Sensing leg movement enhances wearable monitoring of energy expenditure

Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 4312 - 11
Main Authors Slade, Patrick, Kochenderfer, Mykel J., Delp, Scott L., Collins, Steven H.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.07.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-021-24173-x

Cover

Abstract Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring. Current methods to estimate energy expenditure are either infeasible for everyday use or associated with significant errors. Here the authors present a Wearable System using inertial measurement units worn on the shank and thigh that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities.
AbstractList Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring.Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring.
Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring.
Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring.Current methods to estimate energy expenditure are either infeasible for everyday use or associated with significant errors. Here the authors present a Wearable System using inertial measurement units worn on the shank and thigh that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities.
Current methods to estimate energy expenditure are either infeasible for everyday use or associated with significant errors. Here the authors present a Wearable System using inertial measurement units worn on the shank and thigh that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities.
Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring. Current methods to estimate energy expenditure are either infeasible for everyday use or associated with significant errors. Here the authors present a Wearable System using inertial measurement units worn on the shank and thigh that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities.
ArticleNumber 4312
Author Delp, Scott L.
Slade, Patrick
Kochenderfer, Mykel J.
Collins, Steven H.
Author_xml – sequence: 1
  givenname: Patrick
  orcidid: 0000-0001-9302-3911
  surname: Slade
  fullname: Slade, Patrick
  email: patslade@stanford.edu
  organization: Department of Mechanical Engineering, Stanford University
– sequence: 2
  givenname: Mykel J.
  orcidid: 0000-0002-7238-9663
  surname: Kochenderfer
  fullname: Kochenderfer, Mykel J.
  organization: Department of Aeronautics and Astronautics, Stanford University
– sequence: 3
  givenname: Scott L.
  surname: Delp
  fullname: Delp, Scott L.
  organization: Department of Mechanical Engineering, Stanford University, Department of Bioengineering, Stanford University
– sequence: 4
  givenname: Steven H.
  surname: Collins
  fullname: Collins, Steven H.
  organization: Department of Mechanical Engineering, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34257310$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhS1UREvpC7BAkdiwCfjfyQYJVVAqVWIBrC3bmaS-SuyLnbS3b49v00LbRb2x5fnO0bFnXqODEAMg9JbgjwSz5lPmhEtVY0pqyoli9e4FOqKYk5ooyg4enA_RSc4bXBZrScP5K3TIOBWKEXyEzn5CyD4M1QhDNcUrmCDMFYRLExzk6hpMMnaEUgp-jmlPxr7UIQ03Fey2EDo_LwneoJe9GTOc3O3H6Pe3r79Ov9cXP87OT79c1E5iOdctBSmhx7ZnlFpFJOG4c6Sz2FjOLDedMx0xjoq27zgTkmNnoJWCNkrJhrJjdL76dtFs9Db5yaQbHY3XtxcxDdqk2bsRdCeoEb21LWacOwxN74y1nINQrgHoi9fn1Wu72Ak6V16ezPjI9HEl-Es9xCvdUKUaRorBhzuDFP8skGc9-exgHE2AuGRNhSBCSSVkQd8_QTdxSaF81Z7CLS-kKNS7h4n-RbnvVwGaFXAp5pyg187PZvZxH9CPmmC9nw69Tocu06Fvp0PvipQ-kd67Pytiqyhv972H9D_2M6q_AxXN4Q
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3205629
crossref_primary_10_1109_TMRB_2023_3328649
crossref_primary_10_1002_EXP_20220167
crossref_primary_10_1016_j_nanoen_2023_108792
crossref_primary_10_1142_S1469026824500287
crossref_primary_10_3390_s24030871
crossref_primary_10_1021_acs_nanolett_4c00458
crossref_primary_10_1038_s41586_022_05191_1
crossref_primary_10_1016_j_gaitpost_2023_06_017
crossref_primary_10_1109_LRA_2025_3526558
crossref_primary_10_1038_s41598_024_84253_y
crossref_primary_10_1186_s12984_024_01424_8
crossref_primary_10_1371_journal_pcbi_1012411
crossref_primary_10_1186_s12966_024_01646_y
crossref_primary_10_7736_JKSPE_023_126
crossref_primary_10_1016_j_biosx_2024_100500
crossref_primary_10_1002_admt_202200306
crossref_primary_10_1016_j_isci_2024_109093
crossref_primary_10_34133_research_0214
crossref_primary_10_1016_j_mattod_2024_12_002
crossref_primary_10_1002_advs_202303114
crossref_primary_10_1002_advs_202303234
crossref_primary_10_1038_s41586_024_07697_2
crossref_primary_10_1109_TIM_2022_3227998
crossref_primary_10_1002_aisy_202200371
crossref_primary_10_1016_j_device_2024_100366
crossref_primary_10_1242_jeb_248125
crossref_primary_10_1111_sms_14490
crossref_primary_10_1038_s41598_022_21007_8
crossref_primary_10_1242_jeb_248022
crossref_primary_10_3390_s22072552
crossref_primary_10_1016_j_nanoen_2023_108480
crossref_primary_10_1145_3631422
crossref_primary_10_1088_1361_6579_acf993
crossref_primary_10_1016_j_medengphy_2022_103899
crossref_primary_10_1109_TBME_2021_3103201
crossref_primary_10_1080_10667857_2023_2254613
crossref_primary_10_3390_dj11010024
crossref_primary_10_3390_asi5040083
crossref_primary_10_3390_s24113305
crossref_primary_10_1016_j_tem_2024_08_012
crossref_primary_10_3390_s24020414
crossref_primary_10_1088_1361_665X_aca6bc
crossref_primary_10_1016_j_socec_2023_102155
Cites_doi 10.1007/978-981-10-9035-6_80
10.3390/s18093092
10.1113/jphysiol.2008.166397
10.1186/1743-0003-11-146
10.1371/journal.pone.0222037
10.1152/jappl.1973.34.5.559
10.1016/j.ypmed.2004.01.032
10.1186/1479-5868-5-56
10.1098/rsbl.2015.0486
10.1089/152091503322641088
10.3945/ajcn.112.036350
10.1682/JRRD.2007.11.0197
10.1109/TBME.2016.2586891
10.1115/1.4029304
10.1093/ajcn/51.2.241
10.1097/00005768-200009001-00003
10.1016/j.ypmed.2005.07.006
10.3390/jpm7020003
10.1080/1025584031000091678
10.1007/s00421-006-0307-5
10.1152/japplphysiol.00445.2014
10.1055/s-2000-8857
10.1152/japplphysiol.00703.2003
10.1152/japplphysiol.00714.2018
10.1038/oby.2007.281
10.1145/57167.57203
10.1109/TBME.2007.901024
10.1249/MSS.0000000000002041
10.1016/j.gaitpost.2005.12.017
10.1097/00005768-200009001-00002
10.5281/zenodo.4891704
10.1242/jeb.205.23.3717
10.1079/BJN19890107
10.1177/0115426504019005447
10.1063/1.3255465
10.1109/TMSCS.2017.2675888
10.1123/jmpb.2018-0037
10.1007/s11771-013-1752-z
10.1186/s12984-019-0535-7
10.1016/j.jsams.2011.04.003
10.1371/journal.pone.0163417
10.1111/j.1532-5415.2011.03655.x
10.3389/fphys.2017.00922
10.1016/j.ypmed.2007.07.017
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-24173-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_d52a5fbb90344c0e8fcabb44e57c8eef
PMC8277831
34257310
10_1038_s41467_021_24173_x
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: DGE-1656518
  funderid: https://doi.org/10.13039/100000001
– fundername: NICHD NIH HHS
  grantid: P2C HD065690
– fundername: NICHD NIH HHS
  grantid: R24 HD065690
– fundername: NIBIB NIH HHS
  grantid: U54 EB020405
– fundername: NIBIB NIH HHS
  grantid: P41 EB027060
– fundername: ;
  grantid: DGE-1656518
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-92e66ef0bf322b716140dc1db0ab43b4adcad1ac259fd435640cae96528776823
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:19:37 EDT 2025
Thu Aug 21 14:12:53 EDT 2025
Fri Sep 05 12:32:12 EDT 2025
Wed Aug 13 07:36:53 EDT 2025
Sun Aug 17 02:24:11 EDT 2025
Tue Jul 01 04:17:31 EDT 2025
Thu Apr 24 22:58:05 EDT 2025
Fri Feb 21 02:39:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-92e66ef0bf322b716140dc1db0ab43b4adcad1ac259fd435640cae96528776823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7238-9663
0000-0001-9302-3911
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-24173-x
PMID 34257310
PQID 2550945155
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_d52a5fbb90344c0e8fcabb44e57c8eef
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8277831
proquest_miscellaneous_2551576756
proquest_journals_2550945155
pubmed_primary_34257310
crossref_citationtrail_10_1038_s41467_021_24173_x
crossref_primary_10_1038_s41467_021_24173_x
springer_journals_10_1038_s41467_021_24173_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-13
PublicationDateYYYYMMDD 2021-07-13
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References DelpSLOpenSim: open-source software to create and analyze dynamic simulations of movementIEEE Trans. Biomed. Eng.2007541940195010.1109/TBME.2007.901024
KrustrupPJonesAMWilkersonDPCalbetJABangsboJMuscular and pulmonary O2 uptake kinetics during moderate-and high-intensity sub-maximal knee-extensor exercise in humansJ. Physiol.2009587184318561:CAS:528:DC%2BD1MXnt1Gnt7g%3D19255119268396910.1113/jphysiol.2008.166397
MoseniaASusmitaS-KAnandRNiraKJWearable medical sensor-based system design: a surveyIEEE Trans. Multi-Scale Comput. Syst.2017312413810.1109/TMSCS.2017.2675888
Slade, P., Kochenderfer, M. J., Delp, S. L. & Collins, S. H. Sensing leg movement enhances wearable monitoring of energy expenditure. https://doi.org/10.5281/zenodo.4891704 (2021).
UmbergerBRGerritsenKGMartinPEA model of human muscle energy expenditureComput. Methods Biomech. Biomed. Engin.20036991111274542410.1080/1025584031000091678
MifflinMDA new predictive equation for resting energy expenditure in healthy individualsAm. J. Clin. Nutr.1990512412471:STN:280:DyaK3c7msVCltA%3D%3D230571110.1093/ajcn/51.2.241
UchidaTKSimulating ideal assistive devices to reduce the metabolic cost of runningPLoS ONE201611e016341727656901503358410.1371/journal.pone.0163417
Global health risks: mortality and burden of disease attributable to selected major risks (World Health Organization, Geneva, Switzerland, 2010).
BizeRJohnsonJAPlotnikoffRCPhysical activity level and health-related quality of life in the general adult population: a systematic reviewPrev. Med.2007454014151770749810.1016/j.ypmed.2007.07.017
Shcherbina, A. et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J. Pers. Med.7, 3 (2017).
SwartAMEstimation of energy expenditure using CSA accelerometers at hip and wrist sitesMed Sci. Sports Exerc.200032S45045610.1097/00005768-200009001-00003
Physical Activity Guidelines Report (Physical Activity Guidelines Advisory Committee, US Department of Health and Human Services, Washington, DC, 2018).
LuKFusion of heart rate, respiration and motion measurements from a wearable sensor system to enhance energy expenditure estimationSensors20181830922018Senso..18.3092L616412010.3390/s18093092
HendelmanDMillerKBaggettCDeboldEFreedsonPValidity of accelerometry for the assessment of moderate intensity physical activity in the fieldMed. Sci. Sports Exerc200032S4424491:STN:280:DC%2BD3cvktlehsQ%3D%3D1099341310.1097/00005768-200009001-00002
LiuGZWuDMeiZYZhuQSWangLAutomatic detection of respiratory rate from electrocardiogram, respiration induced plethysmography and 3D acceleration signalsJ. Cent. South Univ.2013202423243110.1007/s11771-013-1752-z
PopeZCZengNLiXLiuWGaoZAccuracy of commercially available Smartwatches in assessing energy expenditure during rest and exerciseJ. Meas. Phys. Behav.20192738110.1123/jmpb.2018-0037
National Health Interview Survey, 1997–2015 (National Center for Health Statistics, US Department of Health and Human Services, Washington, DC, 2015).
DonelanJMKramRKuoADMechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walkingJ. Exp. Biol.2002205371737271240949810.1242/jeb.205.23.3717
SasakiJEJohnDFreedsonPSValidation and comparison of ActiGraph Activity MonitorsJ. Sci. Med. Sport2011144114162161671410.1016/j.jsams.2011.04.003
Van der WaltWHWyndhamCHAn equation for prediction of energy expenditure of walking and runningJ. Appl. Physiol.197334559563470372810.1152/jappl.1973.34.5.559
Sauro, J. A practical guide to the System Usability Scale: Background, benchmarks, and best practices. (Measuring Usability LLC, 2011).
Outdoor participation report 2018 (Outdoor Foundation, Boulder, CO, 2018).
PlasquiGWesterterpKRPhysical activity assessment with accelerometers: an evaluation against doubly labeled waterObes. (Silver Spring)2007152371237910.1038/oby.2007.281
KlepinKWingDHigginsMNicholsJGodinoJGValidity of cardiorespiratory fitness measured with fitbit compared to V˙O2maxMed Sci. Sports Exerc2019512251225631107835702847710.1249/MSS.0000000000002041
Chin, J. P., Diehl, V. A. & Norman, K. L. Development of an instrument measuring user satisfaction of the human-computer interface. In Proceedings of the SIGCHI conference on Human factors in computing systems 213–218 (1988).
Orendurff, M. A., Schoen, J. A., Bernatz, G. C., Segal, A. D. & Klute, G. K. How humans walk: bout duration, steps per bout, and rest duration. J. Rehabil. Res. Dev. 45, 1077–1089 (2008).
Brooke, J. SUS: a quick and dirty usability scale. In: Usability evaluation in industry 189–194 (Taylor & Francis, 1996).
MomeniKFaghriPDEvansMLower-extremity joint kinematics and muscle activations during semi-reclined cycling at different workloads in healthy individualsJ. Neuroeng. Rehabil.20141125325920421684210.1186/1743-0003-11-146
SelingerJCDonelanJMEstimating instantaneous energetic cost during non-steady-state gaitJ. Appl Physiol.2014117140614152525787310.1152/japplphysiol.00445.2014
Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of obesity among adults and youth: United States, 2015–2016 (NCHS Data Brief, US Department of Health and Human Services, Washington, DC, 2017).
SeethapathiNSrinivasanMThe metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimatesBiol. Lett.201511910.1098/rsbl.2015.0486
FosterRCPrecision and accuracy of an ankle-worn accelerometer-based pedometer in step counting and energy expenditurePrev. Med.2005417787832005soea.book.....F1612576010.1016/j.ypmed.2005.07.006
HallKDEnergy balance and its components: implications for body weight regulationAm. J. Clin. Nutr.20129598999422434603330236910.3945/ajcn.112.036350
SchoellerDAEnergy expenditure by doubly labeled water: validation in humans and proposed calculationAm. J. Physiol.19862508238301986teco.conf.....S
Hicks, J. L., Uchida, T. K., Seth, A., Rajagopal, A. & Delp, S. L. Is my model good enough? Best practices for verification and validation of Musculoskeletal Models and simulations of movement. J. Biomech. Eng.137, 020905 (2015).
HenriksenAJohanssonJHartvigsenGGrimsgaardSHopstockLAMeasuring physical activity using triaxial wrist worn polar activity trackers: a systematic reviewInt. J. Exerc. Sci.202013438454325091227241625
Leonov, V. & Vullers, R. J. Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J. Renew. Sustain. Energy1, 062701 (2009).
RajagopalAFull-body Musculoskeletal Model for muscle-driven simulation of human gaitIEEE Trans. Biomed. Eng.2016632068207927392337550721110.1109/TBME.2016.2586891
Koelewijn, A. D., Heinrich, D. & Van Den Bogert, A. J. cost calculations of gait using musculoskeletal energy models, a comparison study. PloS ONE14, e0222037 (2019).
NicolòAMassaroniCPassfieldLRespiratory frequency during exercise: the neglected physiological measureFront. Physiol.2017892229321742573220910.3389/fphys.2017.00922
JasiewiczJMGait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individualsGait Posture2006245025091650010210.1016/j.gaitpost.2005.12.017
SladePTroutmanRKochenderferMJCollinsSHDelpSLRapid energy expenditure estimation for ankle assisted and inclined loaded walkingJ. Neuroeng. Rehabil.2019166731171003655573310.1186/s12984-019-0535-7
BrageSBranched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditureJ. Appl. Physiol.2004963433512009ApPhA..96..343B1297244110.1152/japplphysiol.00703.2003
BrisswalterJHausswirthCSmithDVercruyssenFVallierJMEnergetically optimal cadence vs. freely-chosen cadence during cycling: effect of exercise durationInt. J. Sports Med.20002160641:STN:280:DC%2BD3c7ksFejtA%3D%3D1068310110.1055/s-2000-8857
Lu, K. et al. Wearable cardiorespiratory monitoring system for unobtrusive free-living energy expenditure tracking. World Congress on Medical Physics and Biomedical Engineering, 1, 433–437 (2019).
IngrahamKAFerrisDPRemyCDEvaluating physiological signal salience for estimating metabolic energy cost from wearable sensorsJ. Appl. Physiol.201912671772930629472645938410.1152/japplphysiol.00714.2018
KnaggsJDLarkinKAManiniTMMetabolic cost of daily activities and effect of mobility impairment in older adultsJ. Am. Geriatr. Soc.201159211821232209197910.1111/j.1532-5415.2011.03655.x
HoldyKEMonitoring energy metabolism with indirect calorimetry: instruments, interpretation, and clinical applicationNutr. Clin. Pract.2004194474541621513810.1177/0115426504019005447
CeesaySMThe use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetryBr. J. Nutr.1989611751861:STN:280:DyaL1M3gslCisQ%3D%3D270622310.1079/BJN19890107
MelansonELCommercially available pedometers: considerations for accurate step countingPrev. Med.2004393613681522604710.1016/j.ypmed.2004.01.032
JacksonRWDembiaCLDelpSLCollinsSHMuscle–tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walkingJ. Exp. Biol.201722020822095283416636514464
CrouterSEChurillaJRBassettDREstimatingDRenergy expenditure using accelerometersEur. J. Appl. Physiol.2006986016121705810210.1007/s00421-006-0307-5
PrinceSAA comparison of direct versus self-report measures for assessing physical activity in adults: a systematic reviewInt J. Behav. Nutr. Phys. Act.2008518990237258863910.1186/1479-5868-5-56
ChenKYPredicting energy expenditure of physical activity using hip-and wrist-worn accelerometersDiabetes Technol. Ther.20035102310331470920610.1089/152091503322641088
WH Van der Walt (24173_CR24) 1973; 34
KY Chen (24173_CR33) 2003; 5
SE Crouter (24173_CR26) 2006; 98
D Hendelman (24173_CR36) 2000; 32
SA Prince (24173_CR12) 2008; 5
TK Uchida (24173_CR20) 2016; 11
24173_CR41
24173_CR42
24173_CR45
A Mosenia (24173_CR10) 2017; 3
ZC Pope (24173_CR31) 2019; 2
A Henriksen (24173_CR38) 2020; 13
EL Melanson (24173_CR13) 2004; 39
BR Umberger (24173_CR22) 2003; 6
JM Jasiewicz (24173_CR49) 2006; 24
KD Hall (24173_CR3) 2012; 95
JE Sasaki (24173_CR37) 2011; 14
24173_CR2
24173_CR1
24173_CR40
24173_CR4
24173_CR30
24173_CR8
P Slade (24173_CR35) 2019; 16
SL Delp (24173_CR19) 2007; 54
GZ Liu (24173_CR28) 2013; 20
24173_CR9
24173_CR39
SM Ceesay (24173_CR27) 1989; 61
K Lu (24173_CR29) 2018; 18
KA Ingraham (24173_CR16) 2019; 126
DA Schoeller (24173_CR17) 1986; 250
K Momeni (24173_CR46) 2014; 11
J Brisswalter (24173_CR48) 2000; 21
RW Jackson (24173_CR51) 2017; 220
MD Mifflin (24173_CR6) 1990; 51
JC Selinger (24173_CR43) 2014; 117
N Seethapathi (24173_CR44) 2015; 11
JD Knaggs (24173_CR7) 2011; 59
24173_CR23
P Krustrup (24173_CR50) 2009; 587
S Brage (24173_CR32) 2004; 96
AM Swart (24173_CR25) 2000; 32
JM Donelan (24173_CR21) 2002; 205
A Nicolò (24173_CR47) 2017; 8
RC Foster (24173_CR14) 2005; 41
KE Holdy (24173_CR15) 2004; 19
K Klepin (24173_CR34) 2019; 51
24173_CR53
24173_CR54
24173_CR11
R Bize (24173_CR5) 2007; 45
G Plasqui (24173_CR18) 2007; 15
A Rajagopal (24173_CR52) 2016; 63
References_xml – reference: KrustrupPJonesAMWilkersonDPCalbetJABangsboJMuscular and pulmonary O2 uptake kinetics during moderate-and high-intensity sub-maximal knee-extensor exercise in humansJ. Physiol.2009587184318561:CAS:528:DC%2BD1MXnt1Gnt7g%3D19255119268396910.1113/jphysiol.2008.166397
– reference: Outdoor participation report 2018 (Outdoor Foundation, Boulder, CO, 2018).
– reference: SelingerJCDonelanJMEstimating instantaneous energetic cost during non-steady-state gaitJ. Appl Physiol.2014117140614152525787310.1152/japplphysiol.00445.2014
– reference: SasakiJEJohnDFreedsonPSValidation and comparison of ActiGraph Activity MonitorsJ. Sci. Med. Sport2011144114162161671410.1016/j.jsams.2011.04.003
– reference: MoseniaASusmitaS-KAnandRNiraKJWearable medical sensor-based system design: a surveyIEEE Trans. Multi-Scale Comput. Syst.2017312413810.1109/TMSCS.2017.2675888
– reference: JasiewiczJMGait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individualsGait Posture2006245025091650010210.1016/j.gaitpost.2005.12.017
– reference: LuKFusion of heart rate, respiration and motion measurements from a wearable sensor system to enhance energy expenditure estimationSensors20181830922018Senso..18.3092L616412010.3390/s18093092
– reference: MifflinMDA new predictive equation for resting energy expenditure in healthy individualsAm. J. Clin. Nutr.1990512412471:STN:280:DyaK3c7msVCltA%3D%3D230571110.1093/ajcn/51.2.241
– reference: MelansonELCommercially available pedometers: considerations for accurate step countingPrev. Med.2004393613681522604710.1016/j.ypmed.2004.01.032
– reference: CeesaySMThe use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetryBr. J. Nutr.1989611751861:STN:280:DyaL1M3gslCisQ%3D%3D270622310.1079/BJN19890107
– reference: HallKDEnergy balance and its components: implications for body weight regulationAm. J. Clin. Nutr.20129598999422434603330236910.3945/ajcn.112.036350
– reference: DelpSLOpenSim: open-source software to create and analyze dynamic simulations of movementIEEE Trans. Biomed. Eng.2007541940195010.1109/TBME.2007.901024
– reference: MomeniKFaghriPDEvansMLower-extremity joint kinematics and muscle activations during semi-reclined cycling at different workloads in healthy individualsJ. Neuroeng. Rehabil.20141125325920421684210.1186/1743-0003-11-146
– reference: RajagopalAFull-body Musculoskeletal Model for muscle-driven simulation of human gaitIEEE Trans. Biomed. Eng.2016632068207927392337550721110.1109/TBME.2016.2586891
– reference: UmbergerBRGerritsenKGMartinPEA model of human muscle energy expenditureComput. Methods Biomech. Biomed. Engin.20036991111274542410.1080/1025584031000091678
– reference: BrisswalterJHausswirthCSmithDVercruyssenFVallierJMEnergetically optimal cadence vs. freely-chosen cadence during cycling: effect of exercise durationInt. J. Sports Med.20002160641:STN:280:DC%2BD3c7ksFejtA%3D%3D1068310110.1055/s-2000-8857
– reference: FosterRCPrecision and accuracy of an ankle-worn accelerometer-based pedometer in step counting and energy expenditurePrev. Med.2005417787832005soea.book.....F1612576010.1016/j.ypmed.2005.07.006
– reference: SeethapathiNSrinivasanMThe metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimatesBiol. Lett.201511910.1098/rsbl.2015.0486
– reference: PrinceSAA comparison of direct versus self-report measures for assessing physical activity in adults: a systematic reviewInt J. Behav. Nutr. Phys. Act.2008518990237258863910.1186/1479-5868-5-56
– reference: HendelmanDMillerKBaggettCDeboldEFreedsonPValidity of accelerometry for the assessment of moderate intensity physical activity in the fieldMed. Sci. Sports Exerc200032S4424491:STN:280:DC%2BD3cvktlehsQ%3D%3D1099341310.1097/00005768-200009001-00002
– reference: SladePTroutmanRKochenderferMJCollinsSHDelpSLRapid energy expenditure estimation for ankle assisted and inclined loaded walkingJ. Neuroeng. Rehabil.2019166731171003655573310.1186/s12984-019-0535-7
– reference: UchidaTKSimulating ideal assistive devices to reduce the metabolic cost of runningPLoS ONE201611e016341727656901503358410.1371/journal.pone.0163417
– reference: JacksonRWDembiaCLDelpSLCollinsSHMuscle–tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walkingJ. Exp. Biol.201722020822095283416636514464
– reference: LiuGZWuDMeiZYZhuQSWangLAutomatic detection of respiratory rate from electrocardiogram, respiration induced plethysmography and 3D acceleration signalsJ. Cent. South Univ.2013202423243110.1007/s11771-013-1752-z
– reference: Lu, K. et al. Wearable cardiorespiratory monitoring system for unobtrusive free-living energy expenditure tracking. World Congress on Medical Physics and Biomedical Engineering, 1, 433–437 (2019).
– reference: PlasquiGWesterterpKRPhysical activity assessment with accelerometers: an evaluation against doubly labeled waterObes. (Silver Spring)2007152371237910.1038/oby.2007.281
– reference: HenriksenAJohanssonJHartvigsenGGrimsgaardSHopstockLAMeasuring physical activity using triaxial wrist worn polar activity trackers: a systematic reviewInt. J. Exerc. Sci.202013438454325091227241625
– reference: Sauro, J. A practical guide to the System Usability Scale: Background, benchmarks, and best practices. (Measuring Usability LLC, 2011).
– reference: Physical Activity Guidelines Report (Physical Activity Guidelines Advisory Committee, US Department of Health and Human Services, Washington, DC, 2018).
– reference: National Health Interview Survey, 1997–2015 (National Center for Health Statistics, US Department of Health and Human Services, Washington, DC, 2015).
– reference: Hicks, J. L., Uchida, T. K., Seth, A., Rajagopal, A. & Delp, S. L. Is my model good enough? Best practices for verification and validation of Musculoskeletal Models and simulations of movement. J. Biomech. Eng.137, 020905 (2015).
– reference: Van der WaltWHWyndhamCHAn equation for prediction of energy expenditure of walking and runningJ. Appl. Physiol.197334559563470372810.1152/jappl.1973.34.5.559
– reference: BrageSBranched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditureJ. Appl. Physiol.2004963433512009ApPhA..96..343B1297244110.1152/japplphysiol.00703.2003
– reference: Chin, J. P., Diehl, V. A. & Norman, K. L. Development of an instrument measuring user satisfaction of the human-computer interface. In Proceedings of the SIGCHI conference on Human factors in computing systems 213–218 (1988).
– reference: Global health risks: mortality and burden of disease attributable to selected major risks (World Health Organization, Geneva, Switzerland, 2010).
– reference: Orendurff, M. A., Schoen, J. A., Bernatz, G. C., Segal, A. D. & Klute, G. K. How humans walk: bout duration, steps per bout, and rest duration. J. Rehabil. Res. Dev. 45, 1077–1089 (2008).
– reference: NicolòAMassaroniCPassfieldLRespiratory frequency during exercise: the neglected physiological measureFront. Physiol.2017892229321742573220910.3389/fphys.2017.00922
– reference: ChenKYPredicting energy expenditure of physical activity using hip-and wrist-worn accelerometersDiabetes Technol. Ther.20035102310331470920610.1089/152091503322641088
– reference: IngrahamKAFerrisDPRemyCDEvaluating physiological signal salience for estimating metabolic energy cost from wearable sensorsJ. Appl. Physiol.201912671772930629472645938410.1152/japplphysiol.00714.2018
– reference: Slade, P., Kochenderfer, M. J., Delp, S. L. & Collins, S. H. Sensing leg movement enhances wearable monitoring of energy expenditure. https://doi.org/10.5281/zenodo.4891704 (2021).
– reference: KlepinKWingDHigginsMNicholsJGodinoJGValidity of cardiorespiratory fitness measured with fitbit compared to V˙O2maxMed Sci. Sports Exerc2019512251225631107835702847710.1249/MSS.0000000000002041
– reference: CrouterSEChurillaJRBassettDREstimatingDRenergy expenditure using accelerometersEur. J. Appl. Physiol.2006986016121705810210.1007/s00421-006-0307-5
– reference: Koelewijn, A. D., Heinrich, D. & Van Den Bogert, A. J. cost calculations of gait using musculoskeletal energy models, a comparison study. PloS ONE14, e0222037 (2019).
– reference: Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of obesity among adults and youth: United States, 2015–2016 (NCHS Data Brief, US Department of Health and Human Services, Washington, DC, 2017).
– reference: Brooke, J. SUS: a quick and dirty usability scale. In: Usability evaluation in industry 189–194 (Taylor & Francis, 1996).
– reference: SwartAMEstimation of energy expenditure using CSA accelerometers at hip and wrist sitesMed Sci. Sports Exerc.200032S45045610.1097/00005768-200009001-00003
– reference: Leonov, V. & Vullers, R. J. Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J. Renew. Sustain. Energy1, 062701 (2009).
– reference: HoldyKEMonitoring energy metabolism with indirect calorimetry: instruments, interpretation, and clinical applicationNutr. Clin. Pract.2004194474541621513810.1177/0115426504019005447
– reference: SchoellerDAEnergy expenditure by doubly labeled water: validation in humans and proposed calculationAm. J. Physiol.19862508238301986teco.conf.....S
– reference: Shcherbina, A. et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J. Pers. Med.7, 3 (2017).
– reference: DonelanJMKramRKuoADMechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walkingJ. Exp. Biol.2002205371737271240949810.1242/jeb.205.23.3717
– reference: KnaggsJDLarkinKAManiniTMMetabolic cost of daily activities and effect of mobility impairment in older adultsJ. Am. Geriatr. Soc.201159211821232209197910.1111/j.1532-5415.2011.03655.x
– reference: PopeZCZengNLiXLiuWGaoZAccuracy of commercially available Smartwatches in assessing energy expenditure during rest and exerciseJ. Meas. Phys. Behav.20192738110.1123/jmpb.2018-0037
– reference: BizeRJohnsonJAPlotnikoffRCPhysical activity level and health-related quality of life in the general adult population: a systematic reviewPrev. Med.2007454014151770749810.1016/j.ypmed.2007.07.017
– ident: 24173_CR30
  doi: 10.1007/978-981-10-9035-6_80
– volume: 18
  start-page: 3092
  year: 2018
  ident: 24173_CR29
  publication-title: Sensors
  doi: 10.3390/s18093092
– ident: 24173_CR40
– volume: 587
  start-page: 1843
  year: 2009
  ident: 24173_CR50
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2008.166397
– volume: 11
  year: 2014
  ident: 24173_CR46
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-146
– ident: 24173_CR23
  doi: 10.1371/journal.pone.0222037
– volume: 34
  start-page: 559
  year: 1973
  ident: 24173_CR24
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1973.34.5.559
– ident: 24173_CR11
– volume: 39
  start-page: 361
  year: 2004
  ident: 24173_CR13
  publication-title: Prev. Med.
  doi: 10.1016/j.ypmed.2004.01.032
– volume: 220
  start-page: 2082
  year: 2017
  ident: 24173_CR51
  publication-title: J. Exp. Biol.
– ident: 24173_CR8
– ident: 24173_CR4
– volume: 5
  year: 2008
  ident: 24173_CR12
  publication-title: Int J. Behav. Nutr. Phys. Act.
  doi: 10.1186/1479-5868-5-56
– volume: 11
  start-page: 9
  year: 2015
  ident: 24173_CR44
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2015.0486
– volume: 5
  start-page: 1023
  year: 2003
  ident: 24173_CR33
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/152091503322641088
– volume: 95
  start-page: 989
  year: 2012
  ident: 24173_CR3
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.112.036350
– ident: 24173_CR9
  doi: 10.1682/JRRD.2007.11.0197
– volume: 63
  start-page: 2068
  year: 2016
  ident: 24173_CR52
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2586891
– ident: 24173_CR53
  doi: 10.1115/1.4029304
– volume: 51
  start-page: 241
  year: 1990
  ident: 24173_CR6
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/51.2.241
– volume: 32
  start-page: S450
  year: 2000
  ident: 24173_CR25
  publication-title: Med Sci. Sports Exerc.
  doi: 10.1097/00005768-200009001-00003
– ident: 24173_CR41
– volume: 41
  start-page: 778
  year: 2005
  ident: 24173_CR14
  publication-title: Prev. Med.
  doi: 10.1016/j.ypmed.2005.07.006
– volume: 13
  start-page: 438
  year: 2020
  ident: 24173_CR38
  publication-title: Int. J. Exerc. Sci.
– ident: 24173_CR39
  doi: 10.3390/jpm7020003
– volume: 6
  start-page: 99
  year: 2003
  ident: 24173_CR22
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/1025584031000091678
– volume: 98
  start-page: 601
  year: 2006
  ident: 24173_CR26
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-006-0307-5
– volume: 117
  start-page: 1406
  year: 2014
  ident: 24173_CR43
  publication-title: J. Appl Physiol.
  doi: 10.1152/japplphysiol.00445.2014
– volume: 21
  start-page: 60
  year: 2000
  ident: 24173_CR48
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2000-8857
– volume: 96
  start-page: 343
  year: 2004
  ident: 24173_CR32
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00703.2003
– ident: 24173_CR1
– volume: 126
  start-page: 717
  year: 2019
  ident: 24173_CR16
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00714.2018
– volume: 15
  start-page: 2371
  year: 2007
  ident: 24173_CR18
  publication-title: Obes. (Silver Spring)
  doi: 10.1038/oby.2007.281
– ident: 24173_CR42
  doi: 10.1145/57167.57203
– volume: 250
  start-page: 823
  year: 1986
  ident: 24173_CR17
  publication-title: Am. J. Physiol.
– volume: 54
  start-page: 1940
  year: 2007
  ident: 24173_CR19
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 51
  start-page: 2251
  year: 2019
  ident: 24173_CR34
  publication-title: Med Sci. Sports Exerc
  doi: 10.1249/MSS.0000000000002041
– volume: 24
  start-page: 502
  year: 2006
  ident: 24173_CR49
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.12.017
– volume: 32
  start-page: S442
  year: 2000
  ident: 24173_CR36
  publication-title: Med. Sci. Sports Exerc
  doi: 10.1097/00005768-200009001-00002
– ident: 24173_CR54
  doi: 10.5281/zenodo.4891704
– volume: 205
  start-page: 3717
  year: 2002
  ident: 24173_CR21
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.205.23.3717
– volume: 61
  start-page: 175
  year: 1989
  ident: 24173_CR27
  publication-title: Br. J. Nutr.
  doi: 10.1079/BJN19890107
– volume: 19
  start-page: 447
  year: 2004
  ident: 24173_CR15
  publication-title: Nutr. Clin. Pract.
  doi: 10.1177/0115426504019005447
– ident: 24173_CR2
– ident: 24173_CR45
  doi: 10.1063/1.3255465
– volume: 3
  start-page: 124
  year: 2017
  ident: 24173_CR10
  publication-title: IEEE Trans. Multi-Scale Comput. Syst.
  doi: 10.1109/TMSCS.2017.2675888
– volume: 2
  start-page: 73
  year: 2019
  ident: 24173_CR31
  publication-title: J. Meas. Phys. Behav.
  doi: 10.1123/jmpb.2018-0037
– volume: 20
  start-page: 2423
  year: 2013
  ident: 24173_CR28
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-013-1752-z
– volume: 16
  start-page: 67
  year: 2019
  ident: 24173_CR35
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-019-0535-7
– volume: 14
  start-page: 411
  year: 2011
  ident: 24173_CR37
  publication-title: J. Sci. Med. Sport
  doi: 10.1016/j.jsams.2011.04.003
– volume: 11
  start-page: e0163417
  year: 2016
  ident: 24173_CR20
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0163417
– volume: 59
  start-page: 2118
  year: 2011
  ident: 24173_CR7
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.2011.03655.x
– volume: 8
  start-page: 922
  year: 2017
  ident: 24173_CR47
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.00922
– volume: 45
  start-page: 401
  year: 2007
  ident: 24173_CR5
  publication-title: Prev. Med.
  doi: 10.1016/j.ypmed.2007.07.017
SSID ssj0000391844
Score 2.549989
Snippet Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity....
Current methods to estimate energy expenditure are either infeasible for everyday use or associated with significant errors. Here the authors present a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4312
SubjectTerms 631/1647/1888
631/61
639/166/985
692/308/575
692/700/2817
9/10
Balance
Energy
Energy balance
Energy expenditure
Energy metabolism
Energy Metabolism - physiology
Estimates
Exercise - physiology
Humanities and Social Sciences
Humans
Inertial platforms
Kinematics
Leg - physiology
Metabolism
Monitoring
multidisciplinary
Physical activity
Real time
Respirometry
Science
Science (multidisciplinary)
Steady state
Thigh
Walking - physiology
Wearable computers
Wearable Electronic Devices
Wearable technology
Wrist
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB-KIPRF_GjrtlZS6JtdzG6S_Xi0opVC-1IF30I-VdC94t1R_e-dye5dPVv1xddLlguT3yTzIzO_AfisrJJl4VRufCtzKX2RW1kill0ZPWWyVZwKhX_8rI5O5PdTdXqv1RflhPXywL3hdr0qjYrWtqRN53hoojPWShlU7ZoQIp2-vOX3yFQ6g0WL1EUOVTJcNLtjmc4EykjAS6sW-c3CTZQE-_8XZf6bLPngxTRdRIersDJEkGyvX_kavArdOiz3PSVvN-DbL0pJ787YZThjV6MkBz5hoTun7R2zP4hsqpbCIXJm-gs2iiykEkBGev_0hj29Dm_g5PDgeP8oH7ol5A5JyCRvy1BVIXIb0Uct0iCkTt4V3nJjpbDSeGd8YRzynegxSKokdya0lULOhJyjFG9hqRt1YRNYtBUJm5natBH5V7Q1hnXILXzDTSiiyKCYWU67QUqcOlpc6vSkLRrdW1ujtXWytr7JYGf-ze9eSOPJ2V9pQ-YzSQQ7_YDQ0AM09HPQyGBrtp168MyxRgqFEKTGNhl8mg-jT9FDienCaJrmFIpUbqoM3vW7P1-JoEMOY-IM6gVcLCx1caS7OE-63U1Z140oMvgyQ9DfZT1uivcvYYoP8Lok6JMiqNiCpcn1NHzEaGpit5Pj3AGR0R0M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxVBDA71FMEXab1uW2UE33TpXmb28iBiS2sRPIha6Nsw19NC3a3nQuu_N5m9lOOlrzuz7GwmySST5AvAa6EFz1IjYmVrHnNu01jzDHnZZN5SJluRUKHw52lxcso_nYmzDZgOtTCUVjnoxKCobWvojnwfTV98lRqSvL_6GVPXKIquDi00VN9awb4LEGP3YBNVskgmsHlwNP3ydbx1ITz0ivO-eibJq_0FD7qCMhXwMCvz-GbthApA_v-yPv9OovwjkhoOqOMteNhbluxDxwrbsOGaR3C_6zX56zF8_Eap6s2MXboZ-9EGmPAlc805bfuCXSPHUxUVDpGQ0ydY65kLpYGM-gBQbHs1d0_g9Pjo--FJ3HdRiA06J8u4zlxROJ9oj7Kr0T1Cl8qa1OpEaZ5rrqxRNlUG_SBv0XgqeGKUqwuBvhT6Iln-FCZN27jnwLwuCPBMlar26Jd5XaK5hz6HrRLlUp9HkA6Uk6aHGKdOF5cyhLrzSnbUlkhtGagtbyJ4M75z1QFs3Dn7gDZknEng2OFBO5_JXtakFZkSXuua4AxN4ipvlNacO1Gayjkfwd6wnbKX2IW85a8IXo3DKGsUQFGNa1dhTioI_aaI4Fm3--NKclJ-aCtHUK7xxdpS10eai_OA511lZVnlaQRvBw66Xdb_SbFz91_swoOMmJowQPM9mCznK_cC7aelftkLxW-G0Bkh
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5KRfBFvButEsE3DSZ7y-ZRD9Yi6IsW-rbs9VRoE-k5Rf33zmwucrQKvmZ3yTA7k50vO_MNwHPppGCNl5UNnaiECE3lBENb9iwFymRTNRUKf_iojo7F-xN5sgdsroXJSfuZ0jJ_pufssFcbkV2aEgrwzGl5hXHjNd1ySVa9UqvlvwoxnmshpvqYmusrlu6cQZmq_6r48s80yd_uSvMRdHgLbk6xY_l6lPY27MX-Dlwfu0n-uAvvPlEyer8uz-K6PB8yEfi2jP0pbeym_IY2TXVSOERuTK8oh1TGXPxXEtM_3V6jSu7B8eHbz6ujauqTUHmEH9uqY1GpmGqX0DsdAiAETcE3wdXWCe6EDd6GxnpEOilgeKRE7W3slES0hGiD8fuw3w99fAhlcooozWxru4TIK7kWAzpEFUHXNjaJF9DMmjN-IhGnXhZnJl9mc21GbRvUtsnaNt8LeLGs-TpSaPxz9hvakGUm0V_nB8PF2kzmYIJkVibnOiIs9HXUyVvnhIiy9TrGVMDBvJ1m8smNQfCExkctbQp4tgyjN9EVie3jcJnnNJL4bVQBD8bdXyTh9HnDaLiAdscudkTdHem_nGbGbs3aVvOmgJezBf0S6--qePR_0x_DDUZGTqyf_AD2txeX8QlGTFv3NLvIT6iwEN4
  priority: 102
  providerName: Springer Nature
Title Sensing leg movement enhances wearable monitoring of energy expenditure
URI https://link.springer.com/article/10.1038/s41467-021-24173-x
https://www.ncbi.nlm.nih.gov/pubmed/34257310
https://www.proquest.com/docview/2550945155
https://www.proquest.com/docview/2551576756
https://pubmed.ncbi.nlm.nih.gov/PMC8277831
https://doaj.org/article/d52a5fbb90344c0e8fcabb44e57c8eef
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6VVkhcEOVV0zYyEjcw-LF-HRBKo6ZVJCpEiZTbap8pUrAhD7X998ys7VQpgRMXR_Ku5dXsjHe-zMw3AG9SmbI4UmkgdMkCxnQUSBajLqvYaspky0IqFP58kZ2P2WiSTnaga3fUCnCxFdpRP6nxfPb-5tftJzT4j03JePFhwZy5U7IBnkd5EqBPuefiRZTK17r77suclAhoWFs7s_3RjfPJ0fhv8z3_TKG8F0d1x9PwCTxu_Uq_3yjCPuyY6ik8bDpN3j6Ds0tKVK-m_sxM_R-1Iwlf-qa6ok1f-Neo71RDhUNk4vQKv7a-cYWBPnUBoMj2am6ew3h4-m1wHrQ9FAKF0GQZlLHJMmNDadFyJYIjBFRaRVqGQrJEMqGV0JFQiIKsRtcpY6ESpsxSRFKIROLkBexWdWUOwLcyI7ozkYvSIiqzMkdnDxGHLkJhIpt4EHWS46olGKc-FzPuAt1JwRtpc5Q2d9LmNx68XT_zs6HX-OfsE9qQ9UyixnY36vmUt5bGdRqL1EpZEpmhCk1hlZCSMZPmqjDGenDUbSfv1I0jsELFpHY3HrxeD6OlUfhEVKZeuTlRStw3mQcvm91fryShTx96yh7kG3qxsdTNker7lWPzLuI8L5LIg3edBt0t6--iePU_RHEIj2JSfeIJTY5gdzlfmWP0sZayBw_ySY7XYnjWg71-f3Q5wt-T04svX_HuIBv03L8XPWdgvwElnSq_
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxVBEK6QR4xejLsjqGOiJ50wS892IEYUfAi8GIWEW9PrwwRm8C0B_py_zaqehTwXblynezI9VdXVVV1VXwG8TmXK4kilgdAlCxjTUSBZjLKsYqspky0LqVB4b5QND9iXw_RwCX51tTCUVtnpRKeoda3ojnwNTV98lRqSvD_7GVDXKIqudi00RNtaQa87iLG2sGPHXJ6jCzdd3_6E_H4Tx1ub-x-HQdtlIFBovM-CMjZZZmwoLcq2RPcBXQ6tIi1DIVkimdBK6Ego9BOsRuMiY6ESpsxS9DXQVifgAzwClhldoAxgeWNz9PVbf8tD-OsFY221TpgUa1PmdBNlRuDhmSfBxcKJ6BoH_Mva_Ttp84_IrTsQt-7B3daS9T80oncflkz1AG41vS0vH8Ln75QaX439EzP2T2sHSz7zTXVMYjb1z5F0VLWFQ6RU6BN-bX3jShF96jtAsfT5xDyCgxuh52MYVHVlnoJvZUYAayIXpUU_0MoczUv0cXQRChPZxIOooxxXLaQ5ddY44S60nhS8oTZHanNHbX7hwdv-nbMG0OPa2RvEkH4mgXG7B_VkzNu9zXUai9RKWRJ8ogpNYZWQkjGT5qowxnqw2rGTtxpiyq_k2YNX_TDubQrYiMrUczcnSgltJ_PgScP9fiUJKVu0zT3IF-RiYamLI9WPY4cfXsR5XiSRB-86Cbpa1v9J8ez6v3gJt4f7e7t8d3u0swJ3YhJwwh9NVmEwm8zNc7TdZvJFu0F8OLrpPfkbg8JWBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9VADLaqIhAXxE5KgSDBCaKXZZJJDggB5dFSqJCg0rsNs74itUl5i9r-NX4d9mSpHktvvWYmysRje-yx_RngWa5yliY6j6SpWMSYSSLFUuRlnTpDmWxFTIXCn_eK7X32cZJP1uBXXwtDaZW9TvSK2jSa7shHaPriq9SQZOS6tIgvW-PXxz8j6iBFkda-nUbLIrv27ATdt_mrnS3c6-dpOn7_7d121HUYiDQa7ouoSm1RWBcrh3yt0HVAd8PoxKhYKpYpJo2WJpEafQRn0LAoWKylrYoc_Qy00wn0ANX_FZ4xRm0j-IQP9zuEvF4y1tXpxFk5mjOvlSgnAo9NnkWnK2ehbxnwLzv373TNP2K2_igc34QbnQ0bvmmZ7has2fo2XG27Wp7dgQ9fKSm-noaHdhoeNR6QfBHa-oAYbB6eIOGoXguHSJ3QJ8LGhdYXIYbUcYCi6MuZvQv7l0LNe7BeN7V9AKFTBUGrSS4rhx6gUxwNS_RuTBlLm7gsgKSnnNAdmDn11DgUPqielaKltkBqC09tcRrAi-Gd4xbK48LZb2lDhpkEw-0fNLOp6KRamDyVuVOqIuBEHdvSaakUYzbnurTWBbDZb6fodMNcnHNyAE-HYZRqCtXI2jZLPyfJCWenCOB-u_vDSjJSs2iVB8BX-GJlqasj9Y8DjxxeppyXWRLAy56Dzpf1f1JsXPwXT-AaSqL4tLO3-xCup8TfBDyabcL6Yra0j9BoW6jHXjpC-H7Z4vgbLbVTog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensing+leg+movement+enhances+wearable+monitoring+of+energy+expenditure&rft.jtitle=Nature+communications&rft.au=Patrick+Slade&rft.au=Mykel+J.+Kochenderfer&rft.au=Scott+L.+Delp&rft.au=Steven+H.+Collins&rft.date=2021-07-13&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-021-24173-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d52a5fbb90344c0e8fcabb44e57c8eef
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon