf
crossref_primary_10_1002_nano_202100163
crossref_primary_10_1039_D3EE01546G
crossref_primary_10_1016_j_csite_2024_105499
crossref_primary_10_1021_acsenergylett_2c01602
crossref_primary_10_1016_j_xinn_2021_100135
crossref_primary_10_1021_acsami_1c18939
crossref_primary_10_1002_aenm_202201436
crossref_primary_10_1007_s42765_022_00174_3
crossref_primary_10_1021_acsaelm_3c01638
crossref_primary_10_1016_j_solener_2023_04_011
crossref_primary_10_1002_adma_202105539
crossref_primary_10_1016_j_cej_2025_161624
crossref_primary_10_1088_1674_4926_42_10_101605
crossref_primary_10_1002_ange_202112673
crossref_primary_10_1002_aenm_202300603
crossref_primary_10_1002_advs_202304733
crossref_primary_10_1016_j_jpowsour_2021_229586
crossref_primary_10_1002_adfm_202206412
crossref_primary_10_1021_acsami_2c01481
crossref_primary_10_1002_adfm_202300113
crossref_primary_10_1016_j_nanoen_2021_106853
crossref_primary_10_1016_j_joule_2021_04_014
crossref_primary_10_1016_j_joule_2022_12_013
crossref_primary_10_1002_adfm_202202408
crossref_primary_10_1039_D1QM00616A
crossref_primary_10_1063_5_0197154
crossref_primary_10_1002_adfm_202203730
crossref_primary_10_1038_s41528_023_00253_4
crossref_primary_10_1002_adma_202211731
crossref_primary_10_1021_acsami_1c21041
crossref_primary_10_1002_adfm_202316550
crossref_primary_10_1016_j_nanoen_2021_105882
crossref_primary_10_1016_j_orgel_2021_106295
crossref_primary_10_1126_sciadv_adr2290
crossref_primary_10_1002_adfm_202104396
crossref_primary_10_1021_acsenergylett_1c01193
crossref_primary_10_1002_anie_202112673
crossref_primary_10_1016_j_optmat_2023_113566
crossref_primary_10_1002_ange_202116602
crossref_primary_10_1063_5_0084596
crossref_primary_10_34133_energymatadv_0002
crossref_primary_10_1016_j_dyepig_2023_111843
crossref_primary_10_1016_j_solmat_2024_112734
crossref_primary_10_1016_j_jechem_2024_11_078
crossref_primary_10_1002_adfm_202408487
crossref_primary_10_1002_advs_202101418
crossref_primary_10_1016_j_cej_2021_132426
crossref_primary_10_1039_D2TA07593H
crossref_primary_10_34133_2021_7065907
crossref_primary_10_1002_adma_202408036
crossref_primary_10_1039_D2YA00303A
crossref_primary_10_1002_solr_202100458
crossref_primary_10_1038_s41467_023_36938_7
crossref_primary_10_1002_aenm_202101383
crossref_primary_10_1002_pssa_202100066
crossref_primary_10_1021_acsnano_2c06118
crossref_primary_10_1039_D1RA05399J
crossref_primary_10_1016_j_nantod_2021_101081
crossref_primary_10_1002_adom_202402521
crossref_primary_10_1039_D2EE01879A
crossref_primary_10_1016_j_nanoen_2023_109112
crossref_primary_10_1002_adma_202311473
crossref_primary_10_1021_acsami_1c00813
crossref_primary_10_3390_nano12183125
crossref_primary_10_1002_adfm_202205009
crossref_primary_10_1016_j_nanoen_2021_106285
crossref_primary_10_1016_j_jpowsour_2022_231518
crossref_primary_10_1016_j_cej_2022_134805
crossref_primary_10_1021_acsami_2c04790
crossref_primary_10_1039_D1CC03854K
crossref_primary_10_1002_pssa_202200736
crossref_primary_10_1016_j_isci_2023_107248
crossref_primary_10_1002_adma_202201840
crossref_primary_10_3389_fmats_2021_634353
crossref_primary_10_1021_acsami_1c22454
crossref_primary_10_1039_D2TC01412B
crossref_primary_10_1002_solr_202000672
crossref_primary_10_1021_acsami_3c13008
crossref_primary_10_29026_oea_2024_230210
crossref_primary_10_1002_solr_202200798
crossref_primary_10_1039_D4EE05613B
crossref_primary_10_1016_j_mtelec_2024_100095
crossref_primary_10_1039_D2SE00162D
crossref_primary_10_1002_admt_202101124
crossref_primary_10_1002_solr_202100702
crossref_primary_10_1039_D1TA02493K
crossref_primary_10_1021_acsenergylett_1c02768
crossref_primary_10_1039_D2TC01178F
crossref_primary_10_1002_adom_202100390
crossref_primary_10_1016_j_nantod_2021_101155
crossref_primary_10_1002_aenm_202304062
crossref_primary_10_1039_D4EE01230E
crossref_primary_10_1002_solr_202300860
crossref_primary_10_3390_nano11112975
crossref_primary_10_1002_advs_202101856
crossref_primary_10_1016_j_nanoen_2022_107058
crossref_primary_10_1039_D2MA00431C
crossref_primary_10_1002_aenm_202200975
crossref_primary_10_1002_ange_202107020
crossref_primary_10_1021_acsaem_4c01226
crossref_primary_10_1021_jacsau_4c00615
crossref_primary_10_1021_acsenergylett_3c01167
crossref_primary_10_1039_D0CE01509A
crossref_primary_10_1038_s41467_024_55652_6
crossref_primary_10_1002_aenm_202001920
crossref_primary_10_6023_A21030106
crossref_primary_10_1038_s41560_022_01045_2
crossref_primary_10_1002_adfm_202210063
crossref_primary_10_1007_s11664_023_10533_4
crossref_primary_10_1002_adfm_202306199
crossref_primary_10_1002_smll_202207817
crossref_primary_10_1002_adom_202202809
crossref_primary_10_1002_inf2_12522
crossref_primary_10_1002_adfm_202313715
crossref_primary_10_1039_D3TA02692B
crossref_primary_10_1002_adfm_202011133
crossref_primary_10_1002_lpor_202200641
crossref_primary_10_1016_j_psep_2024_08_123
crossref_primary_10_1039_D3TA05069F
crossref_primary_10_1016_j_scib_2022_11_003
crossref_primary_10_1039_D1TA01763B
crossref_primary_10_1002_admt_202400661
crossref_primary_10_1002_aenm_202100672
crossref_primary_10_1039_D2EE00966H
crossref_primary_10_1364_OME_450214
crossref_primary_10_1002_adfm_202301043
crossref_primary_10_1002_anie_202421063
crossref_primary_10_1016_j_pmatsci_2023_101189
crossref_primary_10_1002_ange_202104201
crossref_primary_10_1002_anie_202215799
crossref_primary_10_1016_j_solener_2022_08_070
crossref_primary_10_1021_acs_jpclett_3c02356
crossref_primary_10_1039_D4EE02925A
crossref_primary_10_1002_adfm_202309323
crossref_primary_10_1002_anie_202107020
crossref_primary_10_23919_IEN_2024_0001
crossref_primary_10_1002_adma_202211324
crossref_primary_10_1016_j_nanoen_2022_107017
crossref_primary_10_1007_s40820_022_00859_9
crossref_primary_10_1021_acsnano_1c02719
crossref_primary_10_1002_solr_202100991
crossref_primary_10_1007_s40820_023_01165_8
crossref_primary_10_1016_j_nanoen_2024_110259
crossref_primary_10_1002_cssc_202002095
crossref_primary_10_1039_D2TA04502H
crossref_primary_10_1002_ange_202421063
crossref_primary_10_1002_advs_202203640
crossref_primary_10_1016_j_ijhydene_2025_01_280
crossref_primary_10_1021_acsaem_1c00892
crossref_primary_10_1002_solr_202200814
crossref_primary_10_1002_adfm_202107042
crossref_primary_10_1039_D2EE01326F
crossref_primary_10_1021_acs_chemrev_2c00429
crossref_primary_10_1002_ange_202307225
crossref_primary_10_1002_adfm_202107726
crossref_primary_10_1038_s41467_025_57102_3
crossref_primary_10_1002_smll_202304273
crossref_primary_10_1002_cnma_202200377
crossref_primary_10_1002_adma_202312041
crossref_primary_10_1002_sstr_202200338
crossref_primary_10_1002_adfm_202313910
crossref_primary_10_1002_anie_202104201
crossref_primary_10_1002_aenm_202202298
crossref_primary_10_1016_j_nanoen_2024_109933
crossref_primary_10_1039_D1TC00433F
crossref_primary_10_1002_ange_202215799
Cites_doi 10.1063/1.106786
10.1002/aenm.201702915
10.1016/j.joule.2019.06.011
10.1016/j.nanoen.2019.104018
10.1016/j.joule.2017.10.014
10.1002/adma.201801418
10.1002/adma.201900390
10.1002/aenm.201900834
10.1016/j.joule.2018.12.022
10.1002/smll.201602581
10.1002/adma.201704876
10.1021/jacs.8b13091
10.1039/C8TA10585E
10.1002/adfm.201900092
10.1002/adfm.201902629
10.1002/aenm.201901204
10.1016/j.solener.2019.05.061
10.1002/aenm.201903108
10.1002/adma.201404598
10.1002/adfm.201809194
10.1016/j.nanoen.2019.103964
10.1002/app.2266
10.1021/acs.nanolett.8b03685
10.1021/acs.nanolett.5b02126
10.1039/C8EE03025A
10.1002/aenm.201701791
10.1126/science.aau5701
10.1021/jacs.8b07927
10.1002/adfm.201900557
10.1002/aenm.201800504
10.1002/adma.201870329
10.1126/science.1254763
10.1038/nenergy.2016.142
10.1002/adfm.201902974
10.1002/adfm.201303518
10.1002/adma.201904408
10.1002/aenm.201703054
10.1002/aenm.201903609
10.1002/adma.201605903
10.1002/aenm.201901419
10.1021/acsnano.8b05731
10.1038/s41467-018-07099-9
10.1002/adma.201703236
10.1021/jacs.7b03967
10.1016/j.joule.2019.07.023
10.1016/j.nanoen.2017.03.048
10.1002/aenm.201500328
10.1002/advs.201802094
10.1039/C9EE02391G
10.1021/acsnano.5b07043
10.1038/nenergy.2017.38
10.1002/aenm.201901719
10.1002/adma.201902902
10.1038/s41560-018-0153-9
10.1038/s41467-018-05760-x
10.3390/polym11030427
10.1063/1.1510179
10.1002/adma.201503740
10.1002/adma.201601745
10.1039/C6TA01715K
10.1038/natrevmats.2018.17
10.1021/acsami.8b05172
10.1126/science.aax3294
10.1039/C9TA06317J
10.1002/adfm.201807604
10.1021/acsenergylett.7b00644
10.1002/adma.201901519
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-16831-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed



Publicly Available Content Database
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_4fc5c7e742e748c9ac429d68f65ba3ce
PMC7295992
32541859
10_1038_s41467_020_16831_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation of China | International Cooperation and Exchange Programme
  grantid: 51425304
  funderid: https://doi.org/10.13039/501100010896
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 51973032; 51803217; 51803085; 51833004
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 51973032; 51803217; 51803085; 51833004
– fundername: ;
  grantid: 51425304
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-9c9b2aa2ac9a1ef548b143d42e81d9d7af9328eafbce3e42738a36c9768cb1b83
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:09 EDT 2025
Thu Aug 21 13:53:44 EDT 2025
Fri Sep 05 10:10:06 EDT 2025
Wed Aug 13 09:30:32 EDT 2025
Thu Apr 03 07:06:29 EDT 2025
Tue Jul 01 04:08:58 EDT 2025
Thu Apr 24 22:50:29 EDT 2025
Fri Feb 21 02:40:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-9c9b2aa2ac9a1ef548b143d42e81d9d7af9328eafbce3e42738a36c9768cb1b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8485-2590
0000-0001-5483-8800
0000-0002-9540-5240
0000-0003-0197-2664
0000-0003-0232-8213
0000-0002-8251-2987
0000-0003-4709-7623
0000-0002-2048-145X
0000-0003-0962-1260
0000-0001-5435-1744
0000-0003-2202-0697
0000-0001-5261-9858
0000-0002-6649-5865
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-16831-3
PMID 32541859
PQID 2413233865
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_4fc5c7e742e748c9ac429d68f65ba3ce
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7295992
proquest_miscellaneous_2413995793
proquest_journals_2413233865
pubmed_primary_32541859
crossref_citationtrail_10_1038_s41467_020_16831_3
crossref_primary_10_1038_s41467_020_16831_3
springer_journals_10_1038_s41467_020_16831_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang (CR11) 2017; 35
Kim (CR60) 2019; 6
Huang (CR33) 2019; 9
Li (CR17) 2019; 188
Knutson (CR67) 1972; 3
Wang, Mahmoudi, Rho, Hahn (CR21) 2019; 64
Jung, Han, Park, Ko (CR1) 2019; 3
Sannicolo (CR39) 2016; 12
Yang (CR24) 2017; 2
Hu (CR47) 2019; 29
Wang (CR63) 2019; 31
Takemoto, Kajiyama, Mizumachi, Takemura, Ono (CR66) 2002; 83
Wang, Zhang, Kan, Zhao (CR55) 2018; 140
Mei (CR29) 2014; 345
Deng (CR23) 2018; 3
Huang, Li, Siffalovic, Cao, Tian (CR48) 2019; 12
Shao (CR42) 2018; 30
Sanchez, Hua, Phung, Steiner, Abate (CR46) 2018; 8
Liang (CR49) 2018; 8
Hu (CR18) 2017; 29
Zhang (CR15) 2016; 10
Ding (CR28) 2019; 3
Kang (CR34) 2019; 7
Tran (CR61) 2019; 65
Yin, Lin, Zhang, Li, Zheng (CR26) 2018; 10
Wang (CR65) 2020; 10
Li (CR25) 2018; 2
Chen, Zhao, Kim, Park (CR51) 2019; 31
Chen (CR9) 2019; 29
Xu (CR8) 2015; 15
Yang (CR14) 2015; 5
Zhu (CR16) 2016; 28
Dai (CR3) 2020; 10
Xu (CR7) 2018; 8
Liu (CR64) 2017; 139
Hu (CR5) 2019; 3
Wang (CR41) 2016; 28
O’keeffe (CR50) 2019; 19
Bi (CR22) 2016; 1
Hwang (CR27) 2015; 27
Liu (CR59) 2019; 29
Yang (CR53) 2019; 365
Bu (CR4) 2018; 9
Kim (CR57) 2019; 29
Wang (CR62) 2019; 363
Liu (CR13) 2019; 11
Ng (CR19) 2018; 30
Tong, Mehregany, Matus (CR69) 1992; 60
Li (CR12) 2019; 31
Yang (CR52) 2019; 141
Huang (CR30) 2019; 29
Xu (CR44) 2019; 31
Xie (CR54) 2019; 7
Sanchez, Hua, Phung, Steiner, Abate (CR20) 2018; 8
Jeon (CR36) 2019; 9
Chiang, Wu (CR45) 2018; 12
Zhang (CR6) 2019; 12
Yao (CR40) 2017; 29
Li, Xu, Cui, Li (CR38) 2018; 8
Luo (CR37) 2016; 4
Yang (CR32) 2018; 9
Jang (CR43) 2019; 9
Li (CR2) 2018; 3
Kim, Won, Woo, Jeong, Moon (CR35) 2014; 24
Wang (CR10) 2017; 2
Dong (CR56) 2019; 9
Beghi (CR68) 2002; 81
Feng (CR31) 2018; 30
Wu (CR58) 2019; 29
S Kang (16831_CR34) 2019; 7
A Kim (16831_CR35) 2014; 24
WX Liu (16831_CR64) 2017; 139
H Li (16831_CR17) 2019; 188
H Hu (16831_CR47) 2019; 29
A Mei (16831_CR29) 2014; 345
H Wang (16831_CR63) 2019; 31
S Sanchez (16831_CR20) 2018; 8
C Shao (16831_CR42) 2018; 30
Z Huang (16831_CR30) 2019; 29
K Huang (16831_CR33) 2019; 9
M Takemoto (16831_CR66) 2002; 83
C Wang (16831_CR10) 2017; 2
G Jang (16831_CR43) 2019; 9
D Bi (16831_CR22) 2016; 1
L Wang (16831_CR62) 2019; 363
G Xu (16831_CR7) 2018; 8
F Huang (16831_CR48) 2019; 12
J Chen (16831_CR51) 2019; 31
X Dai (16831_CR3) 2020; 10
T Sannicolo (16831_CR39) 2016; 12
J Liang (16831_CR49) 2018; 8
X Liu (16831_CR13) 2019; 11
H Zhang (16831_CR15) 2016; 10
Y Li (16831_CR38) 2018; 8
X Hu (16831_CR18) 2017; 29
Y Deng (16831_CR23) 2018; 3
YY Kim (16831_CR60) 2019; 6
A Ng (16831_CR19) 2018; 30
X Wang (16831_CR41) 2016; 28
CH Chiang (16831_CR45) 2018; 12
J Yin (16831_CR26) 2018; 10
Y Wang (16831_CR55) 2018; 140
C Wang (16831_CR11) 2017; 35
J Ding (16831_CR28) 2019; 3
X Xu (16831_CR8) 2015; 15
S Yao (16831_CR40) 2017; 29
Z Yang (16831_CR14) 2015; 5
S Sanchez (16831_CR46) 2018; 8
S Yang (16831_CR53) 2019; 365
Z Zhu (16831_CR16) 2016; 28
Z Xu (16831_CR44) 2019; 31
L Tong (16831_CR69) 1992; 60
T Bu (16831_CR4) 2018; 9
HS Jung (16831_CR1) 2019; 3
D Yang (16831_CR32) 2018; 9
S Yang (16831_CR52) 2019; 141
C Liu (16831_CR59) 2019; 29
GM Knutson (16831_CR67) 1972; 3
C Chen (16831_CR9) 2019; 29
C Zhang (16831_CR6) 2019; 12
JE Kim (16831_CR57) 2019; 29
P O’keeffe (16831_CR50) 2019; 19
Y Wang (16831_CR21) 2019; 64
L Xie (16831_CR54) 2019; 7
Q Dong (16831_CR56) 2019; 9
C Wu (16831_CR58) 2019; 29
M Li (16831_CR12) 2019; 31
VD Tran (16831_CR61) 2019; 65
Y Wang (16831_CR65) 2020; 10
J Li (16831_CR25) 2018; 2
J Feng (16831_CR31) 2018; 30
Z Li (16831_CR2) 2018; 3
I Jeon (16831_CR36) 2019; 9
X Hu (16831_CR5) 2019; 3
M Yang (16831_CR24) 2017; 2
Q Luo (16831_CR37) 2016; 4
MG Beghi (16831_CR68) 2002; 81
K Hwang (16831_CR27) 2015; 27
References_xml – volume: 60
  start-page: 2992
  year: 1992
  end-page: 2994
  ident: CR69
  article-title: Mechanical properties of 3C silicon carbide
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.106786
– volume: 8
  start-page: 1702915
  year: 2018
  ident: CR46
  article-title: Flash infrared annealing for antisolvent-free highly efficient perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702915
– volume: 3
  start-page: 2205
  year: 2019
  end-page: 2218
  ident: CR5
  article-title: A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.011
– volume: 65
  start-page: 104018
  year: 2019
  ident: CR61
  article-title: Transfer-free graphene electrodes for super-flexible and semi-transparent perovskite solar cells fabricated under ambient air
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104018
– volume: 2
  start-page: 1
  year: 2018
  end-page: 18
  ident: CR25
  article-title: Phase transition control for high-performance blade-coated perovskite solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2017.10.014
– volume: 30
  start-page: 1801418
  year: 2018
  ident: CR31
  article-title: Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801418
– volume: 31
  start-page: 1900390
  year: 2019
  ident: CR44
  article-title: A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900390
– volume: 9
  start-page: 1900834
  year: 2019
  ident: CR56
  article-title: Improved SnO electron transport layers solution-deposited at near room temperature for rigid or flexible perovskite solar cells with high efficiencies
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900834
– volume: 3
  start-page: 1
  year: 2019
  end-page: 15
  ident: CR28
  article-title: Fully air-bladed high-efficiency perovskite photovoltaics
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.022
– volume: 12
  start-page: 6052
  year: 2016
  end-page: 6075
  ident: CR39
  article-title: Metallic nanowire‐based transparent electrodes for next generation flexible devices: a review
  publication-title: Small
  doi: 10.1002/smll.201602581
– volume: 30
  start-page: 1704876
  year: 2018
  ident: CR42
  article-title: Citrate improves collagen mineralization via interface wetting: a physicochemical understanding of biomineralization control
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704876
– volume: 141
  start-page: 5781
  year: 2019
  end-page: 5787
  ident: CR52
  article-title: Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13091
– volume: 7
  start-page: 1107
  year: 2019
  end-page: 1114
  ident: CR34
  article-title: Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10585E
– volume: 29
  start-page: 1900092
  year: 2019
  ident: CR47
  article-title: Room-temperature meniscus coating of >20% perovskite solar cells: a film formation mechanism investigation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900092
– volume: 29
  start-page: 1902629
  year: 2019
  ident: CR30
  article-title: Water‐resistant and flexible perovskite solar cells via a glued interfacial layer
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902629
– volume: 9
  start-page: 1901204
  year: 2019
  ident: CR36
  article-title: High‐performance solution‐processed double‐walled carbon nanotube transparent electrode for perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901204
– volume: 188
  start-page: 158
  year: 2019
  end-page: 163
  ident: CR17
  article-title: Ultra flexible and biodegradable perovskite solar cells utilizing ultrathin cellophane paper substrates and TiO /Ag/TiO transparent electrodes
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.05.061
– volume: 10
  start-page: 1903108
  year: 2020
  ident: CR3
  article-title: Scalable fabrication of efficient perovskite solar modules on flexible glass substrates
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903108
– volume: 27
  start-page: 1241
  year: 2015
  end-page: 1247
  ident: CR27
  article-title: Toward large scale roll-to-roll production of fully printed perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404598
– volume: 29
  start-page: 1809194
  year: 2019
  ident: CR57
  article-title: Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive-assisted hot slot die deposition
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201809194
– volume: 64
  start-page: 103964
  year: 2019
  ident: CR21
  article-title: Fully-ambient-air and antisolvent-free-processed stable perovskite solar cells with perovskite-based composites and interface engineering
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103964
– volume: 83
  start-page: 719
  year: 2002
  end-page: 725
  ident: CR66
  article-title: Miscibility and adhesive properties of ethylene vinyl acetate copolymer (EVA)-based hot-melt adhesives
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.2266
– volume: 19
  start-page: 684
  year: 2019
  end-page: 691
  ident: CR50
  article-title: Graphene-induced improvements of perovskite solar cell stability: effects on hot-carriers
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03685
– volume: 8
  start-page: 1702915
  year: 2018
  ident: CR20
  article-title: Flash infrared annealing for antisolvent‐free highly efficient perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702915
– volume: 15
  start-page: 6514
  year: 2015
  end-page: 6520
  ident: CR8
  article-title: Working mechanism for flexible perovskite solar cells with simplified architecture
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02126
– volume: 12
  start-page: 518
  year: 2019
  end-page: 549
  ident: CR48
  article-title: From scalable solution fabrication of perovskite films towards commercialization of solar cells
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C8EE03025A
– volume: 8
  start-page: 1701791
  year: 2018
  ident: CR38
  article-title: Flexible and semitransparent organic solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701791
– volume: 363
  start-page: 265
  year: 2019
  end-page: 270
  ident: CR62
  article-title: A Eu -Eu ion redox shuttle imparts operational durability to Pb-I perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.aau5701
– volume: 140
  start-page: 12345
  year: 2018
  end-page: 12348
  ident: CR55
  article-title: Bifunctional stabilization of all-inorganic α‑CsPbI3 perovskite for 17% efficiency photovoltaics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07927
– volume: 29
  start-page: 1900557
  year: 2019
  ident: CR9
  article-title: Solvent-assisted low-temperature crystallization of SnO electron-transfer layer for high-efficiency planar perovskite solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900557
– volume: 8
  start-page: 1800504
  year: 2018
  ident: CR49
  article-title: Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by mn substitution for high‐stability all-inorganic perovskite solar cells with carbon electrodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800504
– volume: 30
  start-page: 1870329
  year: 2018
  ident: CR19
  article-title: Perovskite solar cells: a cryogenic process for antisolvent‐free high‐performance perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201870329
– volume: 345
  start-page: 295
  year: 2014
  end-page: 298
  ident: CR29
  article-title: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
  publication-title: Science
  doi: 10.1126/science.1254763
– volume: 1
  start-page: 16142
  year: 2016
  ident: CR22
  article-title: Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.142
– volume: 29
  start-page: 1902974
  year: 2019
  ident: CR58
  article-title: FAPbI flexible solar cells with a record efficiency of 19.38% fabricated in air via ligand and additive synergetic process
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902974
– volume: 24
  start-page: 2462
  year: 2014
  end-page: 2471
  ident: CR35
  article-title: All‐solution-processed indium‐free transparent composite electrodes based on Ag nanowire and metal oxide for thin‐film solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303518
– volume: 31
  start-page: 1904408
  year: 2019
  ident: CR63
  article-title: Interfacial residual stress relaxation in perovskite solar cells with improved stability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904408
– volume: 8
  start-page: 1703054
  year: 2018
  ident: CR7
  article-title: New strategy for two-step sequential deposition: incorporation of hydrophilic fullerene in second precursor for high-performance p-i-n planar perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703054
– volume: 10
  start-page: 1903609
  year: 2020
  ident: CR65
  article-title: Sequential blade-coated acceptor and donor enables simultaneous enhancement of efficiency, stability, and mechanical properties for organic solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903609
– volume: 29
  start-page: 1605903
  year: 2017
  ident: CR40
  article-title: Biomineralization: from material tactics to biological strategy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605903
– volume: 9
  start-page: 1901419
  year: 2019
  ident: CR33
  article-title: High-performance flexible perovskite solar cells via precise control of electron transport layer
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.201901419
– volume: 12
  start-page: 10355
  year: 2018
  end-page: 10364
  ident: CR45
  article-title: A method for the preparation of highly oriented MAPbI3 crystallites for high efficiency perovskite solar cells to achieve an 86% fill factor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05731
– volume: 3
  start-page: 661
  year: 1972
  ident: CR67
  article-title: Ethylene-vinyl acetate copolymer adhesive composition and method of preparation
  publication-title: U. S. Pat.
– volume: 9
  year: 2018
  ident: CR4
  article-title: Universal passivation strategy to slot-die printed SnO for hysteresis-free efficient flexible perovskite solar module
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07099-9
– volume: 29
  start-page: 1703236
  year: 2017
  ident: CR18
  article-title: Wearable large-scale perovskite solar-power source via nanocellular Scaffold
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703236
– volume: 139
  start-page: 8678
  year: 2017
  end-page: 8684
  ident: CR64
  article-title: Oxime-based and catalyst-free dynamic covalent polyurethanes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03967
– volume: 3
  start-page: 1850
  year: 2019
  end-page: 1880
  ident: CR1
  article-title: Flexible perovskite solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.023
– volume: 35
  start-page: 223
  year: 2017
  end-page: 232
  ident: CR11
  article-title: Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.048
– volume: 5
  start-page: 1500328
  year: 2015
  ident: CR14
  article-title: High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500328
– volume: 6
  start-page: 1802094
  year: 2019
  ident: CR60
  article-title: Gravure-printed flexible perovskite solar cells: toward roll-to-roll manufacturing
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802094
– volume: 12
  start-page: 3585
  year: 2019
  end-page: 3594
  ident: CR6
  article-title: Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C9EE02391G
– volume: 10
  start-page: 1503
  year: 2016
  end-page: 1511
  ident: CR15
  article-title: Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07043
– volume: 2
  start-page: 17038
  year: 2017
  ident: CR24
  article-title: Perovskite ink with wide processing window for scalable high-efficiency solar cells
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.38
– volume: 9
  start-page: 1901719
  year: 2019
  ident: CR43
  article-title: Cold antisolvent bathing derived highly efficient large-area perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901719
– volume: 31
  start-page: 1902902
  year: 2019
  ident: CR51
  article-title: Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902902
– volume: 3
  start-page: 560
  year: 2018
  end-page: 566
  ident: CR23
  article-title: Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0153-9
– volume: 9
  year: 2018
  ident: CR32
  article-title: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05760-x
– volume: 11
  start-page: 427
  year: 2019
  ident: CR13
  article-title: Flexible perovskite solar cells via surface-confined silver nanoparticles on transparent polyimide substrates
  publication-title: Polymers
  doi: 10.3390/polym11030427
– volume: 81
  start-page: 3804
  year: 2002
  end-page: 3806
  ident: CR68
  article-title: Bonding and mechanical properties of ultrathin diamond-like carbon films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1510179
– volume: 28
  start-page: 694
  year: 2016
  end-page: 700
  ident: CR41
  article-title: Vaccine engineering with dual‐functional mineral shell: a promising strategy to overcome preexisting immunity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503740
– volume: 28
  start-page: 10786
  year: 2016
  end-page: 10793
  ident: CR16
  article-title: A low-temperature, solution-processable organic electron transporting layer based on planar coronene for high performance conventional perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601745
– volume: 4
  start-page: 5569
  year: 2016
  end-page: 5577
  ident: CR37
  article-title: Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01715K
– volume: 3
  start-page: 18017
  year: 2018
  ident: CR2
  article-title: Scalable fabrication of perovskite solar cells
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.17
– volume: 10
  start-page: 23103
  year: 2018
  end-page: 23111
  ident: CR26
  article-title: Growth dynamic controllable rapid crystallization boosts the perovskite photovoltaics’ robust preparation: from blade coating to painting
  publication-title: ACS Appl. Mater. Inter
  doi: 10.1021/acsami.8b05172
– volume: 365
  start-page: 473
  year: 2019
  end-page: 478
  ident: CR53
  article-title: Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts
  publication-title: Science
  doi: 10.1126/science.aax3294
– volume: 7
  start-page: 18626
  year: 2019
  end-page: 18633
  ident: CR54
  article-title: Low-cost coenzyme Q10 as efficient electron transport layer for inverted perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06317J
– volume: 29
  start-page: 1807604
  year: 2019
  ident: CR59
  article-title: Hydrothermally treated SnO as the electron transport layer in high-efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807604
– volume: 2
  start-page: 2118
  year: 2017
  end-page: 2124
  ident: CR10
  article-title: Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00644
– volume: 31
  start-page: 1901519
  year: 2019
  ident: CR12
  article-title: Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901519
– volume: 29
  start-page: 1809194
  year: 2019
  ident: 16831_CR57
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201809194
– volume: 29
  start-page: 1902629
  year: 2019
  ident: 16831_CR30
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902629
– volume: 28
  start-page: 694
  year: 2016
  ident: 16831_CR41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503740
– volume: 9
  start-page: 1901204
  year: 2019
  ident: 16831_CR36
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901204
– volume: 363
  start-page: 265
  year: 2019
  ident: 16831_CR62
  publication-title: Science
  doi: 10.1126/science.aau5701
– volume: 12
  start-page: 10355
  year: 2018
  ident: 16831_CR45
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05731
– volume: 10
  start-page: 1503
  year: 2016
  ident: 16831_CR15
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07043
– volume: 7
  start-page: 18626
  year: 2019
  ident: 16831_CR54
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06317J
– volume: 64
  start-page: 103964
  year: 2019
  ident: 16831_CR21
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103964
– volume: 4
  start-page: 5569
  year: 2016
  ident: 16831_CR37
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01715K
– volume: 139
  start-page: 8678
  year: 2017
  ident: 16831_CR64
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03967
– volume: 10
  start-page: 1903609
  year: 2020
  ident: 16831_CR65
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903609
– volume: 365
  start-page: 473
  year: 2019
  ident: 16831_CR53
  publication-title: Science
  doi: 10.1126/science.aax3294
– volume: 6
  start-page: 1802094
  year: 2019
  ident: 16831_CR60
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802094
– volume: 3
  start-page: 560
  year: 2018
  ident: 16831_CR23
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0153-9
– volume: 30
  start-page: 1801418
  year: 2018
  ident: 16831_CR31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801418
– volume: 11
  start-page: 427
  year: 2019
  ident: 16831_CR13
  publication-title: Polymers
  doi: 10.3390/polym11030427
– volume: 3
  start-page: 1
  year: 2019
  ident: 16831_CR28
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.022
– volume: 60
  start-page: 2992
  year: 1992
  ident: 16831_CR69
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.106786
– volume: 8
  start-page: 1702915
  year: 2018
  ident: 16831_CR46
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702915
– volume: 29
  start-page: 1900557
  year: 2019
  ident: 16831_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900557
– volume: 19
  start-page: 684
  year: 2019
  ident: 16831_CR50
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03685
– volume: 140
  start-page: 12345
  year: 2018
  ident: 16831_CR55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07927
– volume: 3
  start-page: 18017
  year: 2018
  ident: 16831_CR2
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.17
– volume: 3
  start-page: 1850
  year: 2019
  ident: 16831_CR1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.023
– volume: 9
  start-page: 1901719
  year: 2019
  ident: 16831_CR43
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901719
– volume: 2
  start-page: 1
  year: 2018
  ident: 16831_CR25
  publication-title: Joule
  doi: 10.1016/j.joule.2017.10.014
– volume: 2
  start-page: 2118
  year: 2017
  ident: 16831_CR10
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00644
– volume: 8
  start-page: 1800504
  year: 2018
  ident: 16831_CR49
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800504
– volume: 10
  start-page: 23103
  year: 2018
  ident: 16831_CR26
  publication-title: ACS Appl. Mater. Inter
  doi: 10.1021/acsami.8b05172
– volume: 5
  start-page: 1500328
  year: 2015
  ident: 16831_CR14
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500328
– volume: 27
  start-page: 1241
  year: 2015
  ident: 16831_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404598
– volume: 8
  start-page: 1702915
  year: 2018
  ident: 16831_CR20
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702915
– volume: 81
  start-page: 3804
  year: 2002
  ident: 16831_CR68
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1510179
– volume: 12
  start-page: 518
  year: 2019
  ident: 16831_CR48
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C8EE03025A
– volume: 29
  start-page: 1902974
  year: 2019
  ident: 16831_CR58
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902974
– volume: 29
  start-page: 1900092
  year: 2019
  ident: 16831_CR47
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900092
– volume: 29
  start-page: 1605903
  year: 2017
  ident: 16831_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605903
– volume: 35
  start-page: 223
  year: 2017
  ident: 16831_CR11
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.048
– volume: 15
  start-page: 6514
  year: 2015
  ident: 16831_CR8
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02126
– volume: 30
  start-page: 1704876
  year: 2018
  ident: 16831_CR42
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704876
– volume: 31
  start-page: 1900390
  year: 2019
  ident: 16831_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900390
– volume: 65
  start-page: 104018
  year: 2019
  ident: 16831_CR61
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104018
– volume: 1
  start-page: 16142
  year: 2016
  ident: 16831_CR22
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.142
– volume: 9
  year: 2018
  ident: 16831_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05760-x
– volume: 30
  start-page: 1870329
  year: 2018
  ident: 16831_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201870329
– volume: 9
  year: 2018
  ident: 16831_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07099-9
– volume: 345
  start-page: 295
  year: 2014
  ident: 16831_CR29
  publication-title: Science
  doi: 10.1126/science.1254763
– volume: 3
  start-page: 661
  year: 1972
  ident: 16831_CR67
  publication-title: U. S. Pat.
– volume: 31
  start-page: 1902902
  year: 2019
  ident: 16831_CR51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902902
– volume: 7
  start-page: 1107
  year: 2019
  ident: 16831_CR34
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10585E
– volume: 10
  start-page: 1903108
  year: 2020
  ident: 16831_CR3
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903108
– volume: 29
  start-page: 1703236
  year: 2017
  ident: 16831_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703236
– volume: 83
  start-page: 719
  year: 2002
  ident: 16831_CR66
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.2266
– volume: 141
  start-page: 5781
  year: 2019
  ident: 16831_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13091
– volume: 12
  start-page: 6052
  year: 2016
  ident: 16831_CR39
  publication-title: Small
  doi: 10.1002/smll.201602581
– volume: 29
  start-page: 1807604
  year: 2019
  ident: 16831_CR59
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807604
– volume: 9
  start-page: 1900834
  year: 2019
  ident: 16831_CR56
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900834
– volume: 31
  start-page: 1904408
  year: 2019
  ident: 16831_CR63
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904408
– volume: 31
  start-page: 1901519
  year: 2019
  ident: 16831_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901519
– volume: 3
  start-page: 2205
  year: 2019
  ident: 16831_CR5
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.011
– volume: 188
  start-page: 158
  year: 2019
  ident: 16831_CR17
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.05.061
– volume: 9
  start-page: 1901419
  year: 2019
  ident: 16831_CR33
  publication-title: Adv. Energy Mater
  doi: 10.1002/aenm.201901419
– volume: 8
  start-page: 1703054
  year: 2018
  ident: 16831_CR7
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703054
– volume: 2
  start-page: 17038
  year: 2017
  ident: 16831_CR24
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.38
– volume: 24
  start-page: 2462
  year: 2014
  ident: 16831_CR35
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303518
– volume: 8
  start-page: 1701791
  year: 2018
  ident: 16831_CR38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701791
– volume: 28
  start-page: 10786
  year: 2016
  ident: 16831_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601745
– volume: 12
  start-page: 3585
  year: 2019
  ident: 16831_CR6
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C9EE02391G
SSID ssj0000391844
Score 2.6695652
Snippet The translation of unparalleled efficiency from the lab-scale devices to practical-scale flexible modules affords a huge performance loss for flexible...
Flexible perovskite solar cells suffer huge efficiency loss upon area scale-up due to brittleness of ITO and poor perovskite film quality. Here Meng et al....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3016
SubjectTerms 140/146
147/135
147/3
639/301/1005/1007
639/301/299/946
Biomimetics
Bionics
Brittleness
Crystal growth
Crystal structure
Crystallization
Efficiency
Energy conversion efficiency
Flexible components
Flexible structures
Humanities and Social Sciences
Indium tin oxides
Modules
multidisciplinary
Perovskites
Photovoltaic cells
Polymers
Science
Science (multidisciplinary)
Solar cells
Spine
Substrates
Tin
Vertebrae
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEB1EELyI31ZXieBNi9smbZOjiiKCnhS8hSRNcWGpYncF_70zaXd1_bx4KGy3KQwvk-S9TjIDcICMQOEqJ2JpvIlFhmPOWBSuqpQG16NM-YqE4vVNfnknru6z-w-lvmhPWJseuAXuWFQuc4VHBYeXdMo4nEHLXFZ5Zg13nmbfvup_EFNhDuYKpYvoTsn0uTxuRJgTSC0lueRJzGdWopCw_zuW-XWz5KeIaViILpZhqWOQ7KS1fAXmfL0KC21Nydc1uMFf8aCmALovGVVbptDwkJVhqwZDjsoa7Bc6McVMXbKKMmLSDWUMf2noYy5rSO8y-qbfrMPdxfnt2WXcFU2IHWqRUaycsqkxqUGoEl-hILFIiUqED5mpKgtTIWOT3lTWee4FncwxPHfYX9LZxEq-AfP1Y-23gPUNvpSnRWLTUlhZKC-Mz7hHklY45D0RJBMAtesyilNhi6EOkW0udQu6RtB1AF3zCA6n7zy1-TR-bX1K_TJtSbmwwx_oIbrzEP2Xh0TQm_Sq7gZooymcmHIqeBrB_vQxDi3C1tT-cdy2URTGRDs2WyeYWsJRWCPVUREUM-4xY-rsk3rwENJ3o5zJlEojOJo40rtZP0Ox_R9Q7MBiSiOAai9lPZgfPY_9LpKqkd0L4-cNWHsdTw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SDYVeSt91khYVemtN1pZkS4cSkpIQCl1KaSA3oZebQPCm8aaQf58Z-RG2jxwM67UM8mhG830aaQbgPSICjV5O5MpGmwuJNmcdElcdlEV_JHVsiCh-XVTHJ-LLqTzdgMV4Foa2VY5zYpqow9LTGvkuxX9KThUq9y5_5VQ1iqKrYwkNO5RWCJ9SirEHsIlTspzPYPPgcPHt-7TqQvnQlRDD6Zk5V7udSHMFsaiiUrzI-ZqHSon8_4U-_95E-UckNTmooyfweECWbL9XhaewEdtn8LCvNXnzHBb4Kz9vKbAeA6MqzBQyvmAhbeFgiF1Zh-NFJ6mYbQNrKFMm3VAm8d8dLfKyjngwo7X-7gWcHB3--HycD8UUco8cZZVrr11pbWm9tkVskKg4hEpBlBERqw61bRDJqWgb5yOPgk7sWF55HEflXeEUfwmzdtnG18DmFl-qyrpwZRBO1ToKGyWPCN5qj3gog2IUoPFDpnEqeHFhUsSbK9ML3aDQTRK64Rl8mN657PNs3Nv6gMZlakk5stMfy6ufZjA5IxovfR2R--Ol8LM9-t5QqaaSznIfM9gZR9UMhtuZOzXL4N30GE2OZGvbuLzu22gKb2I_XvVKMPWEI-FGCKQzqNfUY62r60_a87OU1htpjtS6zODjqEh33fq_KLbu_4pteFSSblO1JbkDs9XVdXyDMGrl3g62cQsDkRpS
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qRfBFrJ-rrUTwTRe7-dhNHvWwFME-WehbSLKzWih70r0W-t87k_2Q0yr4cHB3m8DcZObm98skMwBvCBE4inK6tAFDqQ35XIhEXF1rA8Uj47BjovjlpD4-1Z_PzNkOyPkuTD60n0ta5r_p-XTY-0Fnl2ayU9VWVaW6A3dtowxb9apeLfsqXPHcaj3djzlU9papWzEol-q_DV_-eUzyt1xpDkFHD-HBhB3Fh1HaPdjB_hHcG7tJ3jyGE3pXnvecOsdWcJ9lTgpfiDYf0hCETsVAK8J3pUToW9FxLUz-wLXCrwfexhUDM13Bu_nDEzg9-vR1dVxO7RLKRCxkU7rkogxBhuRChR1RkUhgqNUSCZO6tgkdYTWLoYsJFWq-kxNUnWilbIpVtOop7PbrHp-DOAw0qZZNFWWro20c6oBGIcGzJhHiKaCaFejTVEucW1pc-JzTVtaPSvekdJ-V7lUBb5c5P8ZKGv8c_ZHXZRnJVbDzF-vLb36yCq-7ZFKDxO7pZelnJ4qubW272sSgEhawP6-qn1xz8JxIlIpbnRbwenlMTsW6DT2ur8YxjhOYJMez0QgWSRRRagI5roBmyzy2RN1-0p9_z4W7icgY52QB72ZD-iXW31Xx4v-Gv4T7km2d-yuZfdjdXF7hAQGnTXyVPeUnD7sRjw
  priority: 102
  providerName: Springer Nature
Title Bio-inspired vertebral design for scalable and flexible perovskite solar cells
URI https://link.springer.com/article/10.1038/s41467-020-16831-3
https://www.ncbi.nlm.nih.gov/pubmed/32541859
https://www.proquest.com/docview/2413233865
https://www.proquest.com/docview/2413995793
https://pubmed.ncbi.nlm.nih.gov/PMC7295992
https://doaj.org/article/4fc5c7e742e748c9ac429d68f65ba3ce
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8THwvMCoj8QYBEjuJ_TBNXbUyVaJCQKW-WbbjwKQqhaZD7L_nzkmKCgWJh34ltuSe73K_n8--A3iOiEChlxOxNN7EIkObMxaJqyqlQX-UKV8RUXw3zS9nYjLP5nvQlzvqBNjspHZUT2q2Wrz68e3mDA3-tD0yLl83Ipg7EaEklzyJ-T4chngRbeXr4H54MnOFhEZ0Z2d2d93yTyGN_y7s-ecWyt_iqME9je_AUYcr2bBVhLuw5-t7cKutNHlzH6b4Lb6qKazuS0Y1mClgvGBl2MDBELmyBmeLzlExU5esojyZ9IPyiH9vaImXNSQqRiv9zQOYjS8-jS7jrpRC7JChrGPllE2NSY1TJvEV0hSLQKkUqUe8qsrCVIjjpDeVdZ57Qed1DM8dzqJ0NrGSP4SDeln7Y2BvDHbK0yKxaSmsLJQXxmfcI3QrHKKhCJJegNp1ecap3MVCh3g3l7oVukah6yB0zSN4senztc2y8c_W5zQvm5aUITtcWK4-687gtKhc5gqPzB9fEv-2Q89b5rLKM2u48xGc9LOqe63TpDQppzKoETzb3EaDI9ma2i-v2zaKgps4jketEmxGwpFuIwBSERRb6rE11O079dWXkNQbSU6mVBrBy16Rfg3r76J4_H_Nn8DtlHSdai9lJ3CwXl37pwiq1nYA-8W8wHc5fjuAw-Fw8nGCn-cX0_cf8OooHw3CcsUgWNRPx9wh7Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4ja2E5iHypEodWWtiuEWqk3YzsOVKqypdmC-uf4bcw4yVbLo7fedjfOyh7P2N94PPMBvEREoHGXk6mywaYyR5uzDh1XXSmL-1GuQ02O4t6kGB_Ij4f54RL8GnJh6FrlsCbGhbqaejojX6X4DxfEUPn25HtKrFEUXR0oNGxPrVCtxxJjfWLHTjj_iS5cu779Aef7Fedbm_vvx2nPMpB6BO-zVHvtuLXcem2zUCOCd4ghKskDQjldlbZGiKOCrZ0PIkhKZbGi8DhA5V3mlMD_vQbLkg5QRrC8sTn59Hl-ykP115WUfbbOmlCrrYxrE3ltWaFEloqFHTESB_wL7f59afOPyG3cELduw60eybJ3nerdgaXQ3IXrHbfl-T2Y4Kf0qKFAfqgYsT5TiPqYVfHKCEOszFrUD8rcYrapWE2VOekLVS7_0dKhMmvJ72YUW2jvw8GViPUBjJppEx4BW7P4UsHLzPFKOlXqIG3IRUCwWHrEXwlkgwCN7yubE8HGsYkRdqFMJ3SDQjdR6EYk8Hr-zklX1-PS1hs0L_OWVJM7_jA9_Wp6Ezey9rkvQ4lDLKXCYXvc66tC1UXurPAhgZVhVk2_ULTmQq0TeDF_jCZOsrVNmJ51bTSFU7EfDzslmPdEoIOPkEsnUC6ox0JXF580R99iGXF0q3KteQJvBkW66Nb_RfH48lE8hxvj_b1ds7s92XkCNznpOTE95Sswmp2ehacI4WbuWW8nDL5ctWn-BvpWWJc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJThBtYzuxfUAIKKuWwooDlfZmHMeBSlW2NFtQ_xq_jhnnUS2P3nrb3Tgrezzj-cZjzwfwFBGBQS8nU-2CS2WONudKDFxNpR36o9yEmgLFj7NiZ1--n-fzNfg13IWhY5XDmhgX6mrhaY98QvkfLoihclL3xyI-bU9fHX1PiUGKMq0DnUanInvh9CeGb-3L3W2c62ecT999fruT9gwDqUfgvkyNNyV3jjtvXBZqRO8l4odK8oAwzlTK1QhvdHB16YMIkq6xOFF4HJz2ZVZqgf97CS4rISXRRqi5Gvd3qPK6lrK_p7Ml9KSVcVWieC0rtMhSseILI2XAv3Du38c1_8jZRlc4vQHXewzLXndKdxPWQnMLrnSslqe3YYaf0oOGUvihYsT3TMnpQ1bFwyIMUTJrUTPozhZzTcVqqslJX6hm-Y-WtpNZSxE3o6xCewf2L0Sod2G9WTThHrAthy8VXGUlr2SplQnShVwEhInKI_JKIBsEaH1f05yoNQ5tzK0LbTuhWxS6jUK3IoHn4ztHXUWPc1u_oXkZW1I17vjD4vir7Y3bytrnXgWFQ1RS47A9evmq0HWRl074kMDmMKu2XyJae6bQCTwZH6Nxk2xdExYnXRtDiVTsx0anBGNPBIb2CLZMAmpFPVa6uvqkOfgWC4hjQJUbwxN4MSjSWbf-L4r754_iMVxFg7Qfdmd7D-AaJzUniqd8E9aXxyfhIWK3ZfkoGgmDLxdtlb8BlKFWMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-inspired+vertebral+design+for+scalable+and+flexible+perovskite+solar+cells&rft.jtitle=Nature+communications&rft.au=Meng%2C+Xiangchuan&rft.au=Cai%2C+Zheren&rft.au=Zhang%2C+Yanyan&rft.au=Hu%2C+Xiaotian&rft.date=2020-06-15&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-16831-3&rft.externalDocID=10_1038_s41467_020_16831_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon