Designing an irreversible metabolic switch for scalable induction of microbial chemical production
Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers li...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 3419 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.06.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-021-23606-x |
Cover
Abstract | Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in
E. coli
as an exemplary case study, we unravel how the cell’s native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production.
A promising strategy to increase product synthesis from bacteria uses inducible systems to switch metabolism to production. Here, the authors use models to show how engineering positive feedback loops into the genetic circuitry creates a switch that requires only temporary induction with a cheap nutrient to switch metabolism irreversibly, and so drastically reduce inducer use and cost. |
---|---|
AbstractList | A promising strategy to increase product synthesis from bacteria uses inducible systems to switch metabolism to production. Here, the authors use models to show how engineering positive feedback loops into the genetic circuitry creates a switch that requires only temporary induction with a cheap nutrient to switch metabolism irreversibly, and so drastically reduce inducer use and cost. Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell's native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production. Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell’s native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production. Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell’s native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production.A promising strategy to increase product synthesis from bacteria uses inducible systems to switch metabolism to production. Here, the authors use models to show how engineering positive feedback loops into the genetic circuitry creates a switch that requires only temporary induction with a cheap nutrient to switch metabolism irreversibly, and so drastically reduce inducer use and cost. Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell’s native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production. A promising strategy to increase product synthesis from bacteria uses inducible systems to switch metabolism to production. Here, the authors use models to show how engineering positive feedback loops into the genetic circuitry creates a switch that requires only temporary induction with a cheap nutrient to switch metabolism irreversibly, and so drastically reduce inducer use and cost. Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell's native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production.Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch metabolism from growth to chemical synthesis once a large population of cell factories are generated. However, use of expensive chemical inducers limits scalability of this approach for biotechnological applications. Switching using cheap nutrients is an appealing alternative, but their tightly regulated uptake and consumption again limits scalability. Here, using mathematical models of fatty acid uptake in E. coli as an exemplary case study, we unravel how the cell's native regulation and program of induction can be engineered to minimise inducer usage. We show that integrating positive feedback loops into the circuitry creates an irreversible metabolic switch, which, requiring only temporary induction, drastically reduces inducer usage. Our proposed switch should be widely applicable, irrespective of the product of interest, and brings closer the realization of scalable and sustainable microbial chemical production. |
ArticleNumber | 3419 |
Author | Bates, Declan G. Mannan, Ahmad A. |
Author_xml | – sequence: 1 givenname: Ahmad A. orcidid: 0000-0001-7628-8416 surname: Mannan fullname: Mannan, Ahmad A. organization: Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick – sequence: 2 givenname: Declan G. orcidid: 0000-0003-1395-9846 surname: Bates fullname: Bates, Declan G. email: D.Bates@warwick.ac.uk organization: Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34103495$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOKxIVLwN-JL0iofFWqxAXO1rPzsutVYi920pZ_j7e7lLaH-uJne2Y89puX1VGIAavqNSXvKeHdhyyoUG1DGG0YV0Q1N8-qE0YEbWjL-NG9-rg6y3lDyuCadkK8qI65KBpCy5PKfsbsV8GHVQ2h9inhFabs7Yj1hDPYOHpX52s_u3U9xFRnByPsTn3oFzf7GOo41JN3KVoPY-3WWBal2KZ4ALyqng8wZjw7zKfVr69ffp5_by5_fLs4_3TZuGJ_biRIy1vdO20J6KEfhOoZaOwdawc7sJ4TwSlaarUEjqCZ5qzVHBmVRDnHT6uLvW4fYWO2yU-Q_pgI3txuxLQykGbvRjSayYFbsERoEAq47jupNBUSiYDeYtH6uNfaLnYqFjDMCcYHog9Pgl-bVbwyHe1apVQReHcQSPH3gnk2k88OxxECxiUbJrmWTLVtV6BvH0E3cUmhfNUO1RU92sqCenPf0Z2Vf60sALYHlFbknHC4g1BidpEx-8iYEhlzGxlzU0jdI5LzM-y6Vl7lx6epfE_N5Z6wwvTf9hOsv4Xk164 |
CitedBy_id | crossref_primary_10_1016_j_isci_2025_111787 crossref_primary_10_1093_jimb_kuad033 crossref_primary_10_3389_fmicb_2022_854272 crossref_primary_10_1007_s00253_023_12411_9 crossref_primary_10_1093_jimb_kuad010 crossref_primary_10_1016_j_ijfoodmicro_2022_109785 crossref_primary_10_1016_j_apsadv_2022_100283 crossref_primary_10_1021_acssynbio_3c00228 crossref_primary_10_1016_j_copbio_2024_103133 crossref_primary_10_1016_j_ymben_2022_04_003 crossref_primary_10_1093_nar_gkae1149 crossref_primary_10_1039_D3NP00049D crossref_primary_10_1016_j_biotechadv_2022_108077 crossref_primary_10_1093_nar_gkac476 crossref_primary_10_1002_rnc_6012 crossref_primary_10_1038_s41467_024_55347_y crossref_primary_10_1016_j_tibtech_2022_10_005 |
Cites_doi | 10.1093/nar/gkw1003 10.1021/sb300129j 10.1099/00221287-143-7-2439 10.1021/acssynbio.6b00361 10.1073/pnas.1416533112 10.1126/science.aay2790 10.1007/s10295-018-2013-9 10.1016/j.jbiotec.2014.10.031 10.1016/S0955-0674(02)00314-9 10.1093/emboj/20.10.2528 10.1021/acssynbio.7b00172 10.1128/EC.5.5.794-805.2006 10.1038/srep33101 10.1016/j.bpj.2015.06.034 10.1016/j.jbiosc.2016.12.009 10.1186/1754-6834-7-7 10.1155/2008/735101 10.1099/mic.0.067975-0 10.1038/nrg2102 10.1038/ncomms6007 10.1098/rsif.2015.0618 10.1002/biot.201700539 10.1016/j.cels.2016.01.004 10.1016/j.ymben.2008.06.004 10.1038/35002131 10.1038/nature07389 10.1021/acssynbio.8b00531 10.1126/science.1192588 10.1074/jbc.M606831200 10.1038/nmeth.2926 10.1073/pnas.0308265100 10.1111/1567-1364.12141 10.1021/acssynbio.8b00284 10.1186/1475-2859-11-87 10.1038/nbt.3796 10.1038/nrmicro3238 10.1038/35002125 10.1074/jbc.273.50.33652 10.1002/biot.201400422 10.1038/ncomms15956 10.1016/j.tem.2008.11.001 10.1016/j.ymben.2015.04.005 10.1002/bit.20349 10.1093/femsyr/foaa038 10.1016/j.jtbi.2008.04.011 10.1038/s41467-018-02898-6 10.1016/B978-0-08-088504-9.00492-X 10.1128/mBio.03112-19 10.1371/journal.pcbi.1002085 10.5281/zenodo.4740664 10.1038/msb.2010.10 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-23606-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_925f3bab049a46a39d8569145e04adbe PMC8187666 34103495 10_1038_s41467_021_23606_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M017982/1 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c606t-5a5b379dc9b0a9fdf46d2a9edc27fbf2d30431eb1b95a3ea92932793e21506cc3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:26:11 EDT 2025 Thu Aug 21 18:14:33 EDT 2025 Fri Sep 05 09:08:13 EDT 2025 Wed Aug 13 09:29:23 EDT 2025 Wed Feb 19 02:06:20 EST 2025 Tue Jul 01 04:17:27 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 21 02:39:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-5a5b379dc9b0a9fdf46d2a9edc27fbf2d30431eb1b95a3ea92932793e21506cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7628-8416 0000-0003-1395-9846 |
OpenAccessLink | https://www.proquest.com/docview/2538876175?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 34103495 |
PQID | 2538876175 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_925f3bab049a46a39d8569145e04adbe pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187666 proquest_miscellaneous_2539526778 proquest_journals_2538876175 pubmed_primary_34103495 crossref_primary_10_1038_s41467_021_23606_x crossref_citationtrail_10_1038_s41467_021_23606_x springer_journals_10_1038_s41467_021_23606_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-08 |
PublicationDateYYYYMMDD | 2021-06-08 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wen, Zhang, Odoh, Jin, Zhao (CR29) 2020; 20 Scott, Gunderson, Mateescu, Zhang, Hwa (CR45) 2010; 330 Dirusso, Tsvetnitsky, Højrup, Knudsen (CR49) 1998; 273 CR37 Angeli, Ferrell, Sontag (CR32) 2004; 101 Anesiadis, Kobayashi, Cluett, Mahadevan (CR21) 2013; 2 Mannan, Liu, Zhang, Oyarzún (CR3) 2017; 6 Anesiadis, Cluett, Mahadevan (CR14) 2008; 10 Banchio, Gramajo (CR26) 1997; 143 Su, Abumrad (CR31) 2009; 20 Ferrell (CR33) 2002; 14 Gupta, Reizman, Reisch, Prather (CR18) 2017; 35 Irzik (CR27) 2014; 192 CR5 Liu, Mannan, Han, Oyarzún, Zhang (CR11) 2018; 45 Usui (CR39) 2012; 11 CR46 Klamt, Mahadevan, Hädicke (CR12) 2018; 13 von Kamp, Klamt (CR40) 2017; 8 Qian, Huang, Jiménez, Del Vecchio (CR42) 2017; 6 Brophy, Voigt (CR1) 2014; 11 Lebar (CR35) 2014; 5 Arpino (CR38) 2013; 159 Han, Lee, Lee, Yoo (CR48) 2008; 2008 Briat, Gupta, Khammash (CR9) 2016; 2 Brockman, Prather (CR10) 2015; 10 Nikolados, Weiße, Ceroni, Oyarzún (CR44) 2019; 8 Stricker (CR7) 2008; 456 Becskei, Séraphin, Serrano (CR34) 2001; 20 Gardner, Cantor, Collins (CR4) 2000; 403 Gadkar, Doyle, Edwards, Mahadevan (CR13) 2005; 89 Chubukov, Gerosa, Kochanowski, Sauer (CR23) 2014; 12 Weiße, Oyarzún, Danos, Swain (CR43) 2015; 112 CR53 CR52 Matsuoka, Hirooka, Fujita (CR25) 2007; 282 CR50 Venayak, Raj, Jaydeep, Mahadevan (CR16) 2018; 7 Alon (CR2) 2007; 8 Janßen, Steinbüchel (CR24) 2014; 7 Chen (CR8) 2020; 368 Marino, Hogue, Ray, Kirschner (CR51) 2008; 254 Oyarzún, Chaves (CR36) 2015; 12 Gyorgy (CR41) 2015; 109 Keseler (CR47) 2017; 45 CR22 CR20 Klug, Daum (CR28) 2014; 14 Elowitz, Leibler (CR6) 2000; 403 Hynes, Murray, Duncan, Khew, Davis (CR30) 2006; 5 Soma, Yamaji, Matsuda, Hanai (CR15) 2017; 123 Soma, Hanai (CR17) 2015; 30 Ruparell (CR19) 2016; 6 JAN Brophy (23606_CR1) 2014; 11 A Gupta (23606_CR18) 2017; 35 L Klug (23606_CR28) 2014; 14 DA Oyarzún (23606_CR36) 2015; 12 23606_CR50 N Venayak (23606_CR16) 2018; 7 T Lebar (23606_CR35) 2014; 5 JAJ Arpino (23606_CR38) 2013; 159 23606_CR52 23606_CR5 23606_CR53 X Su (23606_CR31) 2009; 20 IM Brockman (23606_CR10) 2015; 10 A Ruparell (23606_CR19) 2016; 6 Z Wen (23606_CR29) 2020; 20 TS Gardner (23606_CR4) 2000; 403 C Briat (23606_CR9) 2016; 2 Y Qian (23606_CR42) 2017; 6 Y Usui (23606_CR39) 2012; 11 H Matsuoka (23606_CR25) 2007; 282 HJ Janßen (23606_CR24) 2014; 7 N Anesiadis (23606_CR14) 2008; 10 D Angeli (23606_CR32) 2004; 101 AA Mannan (23606_CR3) 2017; 6 S Klamt (23606_CR12) 2018; 13 EM Nikolados (23606_CR44) 2019; 8 23606_CR46 JE Ferrell (23606_CR33) 2002; 14 A Becskei (23606_CR34) 2001; 20 U Alon (23606_CR2) 2007; 8 Y Soma (23606_CR15) 2017; 123 MJ Han (23606_CR48) 2008; 2008 MJ Hynes (23606_CR30) 2006; 5 J Stricker (23606_CR7) 2008; 456 V Chubukov (23606_CR23) 2014; 12 Z Chen (23606_CR8) 2020; 368 23606_CR37 IM Keseler (23606_CR47) 2017; 45 CC Dirusso (23606_CR49) 1998; 273 A von Kamp (23606_CR40) 2017; 8 KG Gadkar (23606_CR13) 2005; 89 S Marino (23606_CR51) 2008; 254 K Irzik (23606_CR27) 2014; 192 MB Elowitz (23606_CR6) 2000; 403 M Scott (23606_CR45) 2010; 330 Y Soma (23606_CR17) 2015; 30 23606_CR20 N Anesiadis (23606_CR21) 2013; 2 23606_CR22 C Banchio (23606_CR26) 1997; 143 D Liu (23606_CR11) 2018; 45 AY Weiße (23606_CR43) 2015; 112 A Gyorgy (23606_CR41) 2015; 109 |
References_xml | – volume: 45 start-page: D543 year: 2017 end-page: D550 ident: CR47 article-title: The EcoCyc database: reflecting new knowledge about K-12 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1003 – ident: CR22 – volume: 2 start-page: 442 year: 2013 end-page: 452 ident: CR21 article-title: Analysis and design of a genetic circuit for dynamic metabolic engineering publication-title: ACS Synth. Biol. doi: 10.1021/sb300129j – volume: 143 start-page: 2439 year: 1997 end-page: 2447 ident: CR26 article-title: Medium- and long-chain fatty acid uptake and utilization by Streptomyces coelicolor A3(2): First characterization of a Gram-positive bacterial system publication-title: Microbiology doi: 10.1099/00221287-143-7-2439 – volume: 6 start-page: 1263 year: 2017 end-page: 1272 ident: CR42 article-title: Resource competition shapes the response of genetic circuits publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00361 – volume: 112 start-page: 1038 year: 2015 end-page: 1047 ident: CR43 article-title: Mechanistic links between cellular trade-offs, gene expression, and growth publication-title: Proc. Natil Acad. Sci. USA doi: 10.1073/pnas.1416533112 – volume: 368 start-page: 78 year: 2020 end-page: 84 ident: CR8 article-title: De novo design of protein logic gates publication-title: Science doi: 10.1126/science.aay2790 – volume: 45 start-page: 535 year: 2018 end-page: 543 ident: CR11 article-title: Dynamic metabolic control: towards precision engineering of metabolism publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-018-2013-9 – volume: 192 start-page: 96 year: 2014 end-page: 101 ident: CR27 article-title: Acyl-CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium glutamicum publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2014.10.031 – volume: 14 start-page: 140 year: 2002 end-page: 148 ident: CR33 article-title: Self-perpetuating states in signal transduction: Positive feedback, double-negative feedback and bistability publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(02)00314-9 – volume: 20 start-page: 2528 year: 2001 end-page: 2535 ident: CR34 article-title: Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion publication-title: EMBO J. doi: 10.1093/emboj/20.10.2528 – volume: 6 start-page: 1851 year: 2017 end-page: 1859 ident: CR3 article-title: Fundamental design principles for transcription-factor-based metabolite biosensors publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00172 – volume: 5 start-page: 794 year: 2006 end-page: 805 ident: CR30 article-title: Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans publication-title: Eukaryotic Cell doi: 10.1128/EC.5.5.794-805.2006 – volume: 6 start-page: 1 year: 2016 end-page: 10 ident: CR19 article-title: The fitness burden imposed by synthesising quorum sensing signals publication-title: Sci. Rep. doi: 10.1038/srep33101 – volume: 109 start-page: 639 year: 2015 end-page: 646 ident: CR41 article-title: Isocost lines describe the cellular economy of genetic circuits publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.06.034 – ident: CR46 – volume: 123 start-page: 625 year: 2017 end-page: 633 ident: CR15 article-title: Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2016.12.009 – volume: 7 year: 2014 ident: CR24 article-title: Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-7 – volume: 2008 start-page: 1 year: 2008 end-page: 12 ident: CR48 article-title: Proteome-level responses of to long-chain fatty acids and use of fatty acid inducible promoter in protein production publication-title: J. Biomed. Biotechnol. doi: 10.1155/2008/735101 – volume: 159 start-page: 1236 year: 2013 end-page: 1253 ident: CR38 article-title: Tuning the dials of synthetic biology publication-title: Microbiology doi: 10.1099/mic.0.067975-0 – ident: CR50 – volume: 8 start-page: 450 year: 2007 end-page: 61 ident: CR2 article-title: Network motifs: theory and experimental approaches publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2102 – volume: 5 start-page: 1 year: 2014 end-page: 13 ident: CR35 article-title: A bistable genetic switch based on designable DNA-binding domains publication-title: Nat. Commun. doi: 10.1038/ncomms6007 – volume: 12 start-page: 20150618 year: 2015 ident: CR36 article-title: Design of a bistable switch to control cellular uptake publication-title: J. Royal Soc. Interface doi: 10.1098/rsif.2015.0618 – volume: 13 start-page: 1700539 year: 2018 ident: CR12 article-title: When do two-stage processes outperform one-stage processes? publication-title: Biotechnol. J. doi: 10.1002/biot.201700539 – volume: 2 start-page: 15 year: 2016 end-page: 26 ident: CR9 article-title: Antithetic integral feedback ensures robust perfect adaptation in noisy bimolecular networks publication-title: Cell Syst. doi: 10.1016/j.cels.2016.01.004 – ident: CR5 – volume: 10 start-page: 255 year: 2008 end-page: 266 ident: CR14 article-title: Dynamic metabolic engineering for increasing bioprocess productivity publication-title: Metab. Eng. doi: 10.1016/j.ymben.2008.06.004 – volume: 403 start-page: 339 year: 2000 end-page: 342 ident: CR4 article-title: Construction of a genetic toggle switch in publication-title: Nature doi: 10.1038/35002131 – volume: 456 start-page: 516 year: 2008 end-page: 519 ident: CR7 article-title: A fast, robust and tunable synthetic gene oscillator publication-title: Nature doi: 10.1038/nature07389 – volume: 8 start-page: 1231 year: 2019 end-page: 1240 ident: CR44 article-title: Growth defects and loss-of-function in synthetic gene circuits publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00531 – volume: 330 start-page: 1099 year: 2010 end-page: 1102 ident: CR45 article-title: Interdependence of cell growth and gene expression : origins and consequences publication-title: Science doi: 10.1126/science.1192588 – volume: 282 start-page: 5180 year: 2007 end-page: 5194 ident: CR25 article-title: Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606831200 – volume: 11 start-page: 508 year: 2014 end-page: 520 ident: CR1 article-title: Principles of genetic circuit design publication-title: Nat. Methods doi: 10.1038/nmeth.2926 – volume: 101 start-page: 1822 year: 2004 end-page: 7 ident: CR32 article-title: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0308265100 – ident: CR37 – ident: CR53 – volume: 14 start-page: 369 year: 2014 end-page: 388 ident: CR28 article-title: Yeast lipid metabolism at a glance publication-title: FEMS Yeast Res. doi: 10.1111/1567-1364.12141 – volume: 7 start-page: 2854 year: 2018 end-page: 2866 ident: CR16 article-title: An Optimized bistable metabolic switch to decouple phenotypic states during anaerobic fermentation publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00284 – volume: 11 start-page: 1 year: 2012 end-page: 5 ident: CR39 article-title: Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using 13 C metabolic flux analysis publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-11-87 – volume: 35 start-page: 273 year: 2017 end-page: 279 ident: CR18 article-title: Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3796 – volume: 12 start-page: 327 year: 2014 end-page: 40 ident: CR23 article-title: Coordination of microbial metabolism publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3238 – volume: 403 start-page: 335 year: 2000 end-page: 338 ident: CR6 article-title: A synthetic oscillatory network of transcriptional regulators publication-title: Nature doi: 10.1038/35002125 – volume: 273 start-page: 33652 year: 1998 end-page: 33659 ident: CR49 article-title: Fatty Acyl-CoA binding domain of the transcription factor FadR publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.50.33652 – volume: 10 start-page: 1360 year: 2015 end-page: 1369 ident: CR10 article-title: Dynamic metabolic engineering: New strategies for developing responsive cell factories publication-title: Biotechnol. J. doi: 10.1002/biot.201400422 – volume: 8 year: 2017 ident: CR40 article-title: Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms publication-title: Nat. Commun. doi: 10.1038/ncomms15956 – volume: 20 start-page: 72 year: 2009 end-page: 77 ident: CR31 article-title: Cellular fatty acid uptake: a pathway under construction publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2008.11.001 – ident: CR52 – volume: 30 start-page: 7 year: 2015 end-page: 15 ident: CR17 article-title: Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.04.005 – volume: 89 start-page: 243 year: 2005 end-page: 251 ident: CR13 article-title: Estimating optimal profiles of genetic alterations using constraint-based models publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20349 – volume: 20 start-page: 1 year: 2020 end-page: 12 ident: CR29 article-title: Rhodosporidium toruloides - a potential red yeast chassis for lipids and beyond publication-title: FEMS Yeast Res. doi: 10.1093/femsyr/foaa038 – ident: CR20 – volume: 254 start-page: 178 year: 2008 end-page: 196 ident: CR51 article-title: A methodology for performing global uncertainty and sensitivity analysis in systems biology publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2008.04.011 – ident: 23606_CR46 doi: 10.1038/s41467-018-02898-6 – volume: 89 start-page: 243 year: 2005 ident: 23606_CR13 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20349 – volume: 143 start-page: 2439 year: 1997 ident: 23606_CR26 publication-title: Microbiology doi: 10.1099/00221287-143-7-2439 – volume: 35 start-page: 273 year: 2017 ident: 23606_CR18 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3796 – volume: 456 start-page: 516 year: 2008 ident: 23606_CR7 publication-title: Nature doi: 10.1038/nature07389 – volume: 5 start-page: 794 year: 2006 ident: 23606_CR30 publication-title: Eukaryotic Cell doi: 10.1128/EC.5.5.794-805.2006 – ident: 23606_CR53 – volume: 273 start-page: 33652 year: 1998 ident: 23606_CR49 publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.50.33652 – volume: 254 start-page: 178 year: 2008 ident: 23606_CR51 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2008.04.011 – volume: 14 start-page: 140 year: 2002 ident: 23606_CR33 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(02)00314-9 – volume: 45 start-page: 535 year: 2018 ident: 23606_CR11 publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-018-2013-9 – ident: 23606_CR20 – volume: 2 start-page: 15 year: 2016 ident: 23606_CR9 publication-title: Cell Syst. doi: 10.1016/j.cels.2016.01.004 – volume: 330 start-page: 1099 year: 2010 ident: 23606_CR45 publication-title: Science doi: 10.1126/science.1192588 – volume: 6 start-page: 1851 year: 2017 ident: 23606_CR3 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00172 – volume: 30 start-page: 7 year: 2015 ident: 23606_CR17 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.04.005 – volume: 5 start-page: 1 year: 2014 ident: 23606_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms6007 – volume: 20 start-page: 72 year: 2009 ident: 23606_CR31 publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2008.11.001 – volume: 101 start-page: 1822 year: 2004 ident: 23606_CR32 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0308265100 – volume: 45 start-page: D543 year: 2017 ident: 23606_CR47 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1003 – volume: 10 start-page: 1360 year: 2015 ident: 23606_CR10 publication-title: Biotechnol. J. doi: 10.1002/biot.201400422 – volume: 6 start-page: 1263 year: 2017 ident: 23606_CR42 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00361 – volume: 192 start-page: 96 year: 2014 ident: 23606_CR27 publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2014.10.031 – volume: 6 start-page: 1 year: 2016 ident: 23606_CR19 publication-title: Sci. Rep. doi: 10.1038/srep33101 – volume: 109 start-page: 639 year: 2015 ident: 23606_CR41 publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.06.034 – volume: 7 start-page: 2854 year: 2018 ident: 23606_CR16 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00284 – volume: 8 start-page: 450 year: 2007 ident: 23606_CR2 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2102 – ident: 23606_CR50 doi: 10.1016/B978-0-08-088504-9.00492-X – volume: 123 start-page: 625 year: 2017 ident: 23606_CR15 publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2016.12.009 – volume: 20 start-page: 1 year: 2020 ident: 23606_CR29 publication-title: FEMS Yeast Res. doi: 10.1093/femsyr/foaa038 – volume: 159 start-page: 1236 year: 2013 ident: 23606_CR38 publication-title: Microbiology doi: 10.1099/mic.0.067975-0 – volume: 12 start-page: 20150618 year: 2015 ident: 23606_CR36 publication-title: J. Royal Soc. Interface doi: 10.1098/rsif.2015.0618 – volume: 403 start-page: 335 year: 2000 ident: 23606_CR6 publication-title: Nature doi: 10.1038/35002125 – volume: 13 start-page: 1700539 year: 2018 ident: 23606_CR12 publication-title: Biotechnol. J. doi: 10.1002/biot.201700539 – volume: 282 start-page: 5180 year: 2007 ident: 23606_CR25 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606831200 – volume: 368 start-page: 78 year: 2020 ident: 23606_CR8 publication-title: Science doi: 10.1126/science.aay2790 – volume: 2 start-page: 442 year: 2013 ident: 23606_CR21 publication-title: ACS Synth. Biol. doi: 10.1021/sb300129j – volume: 112 start-page: 1038 year: 2015 ident: 23606_CR43 publication-title: Proc. Natil Acad. Sci. USA doi: 10.1073/pnas.1416533112 – volume: 12 start-page: 327 year: 2014 ident: 23606_CR23 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3238 – volume: 11 start-page: 508 year: 2014 ident: 23606_CR1 publication-title: Nat. Methods doi: 10.1038/nmeth.2926 – ident: 23606_CR37 doi: 10.1128/mBio.03112-19 – volume: 403 start-page: 339 year: 2000 ident: 23606_CR4 publication-title: Nature doi: 10.1038/35002131 – volume: 14 start-page: 369 year: 2014 ident: 23606_CR28 publication-title: FEMS Yeast Res. doi: 10.1111/1567-1364.12141 – volume: 11 start-page: 1 year: 2012 ident: 23606_CR39 publication-title: Microb. Cell Factories doi: 10.1186/1475-2859-11-87 – volume: 8 start-page: 1231 year: 2019 ident: 23606_CR44 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00531 – volume: 7 year: 2014 ident: 23606_CR24 publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-7 – volume: 2008 start-page: 1 year: 2008 ident: 23606_CR48 publication-title: J. Biomed. Biotechnol. doi: 10.1155/2008/735101 – ident: 23606_CR5 doi: 10.1371/journal.pcbi.1002085 – ident: 23606_CR52 doi: 10.5281/zenodo.4740664 – volume: 10 start-page: 255 year: 2008 ident: 23606_CR14 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2008.06.004 – ident: 23606_CR22 doi: 10.1038/msb.2010.10 – volume: 20 start-page: 2528 year: 2001 ident: 23606_CR34 publication-title: EMBO J. doi: 10.1093/emboj/20.10.2528 – volume: 8 year: 2017 ident: 23606_CR40 publication-title: Nat. Commun. doi: 10.1038/ncomms15956 |
SSID | ssj0000391844 |
Score | 2.4581916 |
Snippet | Bacteria can be harnessed to synthesise high-value chemicals. A promising strategy for increasing productivity uses inducible control systems to switch... A promising strategy to increase product synthesis from bacteria uses inducible systems to switch metabolism to production. Here, the authors use models to... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3419 |
SubjectTerms | 631/553/2691 631/553/2695 631/553/2719 631/553/552 631/61/318 Bacteria Biotechnology Chemical synthesis Circuits Control systems Control theory E coli Escherichia coli - metabolism Fatty acids Feedback Feedback loops Feedback, Physiological Homeostasis Humanities and Social Sciences Industrial engineering Manufacturing engineering Mathematical models Metabolic Engineering Metabolism Microorganisms multidisciplinary Nutrients Oleic Acid - metabolism Positive feedback Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBLafp0HkWF3loTWw_bOjZJQyi0pwZyE5IsUcPGG3Y3NP33nZG822yfl14tCcvz0jfW6BPA69Y3DY-9wiSn7kppa0VFALL0deUjjxKtiE4jf_zUnF_ID5fq8s5VX1QTlumBs-CONFdROOsQyVrZWKH7TjW6lipU0vYuUPStdHUnmUoxWGhMXeR0SqYS3dFSpphAFQlcIGovb7dWokTY_zuU-Wux5E87pmkhOnsEDycEyd7lme_CvTA-hvv5TslvT8CdppoMHMrsyIYFUTQt0O5ngV2FFap8Nni2_DqgthgCVrZEJdHxKYbJeWaSZfPIroZE0ITv8ROjALvO3LDY4SlcnL3_fHJeThcplB6_dFUqq5xode-1q6yOfZRNz63Gb-JtdJH3gih2MGo7rawIFiGT4Oi4gRP_oPfiGeyM8zG8AEbpk8OgYL1QsraYP_exkRZhWaLqawuo10I1fmIZp8suZibtdovOZEUYVIRJijC3BbzZjLnOHBt_7X1Mutr0JH7s9ACtxkxWY_5lNQUcrDVtJqddGo7BHxcHBFQFvNo0o7vRHoodw_wm9dGKE-teAc-zYWxmgoCA2H5wdLtlMltT3W4Zhy-J0hthU4uJZAFv18b1Y1p_FsXe_xDFPjzg5BX0Z6k7gJ3V4iYcItBauZfJp74D4SEkEw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELbKVki8IG4CBRmJN4ia-MjxgBCFVhUSK4So1DfLJ0TaJsvuVm3_PTPOUS1HXxNbsTOHv7HH3xDyurRFwYKTEOTkVSp0LjEJQKQ2z2xgQYAW4W3kL_Pi-ER8PpWnO2Q-3oXBtMrRJ0ZH7TqLe-T7DCwTLBdWu_fLXylWjcLT1bGEhh5KK7h3kWLsFtkFlyyzGdk9OJx__TbtuiAfeiXEcHsm49X-WkRfgZkKjAOaTy-3VqhI5P8v9Pl3EuUfJ6lxgTq6R-4OyJJ-6FXhPtnx7QNyu681efWQmE8xVwO6Ut3SZoXUTSuwh4WnZ34DqrBoLF1fNCBFCkCWrkF4eK2KQtDeM8zSLtCzJhI3wXfswDRAlz1nLDR4RE6ODr9_PE6HAguphZluUqml4WXtbG0yXQcXROGYrmFOrAwmMMeRege8uaml5l4DlOIMDNoz5CW0lj8ms7Zr_VNCMawy4Cy05VLkGuJqFwqhAa5FCr8yIfn4U5Ud2MexCMZCxVNwXqleEAoEoaIg1GVC3kx9lj33xo2tD1BWU0vkzY4PutUPNZihqpkM3GgDcZEWhea1q2RR50L6TGhnfEL2RkmrwZjX6lr1EvJqeg1miGcruvXdeWxTS4ZsfAl50ivGNBIACsgCBL3LLZXZGur2m7b5Gam-AU6VEGAm5O2oXNfD-v-veHbzLJ6TOwz1HfeSqj0y26zO_QuAVhvzcrCX3xoAIhw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9KRfBF1FpdrZKCb3bxNh-7m0e9thRBnyz0LSTZRBeue-XuSvW_dyb7IddWwdfNhE0yM8lvkskvAO8qX5Y8NgqDnKLOpS0UJQHI3BczH3mUaEV0G_nL1_LsXH6-UBc7wMe7MClpP1Fapml6zA77sJbJpSmhgAsE3Tnixgd1JRRZ9bycT_sqxHheSzncj5mJ-p6qW2tQouq_D1_eTZO8dVaalqDTJ_B4wI7sY9_ap7ATumfwsH9N8tceuOOUjYFVme1YuyJyphVa_CKwy7BBZS9az9Y3LeqJIVRla1QPXZxiGJb3HLJsGdllm6iZ8D9-4BJgVz0rLAo8h_PTk2_zs3x4QiH32NNNrqxyotKN125mdWyiLBtuNfaJV9FF3ggi18H52mllRbAIlgRHlw2cmAe9F_uw2y278BIYBU4OpwPrhZKFxci5iaW0CMgSSV-VQTEOqvEDvzg9c7Ew6Zxb1KZXhEFFmKQI8zOD91Odq55d45_Sn0hXkyQxY6cPy9V3M1iK0VxF4azDyMfK0grd1KrUhVRhJm3jQgYHo6bN4K5rw3Hax2UBoVQGh1MxOhqdntguLK-TjFac-PYyeNEbxtQShALE84O1qy2T2WrqdknX_khk3giYKgwhMzgajetPs_4-FK_-T_w1POJk_7R7VB_A7mZ1Hd4gmNq4t8l7fgNSZRnD priority: 102 providerName: Springer Nature |
Title | Designing an irreversible metabolic switch for scalable induction of microbial chemical production |
URI | https://link.springer.com/article/10.1038/s41467-021-23606-x https://www.ncbi.nlm.nih.gov/pubmed/34103495 https://www.proquest.com/docview/2538876175 https://www.proquest.com/docview/2539526778 https://pubmed.ncbi.nlm.nih.gov/PMC8187666 https://doaj.org/article/925f3bab049a46a39d8569145e04adbe |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTUi8IL4JjMpIvEGg8UcSPyDUlZWpEhMCKvUtsh17ROrSkXZi--85O0lRoSDx0kqJ3Tq-O9_vcvbvAF5kJk2pKwUGOUkec5UIvwmAxyYZGkcdRy3yp5E_nqYnMz6di_ke9OWOuglc7QztfD2pWbN4ffX9-h0a_Nv2yHj-ZsWDufvNBpQhII8RUx6EfJHfytfB_bAyM4kBjU800yFPYvTdrDtHs_tntnxVoPTfhUP_3E75W041uKrJHbjdYUwyapXiLuzZ-h7cbKtOXt8H_T7s2sCuRNWkajyJU4OWsbDk3K5RKRaVIasfFcqTIKQlKxSjP2BFMHxvuWbJ0pHzKlA44f-YjnOAXLTssdjgAcwmx1_HJ3FXaiE2-KTrWCihWSZLI_VQSVc6npZUSXwmmjntaMk8CQ-u61oKxaxCUMUomralnqHQGPYQ9utlbR8D8QGWxmVDGSZ4ojDCLl3KFQK3QOaXRZD0k1qYjofcl8NYFCEfzvKiFUSBgiiCIIqrCF5u-ly0LBz_bH3kZbVp6Rm0w4Vlc1Z0BllIKhzTSmOEpHiqmCxzkcqECzvkqtQ2gsNe0kWvlQVF94DuAyFXBM83t9EgfZZF1XZ5GdpIQT0vXwSPWsXYjAQhg-cDwt7ZlspsDXX7Tl19C6TfCKwyDDUjeNUr169h_X0qnvzXxD2FW9Srv3_JlB_C_rq5tM8Qc631AG5k8ww_88mHARyMRtMvU_w-Oj799BmvjtPxILzNGASD-wnnMiuD |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4i6cZzXoUKUttrSdoVQK_XmOrYDkbbJsrtV2z_Hb2PGeVTLo7deE3vj9XwznrE93wC8TXQc88JEGOQEqS9UENElAOHrYKgLXghEEWUjH4zj0ZH4chwdr8CvLheGrlV2NtEZalNr2iNf56iZqLm42n2c_vSpahSdrnYlNFRbWsFsOIqxNrFjz16eYwg339jdQnm_43xn-_DzyG-rDPganfeFH6koD5PM6CwfqqwwhYgNV5k1midFXnATEv8MmrQ8i1RoFfoTIUdUW07kfFqH-Lu3YFXQBsoAVje3x1-_9bs8xL-eCtFm6wzDdH0unG2imxE8xAH4F0sroisc8C9v9-9Lm3-c3LoFcec-3Gs9Wfapgd4DWLHVQ7jd1La8fAT5lrsbgl2Zqlg5I6qoGerfxLJTu0DoTUrN5uclooah48zmCBZK42JlZRpGW1YX7LR0RFH4Hd0yG7Bpw1GLDR7D0Y1M9RMYVHVlnwGjMC5H46Q0znugMI43RSwUuoeOMjDxIOgmVeqW7ZyKbkykO3UPU9kIQqIgpBOEvPDgfd9n2nB9XNt6k2TVtySebvegnn2XrdrLjEdFmKsc4zAlYhVmJo3iLBCRHQplcuvBWidp2RqPubyCugdv-teo9nSWoypbn7k2WcSJ_c-Dpw0w-pGgY0KsQ9g7WYLM0lCX31TlD0ctju5bggGtBx86cF0N6_9T8fz6f_Ea7owOD_bl_u547wXc5YR92sdK12CwmJ3Zl-jWLfJXre4wOLlpdf0NGgZf4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxJtAASPBCaLd-JHHoUKU7aqlsKoQlXpzHT8g0jZZdrdq-xf5VYwdJ9Xy6K3XxN54Pd-MZ-zxNwi9zlSaEqs5BDlJHjOZcJcEwGKVDJUllgGK3G3kL5N095B9OuJHa-hXdxfGpVV2NtEbat0ot0c-IKCZoLmw2g1sSIs4GI3fz37GroKUO2ntymnIUGZBb3m6sXDJY99cnEE4t9jaG4Hs3xAy3vn2cTcOFQdiBY78MuaSlzQrtCrKoSystizVRBZGK5LZ0hJNHRcNmLey4JIaCb4FJYBwQxxRn1IUfvcG2shg1YdAcGN7Z3Lwtd_xcVzsOWPh5s6Q5oMF83bKZUkQCgOIz1dWR19E4F-e798JnH-c4vrFcXwX3QleLf7QwvAeWjP1fXSzrXN58QCVI58nAl2xrHE1d7RRc9DFqcEnZgkwnFYKL84qQBAGJxovADjuSheuat2y2-LG4pPKk0bBd1RgOcCzlq8WGjxEh9cy1Y_Qet3U5gnCLqQrwVBJRTlLJMT02qZMgqvo6QOzCCXdpAoVmM9dAY6p8CfwNBetIAQIQnhBiPMIve37zFrejytbbztZ9S0dZ7d_0My_i2ACREG4paUsISaTLJW00DlPi4RxM2RSlyZCm52kRTAkC3EJ-wi96l-DCXDnOrI2zalvU3DimAAj9LgFRj8ScFIcAxH0zlYgszLU1Td19cPTjIMrl0FwG6F3Hbguh_X_qXh69b94iW6B2orPe5P9Z-g2cdB3W1r5Jlpfzk_Nc_DwluWLoDoYHV-3tv4Gtc5kJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+an+irreversible+metabolic+switch+for+scalable+induction+of+microbial+chemical+production&rft.jtitle=Nature+communications&rft.au=Mannan%2C+Ahmad+A.&rft.au=Bates%2C+Declan+G.&rft.date=2021-06-08&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-23606-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_23606_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |