Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes

Astrocytes play important roles in neurological disorders such as stroke, injury, and neurodegeneration. Most knowledge on astrocyte biology is based on studies of mouse models and the similarities and differences between human and mouse astrocytes are insufficiently characterized, presenting a barr...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 3958 - 20
Main Authors Li, Jiwen, Pan, Lin, Pembroke, William G., Rexach, Jessica E., Godoy, Marlesa I., Condro, Michael C., Alvarado, Alvaro G., Harteni, Mineli, Chen, Yen-Wei, Stiles, Linsey, Chen, Angela Y., Wanner, Ina B., Yang, Xia, Goldman, Steven A., Geschwind, Daniel H., Kornblum, Harley I., Zhang, Ye
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.06.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-021-24232-3

Cover

More Information
Summary:Astrocytes play important roles in neurological disorders such as stroke, injury, and neurodegeneration. Most knowledge on astrocyte biology is based on studies of mouse models and the similarities and differences between human and mouse astrocytes are insufficiently characterized, presenting a barrier in translational research. Based on analyses of acutely purified astrocytes, serum-free cultures of primary astrocytes, and xenografted chimeric mice, we find extensive conservation in astrocytic gene expression between human and mouse samples. However, the genes involved in defense response and metabolism show species-specific differences. Human astrocytes exhibit greater susceptibility to oxidative stress than mouse astrocytes, due to differences in mitochondrial physiology and detoxification pathways. In addition, we find that mouse but not human astrocytes activate a molecular program for neural repair under hypoxia, whereas human but not mouse astrocytes activate the antigen presentation pathway under inflammatory conditions. Here, we show species-dependent properties of astrocytes, which can be informative for improving translation from mouse models to humans. Astrocytes are important players in brain development, homeostasis, and disease. Here, the authors compare the transcriptional profiles of human and mouse astrocytes. They report species-specific susceptibility to oxidative stress and response to hypoxic and inflammatory conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24232-3