Designing an irreversible metabolic switch for scalable induction of microbial chemical production

Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers li...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 3419 - 11
Main Authors Mannan, Ahmad A., Bates, Declan G.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.06.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-021-23606-x

Cover

Abstract Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell’s native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production. A promising strategy to increase product synthesis from bacteria uses inducible systems to switch metabolism to production. Here, the authors use models to show how engineering positive feedback loops into the genetic circuitry creates a switch that requires only temporary induction with a cheap nutrient to switch metabolism irreversibly, and so drastically reduce inducer use and cost.
AbstractList A promising strategy to increase product synthesis from bacteria uses inducible systems to switch metabolism to production. Here, the authors use models to show how engineering positive feedback loops into the genetic circuitry creates a switch that requires only temporary induction with a cheap nutrient to switch metabolism irreversibly, and so drastically reduce inducer use and cost.
Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell's native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production.
Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell’s native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production.
Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell’s native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production.A promising strategy to increase product synthesis from bacteria uses inducible systems to switch metabolism to production. Here, the authors use models to show how engineering positive feedback loops into the genetic circuitry creates a switch that requires only temporary induction with a cheap nutrient to switch metabolism irreversibly, and so drastically reduce inducer use and cost.
Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell’s native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production. A promising strategy to increase product synthesis from bacteria uses inducible systems to switch metabolism to production. Here, the authors use models to show how engineering positive feedback loops into the genetic circuitry creates a switch that requires only temporary induction with a cheap nutrient to switch metabolism irreversibly, and so drastically reduce inducer use and cost.
Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell's native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production.Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell's native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production.
ArticleNumber 3419
Author Bates, Declan G.
Mannan, Ahmad A.
Author_xml – sequence: 1
  givenname: Ahmad A.
  orcidid: 0000-0001-7628-8416
  surname: Mannan
  fullname: Mannan, Ahmad A.
  organization: Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick
– sequence: 2
  givenname: Declan G.
  orcidid: 0000-0003-1395-9846
  surname: Bates
  fullname: Bates, Declan G.
  email: D.Bates@warwick.ac.uk
  organization: Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34103495$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV_gAOKxIVLwN-JL0iofFWqxAXO1rPzsutVYi920pZ_j7e7lLaH-uJne2Y89puX1VGIAavqNSXvKeHdhyyoUG1DGG0YV0Q1N8-qE0YEbWjL-NG9-rg6y3lDyuCadkK8qI65KBpCy5PKfsbsV8GHVQ2h9inhFabs7Yj1hDPYOHpX52s_u3U9xFRnByPsTn3oFzf7GOo41JN3KVoPY-3WWBal2KZ4ALyqng8wZjw7zKfVr69ffp5_by5_fLs4_3TZuGJ_biRIy1vdO20J6KEfhOoZaOwdawc7sJ4TwSlaarUEjqCZ5qzVHBmVRDnHT6uLvW4fYWO2yU-Q_pgI3txuxLQykGbvRjSayYFbsERoEAq47jupNBUSiYDeYtH6uNfaLnYqFjDMCcYHog9Pgl-bVbwyHe1apVQReHcQSPH3gnk2k88OxxECxiUbJrmWTLVtV6BvH0E3cUmhfNUO1RU92sqCenPf0Z2Vf60sALYHlFbknHC4g1BidpEx-8iYEhlzGxlzU0jdI5LzM-y6Vl7lx6epfE_N5Z6wwvTf9hOsv4Xk164
CitedBy_id crossref_primary_10_1016_j_isci_2025_111787
crossref_primary_10_1093_jimb_kuad033
crossref_primary_10_3389_fmicb_2022_854272
crossref_primary_10_1007_s00253_023_12411_9
crossref_primary_10_1093_jimb_kuad010
crossref_primary_10_1016_j_ijfoodmicro_2022_109785
crossref_primary_10_1016_j_apsadv_2022_100283
crossref_primary_10_1021_acssynbio_3c00228
crossref_primary_10_1016_j_copbio_2024_103133
crossref_primary_10_1016_j_ymben_2022_04_003
crossref_primary_10_1093_nar_gkae1149
crossref_primary_10_1039_D3NP00049D
crossref_primary_10_1016_j_biotechadv_2022_108077
crossref_primary_10_1093_nar_gkac476
crossref_primary_10_1002_rnc_6012
crossref_primary_10_1038_s41467_024_55347_y
crossref_primary_10_1016_j_tibtech_2022_10_005
Cites_doi 10.1093/nar/gkw1003
10.1021/sb300129j
10.1099/00221287-143-7-2439
10.1021/acssynbio.6b00361
10.1073/pnas.1416533112
10.1126/science.aay2790
10.1007/s10295-018-2013-9
10.1016/j.jbiotec.2014.10.031
10.1016/S0955-0674(02)00314-9
10.1093/emboj/20.10.2528
10.1021/acssynbio.7b00172
10.1128/EC.5.5.794-805.2006
10.1038/srep33101
10.1016/j.bpj.2015.06.034
10.1016/j.jbiosc.2016.12.009
10.1186/1754-6834-7-7
10.1155/2008/735101
10.1099/mic.0.067975-0
10.1038/nrg2102
10.1038/ncomms6007
10.1098/rsif.2015.0618
10.1002/biot.201700539
10.1016/j.cels.2016.01.004
10.1016/j.ymben.2008.06.004
10.1038/35002131
10.1038/nature07389
10.1021/acssynbio.8b00531
10.1126/science.1192588
10.1074/jbc.M606831200
10.1038/nmeth.2926
10.1073/pnas.0308265100
10.1111/1567-1364.12141
10.1021/acssynbio.8b00284
10.1186/1475-2859-11-87
10.1038/nbt.3796
10.1038/nrmicro3238
10.1038/35002125
10.1074/jbc.273.50.33652
10.1002/biot.201400422
10.1038/ncomms15956
10.1016/j.tem.2008.11.001
10.1016/j.ymben.2015.04.005
10.1002/bit.20349
10.1093/femsyr/foaa038
10.1016/j.jtbi.2008.04.011
10.1038/s41467-018-02898-6
10.1016/B978-0-08-088504-9.00492-X
10.1128/mBio.03112-19
10.1371/journal.pcbi.1002085
10.5281/zenodo.4740664
10.1038/msb.2010.10
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-23606-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_925f3bab049a46a39d8569145e04adbe
PMC8187666
34103495
10_1038_s41467_021_23606_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M017982/1
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-5a5b379dc9b0a9fdf46d2a9edc27fbf2d30431eb1b95a3ea92932793e21506cc3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:26:11 EDT 2025
Thu Aug 21 18:14:33 EDT 2025
Fri Sep 05 09:08:13 EDT 2025
Wed Aug 13 09:29:23 EDT 2025
Wed Feb 19 02:06:20 EST 2025
Tue Jul 01 04:17:27 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Fri Feb 21 02:39:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-5a5b379dc9b0a9fdf46d2a9edc27fbf2d30431eb1b95a3ea92932793e21506cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7628-8416
0000-0003-1395-9846
OpenAccessLink https://www.proquest.com/docview/2538876175?pq-origsite=%requestingapplication%&accountid=15518
PMID 34103495
PQID 2538876175
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_925f3bab049a46a39d8569145e04adbe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187666
proquest_miscellaneous_2539526778
proquest_journals_2538876175
pubmed_primary_34103495
crossref_primary_10_1038_s41467_021_23606_x
crossref_citationtrail_10_1038_s41467_021_23606_x
springer_journals_10_1038_s41467_021_23606_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-08
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wen, Zhang, Odoh, Jin, Zhao (CR29) 2020; 20
Scott, Gunderson, Mateescu, Zhang, Hwa (CR45) 2010; 330
Dirusso, Tsvetnitsky, Højrup, Knudsen (CR49) 1998; 273
CR37
Angeli, Ferrell, Sontag (CR32) 2004; 101
Anesiadis, Kobayashi, Cluett, Mahadevan (CR21) 2013; 2
Mannan, Liu, Zhang, Oyarzún (CR3) 2017; 6
Anesiadis, Cluett, Mahadevan (CR14) 2008; 10
Banchio, Gramajo (CR26) 1997; 143
Su, Abumrad (CR31) 2009; 20
Ferrell (CR33) 2002; 14
Gupta, Reizman, Reisch, Prather (CR18) 2017; 35
Irzik (CR27) 2014; 192
CR5
Liu, Mannan, Han, Oyarzún, Zhang (CR11) 2018; 45
Usui (CR39) 2012; 11
CR46
Klamt, Mahadevan, Hädicke (CR12) 2018; 13
von Kamp, Klamt (CR40) 2017; 8
Qian, Huang, Jiménez, Del Vecchio (CR42) 2017; 6
Brophy, Voigt (CR1) 2014; 11
Lebar (CR35) 2014; 5
Arpino (CR38) 2013; 159
Han, Lee, Lee, Yoo (CR48) 2008; 2008
Briat, Gupta, Khammash (CR9) 2016; 2
Brockman, Prather (CR10) 2015; 10
Nikolados, Weiße, Ceroni, Oyarzún (CR44) 2019; 8
Stricker (CR7) 2008; 456
Becskei, Séraphin, Serrano (CR34) 2001; 20
Gardner, Cantor, Collins (CR4) 2000; 403
Gadkar, Doyle, Edwards, Mahadevan (CR13) 2005; 89
Chubukov, Gerosa, Kochanowski, Sauer (CR23) 2014; 12
Weiße, Oyarzún, Danos, Swain (CR43) 2015; 112
CR53
CR52
Matsuoka, Hirooka, Fujita (CR25) 2007; 282
CR50
Venayak, Raj, Jaydeep, Mahadevan (CR16) 2018; 7
Alon (CR2) 2007; 8
Janßen, Steinbüchel (CR24) 2014; 7
Chen (CR8) 2020; 368
Marino, Hogue, Ray, Kirschner (CR51) 2008; 254
Oyarzún, Chaves (CR36) 2015; 12
Gyorgy (CR41) 2015; 109
Keseler (CR47) 2017; 45
CR22
CR20
Klug, Daum (CR28) 2014; 14
Elowitz, Leibler (CR6) 2000; 403
Hynes, Murray, Duncan, Khew, Davis (CR30) 2006; 5
Soma, Yamaji, Matsuda, Hanai (CR15) 2017; 123
Soma, Hanai (CR17) 2015; 30
Ruparell (CR19) 2016; 6
JAN Brophy (23606_CR1) 2014; 11
A Gupta (23606_CR18) 2017; 35
L Klug (23606_CR28) 2014; 14
DA Oyarzún (23606_CR36) 2015; 12
23606_CR50
N Venayak (23606_CR16) 2018; 7
T Lebar (23606_CR35) 2014; 5
JAJ Arpino (23606_CR38) 2013; 159
23606_CR52
23606_CR5
23606_CR53
X Su (23606_CR31) 2009; 20
IM Brockman (23606_CR10) 2015; 10
A Ruparell (23606_CR19) 2016; 6
Z Wen (23606_CR29) 2020; 20
TS Gardner (23606_CR4) 2000; 403
C Briat (23606_CR9) 2016; 2
Y Qian (23606_CR42) 2017; 6
Y Usui (23606_CR39) 2012; 11
H Matsuoka (23606_CR25) 2007; 282
HJ Janßen (23606_CR24) 2014; 7
N Anesiadis (23606_CR14) 2008; 10
D Angeli (23606_CR32) 2004; 101
AA Mannan (23606_CR3) 2017; 6
S Klamt (23606_CR12) 2018; 13
EM Nikolados (23606_CR44) 2019; 8
23606_CR46
JE Ferrell (23606_CR33) 2002; 14
A Becskei (23606_CR34) 2001; 20
U Alon (23606_CR2) 2007; 8
Y Soma (23606_CR15) 2017; 123
MJ Han (23606_CR48) 2008; 2008
MJ Hynes (23606_CR30) 2006; 5
J Stricker (23606_CR7) 2008; 456
V Chubukov (23606_CR23) 2014; 12
Z Chen (23606_CR8) 2020; 368
23606_CR37
IM Keseler (23606_CR47) 2017; 45
CC Dirusso (23606_CR49) 1998; 273
A von Kamp (23606_CR40) 2017; 8
KG Gadkar (23606_CR13) 2005; 89
S Marino (23606_CR51) 2008; 254
K Irzik (23606_CR27) 2014; 192
MB Elowitz (23606_CR6) 2000; 403
M Scott (23606_CR45) 2010; 330
Y Soma (23606_CR17) 2015; 30
23606_CR20
N Anesiadis (23606_CR21) 2013; 2
23606_CR22
C Banchio (23606_CR26) 1997; 143
D Liu (23606_CR11) 2018; 45
AY Weiße (23606_CR43) 2015; 112
A Gyorgy (23606_CR41) 2015; 109
References_xml – volume: 45
  start-page: D543
  year: 2017
  end-page: D550
  ident: CR47
  article-title: The EcoCyc database: reflecting new knowledge about K-12
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1003
– ident: CR22
– volume: 2
  start-page: 442
  year: 2013
  end-page: 452
  ident: CR21
  article-title: Analysis and design of a genetic circuit for dynamic metabolic engineering
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb300129j
– volume: 143
  start-page: 2439
  year: 1997
  end-page: 2447
  ident: CR26
  article-title: Medium- and long-chain fatty acid uptake and utilization by Streptomyces coelicolor A3(2): First characterization of a Gram-positive bacterial system
  publication-title: Microbiology
  doi: 10.1099/00221287-143-7-2439
– volume: 6
  start-page: 1263
  year: 2017
  end-page: 1272
  ident: CR42
  article-title: Resource competition shapes the response of genetic circuits
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00361
– volume: 112
  start-page: 1038
  year: 2015
  end-page: 1047
  ident: CR43
  article-title: Mechanistic links between cellular trade-offs, gene expression, and growth
  publication-title: Proc. Natil Acad. Sci. USA
  doi: 10.1073/pnas.1416533112
– volume: 368
  start-page: 78
  year: 2020
  end-page: 84
  ident: CR8
  article-title: De novo design of protein logic gates
  publication-title: Science
  doi: 10.1126/science.aay2790
– volume: 45
  start-page: 535
  year: 2018
  end-page: 543
  ident: CR11
  article-title: Dynamic metabolic control: towards precision engineering of metabolism
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-018-2013-9
– volume: 192
  start-page: 96
  year: 2014
  end-page: 101
  ident: CR27
  article-title: Acyl-CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium glutamicum
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2014.10.031
– volume: 14
  start-page: 140
  year: 2002
  end-page: 148
  ident: CR33
  article-title: Self-perpetuating states in signal transduction: Positive feedback, double-negative feedback and bistability
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(02)00314-9
– volume: 20
  start-page: 2528
  year: 2001
  end-page: 2535
  ident: CR34
  article-title: Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.10.2528
– volume: 6
  start-page: 1851
  year: 2017
  end-page: 1859
  ident: CR3
  article-title: Fundamental design principles for transcription-factor-based metabolite biosensors
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00172
– volume: 5
  start-page: 794
  year: 2006
  end-page: 805
  ident: CR30
  article-title: Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans
  publication-title: Eukaryotic Cell
  doi: 10.1128/EC.5.5.794-805.2006
– volume: 6
  start-page: 1
  year: 2016
  end-page: 10
  ident: CR19
  article-title: The fitness burden imposed by synthesising quorum sensing signals
  publication-title: Sci. Rep.
  doi: 10.1038/srep33101
– volume: 109
  start-page: 639
  year: 2015
  end-page: 646
  ident: CR41
  article-title: Isocost lines describe the cellular economy of genetic circuits
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.06.034
– ident: CR46
– volume: 123
  start-page: 625
  year: 2017
  end-page: 633
  ident: CR15
  article-title: Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2016.12.009
– volume: 7
  year: 2014
  ident: CR24
  article-title: Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-7
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 12
  ident: CR48
  article-title: Proteome-level responses of to long-chain fatty acids and use of fatty acid inducible promoter in protein production
  publication-title: J. Biomed. Biotechnol.
  doi: 10.1155/2008/735101
– volume: 159
  start-page: 1236
  year: 2013
  end-page: 1253
  ident: CR38
  article-title: Tuning the dials of synthetic biology
  publication-title: Microbiology
  doi: 10.1099/mic.0.067975-0
– ident: CR50
– volume: 8
  start-page: 450
  year: 2007
  end-page: 61
  ident: CR2
  article-title: Network motifs: theory and experimental approaches
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2102
– volume: 5
  start-page: 1
  year: 2014
  end-page: 13
  ident: CR35
  article-title: A bistable genetic switch based on designable DNA-binding domains
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6007
– volume: 12
  start-page: 20150618
  year: 2015
  ident: CR36
  article-title: Design of a bistable switch to control cellular uptake
  publication-title: J. Royal Soc. Interface
  doi: 10.1098/rsif.2015.0618
– volume: 13
  start-page: 1700539
  year: 2018
  ident: CR12
  article-title: When do two-stage processes outperform one-stage processes?
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201700539
– volume: 2
  start-page: 15
  year: 2016
  end-page: 26
  ident: CR9
  article-title: Antithetic integral feedback ensures robust perfect adaptation in noisy bimolecular networks
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.01.004
– ident: CR5
– volume: 10
  start-page: 255
  year: 2008
  end-page: 266
  ident: CR14
  article-title: Dynamic metabolic engineering for increasing bioprocess productivity
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2008.06.004
– volume: 403
  start-page: 339
  year: 2000
  end-page: 342
  ident: CR4
  article-title: Construction of a genetic toggle switch in
  publication-title: Nature
  doi: 10.1038/35002131
– volume: 456
  start-page: 516
  year: 2008
  end-page: 519
  ident: CR7
  article-title: A fast, robust and tunable synthetic gene oscillator
  publication-title: Nature
  doi: 10.1038/nature07389
– volume: 8
  start-page: 1231
  year: 2019
  end-page: 1240
  ident: CR44
  article-title: Growth defects and loss-of-function in synthetic gene circuits
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00531
– volume: 330
  start-page: 1099
  year: 2010
  end-page: 1102
  ident: CR45
  article-title: Interdependence of cell growth and gene expression : origins and consequences
  publication-title: Science
  doi: 10.1126/science.1192588
– volume: 282
  start-page: 5180
  year: 2007
  end-page: 5194
  ident: CR25
  article-title: Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606831200
– volume: 11
  start-page: 508
  year: 2014
  end-page: 520
  ident: CR1
  article-title: Principles of genetic circuit design
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2926
– volume: 101
  start-page: 1822
  year: 2004
  end-page: 7
  ident: CR32
  article-title: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0308265100
– ident: CR37
– ident: CR53
– volume: 14
  start-page: 369
  year: 2014
  end-page: 388
  ident: CR28
  article-title: Yeast lipid metabolism at a glance
  publication-title: FEMS Yeast Res.
  doi: 10.1111/1567-1364.12141
– volume: 7
  start-page: 2854
  year: 2018
  end-page: 2866
  ident: CR16
  article-title: An Optimized bistable metabolic switch to decouple phenotypic states during anaerobic fermentation
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00284
– volume: 11
  start-page: 1
  year: 2012
  end-page: 5
  ident: CR39
  article-title: Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using 13 C metabolic flux analysis
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-11-87
– volume: 35
  start-page: 273
  year: 2017
  end-page: 279
  ident: CR18
  article-title: Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3796
– volume: 12
  start-page: 327
  year: 2014
  end-page: 40
  ident: CR23
  article-title: Coordination of microbial metabolism
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3238
– volume: 403
  start-page: 335
  year: 2000
  end-page: 338
  ident: CR6
  article-title: A synthetic oscillatory network of transcriptional regulators
  publication-title: Nature
  doi: 10.1038/35002125
– volume: 273
  start-page: 33652
  year: 1998
  end-page: 33659
  ident: CR49
  article-title: Fatty Acyl-CoA binding domain of the transcription factor FadR
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.50.33652
– volume: 10
  start-page: 1360
  year: 2015
  end-page: 1369
  ident: CR10
  article-title: Dynamic metabolic engineering: New strategies for developing responsive cell factories
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400422
– volume: 8
  year: 2017
  ident: CR40
  article-title: Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15956
– volume: 20
  start-page: 72
  year: 2009
  end-page: 77
  ident: CR31
  article-title: Cellular fatty acid uptake: a pathway under construction
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2008.11.001
– ident: CR52
– volume: 30
  start-page: 7
  year: 2015
  end-page: 15
  ident: CR17
  article-title: Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.04.005
– volume: 89
  start-page: 243
  year: 2005
  end-page: 251
  ident: CR13
  article-title: Estimating optimal profiles of genetic alterations using constraint-based models
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20349
– volume: 20
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR29
  article-title: Rhodosporidium toruloides - a potential red yeast chassis for lipids and beyond
  publication-title: FEMS Yeast Res.
  doi: 10.1093/femsyr/foaa038
– ident: CR20
– volume: 254
  start-page: 178
  year: 2008
  end-page: 196
  ident: CR51
  article-title: A methodology for performing global uncertainty and sensitivity analysis in systems biology
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2008.04.011
– ident: 23606_CR46
  doi: 10.1038/s41467-018-02898-6
– volume: 89
  start-page: 243
  year: 2005
  ident: 23606_CR13
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20349
– volume: 143
  start-page: 2439
  year: 1997
  ident: 23606_CR26
  publication-title: Microbiology
  doi: 10.1099/00221287-143-7-2439
– volume: 35
  start-page: 273
  year: 2017
  ident: 23606_CR18
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3796
– volume: 456
  start-page: 516
  year: 2008
  ident: 23606_CR7
  publication-title: Nature
  doi: 10.1038/nature07389
– volume: 5
  start-page: 794
  year: 2006
  ident: 23606_CR30
  publication-title: Eukaryotic Cell
  doi: 10.1128/EC.5.5.794-805.2006
– ident: 23606_CR53
– volume: 273
  start-page: 33652
  year: 1998
  ident: 23606_CR49
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.50.33652
– volume: 254
  start-page: 178
  year: 2008
  ident: 23606_CR51
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2008.04.011
– volume: 14
  start-page: 140
  year: 2002
  ident: 23606_CR33
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(02)00314-9
– volume: 45
  start-page: 535
  year: 2018
  ident: 23606_CR11
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-018-2013-9
– ident: 23606_CR20
– volume: 2
  start-page: 15
  year: 2016
  ident: 23606_CR9
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.01.004
– volume: 330
  start-page: 1099
  year: 2010
  ident: 23606_CR45
  publication-title: Science
  doi: 10.1126/science.1192588
– volume: 6
  start-page: 1851
  year: 2017
  ident: 23606_CR3
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00172
– volume: 30
  start-page: 7
  year: 2015
  ident: 23606_CR17
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.04.005
– volume: 5
  start-page: 1
  year: 2014
  ident: 23606_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6007
– volume: 20
  start-page: 72
  year: 2009
  ident: 23606_CR31
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2008.11.001
– volume: 101
  start-page: 1822
  year: 2004
  ident: 23606_CR32
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0308265100
– volume: 45
  start-page: D543
  year: 2017
  ident: 23606_CR47
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1003
– volume: 10
  start-page: 1360
  year: 2015
  ident: 23606_CR10
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400422
– volume: 6
  start-page: 1263
  year: 2017
  ident: 23606_CR42
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00361
– volume: 192
  start-page: 96
  year: 2014
  ident: 23606_CR27
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2014.10.031
– volume: 6
  start-page: 1
  year: 2016
  ident: 23606_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/srep33101
– volume: 109
  start-page: 639
  year: 2015
  ident: 23606_CR41
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.06.034
– volume: 7
  start-page: 2854
  year: 2018
  ident: 23606_CR16
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00284
– volume: 8
  start-page: 450
  year: 2007
  ident: 23606_CR2
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2102
– ident: 23606_CR50
  doi: 10.1016/B978-0-08-088504-9.00492-X
– volume: 123
  start-page: 625
  year: 2017
  ident: 23606_CR15
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2016.12.009
– volume: 20
  start-page: 1
  year: 2020
  ident: 23606_CR29
  publication-title: FEMS Yeast Res.
  doi: 10.1093/femsyr/foaa038
– volume: 159
  start-page: 1236
  year: 2013
  ident: 23606_CR38
  publication-title: Microbiology
  doi: 10.1099/mic.0.067975-0
– volume: 12
  start-page: 20150618
  year: 2015
  ident: 23606_CR36
  publication-title: J. Royal Soc. Interface
  doi: 10.1098/rsif.2015.0618
– volume: 403
  start-page: 335
  year: 2000
  ident: 23606_CR6
  publication-title: Nature
  doi: 10.1038/35002125
– volume: 13
  start-page: 1700539
  year: 2018
  ident: 23606_CR12
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201700539
– volume: 282
  start-page: 5180
  year: 2007
  ident: 23606_CR25
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606831200
– volume: 368
  start-page: 78
  year: 2020
  ident: 23606_CR8
  publication-title: Science
  doi: 10.1126/science.aay2790
– volume: 2
  start-page: 442
  year: 2013
  ident: 23606_CR21
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb300129j
– volume: 112
  start-page: 1038
  year: 2015
  ident: 23606_CR43
  publication-title: Proc. Natil Acad. Sci. USA
  doi: 10.1073/pnas.1416533112
– volume: 12
  start-page: 327
  year: 2014
  ident: 23606_CR23
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3238
– volume: 11
  start-page: 508
  year: 2014
  ident: 23606_CR1
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2926
– ident: 23606_CR37
  doi: 10.1128/mBio.03112-19
– volume: 403
  start-page: 339
  year: 2000
  ident: 23606_CR4
  publication-title: Nature
  doi: 10.1038/35002131
– volume: 14
  start-page: 369
  year: 2014
  ident: 23606_CR28
  publication-title: FEMS Yeast Res.
  doi: 10.1111/1567-1364.12141
– volume: 11
  start-page: 1
  year: 2012
  ident: 23606_CR39
  publication-title: Microb. Cell Factories
  doi: 10.1186/1475-2859-11-87
– volume: 8
  start-page: 1231
  year: 2019
  ident: 23606_CR44
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00531
– volume: 7
  year: 2014
  ident: 23606_CR24
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-7
– volume: 2008
  start-page: 1
  year: 2008
  ident: 23606_CR48
  publication-title: J. Biomed. Biotechnol.
  doi: 10.1155/2008/735101
– ident: 23606_CR5
  doi: 10.1371/journal.pcbi.1002085
– ident: 23606_CR52
  doi: 10.5281/zenodo.4740664
– volume: 10
  start-page: 255
  year: 2008
  ident: 23606_CR14
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2008.06.004
– ident: 23606_CR22
  doi: 10.1038/msb.2010.10
– volume: 20
  start-page: 2528
  year: 2001
  ident: 23606_CR34
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.10.2528
– volume: 8
  year: 2017
  ident: 23606_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15956
SSID ssj0000391844
Score 2.4581916
Snippet Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch...
A promising strategy to increase product synthesis from bacteria uses inducible systems to switch metabolism to production. Here, the authors use models to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3419
SubjectTerms 631/553/2691
631/553/2695
631/553/2719
631/553/552
631/61/318
Bacteria
Biotechnology
Chemical synthesis
Circuits
Control systems
Control theory
E coli
Escherichia coli - metabolism
Fatty acids
Feedback
Feedback loops
Feedback, Physiological
Homeostasis
Humanities and Social Sciences
Industrial engineering
Manufacturing engineering
Mathematical models
Metabolic Engineering
Metabolism
Microorganisms
multidisciplinary
Nutrients
Oleic Acid - metabolism
Positive feedback
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBLafp0HkWF3loTWw_bOjZJQyi0pwZyE5IsUcPGG3Y3NP33nZG822yfl14tCcvz0jfW6BPA69Y3DY-9wiSn7kppa0VFALL0deUjjxKtiE4jf_zUnF_ID5fq8s5VX1QTlumBs-CONFdROOsQyVrZWKH7TjW6lipU0vYuUPStdHUnmUoxWGhMXeR0SqYS3dFSpphAFQlcIGovb7dWokTY_zuU-Wux5E87pmkhOnsEDycEyd7lme_CvTA-hvv5TslvT8CdppoMHMrsyIYFUTQt0O5ngV2FFap8Nni2_DqgthgCVrZEJdHxKYbJeWaSZfPIroZE0ITv8ROjALvO3LDY4SlcnL3_fHJeThcplB6_dFUqq5xode-1q6yOfZRNz63Gb-JtdJH3gih2MGo7rawIFiGT4Oi4gRP_oPfiGeyM8zG8AEbpk8OgYL1QsraYP_exkRZhWaLqawuo10I1fmIZp8suZibtdovOZEUYVIRJijC3BbzZjLnOHBt_7X1Mutr0JH7s9ACtxkxWY_5lNQUcrDVtJqddGo7BHxcHBFQFvNo0o7vRHoodw_wm9dGKE-teAc-zYWxmgoCA2H5wdLtlMltT3W4Zhy-J0hthU4uJZAFv18b1Y1p_FsXe_xDFPjzg5BX0Z6k7gJ3V4iYcItBauZfJp74D4SEkEw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELbKVki8IG4CBRmJN4ia-MjxgBCFVhUSK4So1DfLJ0TaJsvuVm3_PTPOUS1HXxNbsTOHv7HH3xDyurRFwYKTEOTkVSp0LjEJQKQ2z2xgQYAW4W3kL_Pi-ER8PpWnO2Q-3oXBtMrRJ0ZH7TqLe-T7DCwTLBdWu_fLXylWjcLT1bGEhh5KK7h3kWLsFtkFlyyzGdk9OJx__TbtuiAfeiXEcHsm49X-WkRfgZkKjAOaTy-3VqhI5P8v9Pl3EuUfJ6lxgTq6R-4OyJJ-6FXhPtnx7QNyu681efWQmE8xVwO6Ut3SZoXUTSuwh4WnZ34DqrBoLF1fNCBFCkCWrkF4eK2KQtDeM8zSLtCzJhI3wXfswDRAlz1nLDR4RE6ODr9_PE6HAguphZluUqml4WXtbG0yXQcXROGYrmFOrAwmMMeRege8uaml5l4DlOIMDNoz5CW0lj8ms7Zr_VNCMawy4Cy05VLkGuJqFwqhAa5FCr8yIfn4U5Ud2MexCMZCxVNwXqleEAoEoaIg1GVC3kx9lj33xo2tD1BWU0vkzY4PutUPNZihqpkM3GgDcZEWhea1q2RR50L6TGhnfEL2RkmrwZjX6lr1EvJqeg1miGcruvXdeWxTS4ZsfAl50ivGNBIACsgCBL3LLZXZGur2m7b5Gam-AU6VEGAm5O2oXNfD-v-veHbzLJ6TOwz1HfeSqj0y26zO_QuAVhvzcrCX3xoAIhw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9KRfBF1FpdrZKCb3bxNh-7m0e9thRBnyz0LSTZRBeue-XuSvW_dyb7IddWwdfNhE0yM8lvkskvAO8qX5Y8NgqDnKLOpS0UJQHI3BczH3mUaEV0G_nL1_LsXH6-UBc7wMe7MClpP1Fapml6zA77sJbJpSmhgAsE3Tnixgd1JRRZ9bycT_sqxHheSzncj5mJ-p6qW2tQouq_D1_eTZO8dVaalqDTJ_B4wI7sY9_ap7ATumfwsH9N8tceuOOUjYFVme1YuyJyphVa_CKwy7BBZS9az9Y3LeqJIVRla1QPXZxiGJb3HLJsGdllm6iZ8D9-4BJgVz0rLAo8h_PTk2_zs3x4QiH32NNNrqxyotKN125mdWyiLBtuNfaJV9FF3ggi18H52mllRbAIlgRHlw2cmAe9F_uw2y278BIYBU4OpwPrhZKFxci5iaW0CMgSSV-VQTEOqvEDvzg9c7Ew6Zxb1KZXhEFFmKQI8zOD91Odq55d45_Sn0hXkyQxY6cPy9V3M1iK0VxF4azDyMfK0grd1KrUhVRhJm3jQgYHo6bN4K5rw3Hax2UBoVQGh1MxOhqdntguLK-TjFac-PYyeNEbxtQShALE84O1qy2T2WrqdknX_khk3giYKgwhMzgajetPs_4-FK_-T_w1POJk_7R7VB_A7mZ1Hd4gmNq4t8l7fgNSZRnD
  priority: 102
  providerName: Springer Nature
Title Designing an irreversible metabolic switch for scalable induction of microbial chemical production
URI https://link.springer.com/article/10.1038/s41467-021-23606-x
https://www.ncbi.nlm.nih.gov/pubmed/34103495
https://www.proquest.com/docview/2538876175
https://www.proquest.com/docview/2539526778
https://pubmed.ncbi.nlm.nih.gov/PMC8187666
https://doaj.org/article/925f3bab049a46a39d8569145e04adbe
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTUi8IL4JjMpIvEGg8UcSPyDUlZWpEhMCKvUtsh17ROrSkXZi--85O0lRoSDx0kqJ3Tq-O9_vcvbvAF5kJk2pKwUGOUkec5UIvwmAxyYZGkcdRy3yp5E_nqYnMz6di_ke9OWOuglc7QztfD2pWbN4ffX9-h0a_Nv2yHj-ZsWDufvNBpQhII8RUx6EfJHfytfB_bAyM4kBjU800yFPYvTdrDtHs_tntnxVoPTfhUP_3E75W041uKrJHbjdYUwyapXiLuzZ-h7cbKtOXt8H_T7s2sCuRNWkajyJU4OWsbDk3K5RKRaVIasfFcqTIKQlKxSjP2BFMHxvuWbJ0pHzKlA44f-YjnOAXLTssdjgAcwmx1_HJ3FXaiE2-KTrWCihWSZLI_VQSVc6npZUSXwmmjntaMk8CQ-u61oKxaxCUMUomralnqHQGPYQ9utlbR8D8QGWxmVDGSZ4ojDCLl3KFQK3QOaXRZD0k1qYjofcl8NYFCEfzvKiFUSBgiiCIIqrCF5u-ly0LBz_bH3kZbVp6Rm0w4Vlc1Z0BllIKhzTSmOEpHiqmCxzkcqECzvkqtQ2gsNe0kWvlQVF94DuAyFXBM83t9EgfZZF1XZ5GdpIQT0vXwSPWsXYjAQhg-cDwt7ZlspsDXX7Tl19C6TfCKwyDDUjeNUr169h_X0qnvzXxD2FW9Srv3_JlB_C_rq5tM8Qc631AG5k8ww_88mHARyMRtMvU_w-Oj799BmvjtPxILzNGASD-wnnMiuD
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4i6cZzXoUKUttrSdoVQK_XmOrYDkbbJsrtV2z_Hb2PGeVTLo7deE3vj9XwznrE93wC8TXQc88JEGOQEqS9UENElAOHrYKgLXghEEWUjH4zj0ZH4chwdr8CvLheGrlV2NtEZalNr2iNf56iZqLm42n2c_vSpahSdrnYlNFRbWsFsOIqxNrFjz16eYwg339jdQnm_43xn-_DzyG-rDPganfeFH6koD5PM6CwfqqwwhYgNV5k1midFXnATEv8MmrQ8i1RoFfoTIUdUW07kfFqH-Lu3YFXQBsoAVje3x1-_9bs8xL-eCtFm6wzDdH0unG2imxE8xAH4F0sroisc8C9v9-9Lm3-c3LoFcec-3Gs9Wfapgd4DWLHVQ7jd1La8fAT5lrsbgl2Zqlg5I6qoGerfxLJTu0DoTUrN5uclooah48zmCBZK42JlZRpGW1YX7LR0RFH4Hd0yG7Bpw1GLDR7D0Y1M9RMYVHVlnwGjMC5H46Q0znugMI43RSwUuoeOMjDxIOgmVeqW7ZyKbkykO3UPU9kIQqIgpBOEvPDgfd9n2nB9XNt6k2TVtySebvegnn2XrdrLjEdFmKsc4zAlYhVmJo3iLBCRHQplcuvBWidp2RqPubyCugdv-teo9nSWoypbn7k2WcSJ_c-Dpw0w-pGgY0KsQ9g7WYLM0lCX31TlD0ctju5bggGtBx86cF0N6_9T8fz6f_Ea7owOD_bl_u547wXc5YR92sdK12CwmJ3Zl-jWLfJXre4wOLlpdf0NGgZf4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxJtAASPBCaLd-JHHoUKU7aqlsKoQlXpzHT8g0jZZdrdq-xf5VYwdJ9Xy6K3XxN54Pd-MZ-zxNwi9zlSaEqs5BDlJHjOZcJcEwGKVDJUllgGK3G3kL5N095B9OuJHa-hXdxfGpVV2NtEbat0ot0c-IKCZoLmw2g1sSIs4GI3fz37GroKUO2ntymnIUGZBb3m6sXDJY99cnEE4t9jaG4Hs3xAy3vn2cTcOFQdiBY78MuaSlzQrtCrKoSystizVRBZGK5LZ0hJNHRcNmLey4JIaCb4FJYBwQxxRn1IUfvcG2shg1YdAcGN7Z3Lwtd_xcVzsOWPh5s6Q5oMF83bKZUkQCgOIz1dWR19E4F-e798JnH-c4vrFcXwX3QleLf7QwvAeWjP1fXSzrXN58QCVI58nAl2xrHE1d7RRc9DFqcEnZgkwnFYKL84qQBAGJxovADjuSheuat2y2-LG4pPKk0bBd1RgOcCzlq8WGjxEh9cy1Y_Qet3U5gnCLqQrwVBJRTlLJMT02qZMgqvo6QOzCCXdpAoVmM9dAY6p8CfwNBetIAQIQnhBiPMIve37zFrejytbbztZ9S0dZ7d_0My_i2ACREG4paUsISaTLJW00DlPi4RxM2RSlyZCm52kRTAkC3EJ-wi96l-DCXDnOrI2zalvU3DimAAj9LgFRj8ScFIcAxH0zlYgszLU1Td19cPTjIMrl0FwG6F3Hbguh_X_qXh69b94iW6B2orPe5P9Z-g2cdB3W1r5Jlpfzk_Nc_DwluWLoDoYHV-3tv4Gtc5kJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+an+irreversible+metabolic+switch+for+scalable+induction+of+microbial+chemical+production&rft.jtitle=Nature+communications&rft.au=Mannan%2C+Ahmad+A.&rft.au=Bates%2C+Declan+G.&rft.date=2021-06-08&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-23606-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_23606_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon