MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification
We introduce MedMNIST v2 , a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no ba...
Saved in:
| Published in | Scientific data Vol. 10; no. 1; pp. 41 - 10 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
19.01.2023
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2052-4463 2052-4463 |
| DOI | 10.1038/s41597-022-01721-8 |
Cover
| Abstract | We introduce
MedMNIST v2
, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at
https://medmnist.com/
.
Measurement(s)
supervised machine learning
Technology Type(s)
machine learning |
|---|---|
| AbstractList | We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/.Measurement(s)supervised machine learningTechnology Type(s)machine learning We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/. Measurement(s)supervised machine learningTechnology Type(s)machine learning We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ .We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ . We introduce MedMNIST v2 , a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ . Measurement(s) supervised machine learning Technology Type(s) machine learning We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ . Measurement(s) supervised machine learning Technology Type(s) machine learning We introduce MedMNIST v2 , a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ . |
| ArticleNumber | 41 |
| Author | Pfister, Hanspeter Wei, Donglai Yang, Jiancheng Liu, Zequan Ke, Bilian Zhao, Lin Ni, Bingbing Shi, Rui |
| Author_xml | – sequence: 1 givenname: Jiancheng orcidid: 0000-0003-4455-7145 surname: Yang fullname: Yang, Jiancheng organization: Shanghai Jiao Tong University – sequence: 2 givenname: Rui surname: Shi fullname: Shi, Rui organization: Shanghai Jiao Tong University – sequence: 3 givenname: Donglai surname: Wei fullname: Wei, Donglai organization: Boston College – sequence: 4 givenname: Zequan surname: Liu fullname: Liu, Zequan organization: RWTH Aachen University – sequence: 5 givenname: Lin surname: Zhao fullname: Zhao, Lin organization: Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University – sequence: 6 givenname: Bilian surname: Ke fullname: Ke, Bilian organization: Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 7 givenname: Hanspeter surname: Pfister fullname: Pfister, Hanspeter organization: Harvard University – sequence: 8 givenname: Bingbing surname: Ni fullname: Ni, Bingbing email: nibingbing@sjtu.edu.cn organization: Shanghai Jiao Tong University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36658144$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhSNUREvpH2CBLLFhE_A78QapanmM1MKi3Vu2c5Px4IkHO9Oq_x7Pg9J2UbGxretzzz3-_Lo6GOMIVfWW4I8Es_ZT5kSopsaU1pg0lNTti-qIYkFrziU7eHA-rE5yXmCMCeNYNPhVdcikFC3h_KjSl9Bd_phdXaMbimp0ioJJA9TZmQAo-GE-3cJmRRZGN1-a9Av1MSF6jszYIXaOrI9L6HzRI780AyAXTM6-L5XJx_FN9bI3IcPJfj-urr5-uT77Xl_8_DY7O72oncRyqklnoZO9dBZ60XFiuRHOcMJZLzlzinODQTnmbIs7AdYo1RtLiHBgJbDjarZz7aJZ6FUqSdKdjsbrbSGmQZs0eRdA9y2WlHGCaQ_cKGE7YhThpLFK9MqR4sV2XutxZe5uTQj3hgTrDXu9Y68Le71lr9vS9XnXtVrbwsPBOCUTHkV5fDP6uR7ijVatoFxsxn7YG6T4ew150kufHYRgRojrrGkjW8qxZJtZ759IF3GdxoJ3o5KKqUbQonr3MNF9lL9_XwTtTuBSzDlBr52ftp9WAvrw_Gvpk9b_QrQHm4t4HCD9i_1M1x9S8eJz |
| CitedBy_id | crossref_primary_10_1145_3678182 crossref_primary_10_14778_3665844_3665860 crossref_primary_10_1016_j_knosys_2024_112317 crossref_primary_10_1109_ACCESS_2023_3310400 crossref_primary_10_1007_s00500_025_10509_y crossref_primary_10_1145_3695876 crossref_primary_10_1016_j_cmpb_2025_108640 crossref_primary_10_1016_j_simpa_2023_100583 crossref_primary_10_1109_ACCESS_2024_3444042 crossref_primary_10_1016_j_cels_2025_101229 crossref_primary_10_1038_s43588_024_00662_z crossref_primary_10_1038_s41467_023_41703_x crossref_primary_10_1038_s41598_025_92156_9 crossref_primary_10_1088_1361_6420_ad0f3b crossref_primary_10_1109_TCE_2024_3386932 crossref_primary_10_1016_j_neunet_2025_107228 crossref_primary_10_1016_j_neunet_2024_106773 crossref_primary_10_1038_s41598_024_60429_4 crossref_primary_10_1038_s41598_024_73561_y crossref_primary_10_1093_bib_bbae232 crossref_primary_10_1002_ima_23173 crossref_primary_10_1016_j_compbiomed_2024_109242 crossref_primary_10_1016_j_inffus_2024_102364 crossref_primary_10_1016_j_bspc_2023_105191 crossref_primary_10_3389_fradi_2024_1283392 crossref_primary_10_1016_j_mex_2024_102959 crossref_primary_10_1109_ACCESS_2025_3548966 crossref_primary_10_1002_ima_23058 crossref_primary_10_1016_j_asoc_2024_112050 crossref_primary_10_1109_ACCESS_2024_3441469 crossref_primary_10_1007_s10278_024_01090_1 crossref_primary_10_1016_j_inffus_2024_102481 crossref_primary_10_1016_j_neunet_2023_09_001 crossref_primary_10_1016_j_asoc_2023_110683 crossref_primary_10_1109_TDSC_2023_3264697 crossref_primary_10_1016_j_patrec_2025_02_003 crossref_primary_10_1109_ACCESS_2024_3415395 crossref_primary_10_1109_TBME_2023_3326799 crossref_primary_10_1007_s10278_024_01226_3 crossref_primary_10_1088_1361_6560_ad1548 crossref_primary_10_1109_JBHI_2024_3349412 crossref_primary_10_21923_jesd_1553326 crossref_primary_10_1007_s10586_024_04810_y crossref_primary_10_1148_rg_230180 crossref_primary_10_1038_s43588_024_00658_9 crossref_primary_10_1016_j_patcog_2024_110875 crossref_primary_10_1016_j_compbiomed_2024_109531 crossref_primary_10_1038_s41598_024_65597_x crossref_primary_10_1109_JBHI_2022_3220788 crossref_primary_10_1016_j_compbiomed_2024_108324 crossref_primary_10_1109_ACCESS_2023_3294812 crossref_primary_10_1186_s12880_024_01253_0 crossref_primary_10_3390_bioengineering10070764 crossref_primary_10_1007_s41060_024_00691_x crossref_primary_10_1016_j_inffus_2023_101913 crossref_primary_10_1016_j_displa_2024_102953 crossref_primary_10_1016_j_displa_2024_102951 crossref_primary_10_1186_s13040_024_00379_9 crossref_primary_10_1038_s41598_024_63094_9 crossref_primary_10_3390_electronics13132446 crossref_primary_10_1016_j_asoc_2025_112959 crossref_primary_10_1016_j_media_2024_103201 crossref_primary_10_1038_s41746_023_00901_z crossref_primary_10_1007_s10278_024_01212_9 crossref_primary_10_1088_2632_2153_acffa3 crossref_primary_10_1007_s11069_024_06641_x crossref_primary_10_1016_j_dsp_2024_104613 crossref_primary_10_1515_bmt_2024_0396 crossref_primary_10_1007_s42235_025_00654_3 crossref_primary_10_1364_OE_539374 crossref_primary_10_3904_kjim_2024_098 crossref_primary_10_1007_s11042_023_16659_1 crossref_primary_10_1038_s41597_024_04159_2 crossref_primary_10_1002_cpe_8280 crossref_primary_10_1016_j_asoc_2024_112552 crossref_primary_10_3389_frai_2024_1454441 crossref_primary_10_2174_0123520965282357231123093259 crossref_primary_10_1007_s11831_023_10002_5 crossref_primary_10_1016_j_eswa_2023_122874 crossref_primary_10_1016_j_visinf_2023_11_001 crossref_primary_10_1142_S0217732324300064 crossref_primary_10_3390_diagnostics13050834 crossref_primary_10_1007_s10586_024_04894_6 crossref_primary_10_1080_08839514_2024_2394756 crossref_primary_10_1016_j_bspc_2023_105560 crossref_primary_10_1109_ACCESS_2023_3300242 crossref_primary_10_1007_s10489_024_06172_9 crossref_primary_10_1109_JIOT_2024_3449705 crossref_primary_10_1016_j_neucom_2024_127810 crossref_primary_10_1007_s42044_025_00242_y crossref_primary_10_1002_slct_202304082 crossref_primary_10_1016_j_neucom_2024_129038 crossref_primary_10_1007_s00138_025_01674_z crossref_primary_10_1016_j_knosys_2024_111399 crossref_primary_10_1103_PhysRevResearch_6_L042060 crossref_primary_10_1016_j_patrec_2025_02_030 crossref_primary_10_1038_s41551_024_01257_9 crossref_primary_10_1016_j_metrad_2023_100007 crossref_primary_10_3390_cryptography9010005 crossref_primary_10_1016_j_patcog_2023_110044 crossref_primary_10_1109_TBDATA_2022_3177197 crossref_primary_10_1109_TCE_2024_3351649 crossref_primary_10_1109_TPAMI_2024_3434417 crossref_primary_10_1109_ACCESS_2023_3326369 crossref_primary_10_1038_s41597_025_04382_5 crossref_primary_10_1038_s41598_025_91825_z crossref_primary_10_1007_s11276_023_03573_5 crossref_primary_10_1109_LSP_2025_3544969 crossref_primary_10_1016_j_compbiomed_2025_109825 crossref_primary_10_1016_j_patcog_2024_110747 crossref_primary_10_1007_s41060_024_00713_8 crossref_primary_10_3788_AOS231054 crossref_primary_10_22331_q_2024_02_22_1265 crossref_primary_10_1145_3626242 crossref_primary_10_1016_j_inffus_2024_102834 crossref_primary_10_1038_s41591_024_03185_2 crossref_primary_10_1109_TIP_2025_3539466 crossref_primary_10_32604_cmc_2024_052570 crossref_primary_10_1007_s00521_023_09194_5 crossref_primary_10_1109_JIOT_2023_3337520 crossref_primary_10_1038_s41598_024_78757_w crossref_primary_10_1016_j_neunet_2025_107281 crossref_primary_10_1007_s00530_024_01377_x crossref_primary_10_1109_LSP_2024_3495586 crossref_primary_10_1016_j_compbiomed_2024_108369 crossref_primary_10_3390_biomedinformatics4020050 crossref_primary_10_3390_s24237511 crossref_primary_10_1109_TEVC_2024_3352641 crossref_primary_10_1016_j_media_2025_103524 crossref_primary_10_1016_j_image_2024_117151 crossref_primary_10_1016_j_compbiomed_2023_107268 crossref_primary_10_1109_ACCESS_2024_3390564 crossref_primary_10_1109_TCYB_2024_3403927 crossref_primary_10_1109_TNNLS_2023_3297103 crossref_primary_10_1016_j_knosys_2025_113073 crossref_primary_10_1038_s41597_024_03587_4 crossref_primary_10_3390_app131810433 crossref_primary_10_1016_j_compbiomed_2025_110007 crossref_primary_10_1016_j_heliyon_2023_e22406 crossref_primary_10_1038_s41598_025_90423_3 crossref_primary_10_3390_ai5040111 crossref_primary_10_1109_ACCESS_2024_3411932 crossref_primary_10_1364_OE_534163 crossref_primary_10_1155_2023_3717035 crossref_primary_10_1109_TPAMI_2025_3529711 crossref_primary_10_1109_TAI_2024_3379968 crossref_primary_10_1109_TCAD_2024_3463544 crossref_primary_10_3390_bdcc8090099 crossref_primary_10_1007_s10278_024_01384_4 crossref_primary_10_1016_j_engappai_2025_110571 crossref_primary_10_1109_TIM_2024_3396853 crossref_primary_10_1016_j_jafr_2023_100929 crossref_primary_10_1109_MSP_2024_3405667 crossref_primary_10_1038_s41377_024_01395_4 crossref_primary_10_1016_j_artmed_2024_103064 crossref_primary_10_1038_s41598_023_46433_0 |
| Cites_doi | 10.1016/j.dib.2020.105474 10.1016/j.cell.2018.02.010 10.1016/j.dib.2019.104863 10.1038/sdata.2018.161 10.1016/j.media.2017.07.005 10.1038/nmeth.2083 10.1016/j.ebiom.2020.103106 10.1038/s41586-020-2649-2 10.1371/journal.pmed.1002730 10.1016/S0031-3203(96)00142-2 10.1146/annurev-bioeng-071516-044442 10.1109/TMI.2019.2894854 10.7910/DVN/DBW86T 10.5281/zenodo.5208230 10.17632/snkd93bnjr.1 10.5281/zenodo.1214456 10.17632/rscbjbr9sj.3 10.1007/s00371-010-0416-3 10.1038/s41592-020-01008-z 10.1118/1.3528204 10.1016/S2589-7500(19)30123-2 10.1007/978-3-030-87199-4_48 10.1109/CVPR.2017.369 10.1007/978-3-030-05318-5_6 10.1109/TNNLS.2021.3084404 10.1109/CVPR42600.2020.00273 10.1109/CVPR.2016.90 10.1007/978-3-030-87240-3_39 10.1007/978-3-030-59722-1_7 10.1101/2020.06.24.167726 10.1109/ISBI48211.2021.9434062 10.1109/JBHI.2021.3049452 10.1145/3292500.3330648 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41597-022-01721-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2052-4463 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_f806234102fe4a95bd1a91417b95f9c1 10.1038/s41597-022-01721-8 PMC9852451 36658144 10_1038_s41597_022_01721_8 |
| Genre | Dataset Journal Article |
| GrantInformation_xml | – fundername: Shanghai Jiao Tong University (SJTU) grantid: YG2021ZD18 funderid: https://doi.org/10.13039/501100004921 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U20B200011; 61976137 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U20B200011 – fundername: Shanghai Jiao Tong University (SJTU) grantid: YG2021ZD18 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61976137 – fundername: ; grantid: YG2021ZD18 – fundername: ; grantid: U20B200011; 61976137 |
| GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSFO ACSMW ADBBV ADRAZ AFKRA AGHDO AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c606t-1dbed6f6cbef5d41b4a5ca4143f643c944a0e9c3cb80d5eba99fab115ceb6e3 |
| IEDL.DBID | M48 |
| ISSN | 2052-4463 |
| IngestDate | Fri Oct 03 12:51:17 EDT 2025 Sun Oct 26 04:06:17 EDT 2025 Tue Sep 30 17:16:39 EDT 2025 Wed Oct 01 13:53:42 EDT 2025 Tue Oct 07 06:54:12 EDT 2025 Thu Apr 03 07:10:10 EDT 2025 Wed Oct 01 01:07:24 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Fri Feb 21 02:39:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c606t-1dbed6f6cbef5d41b4a5ca4143f643c944a0e9c3cb80d5eba99fab115ceb6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| ORCID | 0000-0003-4455-7145 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41597-022-01721-8 |
| PMID | 36658144 |
| PQID | 2766939752 |
| PQPubID | 2041912 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f806234102fe4a95bd1a91417b95f9c1 unpaywall_primary_10_1038_s41597_022_01721_8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9852451 proquest_miscellaneous_2768240638 proquest_journals_2766939752 pubmed_primary_36658144 crossref_citationtrail_10_1038_s41597_022_01721_8 crossref_primary_10_1038_s41597_022_01721_8 springer_journals_10_1038_s41597_022_01721_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-19 |
| PublicationDateYYYYMMDD | 2023-01-19 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific data |
| PublicationTitleAbbrev | Sci Data |
| PublicationTitleAlternate | Sci Data |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Bradley (CR44) 1997; 30 Jin (CR33) 2020; 62 Harris (CR39) 2020; 585 CR18 Kermany, Zhang, Goldbaum (CR23) 2018 CR15 Al-Dhabyani, Gomaa, Khaled, Fahmy (CR25) 2020; 28 CR37 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (CR7) 2021; 18 CR14 CR36 Litjens (CR2) 2017; 42 CR13 CR12 CR34 Attene (CR35) 2010; 26 CR11 Acevedo (CR26) 2020; 30 CR10 CR30 Xu (CR31) 2019; 38 Kermany (CR22) 2018; 172 Armato (CR32) 2011; 38 Pedregosa (CR42) 2011; 12 CR4 Acevedo (CR27) 2020 CR6 Kather (CR16) 2019; 16 CR5 CR8 Ljosa, Sokolnicki, Carpenter (CR29) 2012; 9 CR28 CR9 Yang (CR38) 2021 Liu (CR3) 2019; 1 CR24 Tschandl, Rosendahl, Kittler (CR19) 2018; 5 Shen, Wu, Suk (CR1) 2017; 19 CR21 CR43 Kather, Halama, Marx (CR17) 2018 CR41 CR40 Tschandl (CR20) 2018 1721_CR11 X Liu (1721_CR3) 2019; 1 1721_CR10 1721_CR13 1721_CR12 1721_CR34 1721_CR15 JN Kather (1721_CR17) 2018 1721_CR37 1721_CR14 1721_CR36 F Pedregosa (1721_CR42) 2011; 12 1721_CR4 G Litjens (1721_CR2) 2017; 42 L Jin (1721_CR33) 2020; 62 1721_CR6 1721_CR5 1721_CR8 1721_CR30 DS Kermany (1721_CR23) 2018 CR Harris (1721_CR39) 2020; 585 1721_CR9 D Shen (1721_CR1) 2017; 19 X Xu (1721_CR31) 2019; 38 1721_CR18 SG Armato III (1721_CR32) 2011; 38 A Acevedo (1721_CR27) 2020 V Ljosa (1721_CR29) 2012; 9 1721_CR21 1721_CR43 1721_CR24 A Acevedo (1721_CR26) 2020; 30 DS Kermany (1721_CR22) 2018; 172 1721_CR28 J Yang (1721_CR38) 2021 P Tschandl (1721_CR19) 2018; 5 W Al-Dhabyani (1721_CR25) 2020; 28 1721_CR40 JN Kather (1721_CR16) 2019; 16 1721_CR41 M Attene (1721_CR35) 2010; 26 F Isensee (1721_CR7) 2021; 18 P Tschandl (1721_CR20) 2018 AP Bradley (1721_CR44) 1997; 30 |
| References_xml | – ident: CR18 – volume: 30 start-page: 105474 year: 2020 ident: CR26 article-title: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems publication-title: Data in Brief doi: 10.1016/j.dib.2020.105474 – ident: CR43 – volume: 172 start-page: 1122 year: 2018 end-page: 1131.e9 ident: CR22 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – ident: CR4 – ident: CR14 – ident: CR37 – ident: CR12 – ident: CR30 – volume: 28 start-page: 104863 year: 2020 ident: CR25 article-title: Dataset of breast ultrasound images publication-title: Data in Brief doi: 10.1016/j.dib.2019.104863 – ident: CR10 – volume: 5 year: 2018 ident: CR19 article-title: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions publication-title: Scientific data doi: 10.1038/sdata.2018.161 – ident: CR6 – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: CR2 article-title: A survey on deep learning in medical image analysis publication-title: Medical image analysis doi: 10.1016/j.media.2017.07.005 – ident: CR8 – volume: 9 start-page: 637 year: 2012 end-page: 637 ident: CR29 article-title: Annotated high-throughput microscopy image sets for validation publication-title: Nature methods doi: 10.1038/nmeth.2083 – volume: 62 start-page: 103106 year: 2020 ident: CR33 article-title: Deep-learning-assisted detection and segmentation of rib fractures from ct scans: Development and validation of fracnet publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.103106 – ident: CR40 – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: CR39 article-title: Array programming with numpy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 16 start-page: 1 year: 2019 end-page: 22 ident: CR16 article-title: Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study publication-title: PLOS Medicine doi: 10.1371/journal.pmed.1002730 – volume: 30 start-page: 1145 year: 1997 end-page: 1159 ident: CR44 article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms publication-title: Pattern recognition doi: 10.1016/S0031-3203(96)00142-2 – volume: 19 start-page: 221 year: 2017 end-page: 248 ident: CR1 article-title: Deep learning in medical image analysis publication-title: Annual review of biomedical engineering doi: 10.1146/annurev-bioeng-071516-044442 – ident: CR21 – volume: 38 start-page: 1885 year: 2019 end-page: 1898 ident: CR31 article-title: Efficient multiple organ localization in ct image using 3d region proposal network publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2019.2894854 – year: 2018 ident: CR20 publication-title: Harvard Dataverse doi: 10.7910/DVN/DBW86T – year: 2021 ident: CR38 publication-title: Zenodo doi: 10.5281/zenodo.5208230 – year: 2020 ident: CR27 publication-title: Mendeley Data doi: 10.17632/snkd93bnjr.1 – year: 2018 ident: CR17 publication-title: Zenodo doi: 10.5281/zenodo.1214456 – year: 2018 ident: CR23 publication-title: Large dataset of labeled optical coherence tomography (oct) and chest x-ray images doi: 10.17632/rscbjbr9sj.3 – ident: CR15 – volume: 26 start-page: 1393 year: 2010 end-page: 1406 ident: CR35 article-title: A lightweight approach to repairing digitized polygon meshes publication-title: The Visual Computer doi: 10.1007/s00371-010-0416-3 – ident: CR13 – ident: CR11 – ident: CR9 – volume: 18 start-page: 203 year: 2021 end-page: 211 ident: CR7 article-title: H. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nature methods doi: 10.1038/s41592-020-01008-z – ident: CR34 – ident: CR36 – ident: CR5 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR42 article-title: Scikit-learn: Machine learning in python publication-title: the Journal of machine Learning research – ident: CR28 – ident: CR41 – ident: CR24 – volume: 38 start-page: 915 year: 2011 end-page: 931 ident: CR32 article-title: The lung image database consortium (lidc) and image database resource initiative (idri): A completed reference database of lung nodules on ct scans publication-title: Medical Physics doi: 10.1118/1.3528204 – volume: 1 start-page: e271 year: 2019 end-page: e297 ident: CR3 article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis publication-title: The lancet digital health doi: 10.1016/S2589-7500(19)30123-2 – ident: 1721_CR15 doi: 10.1007/978-3-030-87199-4_48 – volume: 5 year: 2018 ident: 1721_CR19 publication-title: Scientific data doi: 10.1038/sdata.2018.161 – ident: 1721_CR21 – volume: 1 start-page: e271 year: 2019 ident: 1721_CR3 publication-title: The lancet digital health doi: 10.1016/S2589-7500(19)30123-2 – ident: 1721_CR18 doi: 10.1109/CVPR.2017.369 – volume: 18 start-page: 203 year: 2021 ident: 1721_CR7 publication-title: Nature methods doi: 10.1038/s41592-020-01008-z – year: 2018 ident: 1721_CR17 doi: 10.5281/zenodo.1214456 – volume: 30 start-page: 1145 year: 1997 ident: 1721_CR44 publication-title: Pattern recognition doi: 10.1016/S0031-3203(96)00142-2 – ident: 1721_CR8 – year: 2020 ident: 1721_CR27 doi: 10.17632/snkd93bnjr.1 – ident: 1721_CR11 doi: 10.1007/978-3-030-05318-5_6 – ident: 1721_CR13 doi: 10.1109/TNNLS.2021.3084404 – ident: 1721_CR5 – volume: 28 start-page: 104863 year: 2020 ident: 1721_CR25 publication-title: Data in Brief doi: 10.1016/j.dib.2019.104863 – year: 2021 ident: 1721_CR38 doi: 10.5281/zenodo.5208230 – ident: 1721_CR34 doi: 10.1109/CVPR42600.2020.00273 – volume: 26 start-page: 1393 year: 2010 ident: 1721_CR35 publication-title: The Visual Computer doi: 10.1007/s00371-010-0416-3 – ident: 1721_CR40 – ident: 1721_CR10 doi: 10.1109/CVPR.2016.90 – volume: 585 start-page: 357 year: 2020 ident: 1721_CR39 publication-title: Nature doi: 10.1038/s41586-020-2649-2 – ident: 1721_CR14 doi: 10.1007/978-3-030-87240-3_39 – ident: 1721_CR43 – volume: 9 start-page: 637 year: 2012 ident: 1721_CR29 publication-title: Nature methods doi: 10.1038/nmeth.2083 – ident: 1721_CR37 doi: 10.1007/978-3-030-59722-1_7 – volume: 62 start-page: 103106 year: 2020 ident: 1721_CR33 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.103106 – ident: 1721_CR28 doi: 10.1101/2020.06.24.167726 – ident: 1721_CR4 – year: 2018 ident: 1721_CR20 doi: 10.7910/DVN/DBW86T – volume: 42 start-page: 60 year: 2017 ident: 1721_CR2 publication-title: Medical image analysis doi: 10.1016/j.media.2017.07.005 – ident: 1721_CR6 – volume: 19 start-page: 221 year: 2017 ident: 1721_CR1 publication-title: Annual review of biomedical engineering doi: 10.1146/annurev-bioeng-071516-044442 – ident: 1721_CR9 doi: 10.1109/ISBI48211.2021.9434062 – ident: 1721_CR30 – ident: 1721_CR41 doi: 10.1109/JBHI.2021.3049452 – ident: 1721_CR36 – ident: 1721_CR12 doi: 10.1145/3292500.3330648 – volume: 38 start-page: 1885 year: 2019 ident: 1721_CR31 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2019.2894854 – year: 2018 ident: 1721_CR23 publication-title: Large dataset of labeled optical coherence tomography (oct) and chest x-ray images doi: 10.17632/rscbjbr9sj.3 – volume: 12 start-page: 2825 year: 2011 ident: 1721_CR42 publication-title: the Journal of machine Learning research – ident: 1721_CR24 – volume: 38 start-page: 915 year: 2011 ident: 1721_CR32 publication-title: Medical Physics doi: 10.1118/1.3528204 – volume: 172 start-page: 1122 year: 2018 ident: 1721_CR22 publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – volume: 16 start-page: 1 year: 2019 ident: 1721_CR16 publication-title: PLOS Medicine doi: 10.1371/journal.pmed.1002730 – volume: 30 start-page: 105474 year: 2020 ident: 1721_CR26 publication-title: Data in Brief doi: 10.1016/j.dib.2020.105474 |
| SSID | ssj0001340570 |
| Score | 2.7000093 |
| Snippet | We introduce
MedMNIST v2
, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D.... We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D.... Measurement(s) supervised machine learning Technology Type(s) machine learning |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 41 |
| SubjectTerms | 631/114/1305 706/648/697/129 Algorithms Benchmarking Classification Computer vision Data Descriptor Datasets Deep learning Design Humanities and Social Sciences Image processing Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - classification Imaging, Three-Dimensional - methods Learning algorithms Machine Learning Medical research multidisciplinary Neural networks Neural Networks, Computer Science Science (multidisciplinary) Three dimensional imaging |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABUZ6BgozEAUStOn6tfSyUqiBtLy1Sb5ZfUaumadXdpeLfM3ayYVegwoFr4kiT-caZb-zJZ4TesqhklM4RrY0mkKEoMVpEomjktRfSyCKxMT1UB9_E1xN5snLUV-4J6-WBe8ftNJpChhaQB5sknJE-1s7Uop54IxsTSuFDtVkppsrqCs9EhA5_yVCud2aQqbLwKMudCFD2EL2WiYpg_59Y5u_NkuOO6X10d9FduR83rm1XktL-Q_RgYJN4t3-LTXQndY_Q5jBfZ_jdICr9_jGy0xSnh1-OjvF3hgnexW1uASczgCjhNlfoN2WRFHt49PTCXZ9joLOY7WHXRcz3cP-ffoYUn13ARwiHzLtzo1HB9gk62v98_OmADIcrkAA1y5zU0aeoGhV8amQUgIuTwQmgTw2QlGCEcDSZwIPXNMrknTGN88AfQ_Iq8adoo7vs0nOEG68dZRAK0kShuDchwNfX1D4yX4sQKlQv3WzDoDuej79obdn_5tr20FiAxhZorK7Qh_GZq15149bRHzN648ismF0uQBzZIY7s3-KoQltL7O0wjWeWTZQywNgkq9Cb8TZMwLyr4rp0uShjdKZFHOx41ofKaAlXQPCgZK3QZC2I1kxdv9OdnRaRb6MlExLM2l6G2y-zbnPF9hiS_-C5F__Dcy_RPQbML69L1WYLbcyvF-kVMLW5f10m5U8PTjT2 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAcEOVRAi0yEgcQtZo4dtY-INTSVgVpV4gWqTfLr9CKNLvsg4p_z9ibZLsCrbjGtjTxzHg-2-NvEHpNXcEd15oIIQWBCJUSKZgjReryzDAueaTYGAyL02_s8wW_2EDD9i1MSKts18S4ULuRDWfk-7RfFBKCJ6cfxj9JqBoVblfbEhq6Ka3g3keKsTtokwZmrB7aPDwefvm6PHXJA0BJm9czaS72pxDBAiEpDRkKsB0iYiVCRSL_f6HPv5Mou5vU--juvB7r3ze6qm4Fq5OH6EGDMvHBwiy20IavH6Gtxo-n-E1DNv32MVID7wbDT2fn-BfFBB_gKqSGkymozuMq7Nxv4uEpNjD08lpPfmCAuZgeYV07nB_hxfv9oGp8dQ2LE7YBj4cEpKjzJ-js5Pj84ylpii4QC3uZGcmc8a4oC2t8yR0DfWluNQNYVQJ4sZIxnXppc2tE6rg3WspSG8CV1pvC509Rrx7V_hnCpRE6pWAiXDpW5EZaC6uyzIyjJmPWJihrp1nZho88lMWoVLwXz4VaqEaBalRUjRIJeteNGS_YONb2Pgza63oGJu34YTT5rhrHVKVIAQEywFmlZ1py4zItM5b1jeSltFmCdlrdq8a9p2ppjAl61TWDY4bbFl370Tz2EQEu5SDH9sJUOknyAoAfbGUT1F8xohVRV1vqq8tI_i0Fp4yDWHutuS3FWjcVe51J_sfMPV__0y_QPQpYL5xEZXIH9WaTud8FbDYzLxuH-wPO-jPB priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXK9gAcEOUzUJCROIDYqLFje-3jQqnKStvLFqk3y19RK9K06u5S8e8ZO9mUqKiCa2xHI78Z-9kePyP0nnrBPTcml1LJHGaoIleS-VwUviSWccWTxMb8SBx-Z7MTfrKFxpu7MIPz-yTdvYQpJiqG0phCAOuVXN5D2xIcU47Q9nQ6W8xu9lTKSD-K7m4MNN-73Xgw_ySZ_r9xy9spkv056UN0f91cml_Xpq7_mIoOHqNHHYfE0xb0HbQVmidop4vSJf7QSUl_fIr0PPj50bfFMf5JcY6nuI6J3_kSgAm4juvy67Q1ii00PT03Vz8wkFhM97FpPC73cXs7PwKJz85h6MEusu2YXpQQfYYWB1-Pvxzm3ZMKuYOVyion3gYvKuFsqLhngIbhzjAgTRVQE6cYM0VQrnRWFp4Ha5SqjAXW6IIVoXyORs1FE14iXFlpCgoOwJVnorTKORhzFbGeWsKcyxDZdLN2ndp4fPSi1unUu5S6hUYDNDpBo2WGPvVtLlutjTtrf47o9TWjTnb6AO6ju7DTlSyA3zFgUVVgRnHriVGEkYlVvFKOZGh3g73ugnep6UQIBTyN0wy964sh7OJZimnCxTrVkZEMlWDHi9ZVektKAbQOFqoZmgycaGDqsKQ5O03S3kpyyjiYNd64241Zd3XFuHfJf-i5V__399foAQVmF_ediNpFo9XVOrwBJrayb7sA_A0zeifM priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKegAOQIFCSkFG4gCiDrtee2MfA6UqSImQ2opysvxaWjXdRHm0gl_P2PuAQFXR6-5Ymp0Zj79Zjz8j9Iq6nDuuNRFCCgIrVEKkYI7kictSw7jkkWJjOMr3j9jnY368hvLmLExs2o-UljFNN91h7-aw0ATeUBoaCaBqIaI3dcUttJ5zwOAdtH40-jL4Fm6SSzglUONk9QmZJBNXDF5ZhSJZ_1UI899GyXa39C66vSyn-selHo__WJD27qOvzadUfShnveXC9OzPv1geb_6tD9C9GqPiQSW5gdZ8-RBt1Flgjl_XVNVvHiE19G44-nRwiC8oJniAx6GxnMzB8R6PQ91_GX-9YgNDT8717AwDSMZ0F-vS4WwXV6f_Q6Dg03NIbdgGNB_al2LEPEYHex8PP-yT-soGYqESWpDUGe_yIrfGF9wx8LbmVjMAZQVAHysZ04mXNrNGJI57o6UstAFUar3JfbaJOuWk9E8RLozQCYUA49KBM420FnK6TI2jJmXWdlHaOFDZms08XKoxVnFXPROqsqICK6poRSW66G07ZlpxeVwr_T7ERSsZeLjjg8nsu6p9pQqRAH5kgNIKz7TkxqVapiztG8kLadMu2m6iStXJYa5oP88l4EBOu-hl-xqmddir0aWfLKOMCGArAz2eVEHYapLlABuhEO6i_kp4rqi6-qY8PYnU4VJwyjiotdME8m-1rjPFThvs_2G5rZuJP0N3KCDH8F8rlduos5gt_XNAegvzop7WvwCIfEpk priority: 102 providerName: Unpaywall |
| Title | MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification |
| URI | https://link.springer.com/article/10.1038/s41597-022-01721-8 https://www.ncbi.nlm.nih.gov/pubmed/36658144 https://www.proquest.com/docview/2766939752 https://www.proquest.com/docview/2768240638 https://pubmed.ncbi.nlm.nih.gov/PMC9852451 https://www.nature.com/articles/s41597-022-01721-8.pdf https://doaj.org/article/f806234102fe4a95bd1a91417b95f9c1 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: DIK dateStart: 20140101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: NAO dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: 7X7 dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals Open Access customDbUrl: eissn: 2052-4463 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: M48 dateStart: 20141101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: AAJSJ dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: C6C dateStart: 20141201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QA8IMZnx6iMxAOIBRLHTu0HhLpu06jUaqKrVJ4if4VNy9KuH4z995ydNFBRTXuKFDvR5T5yvzvbdwi9IyZhhkkZcC54AB4qDASnJkhCE0eKMsF8iY1ePzkZ0u6IjTbQcrttxcDZ2tDO9ZMaTvNPv69vv4LBfymPjPPPM3BCrqYocZsMIKIBqU6uA9dYyi3AVl02NtE2OC_hujv0qgjAp2Fih1hcJoaEjAQQHMXV0Zr1b15xX77K_zpo-v8Oy3qZ9RF6sCgm8vZG5vk_nuz4CXpcQVDcLnVmB23Y4inaqYx8ht9Xlag_PENpz5pe_9vgDP8iOMBtnLt948EM5Gpx7sL6G59ZxQoePb-S00sMGBiTQywLg-NDXB7ud3qAL67gz4W1A-tud5JXiOdocHx01jkJqo4MgYZAZx5ERlmTZIlWNmOGgjAl05IC5soA2WhBqQyt0LFWPDTMKilEJhWATm1VYuMXaKsYF_YVwpniMiSgP0wYYLkSWsMvW0TKEBVRrRsoWrI51VWxctczI0_9onnM01I0KYgm9aJJeQN9rJ-ZlKU67px94KRXz3Rltv2N8fRnWlltmvEQ4CEFEJZZKgVTJpIiolFLCZYJHTXQ3lL26VJ1U9JKEgEwj5EGelsPg9W6pRhZ2PHCz-EOS8VAx8tSVWpK4gRQIcS5DdRaUaIVUldHiotzXxlccEYoA7L2l-r2l6y7WLFfq-Q9OLd7j696jR4SQIMuVxWJPbQ1ny7sG0Bvc9VEm61Rq4m22-3uoAvXg6P-6Xe420k6TZ8RaXoLhZFh_7T94w-LMUNE |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jB4QIzPwAAjgQRi0RLHTu2HCW10U8vWCrFO2hOWv8ImurT0g2r_G38c5zRJqUAVL3tNnOji--Xu5_P5DqHXxKbMMqVCzgUPwUNFoeDUhmlkk1hTJlhRYqPTTVtn9NM5O19Dv6qzMD6tsrKJhaG2A-Nj5LukkaYCnCcjH4Y_Qt81yu-uVi00VNlawe4VJcbKgx3H7noGS7jxXrsJ-n5DyNFh72MrLLsMhAbI-ySMrXY2zVKjXcYsBQEVM4oCj8jAWxtBqYqcMInRPLLMaSVEpjQQKeN06hJ46y20QRMqYOm3cXDY_fxlEeNJPB2KyrM6UcJ3x-AvfflT4vMhYPEV8iV_WLQN-BfX_Ttls963vYM2p_lQXc9Uv_-Hazy6h-6WnBbvz0G4hdZcfh9tlVZjjN-Wpa3fPUCy42yn2z7t4Z8Eh3gf930iejgGoDjc93GCWRGqxRoevbhSo-8YSDUmTaxyi5MmnlcL8MDCl1dgCrHx7N-nOxUIe4hOb2DyH6H1fJC7JwhnmquIACCZsDRNtDAGfICItSU6psYEKK6mWZqy-rlvwtGXxS58wuVcNRJUIwvVSB6g9_Uzw3ntj5WjD7z26pG-bndxYTD6JkszIDMeAd-kwOoyR5Vg2sZKxDRuaMEyYeIAbVe6l6UxGcsF9AP0qr4NZsDv7ajcDabFGO7JWQJyPJ5DpZYkSYFmwsI5QI0lEC2Junwnv7woSo0LzghlINZOBbeFWKumYqeG5H_M3NPVH_0SbbZ6nRN50u4eP0O3CbBMHwOLxTZan4ym7jmwwol-Uf58GH292b_9N2WAcos |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IMa1MMBIIIFY1MSxE_sBoUGpVkYrpG1Sn7B8C5vo0tIL1f4ZP4_j3EoFqnjZa-JEJz6fz_l8fHIOQi-ITZhlSgWcCx6AhwoDwakNktDGkaZMsKLERn-QHJzQT0M23EK_6n9hfFplbRMLQ23HxsfI2yRNEgHOk5F2VqVFfOl0301-BL6DlD9prdtplBA5dBdL2L7N3vY6oOuXhHQ_Hn84CKoOA4EB4j4PIqudTbLEaJcxS0E4xYyiwCEy8NRGUKpCJ0xsNA8tc1oJkSkNJMo4nbgY3noFXU3jWPhkwnSYrqI7sSdCYfWXThjz9gw8pS98SnwmBGy7Ar7mCYuGAf9iuX8nazYntjfR9UU-URdLNRr94RS7t9Gtis3i_RJ-O2jL5XfQTmUvZvhVVdT69V0k-872B72jY_yT4ADv45FPQQ9mABGHRz5CsCyCtFjDo6fnavodA53GpINVbnHcwWWdAA8pfHYORhAbz_t9olOBrXvo6BKm_j7azse5e4hwprkKCUCRCUuTWAtjwPqLSFuiI2pMC0X1NEtT1T337TdGsjh_j7ksVSNBNbJQjeQt9KZ5ZlJW_dg4-r3XXjPSV-wuLoyn32RlAGTGQ2CaFPhc5qgSTNtIiYhGqRYsEyZqod1a97IyIzO5An0LPW9ugwHwpzoqd-NFMYZ7WhaDHA9KqDSSxAkQTNgyt1C6BqI1Udfv5GenRZFxwRmhDMTaq-G2EmvTVOw1kPyPmXu0-aOfoWuwxuXn3uDwMbpBgF764FckdtH2fLpwT4AOzvXTYuVh9PVyF_pvQPBwJQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKegAOQIFCSkFG4gCiDrtee2MfA6UqSImQ2opysvxaWjXdRHm0gl_P2PuAQFXR6-5Ymp0Zj79Zjz8j9Iq6nDuuNRFCCgIrVEKkYI7kictSw7jkkWJjOMr3j9jnY368hvLmLExs2o-UljFNN91h7-aw0ATeUBoaCaBqIaI3dcUttJ5zwOAdtH40-jL4Fm6SSzglUONk9QmZJBNXDF5ZhSJZ_1UI899GyXa39C66vSyn-selHo__WJD27qOvzadUfShnveXC9OzPv1geb_6tD9C9GqPiQSW5gdZ8-RBt1Flgjl_XVNVvHiE19G44-nRwiC8oJniAx6GxnMzB8R6PQ91_GX-9YgNDT8717AwDSMZ0F-vS4WwXV6f_Q6Dg03NIbdgGNB_al2LEPEYHex8PP-yT-soGYqESWpDUGe_yIrfGF9wx8LbmVjMAZQVAHysZ04mXNrNGJI57o6UstAFUar3JfbaJOuWk9E8RLozQCYUA49KBM420FnK6TI2jJmXWdlHaOFDZms08XKoxVnFXPROqsqICK6poRSW66G07ZlpxeVwr_T7ERSsZeLjjg8nsu6p9pQqRAH5kgNIKz7TkxqVapiztG8kLadMu2m6iStXJYa5oP88l4EBOu-hl-xqmddir0aWfLKOMCGArAz2eVEHYapLlABuhEO6i_kp4rqi6-qY8PYnU4VJwyjiotdME8m-1rjPFThvs_2G5rZuJP0N3KCDH8F8rlduos5gt_XNAegvzop7WvwCIfEpk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MedMNIST+v2+-+A+large-scale+lightweight+benchmark+for+2D+and+3D+biomedical+image+classification&rft.jtitle=Scientific+data&rft.au=Yang%2C+Jiancheng&rft.au=Shi%2C+Rui&rft.au=Wei%2C+Donglai&rft.au=Liu%2C+Zequan&rft.date=2023-01-19&rft.issn=2052-4463&rft.eissn=2052-4463&rft.volume=10&rft.issue=1&rft.spage=41&rft_id=info:doi/10.1038%2Fs41597-022-01721-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |