Performance of InSilicoVA for assigning causes of death to verbal autopsies: multisite validation study using clinical diagnostic gold standards

Background Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its performance using a single set of model predictors and one age group. Methods We perform a s...

Full description

Saved in:
Bibliographic Details
Published inBMC medicine Vol. 16; no. 1; pp. 56 - 11
Main Authors Flaxman, Abraham D., Joseph, Jonathan C., Murray, Christopher J. L., Riley, Ian Douglas, Lopez, Alan D.
Format Journal Article
LanguageEnglish
Published London BioMed Central 19.04.2018
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1741-7015
1741-7015
DOI10.1186/s12916-018-1039-1

Cover

Abstract Background Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its performance using a single set of model predictors and one age group. Methods We perform a standard procedure for analyzing the predictive accuracy of verbal autopsy classification methods using the same data and the publicly available implementation of the algorithm released by the authors. We extend the original analysis to include children and neonates, instead of only adults, and test accuracy using different sets of predictors, including the set used in the original paper and a set that matches the released software. Results The population-level performance (i.e., predictive accuracy) of the algorithm varied from 2.1 to 37.6% when trained on data preprocessed similarly as in the original study. When trained on data that matched the software default format, the performance ranged from −11.5 to 17.5%. When using the default training data provided, the performance ranged from −59.4 to −38.5%. Overall, the InSilicoVA predictive accuracy was found to be 11.6–8.2 percentage points lower than that of an alternative algorithm. Additionally, the sensitivity for InSilicoVA was consistently lower than that for an alternative diagnostic algorithm (Tariff 2.0), although the specificity was comparable. Conclusions The default format and training data provided by the software lead to results that are at best suboptimal, with poor cause-of-death predictive performance. This method is likely to generate erroneous cause of death predictions and, even if properly configured, is not as accurate as alternative automated diagnostic methods.
AbstractList Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its performance using a single set of model predictors and one age group. We perform a standard procedure for analyzing the predictive accuracy of verbal autopsy classification methods using the same data and the publicly available implementation of the algorithm released by the authors. We extend the original analysis to include children and neonates, instead of only adults, and test accuracy using different sets of predictors, including the set used in the original paper and a set that matches the released software. The population-level performance (i.e., predictive accuracy) of the algorithm varied from 2.1 to 37.6% when trained on data preprocessed similarly as in the original study. When trained on data that matched the software default format, the performance ranged from -11.5 to 17.5%. When using the default training data provided, the performance ranged from -59.4 to -38.5%. Overall, the InSilicoVA predictive accuracy was found to be 11.6-8.2 percentage points lower than that of an alternative algorithm. Additionally, the sensitivity for InSilicoVA was consistently lower than that for an alternative diagnostic algorithm (Tariff 2.0), although the specificity was comparable. The default format and training data provided by the software lead to results that are at best suboptimal, with poor cause-of-death predictive performance. This method is likely to generate erroneous cause of death predictions and, even if properly configured, is not as accurate as alternative automated diagnostic methods.
Background Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its performance using a single set of model predictors and one age group. Methods We perform a standard procedure for analyzing the predictive accuracy of verbal autopsy classification methods using the same data and the publicly available implementation of the algorithm released by the authors. We extend the original analysis to include children and neonates, instead of only adults, and test accuracy using different sets of predictors, including the set used in the original paper and a set that matches the released software. Results The population-level performance (i.e., predictive accuracy) of the algorithm varied from 2.1 to 37.6% when trained on data preprocessed similarly as in the original study. When trained on data that matched the software default format, the performance ranged from −11.5 to 17.5%. When using the default training data provided, the performance ranged from −59.4 to −38.5%. Overall, the InSilicoVA predictive accuracy was found to be 11.6–8.2 percentage points lower than that of an alternative algorithm. Additionally, the sensitivity for InSilicoVA was consistently lower than that for an alternative diagnostic algorithm (Tariff 2.0), although the specificity was comparable. Conclusions The default format and training data provided by the software lead to results that are at best suboptimal, with poor cause-of-death predictive performance. This method is likely to generate erroneous cause of death predictions and, even if properly configured, is not as accurate as alternative automated diagnostic methods.
Background Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its performance using a single set of model predictors and one age group. Methods We perform a standard procedure for analyzing the predictive accuracy of verbal autopsy classification methods using the same data and the publicly available implementation of the algorithm released by the authors. We extend the original analysis to include children and neonates, instead of only adults, and test accuracy using different sets of predictors, including the set used in the original paper and a set that matches the released software. Results The population-level performance (i.e., predictive accuracy) of the algorithm varied from 2.1 to 37.6% when trained on data preprocessed similarly as in the original study. When trained on data that matched the software default format, the performance ranged from -11.5 to 17.5%. When using the default training data provided, the performance ranged from -59.4 to -38.5%. Overall, the InSilicoVA predictive accuracy was found to be 11.6-8.2 percentage points lower than that of an alternative algorithm. Additionally, the sensitivity for InSilicoVA was consistently lower than that for an alternative diagnostic algorithm (Tariff 2.0), although the specificity was comparable. Conclusions The default format and training data provided by the software lead to results that are at best suboptimal, with poor cause-of-death predictive performance. This method is likely to generate erroneous cause of death predictions and, even if properly configured, is not as accurate as alternative automated diagnostic methods. Keywords: Verbal autopsy, Cause-of-death diagnosis, Validation
Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its performance using a single set of model predictors and one age group. We perform a standard procedure for analyzing the predictive accuracy of verbal autopsy classification methods using the same data and the publicly available implementation of the algorithm released by the authors. We extend the original analysis to include children and neonates, instead of only adults, and test accuracy using different sets of predictors, including the set used in the original paper and a set that matches the released software. The population-level performance (i.e., predictive accuracy) of the algorithm varied from 2.1 to 37.6% when trained on data preprocessed similarly as in the original study. When trained on data that matched the software default format, the performance ranged from -11.5 to 17.5%. When using the default training data provided, the performance ranged from -59.4 to -38.5%. Overall, the InSilicoVA predictive accuracy was found to be 11.6-8.2 percentage points lower than that of an alternative algorithm. Additionally, the sensitivity for InSilicoVA was consistently lower than that for an alternative diagnostic algorithm (Tariff 2.0), although the specificity was comparable. The default format and training data provided by the software lead to results that are at best suboptimal, with poor cause-of-death predictive performance. This method is likely to generate erroneous cause of death predictions and, even if properly configured, is not as accurate as alternative automated diagnostic methods.
Abstract Background Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its performance using a single set of model predictors and one age group. Methods We perform a standard procedure for analyzing the predictive accuracy of verbal autopsy classification methods using the same data and the publicly available implementation of the algorithm released by the authors. We extend the original analysis to include children and neonates, instead of only adults, and test accuracy using different sets of predictors, including the set used in the original paper and a set that matches the released software. Results The population-level performance (i.e., predictive accuracy) of the algorithm varied from 2.1 to 37.6% when trained on data preprocessed similarly as in the original study. When trained on data that matched the software default format, the performance ranged from −11.5 to 17.5%. When using the default training data provided, the performance ranged from −59.4 to −38.5%. Overall, the InSilicoVA predictive accuracy was found to be 11.6–8.2 percentage points lower than that of an alternative algorithm. Additionally, the sensitivity for InSilicoVA was consistently lower than that for an alternative diagnostic algorithm (Tariff 2.0), although the specificity was comparable. Conclusions The default format and training data provided by the software lead to results that are at best suboptimal, with poor cause-of-death predictive performance. This method is likely to generate erroneous cause of death predictions and, even if properly configured, is not as accurate as alternative automated diagnostic methods.
Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its performance using a single set of model predictors and one age group.BACKGROUNDRecently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its performance using a single set of model predictors and one age group.We perform a standard procedure for analyzing the predictive accuracy of verbal autopsy classification methods using the same data and the publicly available implementation of the algorithm released by the authors. We extend the original analysis to include children and neonates, instead of only adults, and test accuracy using different sets of predictors, including the set used in the original paper and a set that matches the released software.METHODSWe perform a standard procedure for analyzing the predictive accuracy of verbal autopsy classification methods using the same data and the publicly available implementation of the algorithm released by the authors. We extend the original analysis to include children and neonates, instead of only adults, and test accuracy using different sets of predictors, including the set used in the original paper and a set that matches the released software.The population-level performance (i.e., predictive accuracy) of the algorithm varied from 2.1 to 37.6% when trained on data preprocessed similarly as in the original study. When trained on data that matched the software default format, the performance ranged from -11.5 to 17.5%. When using the default training data provided, the performance ranged from -59.4 to -38.5%. Overall, the InSilicoVA predictive accuracy was found to be 11.6-8.2 percentage points lower than that of an alternative algorithm. Additionally, the sensitivity for InSilicoVA was consistently lower than that for an alternative diagnostic algorithm (Tariff 2.0), although the specificity was comparable.RESULTSThe population-level performance (i.e., predictive accuracy) of the algorithm varied from 2.1 to 37.6% when trained on data preprocessed similarly as in the original study. When trained on data that matched the software default format, the performance ranged from -11.5 to 17.5%. When using the default training data provided, the performance ranged from -59.4 to -38.5%. Overall, the InSilicoVA predictive accuracy was found to be 11.6-8.2 percentage points lower than that of an alternative algorithm. Additionally, the sensitivity for InSilicoVA was consistently lower than that for an alternative diagnostic algorithm (Tariff 2.0), although the specificity was comparable.The default format and training data provided by the software lead to results that are at best suboptimal, with poor cause-of-death predictive performance. This method is likely to generate erroneous cause of death predictions and, even if properly configured, is not as accurate as alternative automated diagnostic methods.CONCLUSIONSThe default format and training data provided by the software lead to results that are at best suboptimal, with poor cause-of-death predictive performance. This method is likely to generate erroneous cause of death predictions and, even if properly configured, is not as accurate as alternative automated diagnostic methods.
ArticleNumber 56
Audience Academic
Author Riley, Ian Douglas
Lopez, Alan D.
Murray, Christopher J. L.
Flaxman, Abraham D.
Joseph, Jonathan C.
Author_xml – sequence: 1
  givenname: Abraham D.
  surname: Flaxman
  fullname: Flaxman, Abraham D.
  email: abie@uw.edu
  organization: Institute for Health Metrics and Evaluation, University of Washington
– sequence: 2
  givenname: Jonathan C.
  surname: Joseph
  fullname: Joseph, Jonathan C.
  organization: Institute for Health Metrics and Evaluation, University of Washington
– sequence: 3
  givenname: Christopher J. L.
  surname: Murray
  fullname: Murray, Christopher J. L.
  organization: Institute for Health Metrics and Evaluation, University of Washington
– sequence: 4
  givenname: Ian Douglas
  surname: Riley
  fullname: Riley, Ian Douglas
  organization: School of Population and Global Health, University of Melbourne
– sequence: 5
  givenname: Alan D.
  surname: Lopez
  fullname: Lopez, Alan D.
  organization: School of Population and Global Health, University of Melbourne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29669548$$D View this record in MEDLINE/PubMed
BookMark eNqNUl1rFTEQXaRiP_QH-CIBQXzZmuzNJrs-FErxo1BQ8OM1zE1m96bkJtckW-m_8Ceb7a2lV6RIHhJmzjkzkzOH1Z4PHqvqOaPHjHXiTWJNz0RNWVczuuhr9qg6YJKzWlLW7t1771eHKV1S2rRS8ifVftML0be8O6h-fcY4hLgGr5GEgZz7L9ZZHb6fkhImkJIdvfUj0TAlTDPEIOQVyYFcYVyCIzDlsEkW01uynly2yWYkV-CsgWyDJylP5ppM6UbFWW91IRkLow8pW03G4EwBgTcQTXpaPR7AJXx2ex9V396_-3r2sb749OH87PSi1oKKXHMhyzF8yekgmkYbSTlbatTY8K7HZiiJJbbYAhsAtJYNbQ20MAghGGdmcVSdb3VNgEu1iXYN8VoFsOomEOKoIJb2HCqx6PpeDLrnXcN5z3rW9RQ4ky0dJF_KotVstSa_geuf4NydIKNqtkptrVLFKjVbpVghnWxJm2m5RqPR5whup5PdjLcrNYYr1fZUctEWgde3AjH8mDBltbZJo3PgMUxJNbSRgjLK5lovt9ARyjzWD6Eo6hmuTlsuugXv2lnw-B-ocgyuy0p4HGyJ7xBe3SOsEFxepeCm2fa0C3xxf9a7If_sYQGwLUDHkFLE4b8-UP7F0TbfrFxp27oHmbd-pVLFjxjVZZiiL-v2AOk3az4RXw
CitedBy_id crossref_primary_10_1093_biostatistics_kxaa001
crossref_primary_10_1186_s12916_020_01520_1
crossref_primary_10_1016_j_artmed_2023_102622
crossref_primary_10_1080_16549716_2020_1768502
crossref_primary_10_1186_s12889_021_12180_y
crossref_primary_10_1186_s12916_020_01518_9
crossref_primary_10_1055_s_0042_1749118
crossref_primary_10_1016_S1474_4422_23_00195_3
crossref_primary_10_3389_fpubh_2021_591237
crossref_primary_10_1186_s12889_020_08575_y
crossref_primary_10_3389_fpubh_2022_842880
crossref_primary_10_1186_s12916_020_01517_w
crossref_primary_10_1186_s12916_020_01527_8
crossref_primary_10_1111_1471_0528_17220
Cites_doi 10.3402/gha.v7.25931
10.3402/gha.v5i0.19281
10.1080/01621459.2016.1152191
10.1016/S0140-6736(15)60173-8
10.1186/1741-7015-12-5
10.1186/1478-7954-9-50
10.1186/1478-7954-9-35
10.2471/BLT.05.027003
10.1371/journal.pmed.0040327
10.1016/S2214-109X(14)70340-7
10.1080/16549716.2017.1272882
10.1186/s12916-015-0527-9
10.2471/BLT.07.046532
10.1080/14034950310015086
10.1186/1478-7954-9-27
10.1016/S0140-6736(16)31012-1
10.1186/s12916-015-0333-4
10.2471/BLT.14.137935
10.1186/1478-7954-9-29
10.1186/s12963-015-0061-1
10.1016/S0140-6736(15)60172-6
10.1186/1478-7954-9-28
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12916-018-1039-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-7015
EndPage 11
ExternalDocumentID oai_doaj_org_article_638996fc9482449191890a41750f74b7
10.1186/s12916-018-1039-1
PMC5907465
A546834855
29669548
10_1186_s12916_018_1039_1
Genre Validation Study
Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council (AU)
  grantid: 631494
– fundername: National Health and Medical Research Council (AU)
  grantid: 00885
– fundername: ;
  grantid: 631494
– fundername: ;
  grantid: 00885
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
2VQ
AAYXX
AHSBF
ALIPV
C1A
CITATION
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c606t-467676d4b40f622cd7041bcece2489e2fb40be5e5a1faacc7205da5af666141d3
IEDL.DBID UNPAY
ISSN 1741-7015
IngestDate Fri Oct 03 12:36:04 EDT 2025
Wed Oct 29 11:46:48 EDT 2025
Tue Sep 30 16:36:44 EDT 2025
Fri Sep 05 07:07:16 EDT 2025
Mon Oct 20 22:09:45 EDT 2025
Mon Oct 20 16:20:31 EDT 2025
Thu May 22 21:08:00 EDT 2025
Thu Apr 03 07:02:27 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Wed Oct 01 01:58:15 EDT 2025
Sat Sep 06 07:29:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Validation
Verbal autopsy
Cause-of-death diagnosis
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-467676d4b40f622cd7041bcece2489e2fb40be5e5a1faacc7205da5af666141d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcmedicine.biomedcentral.com/track/pdf/10.1186/s12916-018-1039-1
PMID 29669548
PQID 2027601011
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_638996fc9482449191890a41750f74b7
unpaywall_primary_10_1186_s12916_018_1039_1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5907465
proquest_miscellaneous_2027601011
gale_infotracmisc_A546834855
gale_infotracacademiconefile_A546834855
gale_healthsolutions_A546834855
pubmed_primary_29669548
crossref_primary_10_1186_s12916_018_1039_1
crossref_citationtrail_10_1186_s12916_018_1039_1
springer_journals_10_1186_s12916_018_1039_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-19
PublicationDateYYYYMMDD 2018-04-19
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-19
  day: 19
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medicine
PublicationTitleAbbrev BMC Med
PublicationTitleAlternate BMC Med
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References CJ Murray (1039_CR9) 2007; 4
1039_CR16
TH McCormick (1039_CR14) 2016; 111
CJ Murray (1039_CR12) 2011; 9
CJ Murray (1039_CR15) 2011; 9
AD Lopez (1039_CR23) 2015; 13
P Byass (1039_CR22) 2012; 5
C AbouZahr (1039_CR5) 2015; 386
AD Flaxman (1039_CR11) 2011; 9
R Rampatige (1039_CR17) 2014; 92
N Soleman (1039_CR4) 2006; 84
AD Flaxman (1039_CR8) 2011; 9
P Byass (1039_CR10) 2003; 31
O Sankoh (1039_CR2) 2014; 2
1039_CR3
P Serina (1039_CR7) 2015; 13
A Khosravi (1039_CR18) 2008; 86
AD Flaxman (1039_CR19) 2015; 13
CJ Murray (1039_CR13) 2014; 12
H Wang (1039_CR20) 2016; 388
D de Savigny (1039_CR6) 2017; 10
DE Phillips (1039_CR1) 2015; 386
R Lozano (1039_CR21) 2011; 9
References_xml – ident: 1039_CR3
  doi: 10.3402/gha.v7.25931
– volume: 5
  start-page: 19281
  year: 2012
  ident: 1039_CR22
  publication-title: Glob Health Action.
  doi: 10.3402/gha.v5i0.19281
– volume: 111
  start-page: 1036
  year: 2016
  ident: 1039_CR14
  publication-title: J Am Stat Assoc.
  doi: 10.1080/01621459.2016.1152191
– volume: 386
  start-page: 1373
  year: 2015
  ident: 1039_CR5
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(15)60173-8
– volume: 12
  start-page: 5
  year: 2014
  ident: 1039_CR13
  publication-title: BMC Med
  doi: 10.1186/1741-7015-12-5
– ident: 1039_CR16
– volume: 9
  start-page: 50
  year: 2011
  ident: 1039_CR21
  publication-title: Popul Health Metrics
  doi: 10.1186/1478-7954-9-50
– volume: 9
  start-page: 35
  year: 2011
  ident: 1039_CR8
  publication-title: Popul Health Metrics
  doi: 10.1186/1478-7954-9-35
– volume: 84
  start-page: 239
  year: 2006
  ident: 1039_CR4
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.05.027003
– volume: 4
  start-page: e327
  year: 2007
  ident: 1039_CR9
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0040327
– volume: 2
  start-page: e693
  year: 2014
  ident: 1039_CR2
  publication-title: Lancet Glob Health.
  doi: 10.1016/S2214-109X(14)70340-7
– volume: 10
  start-page: 1272882
  year: 2017
  ident: 1039_CR6
  publication-title: Glob Health Action.
  doi: 10.1080/16549716.2017.1272882
– volume: 13
  start-page: 291
  year: 2015
  ident: 1039_CR7
  publication-title: BMC Med
  doi: 10.1186/s12916-015-0527-9
– volume: 86
  start-page: 688
  year: 2008
  ident: 1039_CR18
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.07.046532
– volume: 31
  start-page: 32
  year: 2003
  ident: 1039_CR10
  publication-title: Scand J Public Health.
  doi: 10.1080/14034950310015086
– volume: 9
  start-page: 27
  year: 2011
  ident: 1039_CR15
  publication-title: Popul Health Metrics
  doi: 10.1186/1478-7954-9-27
– volume: 388
  start-page: 1459
  year: 2016
  ident: 1039_CR20
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(16)31012-1
– volume: 13
  start-page: 73
  year: 2015
  ident: 1039_CR23
  publication-title: BMC Med
  doi: 10.1186/s12916-015-0333-4
– volume: 92
  start-page: 807
  year: 2014
  ident: 1039_CR17
  publication-title: Bull World Health Organ
  doi: 10.2471/BLT.14.137935
– volume: 9
  start-page: 29
  year: 2011
  ident: 1039_CR11
  publication-title: Popul Health Metrics
  doi: 10.1186/1478-7954-9-29
– volume: 13
  start-page: 28
  year: 2015
  ident: 1039_CR19
  publication-title: Popul Health Metrics
  doi: 10.1186/s12963-015-0061-1
– volume: 386
  start-page: 1386
  year: 2015
  ident: 1039_CR1
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(15)60172-6
– volume: 9
  start-page: 28
  year: 2011
  ident: 1039_CR12
  publication-title: Popul Health Metrics
  doi: 10.1186/1478-7954-9-28
SSID ssj0025774
Score 2.304691
Snippet Background Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their...
Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as...
Background Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their...
Abstract Background Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56
SubjectTerms Adult
Algorithms
Autopsy - methods
Autopsy - standards
Biomedicine
Cause of Death - trends
Cause-of-death diagnosis
Child
Computer Simulation - standards
Computer Simulation - trends
Diagnostic equipment (Medical)
Female
Humans
Infant
Infant, Newborn
Male
Medicine
Medicine & Public Health
Research Article
Validation
Verbal autopsy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yD14exLvVVSMIgkvZNidtE9-O4rIKK4Ku7FvIdT1Q2oNtEf-FP9mZ3jxV2H3xtZnT02S-ZGaSmS-EvOCZNakIOkZ3I-bcmNh4VsQOTK-0TluhMVA8-Zgfn_IPZ9nZzlVfmBM20AMPA3eIFlXmwUouwBJJCC-ETDQHq5eEgpu-jjwRcgqmxlArA69mPMNMRX7YgFVLMXJGKtOVjNOFFerJ-v9dknds0t_5kvOh6Q1yrau2-ucPXZY7dunoFrk5OpR0PXTkNrniqzvk6sl4ZH6X_Pr0pzSA1oG-rz5vSlD_1zWFxxR858057o1Qq7vGNyji0C2kbU0B5gberbu23jYQUr-mff4hHjhTQOhmuI-J9hS1FDPo4S1jpSV1Qw4ffBU9r0tHpz2L5h45PXr35e1xPF7DEFuIbtqYI6db7rjhScgZs65IeGqst55xIT0L0GB85jOdBq2tLViSOZ3pkKPtT93qPtmr6so_JNQ474RweeaE5kEyDf6OFKllLATOChORZFKLsiNHOV6VUao-VhG5GjSpQJMKNanSiLyaf7IdCDouEn6Dup4FkVu7fwCIUyPi1GWIi8gzRIoaClXnFUKtM56LFZLtRORlL4FrBHy-1WOpAwwCsm0tJPcXkjC37aL5-YRGhU2YEFf5umsU7llhLJ1Cnx4M6Jx7xSCERR6_iBQL3C66vWypNt96avEM90py-N-DCeFqXNOai0b1YJ4El-vg0f_QwWNyneFsRtJNuU_22u-dfwLeYWue9gvBb42VXfo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEA_HCT4-iG9XT40gCB49227aJoLIKh6nsCLoyn0Lea4LpV23XfT-C_9kZ_ryqscJfm2mbZKZycwkk98Q8oQlRkfcqwDdjYAxrQPt4iywYHqFscpwhYHi_EN6tGDvj5PjHdKXt-omsDoztMN6UotNfvDj28krUPiXjcLz9HkFNivCuBiBSqcigGDoAhgqgZUc5mw4VADhzFh3sHnmawgMDN4_QqCNrFQD5v_3kn3KZv2ZTzkcql4hl7bFWp18V3l-ym4dXiNXO4eTzloJuU52XHGDXJx3R-o3yc-Pv68O0NLTd8WnVQ7i8WVG4TEF33q1xL0TatS2chWSWHQbaV1SUAMN31bbulxXEHK_oE1-Ih5IU5DgVVuviTYQthQz7OEr3U1MatscP-gVXZa5pf2eRnWLLA7ffn5zFHRlGgID0U8dMMR8Sy3TLPRpHBubhSzSxhkXMy5c7KFBu8QlKvJKGZPFYWJVonyKvkFkp7fJblEW7i6h2jrLuU0TyxXzIlbgDwkemTj2nsWZnpCwZ4s0HYY5ltLIZRPL8FS2TJXAVIlMldGEPBteWbcAHucRv0ZeD4SIvd08KDdL2amyRB9PpN4IxsE3EhDwchEqBn5Y6DOmswl5hJIi24uswwoiZwlL-RTBeCbkaUOBUg3dN6q7CgGTgGhcI8q9ESXovhk1P-6lUWITJswVrtxWEve0MNaOYEx3WukcRtUL-YRkI7kdDXvcUqy-NtDjCe6lpPDf_V7CZa-y583q_qAE_-bBvf_u1X1yOUZtRiROsUd2683WPQCXsdYPm4XgF17daBg
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEA6ygpcH8W511QiC4FK2zUnT1Lfj4rIKK4Ku7FvIdT1Q2sO2ZfFf-JOdaXvqqcqKr800bTKTzExm5gshL3lmTSqDjtHciDk3Jjae5bED1VtYp63U6CgefxRHJ_zDaXY6gkVjLcx2_D6VYr8BfZSiz4sgpIsiBkfnKugo0cdlxcHkW2VgxoxBy7--NlM7PTr_n3vwlhL6PUFyipLeJNe7aq2_X-iy3FJEh7fJrdGCpMuB5XfIFV_dJdeOxxj5PfLj069aAFoH-r76vCqB31-XFB5TMJZXZ3gYQq3uGt8giUM7kLY1Bbk20Lfu2nrdgA_9hvYJhxhhpiCSq-ECJtpj0lJMmYdextJK6oakPfgrelaXjm4OKZr75OTw3ZeDo3i8dyG24M60MUcQN-G44UkQjFmXJzw11lvPuCw8C9BgfOYznQatrc1Zkjmd6SBQ2adu8YDsVHXlHxFqnHdSOpE5qXkomAYDp5CpZSwEznITkWTDFmVHUHK8G6NUvXMihRo4qYCTCjmp0oi8nl5ZD4gclxG_RV5PhAim3T8AGVPj2lRotBUi2IJLMHYK8GBlkWgOhlUScm7yiDxHSVFDZeq0JahlxoVcILpORF71FLgpwO9bPdY2wCQgvNaMcndGCYvZzppfbKRRYRNmwFW-7hqFh1ToPKcwpoeDdE6jYuCzInBfRPKZ3M6GPW-pVt96LPEMD0cEfHdvI-Fq3MSay2Z1b1oE_-bB4__q-wm5wXDZIpxmsUt22vPOPwW7rzXP-hX_E4V8UCs
  priority: 102
  providerName: Springer Nature
Title Performance of InSilicoVA for assigning causes of death to verbal autopsies: multisite validation study using clinical diagnostic gold standards
URI https://link.springer.com/article/10.1186/s12916-018-1039-1
https://www.ncbi.nlm.nih.gov/pubmed/29669548
https://www.proquest.com/docview/2027601011
https://pubmed.ncbi.nlm.nih.gov/PMC5907465
https://bmcmedicine.biomedcentral.com/track/pdf/10.1186/s12916-018-1039-1
https://doaj.org/article/638996fc9482449191890a41750f74b7
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: KQ8
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: GX1
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: M48
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: AAJSJ
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1741-7015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025774
  issn: 1741-7015
  databaseCode: C6C
  dateStart: 20030112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFB60BS8P3i_VtY4gCC7pJukkmfjWll1WoaWsVqovw1ySWrcmZdMi-iv8yZ6Tm80qK4Ivoc2cTDrTc5055xtCnjNPK4fH0kJ3w2JMKUtFbmAZML2hNlJziYHieOIfz9ibuTcvIYWwFkZ90dWmcm-3AH2Va234oE8P1iYuhJ37BxnYKwdjYgQp7YcWBEJt3wO3vEXas8l08KEoiHSsAOxeuav5x-cadimH7_9dSe9YqfMZlPU26nVydZus5bevcrXasVRHN8nnaoxFgsppb7tRPf39HPzjf5mEW-RG6c_SQcGAt8mlKLlDrozLfu-SH9NflQk0jenr5O1yBdz3fkDhNgXXfbnApRmq5TaLMiQx6JXSTUpByhT0LbebdJ1BRP-K5umPuN9NQUCWxXFQNEfIpZjAD72UhZ7UFCmE8KvoIl0ZWi2ZZPfI7Ojw3ejYKk-BsDQEVxuLIaScb5hiduy7rjaBzRylIx25jIeRG0ODirzIk04spdaBa3tGejL20fVwTP8-aSVpEj0kVJnIcG58z3DJ4tCV4G6F3NGuG8fMDVSH2BUPCF1CpONJHSuRh0rcF8VMC5hpgTMtnA55WT-yLvBBLiIeImPVhAjtnd9Izxai1BQCXcjQj3XIOLheIcTTPLQlAzfPjgOmgg55imwpijrZWkGJgcd83kesnw55kVOgikJmkWWlBUwCgn01KPcalKBadKP5WcX6ApswHy-J0m0mcMkMQ3kHxvSgEIV6VC5E0Agj2CFBQ0gaw262JMtPObK5h0s1Prx3vxInUarU7KJZ3a8l7u__waN_on5MrrkoVgjuGe6R1uZsGz0BL3SjuuRyMA-6pD08nExP4NvIH3XzFR24jhmH68nwY7fUQj8BFZyHlA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-kBasP4ren1a4gCJZgsrdJNr6dYmnPXhHaSt-W_TwPjuRo7hD_C_9kZ5JNbFQqvmYnm-zOzM7MzuxvCXnFU6MT4VWE7kbEudaRdiyPLJjewlhlhMJAcXaSHZ7z6UV6Ec5x1121e5eSbFbqRq1F9rYGy5Rg9ItwpOMigpBnG2usQBu3J5Pp6bSPs1JwaUIC868vDkxQg9T_53p8xSD9XizZZ0xvk51NuVLfv6nl8opROrhL7gRvkk5a9t8jN1x5n9ychXz5A_Lj869zAbTy9Kg8XSyB918mFB5TcJwXc9wYoUZtalcjiUWfkK4rCjKuoW-1WVerGuLpd7QpPsRsMwXxXLSXMdEGn5Zi-Tz0Eo5ZUtsW8MFf0Xm1tLTbsKgfkvODj2cfDqNwB0NkILRZRxwB3TLLNY99xpixecwTbZxxjIvCMQ8N2qUuVYlXypicxalVqfIZGv7Ejh-RrbIq3RNCtXVWCJulVijuC6bA2SlEYhjznrNcj0jcsUWaAFCO92QsZROoiEy2nJTASYmclMmIvOlfWbXoHNcRv0de94QIrN08qC7nMuipRAeuyLwpuADHp4BoVhSx4uBkxT7nOh-RPZQU2Z5S7ZcHOUl5JsaItDMirxsKXCDg940K5xxgEhBqa0C5O6AExTaD5pedNEpswmq40lWbWuKGFQbSCYzpcSud_agYxK8I4jci-UBuB8MetpSLrw2ueIobJRl8d7-TcBkWtPq6Wd3vleDfPHj6X33vkZ3Ds9mxPD46-fSM3GKowgizWeySrfXlxj0Hf3CtXwT9_wnAzFiE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ta9RAEF6kQtUP4muNVruCIFhCk71NsvHbeXq0aktBK_227Ot5cCRHk0P8F_5kZ_Jmo1Lxa3byspmZnWd2Z58l5AVPjI6FVyHCjZBzrUPtWBZaCL25scoIhYni8Ul6eMbfnyfn3TmnVV_t3i9JtnsakKWpqA_W1rcuLtKDCqJUjJkwUpNO8hDSn-scghseYTBLZ0PGlQC46ZYy_3rbKBg1nP1_jsyXQtPvZZPD2uktcmNTrNX3b2q1uhSe5nfI7Q5X0mlrCHfJNVfcI9vH3cr5ffLj9NcOAVp6elR8Wq7ACr5MKVymAKGXC5wioUZtKlehiEV0SOuSgrVreLba1OW6gsz6NW3KEHHdmYKhLttjmWjDVEuxkB6e0m24pLYt5YOvootyZWk_dVE9IGfzd59nh2F3GkNoIMmpQ47Ubqnlmkc-ZczYLOKxNs44xkXumIcG7RKXqNgrZUzGosSqRPkUIUBsJw_JVlEW7hGh2jorhE0TKxT3OVMAe3IRG8a85yzTAYl6tUjTUZXjiRkr2aQsIpWtJiVoUqImZRyQV8Mt65an4yrhN6jrQRAptpsL5cVCdh4rEcrlqTc5FwCBcshrRR4pDnAr8hnXWUD20FJku191GCjkNOGpmCDnTkBeNhI4VMDnG9XteICfgKRbI8ndkSS4uBk1P--tUWIT1sUVrtxUEqeuMKWOoU87rXUOvWKQySKdX0Cykd2Ouj1uKZZfG4bxBKdMUnjvfm_hshvaqqv-6v7gBP_WweP_evYe2T59O5cfj04-PCE3GXow8m3mu2Srvti4pwAMa_2scf6f8DlbYQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFB6kC14evF-qq44gCC7pJtPJzbcqLquwy4JW1qdhrrVuTMomQfRX-JM9J0ljs8qK4FvJnEw7p-c6c843hDzloVZB4qSH4YbHuVKesiz2DLjeVBupE4mJ4sFhtD_nb4_D4w5SCHth1Be9PlSebDagZ43Vhg_6ZHdlXKvsSbRbgr8KMCdGkNJp6kEitBWFEJaPyNb88Gj2sW2IDLwY_F53qvnH9wZ-qYHv_91Ib3ipsxWU_THqFXKpzlfy21eZZRueau8a-bxeY1ugcjKpKzXR38_AP_4XJlwnV7t4ls5aAbxBLtj8Jrl40M17i_w4-tWZQAtH3-TvlhlI34cZhccUQvflArdmqJZ1aUskMRiV0qqgoGUK5pZ1VaxKyOhf0Kb8Ec-7KSjIsr0OijYIuRQL-GGWrtGTmraEEH4VXRSZoestk_I2me-9fv9q3-tugfA0JFeVxxFSLjJccd9FjGkT-zxQ2mrLeJJa5mBA2dCGMnBSah0zPzQylC7C0CMw0ztklBe5vUeoMtYkiYlCk0juUiYh3EqTQDPmHGexGhN_LQNCdxDpeFNHJppUKYlEy2kBnBbIaRGMyfP-lVWLD3Ie8UsUrJ4Qob2bB8XpQnSWQmAImUZOpzyB0CuFfDpJfckhzPNdzFU8Jo9RLEXbJ9sbKDELeZRMEetnTJ41FGiiUFhk12kBTECwrwHl9oASTIseDD9Zi77AIazHy21RlwK3zDCVD2BNd1tV6FfFIINGGMExiQdKMlj2cCRffmqQzUPcqonge3fW6iQ6k1qex9WdXuP-_h_c_yfqB-QyQ7VCcM90m4yq09o-hCi0Uo86-_ITexyBWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+InSilicoVA+for+assigning+causes+of+death+to+verbal+autopsies%3A+multisite+validation+study+using+clinical+diagnostic+gold+standards&rft.jtitle=BMC+medicine&rft.au=Flaxman%2C+Abraham+D.&rft.au=Joseph%2C+Jonathan+C.&rft.au=Murray%2C+Christopher+J.+L.&rft.au=Riley%2C+Ian+Douglas&rft.date=2018-04-19&rft.pub=BioMed+Central&rft.eissn=1741-7015&rft.volume=16&rft_id=info:doi/10.1186%2Fs12916-018-1039-1&rft_id=info%3Apmid%2F29669548&rft.externalDocID=PMC5907465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7015&client=summon