MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification

We introduce MedMNIST v2 , a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no ba...

Full description

Saved in:
Bibliographic Details
Published inScientific data Vol. 10; no. 1; pp. 41 - 10
Main Authors Yang, Jiancheng, Shi, Rui, Wei, Donglai, Liu, Zequan, Zhao, Lin, Ke, Bilian, Pfister, Hanspeter, Ni, Bingbing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.01.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2052-4463
2052-4463
DOI10.1038/s41597-022-01721-8

Cover

Abstract We introduce MedMNIST v2 , a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ . Measurement(s) supervised machine learning Technology Type(s) machine learning
AbstractList We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/.Measurement(s)supervised machine learningTechnology Type(s)machine learning
We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/. Measurement(s)supervised machine learningTechnology Type(s)machine learning
We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ .We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ .
We introduce MedMNIST v2 , a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ . Measurement(s) supervised machine learning Technology Type(s) machine learning
We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ .
Measurement(s) supervised machine learning Technology Type(s) machine learning
We introduce MedMNIST v2 , a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28 × 28 (2D) or 28 × 28 × 28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research/educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D/3D neural networks and open-source/commercial AutoML tools. The data and code are publicly available at https://medmnist.com/ .
ArticleNumber 41
Author Pfister, Hanspeter
Wei, Donglai
Yang, Jiancheng
Liu, Zequan
Ke, Bilian
Zhao, Lin
Ni, Bingbing
Shi, Rui
Author_xml – sequence: 1
  givenname: Jiancheng
  orcidid: 0000-0003-4455-7145
  surname: Yang
  fullname: Yang, Jiancheng
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Rui
  surname: Shi
  fullname: Shi, Rui
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Donglai
  surname: Wei
  fullname: Wei, Donglai
  organization: Boston College
– sequence: 4
  givenname: Zequan
  surname: Liu
  fullname: Liu, Zequan
  organization: RWTH Aachen University
– sequence: 5
  givenname: Lin
  surname: Zhao
  fullname: Zhao, Lin
  organization: Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University
– sequence: 6
  givenname: Bilian
  surname: Ke
  fullname: Ke, Bilian
  organization: Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
– sequence: 7
  givenname: Hanspeter
  surname: Pfister
  fullname: Pfister, Hanspeter
  organization: Harvard University
– sequence: 8
  givenname: Bingbing
  surname: Ni
  fullname: Ni, Bingbing
  email: nibingbing@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36658144$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNUREvpH2CBLLFhE_A78QapanmM1MKi3Vu2c5Px4IkHO9Oq_x7Pg9J2UbGxretzzz3-_Lo6GOMIVfWW4I8Es_ZT5kSopsaU1pg0lNTti-qIYkFrziU7eHA-rE5yXmCMCeNYNPhVdcikFC3h_KjSl9Bd_phdXaMbimp0ioJJA9TZmQAo-GE-3cJmRRZGN1-a9Av1MSF6jszYIXaOrI9L6HzRI780AyAXTM6-L5XJx_FN9bI3IcPJfj-urr5-uT77Xl_8_DY7O72oncRyqklnoZO9dBZ60XFiuRHOcMJZLzlzinODQTnmbIs7AdYo1RtLiHBgJbDjarZz7aJZ6FUqSdKdjsbrbSGmQZs0eRdA9y2WlHGCaQ_cKGE7YhThpLFK9MqR4sV2XutxZe5uTQj3hgTrDXu9Y68Le71lr9vS9XnXtVrbwsPBOCUTHkV5fDP6uR7ijVatoFxsxn7YG6T4ew150kufHYRgRojrrGkjW8qxZJtZ759IF3GdxoJ3o5KKqUbQonr3MNF9lL9_XwTtTuBSzDlBr52ftp9WAvrw_Gvpk9b_QrQHm4t4HCD9i_1M1x9S8eJz
CitedBy_id crossref_primary_10_1145_3678182
crossref_primary_10_14778_3665844_3665860
crossref_primary_10_1016_j_knosys_2024_112317
crossref_primary_10_1109_ACCESS_2023_3310400
crossref_primary_10_1007_s00500_025_10509_y
crossref_primary_10_1145_3695876
crossref_primary_10_1016_j_cmpb_2025_108640
crossref_primary_10_1016_j_simpa_2023_100583
crossref_primary_10_1109_ACCESS_2024_3444042
crossref_primary_10_1016_j_cels_2025_101229
crossref_primary_10_1038_s43588_024_00662_z
crossref_primary_10_1038_s41467_023_41703_x
crossref_primary_10_1038_s41598_025_92156_9
crossref_primary_10_1088_1361_6420_ad0f3b
crossref_primary_10_1109_TCE_2024_3386932
crossref_primary_10_1016_j_neunet_2025_107228
crossref_primary_10_1016_j_neunet_2024_106773
crossref_primary_10_1038_s41598_024_60429_4
crossref_primary_10_1038_s41598_024_73561_y
crossref_primary_10_1093_bib_bbae232
crossref_primary_10_1002_ima_23173
crossref_primary_10_1016_j_compbiomed_2024_109242
crossref_primary_10_1016_j_inffus_2024_102364
crossref_primary_10_1016_j_bspc_2023_105191
crossref_primary_10_3389_fradi_2024_1283392
crossref_primary_10_1016_j_mex_2024_102959
crossref_primary_10_1109_ACCESS_2025_3548966
crossref_primary_10_1002_ima_23058
crossref_primary_10_1016_j_asoc_2024_112050
crossref_primary_10_1109_ACCESS_2024_3441469
crossref_primary_10_1007_s10278_024_01090_1
crossref_primary_10_1016_j_inffus_2024_102481
crossref_primary_10_1016_j_neunet_2023_09_001
crossref_primary_10_1016_j_asoc_2023_110683
crossref_primary_10_1109_TDSC_2023_3264697
crossref_primary_10_1016_j_patrec_2025_02_003
crossref_primary_10_1109_ACCESS_2024_3415395
crossref_primary_10_1109_TBME_2023_3326799
crossref_primary_10_1007_s10278_024_01226_3
crossref_primary_10_1088_1361_6560_ad1548
crossref_primary_10_1109_JBHI_2024_3349412
crossref_primary_10_21923_jesd_1553326
crossref_primary_10_1007_s10586_024_04810_y
crossref_primary_10_1148_rg_230180
crossref_primary_10_1038_s43588_024_00658_9
crossref_primary_10_1016_j_patcog_2024_110875
crossref_primary_10_1016_j_compbiomed_2024_109531
crossref_primary_10_1038_s41598_024_65597_x
crossref_primary_10_1109_JBHI_2022_3220788
crossref_primary_10_1016_j_compbiomed_2024_108324
crossref_primary_10_1109_ACCESS_2023_3294812
crossref_primary_10_1186_s12880_024_01253_0
crossref_primary_10_3390_bioengineering10070764
crossref_primary_10_1007_s41060_024_00691_x
crossref_primary_10_1016_j_inffus_2023_101913
crossref_primary_10_1016_j_displa_2024_102953
crossref_primary_10_1016_j_displa_2024_102951
crossref_primary_10_1186_s13040_024_00379_9
crossref_primary_10_1038_s41598_024_63094_9
crossref_primary_10_3390_electronics13132446
crossref_primary_10_1016_j_asoc_2025_112959
crossref_primary_10_1016_j_media_2024_103201
crossref_primary_10_1038_s41746_023_00901_z
crossref_primary_10_1007_s10278_024_01212_9
crossref_primary_10_1088_2632_2153_acffa3
crossref_primary_10_1007_s11069_024_06641_x
crossref_primary_10_1016_j_dsp_2024_104613
crossref_primary_10_1515_bmt_2024_0396
crossref_primary_10_1007_s42235_025_00654_3
crossref_primary_10_1364_OE_539374
crossref_primary_10_3904_kjim_2024_098
crossref_primary_10_1007_s11042_023_16659_1
crossref_primary_10_1038_s41597_024_04159_2
crossref_primary_10_1002_cpe_8280
crossref_primary_10_1016_j_asoc_2024_112552
crossref_primary_10_3389_frai_2024_1454441
crossref_primary_10_2174_0123520965282357231123093259
crossref_primary_10_1007_s11831_023_10002_5
crossref_primary_10_1016_j_eswa_2023_122874
crossref_primary_10_1016_j_visinf_2023_11_001
crossref_primary_10_1142_S0217732324300064
crossref_primary_10_3390_diagnostics13050834
crossref_primary_10_1007_s10586_024_04894_6
crossref_primary_10_1080_08839514_2024_2394756
crossref_primary_10_1016_j_bspc_2023_105560
crossref_primary_10_1109_ACCESS_2023_3300242
crossref_primary_10_1007_s10489_024_06172_9
crossref_primary_10_1109_JIOT_2024_3449705
crossref_primary_10_1016_j_neucom_2024_127810
crossref_primary_10_1007_s42044_025_00242_y
crossref_primary_10_1002_slct_202304082
crossref_primary_10_1016_j_neucom_2024_129038
crossref_primary_10_1007_s00138_025_01674_z
crossref_primary_10_1016_j_knosys_2024_111399
crossref_primary_10_1103_PhysRevResearch_6_L042060
crossref_primary_10_1016_j_patrec_2025_02_030
crossref_primary_10_1038_s41551_024_01257_9
crossref_primary_10_1016_j_metrad_2023_100007
crossref_primary_10_3390_cryptography9010005
crossref_primary_10_1016_j_patcog_2023_110044
crossref_primary_10_1109_TBDATA_2022_3177197
crossref_primary_10_1109_TCE_2024_3351649
crossref_primary_10_1109_TPAMI_2024_3434417
crossref_primary_10_1109_ACCESS_2023_3326369
crossref_primary_10_1038_s41597_025_04382_5
crossref_primary_10_1038_s41598_025_91825_z
crossref_primary_10_1007_s11276_023_03573_5
crossref_primary_10_1109_LSP_2025_3544969
crossref_primary_10_1016_j_compbiomed_2025_109825
crossref_primary_10_1016_j_patcog_2024_110747
crossref_primary_10_1007_s41060_024_00713_8
crossref_primary_10_3788_AOS231054
crossref_primary_10_22331_q_2024_02_22_1265
crossref_primary_10_1145_3626242
crossref_primary_10_1016_j_inffus_2024_102834
crossref_primary_10_1038_s41591_024_03185_2
crossref_primary_10_1109_TIP_2025_3539466
crossref_primary_10_32604_cmc_2024_052570
crossref_primary_10_1007_s00521_023_09194_5
crossref_primary_10_1109_JIOT_2023_3337520
crossref_primary_10_1038_s41598_024_78757_w
crossref_primary_10_1016_j_neunet_2025_107281
crossref_primary_10_1007_s00530_024_01377_x
crossref_primary_10_1109_LSP_2024_3495586
crossref_primary_10_1016_j_compbiomed_2024_108369
crossref_primary_10_3390_biomedinformatics4020050
crossref_primary_10_3390_s24237511
crossref_primary_10_1109_TEVC_2024_3352641
crossref_primary_10_1016_j_media_2025_103524
crossref_primary_10_1016_j_image_2024_117151
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_1109_ACCESS_2024_3390564
crossref_primary_10_1109_TCYB_2024_3403927
crossref_primary_10_1109_TNNLS_2023_3297103
crossref_primary_10_1016_j_knosys_2025_113073
crossref_primary_10_1038_s41597_024_03587_4
crossref_primary_10_3390_app131810433
crossref_primary_10_1016_j_compbiomed_2025_110007
crossref_primary_10_1016_j_heliyon_2023_e22406
crossref_primary_10_1038_s41598_025_90423_3
crossref_primary_10_3390_ai5040111
crossref_primary_10_1109_ACCESS_2024_3411932
crossref_primary_10_1364_OE_534163
crossref_primary_10_1155_2023_3717035
crossref_primary_10_1109_TPAMI_2025_3529711
crossref_primary_10_1109_TAI_2024_3379968
crossref_primary_10_1109_TCAD_2024_3463544
crossref_primary_10_3390_bdcc8090099
crossref_primary_10_1007_s10278_024_01384_4
crossref_primary_10_1016_j_engappai_2025_110571
crossref_primary_10_1109_TIM_2024_3396853
crossref_primary_10_1016_j_jafr_2023_100929
crossref_primary_10_1109_MSP_2024_3405667
crossref_primary_10_1038_s41377_024_01395_4
crossref_primary_10_1016_j_artmed_2024_103064
crossref_primary_10_1038_s41598_023_46433_0
Cites_doi 10.1016/j.dib.2020.105474
10.1016/j.cell.2018.02.010
10.1016/j.dib.2019.104863
10.1038/sdata.2018.161
10.1016/j.media.2017.07.005
10.1038/nmeth.2083
10.1016/j.ebiom.2020.103106
10.1038/s41586-020-2649-2
10.1371/journal.pmed.1002730
10.1016/S0031-3203(96)00142-2
10.1146/annurev-bioeng-071516-044442
10.1109/TMI.2019.2894854
10.7910/DVN/DBW86T
10.5281/zenodo.5208230
10.17632/snkd93bnjr.1
10.5281/zenodo.1214456
10.17632/rscbjbr9sj.3
10.1007/s00371-010-0416-3
10.1038/s41592-020-01008-z
10.1118/1.3528204
10.1016/S2589-7500(19)30123-2
10.1007/978-3-030-87199-4_48
10.1109/CVPR.2017.369
10.1007/978-3-030-05318-5_6
10.1109/TNNLS.2021.3084404
10.1109/CVPR42600.2020.00273
10.1109/CVPR.2016.90
10.1007/978-3-030-87240-3_39
10.1007/978-3-030-59722-1_7
10.1101/2020.06.24.167726
10.1109/ISBI48211.2021.9434062
10.1109/JBHI.2021.3049452
10.1145/3292500.3330648
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41597-022-01721-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
EndPage 10
ExternalDocumentID oai_doaj_org_article_f806234102fe4a95bd1a91417b95f9c1
10.1038/s41597-022-01721-8
PMC9852451
36658144
10_1038_s41597_022_01721_8
Genre Dataset
Journal Article
GrantInformation_xml – fundername: Shanghai Jiao Tong University (SJTU)
  grantid: YG2021ZD18
  funderid: https://doi.org/10.13039/501100004921
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U20B200011; 61976137
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U20B200011
– fundername: Shanghai Jiao Tong University (SJTU)
  grantid: YG2021ZD18
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61976137
– fundername: ;
  grantid: YG2021ZD18
– fundername: ;
  grantid: U20B200011; 61976137
GroupedDBID 0R~
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSFO
ACSMW
ADBBV
ADRAZ
AFKRA
AGHDO
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M48
M7P
M~E
NAO
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c606t-1dbed6f6cbef5d41b4a5ca4143f643c944a0e9c3cb80d5eba99fab115ceb6e3
IEDL.DBID M48
ISSN 2052-4463
IngestDate Fri Oct 03 12:51:17 EDT 2025
Sun Oct 26 04:06:17 EDT 2025
Tue Sep 30 17:16:39 EDT 2025
Wed Oct 01 13:53:42 EDT 2025
Tue Oct 07 06:54:12 EDT 2025
Thu Apr 03 07:10:10 EDT 2025
Wed Oct 01 01:07:24 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Fri Feb 21 02:39:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-1dbed6f6cbef5d41b4a5ca4143f643c944a0e9c3cb80d5eba99fab115ceb6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0003-4455-7145
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41597-022-01721-8
PMID 36658144
PQID 2766939752
PQPubID 2041912
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f806234102fe4a95bd1a91417b95f9c1
unpaywall_primary_10_1038_s41597_022_01721_8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9852451
proquest_miscellaneous_2768240638
proquest_journals_2766939752
pubmed_primary_36658144
crossref_citationtrail_10_1038_s41597_022_01721_8
crossref_primary_10_1038_s41597_022_01721_8
springer_journals_10_1038_s41597_022_01721_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Bradley (CR44) 1997; 30
Jin (CR33) 2020; 62
Harris (CR39) 2020; 585
CR18
Kermany, Zhang, Goldbaum (CR23) 2018
CR15
Al-Dhabyani, Gomaa, Khaled, Fahmy (CR25) 2020; 28
CR37
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (CR7) 2021; 18
CR14
CR36
Litjens (CR2) 2017; 42
CR13
CR12
CR34
Attene (CR35) 2010; 26
CR11
Acevedo (CR26) 2020; 30
CR10
CR30
Xu (CR31) 2019; 38
Kermany (CR22) 2018; 172
Armato (CR32) 2011; 38
Pedregosa (CR42) 2011; 12
CR4
Acevedo (CR27) 2020
CR6
Kather (CR16) 2019; 16
CR5
CR8
Ljosa, Sokolnicki, Carpenter (CR29) 2012; 9
CR28
CR9
Yang (CR38) 2021
Liu (CR3) 2019; 1
CR24
Tschandl, Rosendahl, Kittler (CR19) 2018; 5
Shen, Wu, Suk (CR1) 2017; 19
CR21
CR43
Kather, Halama, Marx (CR17) 2018
CR41
CR40
Tschandl (CR20) 2018
1721_CR11
X Liu (1721_CR3) 2019; 1
1721_CR10
1721_CR13
1721_CR12
1721_CR34
1721_CR15
JN Kather (1721_CR17) 2018
1721_CR37
1721_CR14
1721_CR36
F Pedregosa (1721_CR42) 2011; 12
1721_CR4
G Litjens (1721_CR2) 2017; 42
L Jin (1721_CR33) 2020; 62
1721_CR6
1721_CR5
1721_CR8
1721_CR30
DS Kermany (1721_CR23) 2018
CR Harris (1721_CR39) 2020; 585
1721_CR9
D Shen (1721_CR1) 2017; 19
X Xu (1721_CR31) 2019; 38
1721_CR18
SG Armato III (1721_CR32) 2011; 38
A Acevedo (1721_CR27) 2020
V Ljosa (1721_CR29) 2012; 9
1721_CR21
1721_CR43
1721_CR24
A Acevedo (1721_CR26) 2020; 30
DS Kermany (1721_CR22) 2018; 172
1721_CR28
J Yang (1721_CR38) 2021
P Tschandl (1721_CR19) 2018; 5
W Al-Dhabyani (1721_CR25) 2020; 28
1721_CR40
JN Kather (1721_CR16) 2019; 16
1721_CR41
M Attene (1721_CR35) 2010; 26
F Isensee (1721_CR7) 2021; 18
P Tschandl (1721_CR20) 2018
AP Bradley (1721_CR44) 1997; 30
References_xml – ident: CR18
– volume: 30
  start-page: 105474
  year: 2020
  ident: CR26
  article-title: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2020.105474
– ident: CR43
– volume: 172
  start-page: 1122
  year: 2018
  end-page: 1131.e9
  ident: CR22
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– ident: CR4
– ident: CR14
– ident: CR37
– ident: CR12
– ident: CR30
– volume: 28
  start-page: 104863
  year: 2020
  ident: CR25
  article-title: Dataset of breast ultrasound images
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2019.104863
– ident: CR10
– volume: 5
  year: 2018
  ident: CR19
  article-title: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions
  publication-title: Scientific data
  doi: 10.1038/sdata.2018.161
– ident: CR6
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR2
  article-title: A survey on deep learning in medical image analysis
  publication-title: Medical image analysis
  doi: 10.1016/j.media.2017.07.005
– ident: CR8
– volume: 9
  start-page: 637
  year: 2012
  end-page: 637
  ident: CR29
  article-title: Annotated high-throughput microscopy image sets for validation
  publication-title: Nature methods
  doi: 10.1038/nmeth.2083
– volume: 62
  start-page: 103106
  year: 2020
  ident: CR33
  article-title: Deep-learning-assisted detection and segmentation of rib fractures from ct scans: Development and validation of fracnet
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.103106
– ident: CR40
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: CR39
  article-title: Array programming with numpy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 16
  start-page: 1
  year: 2019
  end-page: 22
  ident: CR16
  article-title: Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1002730
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: CR44
  article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms
  publication-title: Pattern recognition
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: CR1
  article-title: Deep learning in medical image analysis
  publication-title: Annual review of biomedical engineering
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: CR21
– volume: 38
  start-page: 1885
  year: 2019
  end-page: 1898
  ident: CR31
  article-title: Efficient multiple organ localization in ct image using 3d region proposal network
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2019.2894854
– year: 2018
  ident: CR20
  publication-title: Harvard Dataverse
  doi: 10.7910/DVN/DBW86T
– year: 2021
  ident: CR38
  publication-title: Zenodo
  doi: 10.5281/zenodo.5208230
– year: 2020
  ident: CR27
  publication-title: Mendeley Data
  doi: 10.17632/snkd93bnjr.1
– year: 2018
  ident: CR17
  publication-title: Zenodo
  doi: 10.5281/zenodo.1214456
– year: 2018
  ident: CR23
  publication-title: Large dataset of labeled optical coherence tomography (oct) and chest x-ray images
  doi: 10.17632/rscbjbr9sj.3
– ident: CR15
– volume: 26
  start-page: 1393
  year: 2010
  end-page: 1406
  ident: CR35
  article-title: A lightweight approach to repairing digitized polygon meshes
  publication-title: The Visual Computer
  doi: 10.1007/s00371-010-0416-3
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: CR7
  article-title: H. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nature methods
  doi: 10.1038/s41592-020-01008-z
– ident: CR34
– ident: CR36
– ident: CR5
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR42
  article-title: Scikit-learn: Machine learning in python
  publication-title: the Journal of machine Learning research
– ident: CR28
– ident: CR41
– ident: CR24
– volume: 38
  start-page: 915
  year: 2011
  end-page: 931
  ident: CR32
  article-title: The lung image database consortium (lidc) and image database resource initiative (idri): A completed reference database of lung nodules on ct scans
  publication-title: Medical Physics
  doi: 10.1118/1.3528204
– volume: 1
  start-page: e271
  year: 2019
  end-page: e297
  ident: CR3
  article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis
  publication-title: The lancet digital health
  doi: 10.1016/S2589-7500(19)30123-2
– ident: 1721_CR15
  doi: 10.1007/978-3-030-87199-4_48
– volume: 5
  year: 2018
  ident: 1721_CR19
  publication-title: Scientific data
  doi: 10.1038/sdata.2018.161
– ident: 1721_CR21
– volume: 1
  start-page: e271
  year: 2019
  ident: 1721_CR3
  publication-title: The lancet digital health
  doi: 10.1016/S2589-7500(19)30123-2
– ident: 1721_CR18
  doi: 10.1109/CVPR.2017.369
– volume: 18
  start-page: 203
  year: 2021
  ident: 1721_CR7
  publication-title: Nature methods
  doi: 10.1038/s41592-020-01008-z
– year: 2018
  ident: 1721_CR17
  doi: 10.5281/zenodo.1214456
– volume: 30
  start-page: 1145
  year: 1997
  ident: 1721_CR44
  publication-title: Pattern recognition
  doi: 10.1016/S0031-3203(96)00142-2
– ident: 1721_CR8
– year: 2020
  ident: 1721_CR27
  doi: 10.17632/snkd93bnjr.1
– ident: 1721_CR11
  doi: 10.1007/978-3-030-05318-5_6
– ident: 1721_CR13
  doi: 10.1109/TNNLS.2021.3084404
– ident: 1721_CR5
– volume: 28
  start-page: 104863
  year: 2020
  ident: 1721_CR25
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2019.104863
– year: 2021
  ident: 1721_CR38
  doi: 10.5281/zenodo.5208230
– ident: 1721_CR34
  doi: 10.1109/CVPR42600.2020.00273
– volume: 26
  start-page: 1393
  year: 2010
  ident: 1721_CR35
  publication-title: The Visual Computer
  doi: 10.1007/s00371-010-0416-3
– ident: 1721_CR40
– ident: 1721_CR10
  doi: 10.1109/CVPR.2016.90
– volume: 585
  start-page: 357
  year: 2020
  ident: 1721_CR39
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– ident: 1721_CR14
  doi: 10.1007/978-3-030-87240-3_39
– ident: 1721_CR43
– volume: 9
  start-page: 637
  year: 2012
  ident: 1721_CR29
  publication-title: Nature methods
  doi: 10.1038/nmeth.2083
– ident: 1721_CR37
  doi: 10.1007/978-3-030-59722-1_7
– volume: 62
  start-page: 103106
  year: 2020
  ident: 1721_CR33
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.103106
– ident: 1721_CR28
  doi: 10.1101/2020.06.24.167726
– ident: 1721_CR4
– year: 2018
  ident: 1721_CR20
  doi: 10.7910/DVN/DBW86T
– volume: 42
  start-page: 60
  year: 2017
  ident: 1721_CR2
  publication-title: Medical image analysis
  doi: 10.1016/j.media.2017.07.005
– ident: 1721_CR6
– volume: 19
  start-page: 221
  year: 2017
  ident: 1721_CR1
  publication-title: Annual review of biomedical engineering
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: 1721_CR9
  doi: 10.1109/ISBI48211.2021.9434062
– ident: 1721_CR30
– ident: 1721_CR41
  doi: 10.1109/JBHI.2021.3049452
– ident: 1721_CR36
– ident: 1721_CR12
  doi: 10.1145/3292500.3330648
– volume: 38
  start-page: 1885
  year: 2019
  ident: 1721_CR31
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2019.2894854
– year: 2018
  ident: 1721_CR23
  publication-title: Large dataset of labeled optical coherence tomography (oct) and chest x-ray images
  doi: 10.17632/rscbjbr9sj.3
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1721_CR42
  publication-title: the Journal of machine Learning research
– ident: 1721_CR24
– volume: 38
  start-page: 915
  year: 2011
  ident: 1721_CR32
  publication-title: Medical Physics
  doi: 10.1118/1.3528204
– volume: 172
  start-page: 1122
  year: 2018
  ident: 1721_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 16
  start-page: 1
  year: 2019
  ident: 1721_CR16
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1002730
– volume: 30
  start-page: 105474
  year: 2020
  ident: 1721_CR26
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2020.105474
SSID ssj0001340570
Score 2.7000093
Snippet We introduce MedMNIST v2 , a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D....
We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D....
Measurement(s) supervised machine learning Technology Type(s) machine learning
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms 631/114/1305
706/648/697/129
Algorithms
Benchmarking
Classification
Computer vision
Data Descriptor
Datasets
Deep learning
Design
Humanities and Social Sciences
Image processing
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - classification
Imaging, Three-Dimensional - methods
Learning algorithms
Machine Learning
Medical research
multidisciplinary
Neural networks
Neural Networks, Computer
Science
Science (multidisciplinary)
Three dimensional imaging
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABUZ6BgozEAUStOn6tfSyUqiBtLy1Sb5ZfUaumadXdpeLfM3ayYVegwoFr4kiT-caZb-zJZ4TesqhklM4RrY0mkKEoMVpEomjktRfSyCKxMT1UB9_E1xN5snLUV-4J6-WBe8ftNJpChhaQB5sknJE-1s7Uop54IxsTSuFDtVkppsrqCs9EhA5_yVCud2aQqbLwKMudCFD2EL2WiYpg_59Y5u_NkuOO6X10d9FduR83rm1XktL-Q_RgYJN4t3-LTXQndY_Q5jBfZ_jdICr9_jGy0xSnh1-OjvF3hgnexW1uASczgCjhNlfoN2WRFHt49PTCXZ9joLOY7WHXRcz3cP-ffoYUn13ARwiHzLtzo1HB9gk62v98_OmADIcrkAA1y5zU0aeoGhV8amQUgIuTwQmgTw2QlGCEcDSZwIPXNMrknTGN88AfQ_Iq8adoo7vs0nOEG68dZRAK0kShuDchwNfX1D4yX4sQKlQv3WzDoDuej79obdn_5tr20FiAxhZorK7Qh_GZq15149bRHzN648ismF0uQBzZIY7s3-KoQltL7O0wjWeWTZQywNgkq9Cb8TZMwLyr4rp0uShjdKZFHOx41ofKaAlXQPCgZK3QZC2I1kxdv9OdnRaRb6MlExLM2l6G2y-zbnPF9hiS_-C5F__Dcy_RPQbML69L1WYLbcyvF-kVMLW5f10m5U8PTjT2
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAcEOVRAi0yEgcQtZo4dtY-INTSVgVpV4gWqTfLr9CKNLvsg4p_z9ibZLsCrbjGtjTxzHg-2-NvEHpNXcEd15oIIQWBCJUSKZgjReryzDAueaTYGAyL02_s8wW_2EDD9i1MSKts18S4ULuRDWfk-7RfFBKCJ6cfxj9JqBoVblfbEhq6Ka3g3keKsTtokwZmrB7aPDwefvm6PHXJA0BJm9czaS72pxDBAiEpDRkKsB0iYiVCRSL_f6HPv5Mou5vU--juvB7r3ze6qm4Fq5OH6EGDMvHBwiy20IavH6Gtxo-n-E1DNv32MVID7wbDT2fn-BfFBB_gKqSGkymozuMq7Nxv4uEpNjD08lpPfmCAuZgeYV07nB_hxfv9oGp8dQ2LE7YBj4cEpKjzJ-js5Pj84ylpii4QC3uZGcmc8a4oC2t8yR0DfWluNQNYVQJ4sZIxnXppc2tE6rg3WspSG8CV1pvC509Rrx7V_hnCpRE6pWAiXDpW5EZaC6uyzIyjJmPWJihrp1nZho88lMWoVLwXz4VaqEaBalRUjRIJeteNGS_YONb2Pgza63oGJu34YTT5rhrHVKVIAQEywFmlZ1py4zItM5b1jeSltFmCdlrdq8a9p2ppjAl61TWDY4bbFl370Tz2EQEu5SDH9sJUOknyAoAfbGUT1F8xohVRV1vqq8tI_i0Fp4yDWHutuS3FWjcVe51J_sfMPV__0y_QPQpYL5xEZXIH9WaTud8FbDYzLxuH-wPO-jPB
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXK9gAcEOUzUJCROIDYqLFje-3jQqnKStvLFqk3y19RK9K06u5S8e8ZO9mUqKiCa2xHI78Z-9kePyP0nnrBPTcml1LJHGaoIleS-VwUviSWccWTxMb8SBx-Z7MTfrKFxpu7MIPz-yTdvYQpJiqG0phCAOuVXN5D2xIcU47Q9nQ6W8xu9lTKSD-K7m4MNN-73Xgw_ySZ_r9xy9spkv056UN0f91cml_Xpq7_mIoOHqNHHYfE0xb0HbQVmidop4vSJf7QSUl_fIr0PPj50bfFMf5JcY6nuI6J3_kSgAm4juvy67Q1ii00PT03Vz8wkFhM97FpPC73cXs7PwKJz85h6MEusu2YXpQQfYYWB1-Pvxzm3ZMKuYOVyion3gYvKuFsqLhngIbhzjAgTRVQE6cYM0VQrnRWFp4Ha5SqjAXW6IIVoXyORs1FE14iXFlpCgoOwJVnorTKORhzFbGeWsKcyxDZdLN2ndp4fPSi1unUu5S6hUYDNDpBo2WGPvVtLlutjTtrf47o9TWjTnb6AO6ju7DTlSyA3zFgUVVgRnHriVGEkYlVvFKOZGh3g73ugnep6UQIBTyN0wy964sh7OJZimnCxTrVkZEMlWDHi9ZVektKAbQOFqoZmgycaGDqsKQ5O03S3kpyyjiYNd64241Zd3XFuHfJf-i5V__399foAQVmF_ediNpFo9XVOrwBJrayb7sA_A0zeifM
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKegAOQIFCSkFG4gCiDrtee2MfA6UqSImQ2opysvxaWjXdRHm0gl_P2PuAQFXR6-5Ymp0Zj79Zjz8j9Iq6nDuuNRFCCgIrVEKkYI7kictSw7jkkWJjOMr3j9jnY368hvLmLExs2o-UljFNN91h7-aw0ATeUBoaCaBqIaI3dcUttJ5zwOAdtH40-jL4Fm6SSzglUONk9QmZJBNXDF5ZhSJZ_1UI899GyXa39C66vSyn-selHo__WJD27qOvzadUfShnveXC9OzPv1geb_6tD9C9GqPiQSW5gdZ8-RBt1Flgjl_XVNVvHiE19G44-nRwiC8oJniAx6GxnMzB8R6PQ91_GX-9YgNDT8717AwDSMZ0F-vS4WwXV6f_Q6Dg03NIbdgGNB_al2LEPEYHex8PP-yT-soGYqESWpDUGe_yIrfGF9wx8LbmVjMAZQVAHysZ04mXNrNGJI57o6UstAFUar3JfbaJOuWk9E8RLozQCYUA49KBM420FnK6TI2jJmXWdlHaOFDZms08XKoxVnFXPROqsqICK6poRSW66G07ZlpxeVwr_T7ERSsZeLjjg8nsu6p9pQqRAH5kgNIKz7TkxqVapiztG8kLadMu2m6iStXJYa5oP88l4EBOu-hl-xqmddir0aWfLKOMCGArAz2eVEHYapLlABuhEO6i_kp4rqi6-qY8PYnU4VJwyjiotdME8m-1rjPFThvs_2G5rZuJP0N3KCDH8F8rlduos5gt_XNAegvzop7WvwCIfEpk
  priority: 102
  providerName: Unpaywall
Title MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification
URI https://link.springer.com/article/10.1038/s41597-022-01721-8
https://www.ncbi.nlm.nih.gov/pubmed/36658144
https://www.proquest.com/docview/2766939752
https://www.proquest.com/docview/2768240638
https://pubmed.ncbi.nlm.nih.gov/PMC9852451
https://www.nature.com/articles/s41597-022-01721-8.pdf
https://doaj.org/article/f806234102fe4a95bd1a91417b95f9c1
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: DIK
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: NAO
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals Open Access
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: M48
  dateStart: 20141101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: AAJSJ
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: C6C
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28QA8IMZnx6iMxAOIBRLHTu0HhLpu06jUaqKrVJ4if4VNy9KuH4z995ydNFBRTXuKFDvR5T5yvzvbdwi9IyZhhkkZcC54AB4qDASnJkhCE0eKMsF8iY1ePzkZ0u6IjTbQcrttxcDZ2tDO9ZMaTvNPv69vv4LBfymPjPPPM3BCrqYocZsMIKIBqU6uA9dYyi3AVl02NtE2OC_hujv0qgjAp2Fih1hcJoaEjAQQHMXV0Zr1b15xX77K_zpo-v8Oy3qZ9RF6sCgm8vZG5vk_nuz4CXpcQVDcLnVmB23Y4inaqYx8ht9Xlag_PENpz5pe_9vgDP8iOMBtnLt948EM5Gpx7sL6G59ZxQoePb-S00sMGBiTQywLg-NDXB7ud3qAL67gz4W1A-tud5JXiOdocHx01jkJqo4MgYZAZx5ERlmTZIlWNmOGgjAl05IC5soA2WhBqQyt0LFWPDTMKilEJhWATm1VYuMXaKsYF_YVwpniMiSgP0wYYLkSWsMvW0TKEBVRrRsoWrI51VWxctczI0_9onnM01I0KYgm9aJJeQN9rJ-ZlKU67px94KRXz3Rltv2N8fRnWlltmvEQ4CEFEJZZKgVTJpIiolFLCZYJHTXQ3lL26VJ1U9JKEgEwj5EGelsPg9W6pRhZ2PHCz-EOS8VAx8tSVWpK4gRQIcS5DdRaUaIVUldHiotzXxlccEYoA7L2l-r2l6y7WLFfq-Q9OLd7j696jR4SQIMuVxWJPbQ1ny7sG0Bvc9VEm61Rq4m22-3uoAvXg6P-6Xe420k6TZ8RaXoLhZFh_7T94w-LMUNE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jB4QIzPwAAjgQRi0RLHTu2HCW10U8vWCrFO2hOWv8ImurT0g2r_G38c5zRJqUAVL3tNnOji--Xu5_P5DqHXxKbMMqVCzgUPwUNFoeDUhmlkk1hTJlhRYqPTTVtn9NM5O19Dv6qzMD6tsrKJhaG2A-Nj5LukkaYCnCcjH4Y_Qt81yu-uVi00VNlawe4VJcbKgx3H7noGS7jxXrsJ-n5DyNFh72MrLLsMhAbI-ySMrXY2zVKjXcYsBQEVM4oCj8jAWxtBqYqcMInRPLLMaSVEpjQQKeN06hJ46y20QRMqYOm3cXDY_fxlEeNJPB2KyrM6UcJ3x-AvfflT4vMhYPEV8iV_WLQN-BfX_Ttls963vYM2p_lQXc9Uv_-Hazy6h-6WnBbvz0G4hdZcfh9tlVZjjN-Wpa3fPUCy42yn2z7t4Z8Eh3gf930iejgGoDjc93GCWRGqxRoevbhSo-8YSDUmTaxyi5MmnlcL8MDCl1dgCrHx7N-nOxUIe4hOb2DyH6H1fJC7JwhnmquIACCZsDRNtDAGfICItSU6psYEKK6mWZqy-rlvwtGXxS58wuVcNRJUIwvVSB6g9_Uzw3ntj5WjD7z26pG-bndxYTD6JkszIDMeAd-kwOoyR5Vg2sZKxDRuaMEyYeIAbVe6l6UxGcsF9AP0qr4NZsDv7ajcDabFGO7JWQJyPJ5DpZYkSYFmwsI5QI0lEC2Junwnv7woSo0LzghlINZOBbeFWKumYqeG5H_M3NPVH_0SbbZ6nRN50u4eP0O3CbBMHwOLxTZan4ym7jmwwol-Uf58GH292b_9N2WAcos
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IMa1MMBIIIFY1MSxE_sBoUGpVkYrpG1Sn7B8C5vo0tIL1f4ZP4_j3EoFqnjZa-JEJz6fz_l8fHIOQi-ITZhlSgWcCx6AhwoDwakNktDGkaZMsKLERn-QHJzQT0M23EK_6n9hfFplbRMLQ23HxsfI2yRNEgHOk5F2VqVFfOl0301-BL6DlD9prdtplBA5dBdL2L7N3vY6oOuXhHQ_Hn84CKoOA4EB4j4PIqudTbLEaJcxS0E4xYyiwCEy8NRGUKpCJ0xsNA8tc1oJkSkNJMo4nbgY3noFXU3jWPhkwnSYrqI7sSdCYfWXThjz9gw8pS98SnwmBGy7Ar7mCYuGAf9iuX8nazYntjfR9UU-URdLNRr94RS7t9Gtis3i_RJ-O2jL5XfQTmUvZvhVVdT69V0k-872B72jY_yT4ADv45FPQQ9mABGHRz5CsCyCtFjDo6fnavodA53GpINVbnHcwWWdAA8pfHYORhAbz_t9olOBrXvo6BKm_j7azse5e4hwprkKCUCRCUuTWAtjwPqLSFuiI2pMC0X1NEtT1T337TdGsjh_j7ksVSNBNbJQjeQt9KZ5ZlJW_dg4-r3XXjPSV-wuLoyn32RlAGTGQ2CaFPhc5qgSTNtIiYhGqRYsEyZqod1a97IyIzO5An0LPW9ugwHwpzoqd-NFMYZ7WhaDHA9KqDSSxAkQTNgyt1C6BqI1Udfv5GenRZFxwRmhDMTaq-G2EmvTVOw1kPyPmXu0-aOfoWuwxuXn3uDwMbpBgF764FckdtH2fLpwT4AOzvXTYuVh9PVyF_pvQPBwJQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKegAOQIFCSkFG4gCiDrtee2MfA6UqSImQ2opysvxaWjXdRHm0gl_P2PuAQFXR6-5Ymp0Zj79Zjz8j9Iq6nDuuNRFCCgIrVEKkYI7kictSw7jkkWJjOMr3j9jnY368hvLmLExs2o-UljFNN91h7-aw0ATeUBoaCaBqIaI3dcUttJ5zwOAdtH40-jL4Fm6SSzglUONk9QmZJBNXDF5ZhSJZ_1UI899GyXa39C66vSyn-selHo__WJD27qOvzadUfShnveXC9OzPv1geb_6tD9C9GqPiQSW5gdZ8-RBt1Flgjl_XVNVvHiE19G44-nRwiC8oJniAx6GxnMzB8R6PQ91_GX-9YgNDT8717AwDSMZ0F-vS4WwXV6f_Q6Dg03NIbdgGNB_al2LEPEYHex8PP-yT-soGYqESWpDUGe_yIrfGF9wx8LbmVjMAZQVAHysZ04mXNrNGJI57o6UstAFUar3JfbaJOuWk9E8RLozQCYUA49KBM420FnK6TI2jJmXWdlHaOFDZms08XKoxVnFXPROqsqICK6poRSW66G07ZlpxeVwr_T7ERSsZeLjjg8nsu6p9pQqRAH5kgNIKz7TkxqVapiztG8kLadMu2m6iStXJYa5oP88l4EBOu-hl-xqmddir0aWfLKOMCGArAz2eVEHYapLlABuhEO6i_kp4rqi6-qY8PYnU4VJwyjiotdME8m-1rjPFThvs_2G5rZuJP0N3KCDH8F8rlduos5gt_XNAegvzop7WvwCIfEpk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MedMNIST+v2+-+A+large-scale+lightweight+benchmark+for+2D+and+3D+biomedical+image+classification&rft.jtitle=Scientific+data&rft.au=Yang%2C+Jiancheng&rft.au=Shi%2C+Rui&rft.au=Wei%2C+Donglai&rft.au=Liu%2C+Zequan&rft.date=2023-01-19&rft.issn=2052-4463&rft.eissn=2052-4463&rft.volume=10&rft.issue=1&rft.spage=41&rft_id=info:doi/10.1038%2Fs41597-022-01721-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon