Sensing leg movement enhances wearable monitoring of energy expenditure
Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 4312 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.07.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-021-24173-x |
Cover
Abstract | Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring.
Current methods to estimate energy expenditure are either infeasible for everyday use or associated with significant errors. Here the authors present a Wearable System using inertial measurement units worn on the shank and thigh that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities. |
---|---|
AbstractList | Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring.Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring. Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring. Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring.Current methods to estimate energy expenditure are either infeasible for everyday use or associated with significant errors. Here the authors present a Wearable System using inertial measurement units worn on the shank and thigh that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities. Current methods to estimate energy expenditure are either infeasible for everyday use or associated with significant errors. Here the authors present a Wearable System using inertial measurement units worn on the shank and thigh that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities. Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity. Respirometry and doubly labeled water accurately estimate energy expenditure, but are infeasible for everyday use. Smartwatches are portable, but have significant errors. Existing wearable methods poorly estimate time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable System that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities with substantially lower error than state-of-the-art methods. We perform experiments to select sensors, collect training data, and validate the Wearable System with new subjects and new conditions for walking, running, stair climbing, and biking. The Wearable System uses inertial measurement units worn on the shank and thigh as they distinguish lower-limb activity better than wrist or trunk kinematics and converge more quickly than physiological signals. When evaluated with a diverse group of new subjects, the Wearable System has a cumulative error of 13% across common activities, significantly less than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach enables accurate physical activity monitoring which could enable new energy balance systems for weight management or large-scale activity monitoring. Current methods to estimate energy expenditure are either infeasible for everyday use or associated with significant errors. Here the authors present a Wearable System using inertial measurement units worn on the shank and thigh that estimates metabolic energy expenditure in real-time during common steady-state and time-varying activities. |
ArticleNumber | 4312 |
Author | Delp, Scott L. Slade, Patrick Kochenderfer, Mykel J. Collins, Steven H. |
Author_xml | – sequence: 1 givenname: Patrick orcidid: 0000-0001-9302-3911 surname: Slade fullname: Slade, Patrick email: patslade@stanford.edu organization: Department of Mechanical Engineering, Stanford University – sequence: 2 givenname: Mykel J. orcidid: 0000-0002-7238-9663 surname: Kochenderfer fullname: Kochenderfer, Mykel J. organization: Department of Aeronautics and Astronautics, Stanford University – sequence: 3 givenname: Scott L. surname: Delp fullname: Delp, Scott L. organization: Department of Mechanical Engineering, Stanford University, Department of Bioengineering, Stanford University – sequence: 4 givenname: Steven H. surname: Collins fullname: Collins, Steven H. organization: Department of Mechanical Engineering, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34257310$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1TAQhS1UREvpC7BAkdiwCfjfyQYJVVAqVWIBrC3bmaS-SuyLnbS3b49v00LbRb2x5fnO0bFnXqODEAMg9JbgjwSz5lPmhEtVY0pqyoli9e4FOqKYk5ooyg4enA_RSc4bXBZrScP5K3TIOBWKEXyEzn5CyD4M1QhDNcUrmCDMFYRLExzk6hpMMnaEUgp-jmlPxr7UIQ03Fey2EDo_LwneoJe9GTOc3O3H6Pe3r79Ov9cXP87OT79c1E5iOdctBSmhx7ZnlFpFJOG4c6Sz2FjOLDedMx0xjoq27zgTkmNnoJWCNkrJhrJjdL76dtFs9Db5yaQbHY3XtxcxDdqk2bsRdCeoEb21LWacOwxN74y1nINQrgHoi9fn1Wu72Ak6V16ezPjI9HEl-Es9xCvdUKUaRorBhzuDFP8skGc9-exgHE2AuGRNhSBCSSVkQd8_QTdxSaF81Z7CLS-kKNS7h4n-RbnvVwGaFXAp5pyg187PZvZxH9CPmmC9nw69Tocu06Fvp0PvipQ-kd67Pytiqyhv972H9D_2M6q_AxXN4Q |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3205629 crossref_primary_10_1109_TMRB_2023_3328649 crossref_primary_10_1002_EXP_20220167 crossref_primary_10_1016_j_nanoen_2023_108792 crossref_primary_10_1142_S1469026824500287 crossref_primary_10_3390_s24030871 crossref_primary_10_1021_acs_nanolett_4c00458 crossref_primary_10_1038_s41586_022_05191_1 crossref_primary_10_1016_j_gaitpost_2023_06_017 crossref_primary_10_1109_LRA_2025_3526558 crossref_primary_10_1038_s41598_024_84253_y crossref_primary_10_1186_s12984_024_01424_8 crossref_primary_10_1371_journal_pcbi_1012411 crossref_primary_10_1186_s12966_024_01646_y crossref_primary_10_7736_JKSPE_023_126 crossref_primary_10_1016_j_biosx_2024_100500 crossref_primary_10_1002_admt_202200306 crossref_primary_10_1016_j_isci_2024_109093 crossref_primary_10_34133_research_0214 crossref_primary_10_1016_j_mattod_2024_12_002 crossref_primary_10_1002_advs_202303114 crossref_primary_10_1002_advs_202303234 crossref_primary_10_1038_s41586_024_07697_2 crossref_primary_10_1109_TIM_2022_3227998 crossref_primary_10_1002_aisy_202200371 crossref_primary_10_1016_j_device_2024_100366 crossref_primary_10_1242_jeb_248125 crossref_primary_10_1111_sms_14490 crossref_primary_10_1038_s41598_022_21007_8 crossref_primary_10_1242_jeb_248022 crossref_primary_10_3390_s22072552 crossref_primary_10_1016_j_nanoen_2023_108480 crossref_primary_10_1145_3631422 crossref_primary_10_1088_1361_6579_acf993 crossref_primary_10_1016_j_medengphy_2022_103899 crossref_primary_10_1109_TBME_2021_3103201 crossref_primary_10_1080_10667857_2023_2254613 crossref_primary_10_3390_dj11010024 crossref_primary_10_3390_asi5040083 crossref_primary_10_3390_s24113305 crossref_primary_10_1016_j_tem_2024_08_012 crossref_primary_10_3390_s24020414 crossref_primary_10_1088_1361_665X_aca6bc crossref_primary_10_1016_j_socec_2023_102155 |
Cites_doi | 10.1007/978-981-10-9035-6_80 10.3390/s18093092 10.1113/jphysiol.2008.166397 10.1186/1743-0003-11-146 10.1371/journal.pone.0222037 10.1152/jappl.1973.34.5.559 10.1016/j.ypmed.2004.01.032 10.1186/1479-5868-5-56 10.1098/rsbl.2015.0486 10.1089/152091503322641088 10.3945/ajcn.112.036350 10.1682/JRRD.2007.11.0197 10.1109/TBME.2016.2586891 10.1115/1.4029304 10.1093/ajcn/51.2.241 10.1097/00005768-200009001-00003 10.1016/j.ypmed.2005.07.006 10.3390/jpm7020003 10.1080/1025584031000091678 10.1007/s00421-006-0307-5 10.1152/japplphysiol.00445.2014 10.1055/s-2000-8857 10.1152/japplphysiol.00703.2003 10.1152/japplphysiol.00714.2018 10.1038/oby.2007.281 10.1145/57167.57203 10.1109/TBME.2007.901024 10.1249/MSS.0000000000002041 10.1016/j.gaitpost.2005.12.017 10.1097/00005768-200009001-00002 10.5281/zenodo.4891704 10.1242/jeb.205.23.3717 10.1079/BJN19890107 10.1177/0115426504019005447 10.1063/1.3255465 10.1109/TMSCS.2017.2675888 10.1123/jmpb.2018-0037 10.1007/s11771-013-1752-z 10.1186/s12984-019-0535-7 10.1016/j.jsams.2011.04.003 10.1371/journal.pone.0163417 10.1111/j.1532-5415.2011.03655.x 10.3389/fphys.2017.00922 10.1016/j.ypmed.2007.07.017 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-24173-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_d52a5fbb90344c0e8fcabb44e57c8eef PMC8277831 34257310 10_1038_s41467_021_24173_x |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: DGE-1656518 funderid: https://doi.org/10.13039/100000001 – fundername: NICHD NIH HHS grantid: P2C HD065690 – fundername: NICHD NIH HHS grantid: R24 HD065690 – fundername: NIBIB NIH HHS grantid: U54 EB020405 – fundername: NIBIB NIH HHS grantid: P41 EB027060 – fundername: ; grantid: DGE-1656518 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c606t-92e66ef0bf322b716140dc1db0ab43b4adcad1ac259fd435640cae96528776823 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:19:37 EDT 2025 Thu Aug 21 14:12:53 EDT 2025 Fri Sep 05 12:32:12 EDT 2025 Wed Aug 13 07:36:53 EDT 2025 Sun Aug 17 02:24:11 EDT 2025 Tue Jul 01 04:17:31 EDT 2025 Thu Apr 24 22:58:05 EDT 2025 Fri Feb 21 02:39:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-92e66ef0bf322b716140dc1db0ab43b4adcad1ac259fd435640cae96528776823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7238-9663 0000-0001-9302-3911 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-24173-x |
PMID | 34257310 |
PQID | 2550945155 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d52a5fbb90344c0e8fcabb44e57c8eef pubmedcentral_primary_oai_pubmedcentral_nih_gov_8277831 proquest_miscellaneous_2551576756 proquest_journals_2550945155 pubmed_primary_34257310 crossref_citationtrail_10_1038_s41467_021_24173_x crossref_primary_10_1038_s41467_021_24173_x springer_journals_10_1038_s41467_021_24173_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-13 |
PublicationDateYYYYMMDD | 2021-07-13 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | DelpSLOpenSim: open-source software to create and analyze dynamic simulations of movementIEEE Trans. Biomed. Eng.2007541940195010.1109/TBME.2007.901024 KrustrupPJonesAMWilkersonDPCalbetJABangsboJMuscular and pulmonary O2 uptake kinetics during moderate-and high-intensity sub-maximal knee-extensor exercise in humansJ. Physiol.2009587184318561:CAS:528:DC%2BD1MXnt1Gnt7g%3D19255119268396910.1113/jphysiol.2008.166397 MoseniaASusmitaS-KAnandRNiraKJWearable medical sensor-based system design: a surveyIEEE Trans. Multi-Scale Comput. Syst.2017312413810.1109/TMSCS.2017.2675888 Slade, P., Kochenderfer, M. J., Delp, S. L. & Collins, S. H. Sensing leg movement enhances wearable monitoring of energy expenditure. https://doi.org/10.5281/zenodo.4891704 (2021). UmbergerBRGerritsenKGMartinPEA model of human muscle energy expenditureComput. Methods Biomech. Biomed. Engin.20036991111274542410.1080/1025584031000091678 MifflinMDA new predictive equation for resting energy expenditure in healthy individualsAm. J. Clin. Nutr.1990512412471:STN:280:DyaK3c7msVCltA%3D%3D230571110.1093/ajcn/51.2.241 UchidaTKSimulating ideal assistive devices to reduce the metabolic cost of runningPLoS ONE201611e016341727656901503358410.1371/journal.pone.0163417 Global health risks: mortality and burden of disease attributable to selected major risks (World Health Organization, Geneva, Switzerland, 2010). BizeRJohnsonJAPlotnikoffRCPhysical activity level and health-related quality of life in the general adult population: a systematic reviewPrev. Med.2007454014151770749810.1016/j.ypmed.2007.07.017 Shcherbina, A. et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J. Pers. Med.7, 3 (2017). SwartAMEstimation of energy expenditure using CSA accelerometers at hip and wrist sitesMed Sci. Sports Exerc.200032S45045610.1097/00005768-200009001-00003 Physical Activity Guidelines Report (Physical Activity Guidelines Advisory Committee, US Department of Health and Human Services, Washington, DC, 2018). LuKFusion of heart rate, respiration and motion measurements from a wearable sensor system to enhance energy expenditure estimationSensors20181830922018Senso..18.3092L616412010.3390/s18093092 HendelmanDMillerKBaggettCDeboldEFreedsonPValidity of accelerometry for the assessment of moderate intensity physical activity in the fieldMed. Sci. Sports Exerc200032S4424491:STN:280:DC%2BD3cvktlehsQ%3D%3D1099341310.1097/00005768-200009001-00002 LiuGZWuDMeiZYZhuQSWangLAutomatic detection of respiratory rate from electrocardiogram, respiration induced plethysmography and 3D acceleration signalsJ. Cent. South Univ.2013202423243110.1007/s11771-013-1752-z PopeZCZengNLiXLiuWGaoZAccuracy of commercially available Smartwatches in assessing energy expenditure during rest and exerciseJ. Meas. Phys. Behav.20192738110.1123/jmpb.2018-0037 National Health Interview Survey, 1997–2015 (National Center for Health Statistics, US Department of Health and Human Services, Washington, DC, 2015). DonelanJMKramRKuoADMechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walkingJ. Exp. Biol.2002205371737271240949810.1242/jeb.205.23.3717 SasakiJEJohnDFreedsonPSValidation and comparison of ActiGraph Activity MonitorsJ. Sci. Med. Sport2011144114162161671410.1016/j.jsams.2011.04.003 Van der WaltWHWyndhamCHAn equation for prediction of energy expenditure of walking and runningJ. Appl. Physiol.197334559563470372810.1152/jappl.1973.34.5.559 Sauro, J. A practical guide to the System Usability Scale: Background, benchmarks, and best practices. (Measuring Usability LLC, 2011). Outdoor participation report 2018 (Outdoor Foundation, Boulder, CO, 2018). PlasquiGWesterterpKRPhysical activity assessment with accelerometers: an evaluation against doubly labeled waterObes. (Silver Spring)2007152371237910.1038/oby.2007.281 KlepinKWingDHigginsMNicholsJGodinoJGValidity of cardiorespiratory fitness measured with fitbit compared to V˙O2maxMed Sci. Sports Exerc2019512251225631107835702847710.1249/MSS.0000000000002041 Chin, J. P., Diehl, V. A. & Norman, K. L. Development of an instrument measuring user satisfaction of the human-computer interface. In Proceedings of the SIGCHI conference on Human factors in computing systems 213–218 (1988). Orendurff, M. A., Schoen, J. A., Bernatz, G. C., Segal, A. D. & Klute, G. K. How humans walk: bout duration, steps per bout, and rest duration. J. Rehabil. Res. Dev. 45, 1077–1089 (2008). Brooke, J. SUS: a quick and dirty usability scale. In: Usability evaluation in industry 189–194 (Taylor & Francis, 1996). MomeniKFaghriPDEvansMLower-extremity joint kinematics and muscle activations during semi-reclined cycling at different workloads in healthy individualsJ. Neuroeng. Rehabil.20141125325920421684210.1186/1743-0003-11-146 SelingerJCDonelanJMEstimating instantaneous energetic cost during non-steady-state gaitJ. Appl Physiol.2014117140614152525787310.1152/japplphysiol.00445.2014 Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of obesity among adults and youth: United States, 2015–2016 (NCHS Data Brief, US Department of Health and Human Services, Washington, DC, 2017). SeethapathiNSrinivasanMThe metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimatesBiol. Lett.201511910.1098/rsbl.2015.0486 FosterRCPrecision and accuracy of an ankle-worn accelerometer-based pedometer in step counting and energy expenditurePrev. Med.2005417787832005soea.book.....F1612576010.1016/j.ypmed.2005.07.006 HallKDEnergy balance and its components: implications for body weight regulationAm. J. Clin. Nutr.20129598999422434603330236910.3945/ajcn.112.036350 SchoellerDAEnergy expenditure by doubly labeled water: validation in humans and proposed calculationAm. J. Physiol.19862508238301986teco.conf.....S Hicks, J. L., Uchida, T. K., Seth, A., Rajagopal, A. & Delp, S. L. Is my model good enough? Best practices for verification and validation of Musculoskeletal Models and simulations of movement. J. Biomech. Eng.137, 020905 (2015). HenriksenAJohanssonJHartvigsenGGrimsgaardSHopstockLAMeasuring physical activity using triaxial wrist worn polar activity trackers: a systematic reviewInt. J. Exerc. Sci.202013438454325091227241625 Leonov, V. & Vullers, R. J. Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J. Renew. Sustain. Energy1, 062701 (2009). RajagopalAFull-body Musculoskeletal Model for muscle-driven simulation of human gaitIEEE Trans. Biomed. Eng.2016632068207927392337550721110.1109/TBME.2016.2586891 Koelewijn, A. D., Heinrich, D. & Van Den Bogert, A. J. cost calculations of gait using musculoskeletal energy models, a comparison study. PloS ONE14, e0222037 (2019). NicolòAMassaroniCPassfieldLRespiratory frequency during exercise: the neglected physiological measureFront. Physiol.2017892229321742573220910.3389/fphys.2017.00922 JasiewiczJMGait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individualsGait Posture2006245025091650010210.1016/j.gaitpost.2005.12.017 SladePTroutmanRKochenderferMJCollinsSHDelpSLRapid energy expenditure estimation for ankle assisted and inclined loaded walkingJ. Neuroeng. Rehabil.2019166731171003655573310.1186/s12984-019-0535-7 BrageSBranched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditureJ. Appl. Physiol.2004963433512009ApPhA..96..343B1297244110.1152/japplphysiol.00703.2003 BrisswalterJHausswirthCSmithDVercruyssenFVallierJMEnergetically optimal cadence vs. freely-chosen cadence during cycling: effect of exercise durationInt. J. Sports Med.20002160641:STN:280:DC%2BD3c7ksFejtA%3D%3D1068310110.1055/s-2000-8857 Lu, K. et al. Wearable cardiorespiratory monitoring system for unobtrusive free-living energy expenditure tracking. World Congress on Medical Physics and Biomedical Engineering, 1, 433–437 (2019). IngrahamKAFerrisDPRemyCDEvaluating physiological signal salience for estimating metabolic energy cost from wearable sensorsJ. Appl. Physiol.201912671772930629472645938410.1152/japplphysiol.00714.2018 KnaggsJDLarkinKAManiniTMMetabolic cost of daily activities and effect of mobility impairment in older adultsJ. Am. Geriatr. Soc.201159211821232209197910.1111/j.1532-5415.2011.03655.x HoldyKEMonitoring energy metabolism with indirect calorimetry: instruments, interpretation, and clinical applicationNutr. Clin. Pract.2004194474541621513810.1177/0115426504019005447 CeesaySMThe use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetryBr. J. Nutr.1989611751861:STN:280:DyaL1M3gslCisQ%3D%3D270622310.1079/BJN19890107 MelansonELCommercially available pedometers: considerations for accurate step countingPrev. Med.2004393613681522604710.1016/j.ypmed.2004.01.032 JacksonRWDembiaCLDelpSLCollinsSHMuscle–tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walkingJ. Exp. Biol.201722020822095283416636514464 CrouterSEChurillaJRBassettDREstimatingDRenergy expenditure using accelerometersEur. J. Appl. Physiol.2006986016121705810210.1007/s00421-006-0307-5 PrinceSAA comparison of direct versus self-report measures for assessing physical activity in adults: a systematic reviewInt J. Behav. Nutr. Phys. Act.2008518990237258863910.1186/1479-5868-5-56 ChenKYPredicting energy expenditure of physical activity using hip-and wrist-worn accelerometersDiabetes Technol. Ther.20035102310331470920610.1089/152091503322641088 WH Van der Walt (24173_CR24) 1973; 34 KY Chen (24173_CR33) 2003; 5 SE Crouter (24173_CR26) 2006; 98 D Hendelman (24173_CR36) 2000; 32 SA Prince (24173_CR12) 2008; 5 TK Uchida (24173_CR20) 2016; 11 24173_CR41 24173_CR42 24173_CR45 A Mosenia (24173_CR10) 2017; 3 ZC Pope (24173_CR31) 2019; 2 A Henriksen (24173_CR38) 2020; 13 EL Melanson (24173_CR13) 2004; 39 BR Umberger (24173_CR22) 2003; 6 JM Jasiewicz (24173_CR49) 2006; 24 KD Hall (24173_CR3) 2012; 95 JE Sasaki (24173_CR37) 2011; 14 24173_CR2 24173_CR1 24173_CR40 24173_CR4 24173_CR30 24173_CR8 P Slade (24173_CR35) 2019; 16 SL Delp (24173_CR19) 2007; 54 GZ Liu (24173_CR28) 2013; 20 24173_CR9 24173_CR39 SM Ceesay (24173_CR27) 1989; 61 K Lu (24173_CR29) 2018; 18 KA Ingraham (24173_CR16) 2019; 126 DA Schoeller (24173_CR17) 1986; 250 K Momeni (24173_CR46) 2014; 11 J Brisswalter (24173_CR48) 2000; 21 RW Jackson (24173_CR51) 2017; 220 MD Mifflin (24173_CR6) 1990; 51 JC Selinger (24173_CR43) 2014; 117 N Seethapathi (24173_CR44) 2015; 11 JD Knaggs (24173_CR7) 2011; 59 24173_CR23 P Krustrup (24173_CR50) 2009; 587 S Brage (24173_CR32) 2004; 96 AM Swart (24173_CR25) 2000; 32 JM Donelan (24173_CR21) 2002; 205 A Nicolò (24173_CR47) 2017; 8 RC Foster (24173_CR14) 2005; 41 KE Holdy (24173_CR15) 2004; 19 K Klepin (24173_CR34) 2019; 51 24173_CR53 24173_CR54 24173_CR11 R Bize (24173_CR5) 2007; 45 G Plasqui (24173_CR18) 2007; 15 A Rajagopal (24173_CR52) 2016; 63 |
References_xml | – reference: KrustrupPJonesAMWilkersonDPCalbetJABangsboJMuscular and pulmonary O2 uptake kinetics during moderate-and high-intensity sub-maximal knee-extensor exercise in humansJ. Physiol.2009587184318561:CAS:528:DC%2BD1MXnt1Gnt7g%3D19255119268396910.1113/jphysiol.2008.166397 – reference: Outdoor participation report 2018 (Outdoor Foundation, Boulder, CO, 2018). – reference: SelingerJCDonelanJMEstimating instantaneous energetic cost during non-steady-state gaitJ. Appl Physiol.2014117140614152525787310.1152/japplphysiol.00445.2014 – reference: SasakiJEJohnDFreedsonPSValidation and comparison of ActiGraph Activity MonitorsJ. Sci. Med. Sport2011144114162161671410.1016/j.jsams.2011.04.003 – reference: MoseniaASusmitaS-KAnandRNiraKJWearable medical sensor-based system design: a surveyIEEE Trans. Multi-Scale Comput. Syst.2017312413810.1109/TMSCS.2017.2675888 – reference: JasiewiczJMGait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individualsGait Posture2006245025091650010210.1016/j.gaitpost.2005.12.017 – reference: LuKFusion of heart rate, respiration and motion measurements from a wearable sensor system to enhance energy expenditure estimationSensors20181830922018Senso..18.3092L616412010.3390/s18093092 – reference: MifflinMDA new predictive equation for resting energy expenditure in healthy individualsAm. J. Clin. Nutr.1990512412471:STN:280:DyaK3c7msVCltA%3D%3D230571110.1093/ajcn/51.2.241 – reference: MelansonELCommercially available pedometers: considerations for accurate step countingPrev. Med.2004393613681522604710.1016/j.ypmed.2004.01.032 – reference: CeesaySMThe use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetryBr. J. Nutr.1989611751861:STN:280:DyaL1M3gslCisQ%3D%3D270622310.1079/BJN19890107 – reference: HallKDEnergy balance and its components: implications for body weight regulationAm. J. Clin. Nutr.20129598999422434603330236910.3945/ajcn.112.036350 – reference: DelpSLOpenSim: open-source software to create and analyze dynamic simulations of movementIEEE Trans. Biomed. Eng.2007541940195010.1109/TBME.2007.901024 – reference: MomeniKFaghriPDEvansMLower-extremity joint kinematics and muscle activations during semi-reclined cycling at different workloads in healthy individualsJ. Neuroeng. Rehabil.20141125325920421684210.1186/1743-0003-11-146 – reference: RajagopalAFull-body Musculoskeletal Model for muscle-driven simulation of human gaitIEEE Trans. Biomed. Eng.2016632068207927392337550721110.1109/TBME.2016.2586891 – reference: UmbergerBRGerritsenKGMartinPEA model of human muscle energy expenditureComput. Methods Biomech. Biomed. Engin.20036991111274542410.1080/1025584031000091678 – reference: BrisswalterJHausswirthCSmithDVercruyssenFVallierJMEnergetically optimal cadence vs. freely-chosen cadence during cycling: effect of exercise durationInt. J. Sports Med.20002160641:STN:280:DC%2BD3c7ksFejtA%3D%3D1068310110.1055/s-2000-8857 – reference: FosterRCPrecision and accuracy of an ankle-worn accelerometer-based pedometer in step counting and energy expenditurePrev. Med.2005417787832005soea.book.....F1612576010.1016/j.ypmed.2005.07.006 – reference: SeethapathiNSrinivasanMThe metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimatesBiol. Lett.201511910.1098/rsbl.2015.0486 – reference: PrinceSAA comparison of direct versus self-report measures for assessing physical activity in adults: a systematic reviewInt J. Behav. Nutr. Phys. Act.2008518990237258863910.1186/1479-5868-5-56 – reference: HendelmanDMillerKBaggettCDeboldEFreedsonPValidity of accelerometry for the assessment of moderate intensity physical activity in the fieldMed. Sci. Sports Exerc200032S4424491:STN:280:DC%2BD3cvktlehsQ%3D%3D1099341310.1097/00005768-200009001-00002 – reference: SladePTroutmanRKochenderferMJCollinsSHDelpSLRapid energy expenditure estimation for ankle assisted and inclined loaded walkingJ. Neuroeng. Rehabil.2019166731171003655573310.1186/s12984-019-0535-7 – reference: UchidaTKSimulating ideal assistive devices to reduce the metabolic cost of runningPLoS ONE201611e016341727656901503358410.1371/journal.pone.0163417 – reference: JacksonRWDembiaCLDelpSLCollinsSHMuscle–tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walkingJ. Exp. Biol.201722020822095283416636514464 – reference: LiuGZWuDMeiZYZhuQSWangLAutomatic detection of respiratory rate from electrocardiogram, respiration induced plethysmography and 3D acceleration signalsJ. Cent. South Univ.2013202423243110.1007/s11771-013-1752-z – reference: Lu, K. et al. Wearable cardiorespiratory monitoring system for unobtrusive free-living energy expenditure tracking. World Congress on Medical Physics and Biomedical Engineering, 1, 433–437 (2019). – reference: PlasquiGWesterterpKRPhysical activity assessment with accelerometers: an evaluation against doubly labeled waterObes. (Silver Spring)2007152371237910.1038/oby.2007.281 – reference: HenriksenAJohanssonJHartvigsenGGrimsgaardSHopstockLAMeasuring physical activity using triaxial wrist worn polar activity trackers: a systematic reviewInt. J. Exerc. Sci.202013438454325091227241625 – reference: Sauro, J. A practical guide to the System Usability Scale: Background, benchmarks, and best practices. (Measuring Usability LLC, 2011). – reference: Physical Activity Guidelines Report (Physical Activity Guidelines Advisory Committee, US Department of Health and Human Services, Washington, DC, 2018). – reference: National Health Interview Survey, 1997–2015 (National Center for Health Statistics, US Department of Health and Human Services, Washington, DC, 2015). – reference: Hicks, J. L., Uchida, T. K., Seth, A., Rajagopal, A. & Delp, S. L. Is my model good enough? Best practices for verification and validation of Musculoskeletal Models and simulations of movement. J. Biomech. Eng.137, 020905 (2015). – reference: Van der WaltWHWyndhamCHAn equation for prediction of energy expenditure of walking and runningJ. Appl. Physiol.197334559563470372810.1152/jappl.1973.34.5.559 – reference: BrageSBranched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditureJ. Appl. Physiol.2004963433512009ApPhA..96..343B1297244110.1152/japplphysiol.00703.2003 – reference: Chin, J. P., Diehl, V. A. & Norman, K. L. Development of an instrument measuring user satisfaction of the human-computer interface. In Proceedings of the SIGCHI conference on Human factors in computing systems 213–218 (1988). – reference: Global health risks: mortality and burden of disease attributable to selected major risks (World Health Organization, Geneva, Switzerland, 2010). – reference: Orendurff, M. A., Schoen, J. A., Bernatz, G. C., Segal, A. D. & Klute, G. K. How humans walk: bout duration, steps per bout, and rest duration. J. Rehabil. Res. Dev. 45, 1077–1089 (2008). – reference: NicolòAMassaroniCPassfieldLRespiratory frequency during exercise: the neglected physiological measureFront. Physiol.2017892229321742573220910.3389/fphys.2017.00922 – reference: ChenKYPredicting energy expenditure of physical activity using hip-and wrist-worn accelerometersDiabetes Technol. Ther.20035102310331470920610.1089/152091503322641088 – reference: IngrahamKAFerrisDPRemyCDEvaluating physiological signal salience for estimating metabolic energy cost from wearable sensorsJ. Appl. Physiol.201912671772930629472645938410.1152/japplphysiol.00714.2018 – reference: Slade, P., Kochenderfer, M. J., Delp, S. L. & Collins, S. H. Sensing leg movement enhances wearable monitoring of energy expenditure. https://doi.org/10.5281/zenodo.4891704 (2021). – reference: KlepinKWingDHigginsMNicholsJGodinoJGValidity of cardiorespiratory fitness measured with fitbit compared to V˙O2maxMed Sci. Sports Exerc2019512251225631107835702847710.1249/MSS.0000000000002041 – reference: CrouterSEChurillaJRBassettDREstimatingDRenergy expenditure using accelerometersEur. J. Appl. Physiol.2006986016121705810210.1007/s00421-006-0307-5 – reference: Koelewijn, A. D., Heinrich, D. & Van Den Bogert, A. J. cost calculations of gait using musculoskeletal energy models, a comparison study. PloS ONE14, e0222037 (2019). – reference: Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of obesity among adults and youth: United States, 2015–2016 (NCHS Data Brief, US Department of Health and Human Services, Washington, DC, 2017). – reference: Brooke, J. SUS: a quick and dirty usability scale. In: Usability evaluation in industry 189–194 (Taylor & Francis, 1996). – reference: SwartAMEstimation of energy expenditure using CSA accelerometers at hip and wrist sitesMed Sci. Sports Exerc.200032S45045610.1097/00005768-200009001-00003 – reference: Leonov, V. & Vullers, R. J. Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J. Renew. Sustain. Energy1, 062701 (2009). – reference: HoldyKEMonitoring energy metabolism with indirect calorimetry: instruments, interpretation, and clinical applicationNutr. Clin. Pract.2004194474541621513810.1177/0115426504019005447 – reference: SchoellerDAEnergy expenditure by doubly labeled water: validation in humans and proposed calculationAm. J. Physiol.19862508238301986teco.conf.....S – reference: Shcherbina, A. et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J. Pers. Med.7, 3 (2017). – reference: DonelanJMKramRKuoADMechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walkingJ. Exp. Biol.2002205371737271240949810.1242/jeb.205.23.3717 – reference: KnaggsJDLarkinKAManiniTMMetabolic cost of daily activities and effect of mobility impairment in older adultsJ. Am. Geriatr. Soc.201159211821232209197910.1111/j.1532-5415.2011.03655.x – reference: PopeZCZengNLiXLiuWGaoZAccuracy of commercially available Smartwatches in assessing energy expenditure during rest and exerciseJ. Meas. Phys. Behav.20192738110.1123/jmpb.2018-0037 – reference: BizeRJohnsonJAPlotnikoffRCPhysical activity level and health-related quality of life in the general adult population: a systematic reviewPrev. Med.2007454014151770749810.1016/j.ypmed.2007.07.017 – ident: 24173_CR30 doi: 10.1007/978-981-10-9035-6_80 – volume: 18 start-page: 3092 year: 2018 ident: 24173_CR29 publication-title: Sensors doi: 10.3390/s18093092 – ident: 24173_CR40 – volume: 587 start-page: 1843 year: 2009 ident: 24173_CR50 publication-title: J. Physiol. doi: 10.1113/jphysiol.2008.166397 – volume: 11 year: 2014 ident: 24173_CR46 publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-146 – ident: 24173_CR23 doi: 10.1371/journal.pone.0222037 – volume: 34 start-page: 559 year: 1973 ident: 24173_CR24 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1973.34.5.559 – ident: 24173_CR11 – volume: 39 start-page: 361 year: 2004 ident: 24173_CR13 publication-title: Prev. Med. doi: 10.1016/j.ypmed.2004.01.032 – volume: 220 start-page: 2082 year: 2017 ident: 24173_CR51 publication-title: J. Exp. Biol. – ident: 24173_CR8 – ident: 24173_CR4 – volume: 5 year: 2008 ident: 24173_CR12 publication-title: Int J. Behav. Nutr. Phys. Act. doi: 10.1186/1479-5868-5-56 – volume: 11 start-page: 9 year: 2015 ident: 24173_CR44 publication-title: Biol. Lett. doi: 10.1098/rsbl.2015.0486 – volume: 5 start-page: 1023 year: 2003 ident: 24173_CR33 publication-title: Diabetes Technol. Ther. doi: 10.1089/152091503322641088 – volume: 95 start-page: 989 year: 2012 ident: 24173_CR3 publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.112.036350 – ident: 24173_CR9 doi: 10.1682/JRRD.2007.11.0197 – volume: 63 start-page: 2068 year: 2016 ident: 24173_CR52 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2586891 – ident: 24173_CR53 doi: 10.1115/1.4029304 – volume: 51 start-page: 241 year: 1990 ident: 24173_CR6 publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/51.2.241 – volume: 32 start-page: S450 year: 2000 ident: 24173_CR25 publication-title: Med Sci. Sports Exerc. doi: 10.1097/00005768-200009001-00003 – ident: 24173_CR41 – volume: 41 start-page: 778 year: 2005 ident: 24173_CR14 publication-title: Prev. Med. doi: 10.1016/j.ypmed.2005.07.006 – volume: 13 start-page: 438 year: 2020 ident: 24173_CR38 publication-title: Int. J. Exerc. Sci. – ident: 24173_CR39 doi: 10.3390/jpm7020003 – volume: 6 start-page: 99 year: 2003 ident: 24173_CR22 publication-title: Comput. Methods Biomech. Biomed. Engin. doi: 10.1080/1025584031000091678 – volume: 98 start-page: 601 year: 2006 ident: 24173_CR26 publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-006-0307-5 – volume: 117 start-page: 1406 year: 2014 ident: 24173_CR43 publication-title: J. Appl Physiol. doi: 10.1152/japplphysiol.00445.2014 – volume: 21 start-page: 60 year: 2000 ident: 24173_CR48 publication-title: Int. J. Sports Med. doi: 10.1055/s-2000-8857 – volume: 96 start-page: 343 year: 2004 ident: 24173_CR32 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00703.2003 – ident: 24173_CR1 – volume: 126 start-page: 717 year: 2019 ident: 24173_CR16 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00714.2018 – volume: 15 start-page: 2371 year: 2007 ident: 24173_CR18 publication-title: Obes. (Silver Spring) doi: 10.1038/oby.2007.281 – ident: 24173_CR42 doi: 10.1145/57167.57203 – volume: 250 start-page: 823 year: 1986 ident: 24173_CR17 publication-title: Am. J. Physiol. – volume: 54 start-page: 1940 year: 2007 ident: 24173_CR19 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 51 start-page: 2251 year: 2019 ident: 24173_CR34 publication-title: Med Sci. Sports Exerc doi: 10.1249/MSS.0000000000002041 – volume: 24 start-page: 502 year: 2006 ident: 24173_CR49 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.12.017 – volume: 32 start-page: S442 year: 2000 ident: 24173_CR36 publication-title: Med. Sci. Sports Exerc doi: 10.1097/00005768-200009001-00002 – ident: 24173_CR54 doi: 10.5281/zenodo.4891704 – volume: 205 start-page: 3717 year: 2002 ident: 24173_CR21 publication-title: J. Exp. Biol. doi: 10.1242/jeb.205.23.3717 – volume: 61 start-page: 175 year: 1989 ident: 24173_CR27 publication-title: Br. J. Nutr. doi: 10.1079/BJN19890107 – volume: 19 start-page: 447 year: 2004 ident: 24173_CR15 publication-title: Nutr. Clin. Pract. doi: 10.1177/0115426504019005447 – ident: 24173_CR2 – ident: 24173_CR45 doi: 10.1063/1.3255465 – volume: 3 start-page: 124 year: 2017 ident: 24173_CR10 publication-title: IEEE Trans. Multi-Scale Comput. Syst. doi: 10.1109/TMSCS.2017.2675888 – volume: 2 start-page: 73 year: 2019 ident: 24173_CR31 publication-title: J. Meas. Phys. Behav. doi: 10.1123/jmpb.2018-0037 – volume: 20 start-page: 2423 year: 2013 ident: 24173_CR28 publication-title: J. Cent. South Univ. doi: 10.1007/s11771-013-1752-z – volume: 16 start-page: 67 year: 2019 ident: 24173_CR35 publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-019-0535-7 – volume: 14 start-page: 411 year: 2011 ident: 24173_CR37 publication-title: J. Sci. Med. Sport doi: 10.1016/j.jsams.2011.04.003 – volume: 11 start-page: e0163417 year: 2016 ident: 24173_CR20 publication-title: PLoS ONE doi: 10.1371/journal.pone.0163417 – volume: 59 start-page: 2118 year: 2011 ident: 24173_CR7 publication-title: J. Am. Geriatr. Soc. doi: 10.1111/j.1532-5415.2011.03655.x – volume: 8 start-page: 922 year: 2017 ident: 24173_CR47 publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00922 – volume: 45 start-page: 401 year: 2007 ident: 24173_CR5 publication-title: Prev. Med. doi: 10.1016/j.ypmed.2007.07.017 |
SSID | ssj0000391844 |
Score | 2.549989 |
Snippet | Physical inactivity is the fourth leading cause of global mortality. Health organizations have requested a tool to objectively measure physical activity.... Current methods to estimate energy expenditure are either infeasible for everyday use or associated with significant errors. Here the authors present a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4312 |
SubjectTerms | 631/1647/1888 631/61 639/166/985 692/308/575 692/700/2817 9/10 Balance Energy Energy balance Energy expenditure Energy metabolism Energy Metabolism - physiology Estimates Exercise - physiology Humanities and Social Sciences Humans Inertial platforms Kinematics Leg - physiology Metabolism Monitoring multidisciplinary Physical activity Real time Respirometry Science Science (multidisciplinary) Steady state Thigh Walking - physiology Wearable computers Wearable Electronic Devices Wearable technology Wrist |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB-KIPRF_GjrtlZS6JtdzG6S_Xi0opVC-1IF30I-VdC94t1R_e-dye5dPVv1xddLlguT3yTzIzO_AfisrJJl4VRufCtzKX2RW1kill0ZPWWyVZwKhX_8rI5O5PdTdXqv1RflhPXywL3hdr0qjYrWtqRN53hoojPWShlU7ZoQIp2-vOX3yFQ6g0WL1EUOVTJcNLtjmc4EykjAS6sW-c3CTZQE-_8XZf6bLPngxTRdRIersDJEkGyvX_kavArdOiz3PSVvN-DbL0pJ787YZThjV6MkBz5hoTun7R2zP4hsqpbCIXJm-gs2iiykEkBGev_0hj29Dm_g5PDgeP8oH7ol5A5JyCRvy1BVIXIb0Uct0iCkTt4V3nJjpbDSeGd8YRzynegxSKokdya0lULOhJyjFG9hqRt1YRNYtBUJm5natBH5V7Q1hnXILXzDTSiiyKCYWU67QUqcOlpc6vSkLRrdW1ujtXWytr7JYGf-ze9eSOPJ2V9pQ-YzSQQ7_YDQ0AM09HPQyGBrtp168MyxRgqFEKTGNhl8mg-jT9FDienCaJrmFIpUbqoM3vW7P1-JoEMOY-IM6gVcLCx1caS7OE-63U1Z140oMvgyQ9DfZT1uivcvYYoP8Lok6JMiqNiCpcn1NHzEaGpit5Pj3AGR0R0M priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxVBDA71FMEXab1uW2UE33TpXmb28iBiS2sRPIha6Nsw19NC3a3nQuu_N5m9lOOlrzuz7GwmySST5AvAa6EFz1IjYmVrHnNu01jzDHnZZN5SJluRUKHw52lxcso_nYmzDZgOtTCUVjnoxKCobWvojnwfTV98lRqSvL_6GVPXKIquDi00VN9awb4LEGP3YBNVskgmsHlwNP3ydbx1ITz0ivO-eibJq_0FD7qCMhXwMCvz-GbthApA_v-yPv9OovwjkhoOqOMteNhbluxDxwrbsOGaR3C_6zX56zF8_Eap6s2MXboZ-9EGmPAlc805bfuCXSPHUxUVDpGQ0ydY65kLpYGM-gBQbHs1d0_g9Pjo--FJ3HdRiA06J8u4zlxROJ9oj7Kr0T1Cl8qa1OpEaZ5rrqxRNlUG_SBv0XgqeGKUqwuBvhT6Iln-FCZN27jnwLwuCPBMlar26Jd5XaK5hz6HrRLlUp9HkA6Uk6aHGKdOF5cyhLrzSnbUlkhtGagtbyJ4M75z1QFs3Dn7gDZknEng2OFBO5_JXtakFZkSXuua4AxN4ipvlNacO1Gayjkfwd6wnbKX2IW85a8IXo3DKGsUQFGNa1dhTioI_aaI4Fm3--NKclJ-aCtHUK7xxdpS10eai_OA511lZVnlaQRvBw66Xdb_SbFz91_swoOMmJowQPM9mCznK_cC7aelftkLxW-G0Bkh priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5KRfBFvButEsE3DSZ7y-ZRD9Yi6IsW-rbs9VRoE-k5Rf33zmwucrQKvmZ3yTA7k50vO_MNwHPppGCNl5UNnaiECE3lBENb9iwFymRTNRUKf_iojo7F-xN5sgdsroXJSfuZ0jJ_pufssFcbkV2aEgrwzGl5hXHjNd1ySVa9UqvlvwoxnmshpvqYmusrlu6cQZmq_6r48s80yd_uSvMRdHgLbk6xY_l6lPY27MX-Dlwfu0n-uAvvPlEyer8uz-K6PB8yEfi2jP0pbeym_IY2TXVSOERuTK8oh1TGXPxXEtM_3V6jSu7B8eHbz6ujauqTUHmEH9uqY1GpmGqX0DsdAiAETcE3wdXWCe6EDd6GxnpEOilgeKRE7W3slES0hGiD8fuw3w99fAhlcooozWxru4TIK7kWAzpEFUHXNjaJF9DMmjN-IhGnXhZnJl9mc21GbRvUtsnaNt8LeLGs-TpSaPxz9hvakGUm0V_nB8PF2kzmYIJkVibnOiIs9HXUyVvnhIiy9TrGVMDBvJ1m8smNQfCExkctbQp4tgyjN9EVie3jcJnnNJL4bVQBD8bdXyTh9HnDaLiAdscudkTdHem_nGbGbs3aVvOmgJezBf0S6--qePR_0x_DDUZGTqyf_AD2txeX8QlGTFv3NLvIT6iwEN4 priority: 102 providerName: Springer Nature |
Title | Sensing leg movement enhances wearable monitoring of energy expenditure |
URI | https://link.springer.com/article/10.1038/s41467-021-24173-x https://www.ncbi.nlm.nih.gov/pubmed/34257310 https://www.proquest.com/docview/2550945155 https://www.proquest.com/docview/2551576756 https://pubmed.ncbi.nlm.nih.gov/PMC8277831 https://doaj.org/article/d52a5fbb90344c0e8fcabb44e57c8eef |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6VVkhcEOVV0zYyEjcw-LF-HRBKo6ZVJCpEiZTbap8pUrAhD7X998ys7VQpgRMXR_Ku5dXsjHe-zMw3AG9SmbI4UmkgdMkCxnQUSBajLqvYaspky0IqFP58kZ2P2WiSTnaga3fUCnCxFdpRP6nxfPb-5tftJzT4j03JePFhwZy5U7IBnkd5EqBPuefiRZTK17r77suclAhoWFs7s_3RjfPJ0fhv8z3_TKG8F0d1x9PwCTxu_Uq_3yjCPuyY6ik8bDpN3j6Ds0tKVK-m_sxM_R-1Iwlf-qa6ok1f-Neo71RDhUNk4vQKv7a-cYWBPnUBoMj2am6ew3h4-m1wHrQ9FAKF0GQZlLHJMmNDadFyJYIjBFRaRVqGQrJEMqGV0JFQiIKsRtcpY6ESpsxSRFKIROLkBexWdWUOwLcyI7ozkYvSIiqzMkdnDxGHLkJhIpt4EHWS46olGKc-FzPuAt1JwRtpc5Q2d9LmNx68XT_zs6HX-OfsE9qQ9UyixnY36vmUt5bGdRqL1EpZEpmhCk1hlZCSMZPmqjDGenDUbSfv1I0jsELFpHY3HrxeD6OlUfhEVKZeuTlRStw3mQcvm91fryShTx96yh7kG3qxsdTNker7lWPzLuI8L5LIg3edBt0t6--iePU_RHEIj2JSfeIJTY5gdzlfmWP0sZayBw_ySY7XYnjWg71-f3Q5wt-T04svX_HuIBv03L8XPWdgvwElnSq_ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxVBEK6QR4xejLsjqGOiJ50wS892IEYUfAi8GIWEW9PrwwRm8C0B_py_zaqehTwXblynezI9VdXVVV1VXwG8TmXK4kilgdAlCxjTUSBZjLKsYqspky0LqVB4b5QND9iXw_RwCX51tTCUVtnpRKeoda3ojnwNTV98lRqSvD_7GVDXKIqudi00RNtaQa87iLG2sGPHXJ6jCzdd3_6E_H4Tx1ub-x-HQdtlIFBovM-CMjZZZmwoLcq2RPcBXQ6tIi1DIVkimdBK6Ego9BOsRuMiY6ESpsxS9DXQVifgAzwClhldoAxgeWNz9PVbf8tD-OsFY221TpgUa1PmdBNlRuDhmSfBxcKJ6BoH_Mva_Ttp84_IrTsQt-7B3daS9T80oncflkz1AG41vS0vH8Ln75QaX439EzP2T2sHSz7zTXVMYjb1z5F0VLWFQ6RU6BN-bX3jShF96jtAsfT5xDyCgxuh52MYVHVlnoJvZUYAayIXpUU_0MoczUv0cXQRChPZxIOooxxXLaQ5ddY44S60nhS8oTZHanNHbX7hwdv-nbMG0OPa2RvEkH4mgXG7B_VkzNu9zXUai9RKWRJ8ogpNYZWQkjGT5qowxnqw2rGTtxpiyq_k2YNX_TDubQrYiMrUczcnSgltJ_PgScP9fiUJKVu0zT3IF-RiYamLI9WPY4cfXsR5XiSRB-86Cbpa1v9J8ez6v3gJt4f7e7t8d3u0swJ3YhJwwh9NVmEwm8zNc7TdZvJFu0F8OLrpPfkbg8JWBg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9VADLaqIhAXxE5KgSDBCaKXZZJJDggB5dFSqJCg0rsNs74itUl5i9r-NX4d9mSpHktvvWYmysRje-yx_RngWa5yliY6j6SpWMSYSSLFUuRlnTpDmWxFTIXCn_eK7X32cZJP1uBXXwtDaZW9TvSK2jSa7shHaPriq9SQZOS6tIgvW-PXxz8j6iBFkda-nUbLIrv27ATdt_mrnS3c6-dpOn7_7d121HUYiDQa7ouoSm1RWBcrh3yt0HVAd8PoxKhYKpYpJo2WJpEafQRn0LAoWKylrYoc_Qy00wn0ANX_FZ4xRm0j-IQP9zuEvF4y1tXpxFk5mjOvlSgnAo9NnkWnK2ehbxnwLzv373TNP2K2_igc34QbnQ0bvmmZ7has2fo2XG27Wp7dgQ9fKSm-noaHdhoeNR6QfBHa-oAYbB6eIOGoXguHSJ3QJ8LGhdYXIYbUcYCi6MuZvQv7l0LNe7BeN7V9AKFTBUGrSS4rhx6gUxwNS_RuTBlLm7gsgKSnnNAdmDn11DgUPqielaKltkBqC09tcRrAi-Gd4xbK48LZb2lDhpkEw-0fNLOp6KRamDyVuVOqIuBEHdvSaakUYzbnurTWBbDZb6fodMNcnHNyAE-HYZRqCtXI2jZLPyfJCWenCOB-u_vDSjJSs2iVB8BX-GJlqasj9Y8DjxxeppyXWRLAy56Dzpf1f1JsXPwXT-AaSqL4tLO3-xCup8TfBDyabcL6Yra0j9BoW6jHXjpC-H7Z4vgbLbVTog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensing+leg+movement+enhances+wearable+monitoring+of+energy+expenditure&rft.jtitle=Nature+communications&rft.au=Patrick+Slade&rft.au=Mykel+J.+Kochenderfer&rft.au=Scott+L.+Delp&rft.au=Steven+H.+Collins&rft.date=2021-07-13&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-021-24173-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d52a5fbb90344c0e8fcabb44e57c8eef |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |