Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics

Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug‐...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 12; no. 3; pp. e10264 - n/a
Main Authors Khaledi, Ariane, Weimann, Aaron, Schniederjans, Monika, Asgari, Ehsaneddin, Kuo, Tzu‐Hao, Oliver, Antonio, Cabot, Gabriel, Kola, Axel, Gastmeier, Petra, Hogardt, Michael, Jonas, Daniel, Mofrad, Mohammad RK, Bremges, Andreas, McHardy, Alice C, Häussler, Susanne
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.03.2020
EMBO Press
EMBOpress
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text
ISSN1757-4676
1757-4684
1757-4684
DOI10.15252/emmm.201910264

Cover

Abstract Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug‐resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections. Synopsis The spread of antibiotic resistance complicates infection treatment, requiring an optimization of current diagnostics. In this study, a machine learning approach identified a set of biomarkers suitable for the development of a molecular test system to determine antibiotic resistance profiles. Genome and transcriptome data of 414 clinical isolates was combined for biomarker identification using information on gene expression, gene presence or absence, and single nucleotide variations. For some antibiotics, transcriptome information greatly improves resistance prediction. Depending on the antibiotic, 37–93 biomarkers are sufficient to obtain high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. Biomarkers include known resistance conferring genes (e.g. gyrA, oprD, ampC, efflux pumps) as well as unexpected and potential novel candidates. Graphical Abstract The spread of antibiotic resistance complicates infection treatment, requiring an optimization of current diagnostics. In this study, a machine learning approach identified a set of biomarkers suitable for the development of a molecular test system to determine antibiotic resistance profiles.
AbstractList Abstract Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug‐resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections.
Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug‐resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections. Synopsis The spread of antibiotic resistance complicates infection treatment, requiring an optimization of current diagnostics. In this study, a machine learning approach identified a set of biomarkers suitable for the development of a molecular test system to determine antibiotic resistance profiles. Genome and transcriptome data of 414 clinical isolates was combined for biomarker identification using information on gene expression, gene presence or absence, and single nucleotide variations. For some antibiotics, transcriptome information greatly improves resistance prediction. Depending on the antibiotic, 37–93 biomarkers are sufficient to obtain high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. Biomarkers include known resistance conferring genes (e.g. gyrA, oprD, ampC, efflux pumps) as well as unexpected and potential novel candidates. Graphical Abstract The spread of antibiotic resistance complicates infection treatment, requiring an optimization of current diagnostics. In this study, a machine learning approach identified a set of biomarkers suitable for the development of a molecular test system to determine antibiotic resistance profiles.
Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug-resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8-0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections.Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug-resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8-0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections.
Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug‐resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections.
Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug-resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8-0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections.
Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug‐resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections. The spread of antibiotic resistance complicates infection treatment, requiring an optimization of current diagnostics. In this study, a machine learning approach identified a set of biomarkers suitable for the development of a molecular test system to determine antibiotic resistance profiles.
Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug‐resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections. Synopsis The spread of antibiotic resistance complicates infection treatment, requiring an optimization of current diagnostics. In this study, a machine learning approach identified a set of biomarkers suitable for the development of a molecular test system to determine antibiotic resistance profiles. Genome and transcriptome data of 414 clinical isolates was combined for biomarker identification using information on gene expression, gene presence or absence, and single nucleotide variations. For some antibiotics, transcriptome information greatly improves resistance prediction. Depending on the antibiotic, 37–93 biomarkers are sufficient to obtain high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. Biomarkers include known resistance conferring genes (e.g. gyrA, oprD, ampC, efflux pumps) as well as unexpected and potential novel candidates. The spread of antibiotic resistance complicates infection treatment, requiring an optimization of current diagnostics. In this study, a machine learning approach identified a set of biomarkers suitable for the development of a molecular test system to determine antibiotic resistance profiles.
Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug-resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8–0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. Finally, the implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections.
Author Jonas, Daniel
Khaledi, Ariane
Mofrad, Mohammad RK
Kola, Axel
Gastmeier, Petra
Schniederjans, Monika
Kuo, Tzu‐Hao
Häussler, Susanne
Hogardt, Michael
Cabot, Gabriel
McHardy, Alice C
Weimann, Aaron
Asgari, Ehsaneddin
Bremges, Andreas
Oliver, Antonio
AuthorAffiliation 10 Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Lab Berkeley CA USA
8 Institute of Medical Microbiology and Infection Control University Hospital Frankfurt Frankfurt/Main Germany
4 German Center for Infection Research (DZIF) Braunschweig Germany
9 Faculty of Medicine Institute for Infection Prevention and Hospital Epidemiology Medical Center‐University of Freiburg Freiburg Germany
3 Computational Biology of Infection Research Helmholtz Centre for Infection Research Braunschweig Germany
6 Servicio de Microbiología y Unidad de Investigación Hospital Universitario Son Espases Instituto de Investigación Sanitaria Illes Balears (IdISPa) Palma de Mallorca Spain
1 Department of Molecular Bacteriology Helmholtz Centre for Infection Research Braunschweig Germany
5 Molecular Cell Biomechanics Laboratory Departments of Bioengineering and Mechanical Engineering University of California Berkeley CA USA
7 Institute of Hygiene and Environmental Medicine Charité – Univers
AuthorAffiliation_xml – name: 8 Institute of Medical Microbiology and Infection Control University Hospital Frankfurt Frankfurt/Main Germany
– name: 7 Institute of Hygiene and Environmental Medicine Charité – Universitätsmedizin Berlin Berlin Germany
– name: 1 Department of Molecular Bacteriology Helmholtz Centre for Infection Research Braunschweig Germany
– name: 3 Computational Biology of Infection Research Helmholtz Centre for Infection Research Braunschweig Germany
– name: 9 Faculty of Medicine Institute for Infection Prevention and Hospital Epidemiology Medical Center‐University of Freiburg Freiburg Germany
– name: 5 Molecular Cell Biomechanics Laboratory Departments of Bioengineering and Mechanical Engineering University of California Berkeley CA USA
– name: 2 Molecular Bacteriology Group TWINCORE‐Centre for Experimental and Clinical Infection Research Hannover Germany
– name: 4 German Center for Infection Research (DZIF) Braunschweig Germany
– name: 10 Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Lab Berkeley CA USA
– name: 6 Servicio de Microbiología y Unidad de Investigación Hospital Universitario Son Espases Instituto de Investigación Sanitaria Illes Balears (IdISPa) Palma de Mallorca Spain
Author_xml – sequence: 1
  givenname: Ariane
  surname: Khaledi
  fullname: Khaledi, Ariane
  organization: Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Molecular Bacteriology Group, TWINCORE‐Centre for Experimental and Clinical Infection Research
– sequence: 2
  givenname: Aaron
  orcidid: 0000-0003-4597-2471
  surname: Weimann
  fullname: Weimann, Aaron
  organization: Molecular Bacteriology Group, TWINCORE‐Centre for Experimental and Clinical Infection Research, Computational Biology of Infection Research, Helmholtz Centre for Infection Research, German Center for Infection Research (DZIF)
– sequence: 3
  givenname: Monika
  surname: Schniederjans
  fullname: Schniederjans, Monika
  organization: Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Molecular Bacteriology Group, TWINCORE‐Centre for Experimental and Clinical Infection Research
– sequence: 4
  givenname: Ehsaneddin
  surname: Asgari
  fullname: Asgari, Ehsaneddin
  organization: Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California
– sequence: 5
  givenname: Tzu‐Hao
  surname: Kuo
  fullname: Kuo, Tzu‐Hao
  organization: Computational Biology of Infection Research, Helmholtz Centre for Infection Research
– sequence: 6
  givenname: Antonio
  surname: Oliver
  fullname: Oliver, Antonio
  organization: Servicio de Microbiología y Unidad de Investigación Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISPa)
– sequence: 7
  givenname: Gabriel
  surname: Cabot
  fullname: Cabot, Gabriel
  organization: Servicio de Microbiología y Unidad de Investigación Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISPa)
– sequence: 8
  givenname: Axel
  surname: Kola
  fullname: Kola, Axel
  organization: Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin
– sequence: 9
  givenname: Petra
  surname: Gastmeier
  fullname: Gastmeier, Petra
  organization: Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin
– sequence: 10
  givenname: Michael
  surname: Hogardt
  fullname: Hogardt, Michael
  organization: Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt
– sequence: 11
  givenname: Daniel
  surname: Jonas
  fullname: Jonas, Daniel
  organization: Faculty of Medicine, Institute for Infection Prevention and Hospital Epidemiology, Medical Center‐University of Freiburg
– sequence: 12
  givenname: Mohammad RK
  surname: Mofrad
  fullname: Mofrad, Mohammad RK
  organization: Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab
– sequence: 13
  givenname: Andreas
  orcidid: 0000-0001-6739-7899
  surname: Bremges
  fullname: Bremges, Andreas
  organization: Computational Biology of Infection Research, Helmholtz Centre for Infection Research, German Center for Infection Research (DZIF)
– sequence: 14
  givenname: Alice C
  orcidid: 0000-0003-2370-3430
  surname: McHardy
  fullname: McHardy, Alice C
  email: Alice.McHardy@helmholtz-hzi.de
  organization: Computational Biology of Infection Research, Helmholtz Centre for Infection Research, German Center for Infection Research (DZIF)
– sequence: 15
  givenname: Susanne
  orcidid: 0000-0001-6141-9102
  surname: Häussler
  fullname: Häussler, Susanne
  email: Susanne.Haeussler@helmholtz-hzi.de
  organization: Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Molecular Bacteriology Group, TWINCORE‐Centre for Experimental and Clinical Infection Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32048461$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1627933$$D View this record in Osti.gov
BookMark eNqNUk1v1DAQjVAR_YAzNxTBhcu2tmM7CYdKqCpQqSt6gLM1cWZ3vXLsxU5Y7Y2fwG_kl-BtlqWtxMfJlv3emzfz5jg7cN5hlj2n5JQKJtgZdl13ygitKWGSP8qOaCnKCZcVP9jfS3mYHce4JEQKSasn2WHBCK-4pEdZvAnYGt0bN8_B9aYzOvjGgM0DRhN7cBpz4_KbiEPrO-8g5oBhmBvnI-Rr0y_yDvTCOMwtQnBJ6Me37-igsdjmnbeoBwshbw3ME6U3Oj7NHs_ARny2O0-yz-8uP118mFx_fH918fZ6oiWRfNIi4wQKhqk7zgVpOONMINYUcVbOmBS0xRnyhui6KWgLcgasbGQhKiY1Z8VJdjXqth6WahVMB2GjPBh1--DDXEFIhiwqIYmmSYdQxjhlspIlllDQohFSkookLTJqDW4FmzVYuxekRN1mobZZqH0WiXI-UlZD02Gr0fUB7D0f93-cWai5_6pKImpC6iTwchTYjk1FbXrUC-2dQ90rKllZF0UCvd5VCf7LgLFXnYkarQWHfoiKFYJTQdI4EvTVA-jSD8GlCBKqpKKUNakS6sVd23u_v3YmAc5GQNqUGAPO_mMS4gEj9QK98du-jf0L783IWxuLm3-VUZfT6fQueZdYTDw3x_C72z_V-wkpjQdu
CitedBy_id crossref_primary_10_3390_antibiotics12030523
crossref_primary_10_1016_j_aca_2022_339696
crossref_primary_10_1128_spectrum_00694_24
crossref_primary_10_1007_s00775_021_01918_z
crossref_primary_10_3389_fgene_2023_1054032
crossref_primary_10_3390_antibiotics11091271
crossref_primary_10_1080_21505594_2025_2481503
crossref_primary_10_1186_s12866_023_03147_7
crossref_primary_10_3390_biom15010001
crossref_primary_10_1016_j_biotechadv_2021_107797
crossref_primary_10_1016_j_drudis_2021_04_016
crossref_primary_10_1016_j_csbj_2021_05_034
crossref_primary_10_3389_fcimb_2022_851784
crossref_primary_10_1038_s41429_021_00471_w
crossref_primary_10_1016_j_lwt_2024_117188
crossref_primary_10_1016_j_cmi_2021_07_013
crossref_primary_10_1080_19490976_2021_1872323
crossref_primary_10_3390_biom10071041
crossref_primary_10_1099_mgen_0_000989
crossref_primary_10_3389_fmicb_2024_1413434
crossref_primary_10_1186_s40779_024_00510_1
crossref_primary_10_3390_antibiotics13030224
crossref_primary_10_1016_j_jmb_2020_07_021
crossref_primary_10_1128_AAC_01166_20
crossref_primary_10_7717_peerj_18213
crossref_primary_10_3390_antibiotics14030256
crossref_primary_10_1093_jambio_lxad248
crossref_primary_10_1128_spectrum_03043_22
crossref_primary_10_3390_antibiotics11030419
crossref_primary_10_1007_s10916_024_02089_5
crossref_primary_10_3390_microorganisms11030651
crossref_primary_10_1016_j_compbiomed_2024_109131
crossref_primary_10_1186_s13073_024_01346_z
crossref_primary_10_1016_j_cll_2023_10_009
crossref_primary_10_3390_ijms222111691
crossref_primary_10_1038_s42003_021_02586_0
crossref_primary_10_1128_spectrum_00143_24
crossref_primary_10_1371_journal_pcbi_1012579
crossref_primary_10_3390_biology9110365
crossref_primary_10_3390_biomedicines9080910
crossref_primary_10_1128_msystems_00697_23
crossref_primary_10_1183_16000617_0259_2021
crossref_primary_10_1128_AAC_02696_20
crossref_primary_10_1142_S0218488522400207
crossref_primary_10_3390_nano11071774
crossref_primary_10_1038_s41598_021_92336_3
crossref_primary_10_3390_antibiotics11111593
crossref_primary_10_3390_antibiotics12050883
crossref_primary_10_1038_s41522_022_00268_1
crossref_primary_10_1016_j_addr_2021_113922
crossref_primary_10_3389_fcimb_2022_941014
crossref_primary_10_1080_17425255_2020_1825682
crossref_primary_10_1128_mBio_01527_20
crossref_primary_10_1038_s41396_020_00841_6
crossref_primary_10_3389_fmicb_2021_604555
crossref_primary_10_1128_spectrum_03920_22
crossref_primary_10_1016_j_procs_2021_10_039
crossref_primary_10_1128_msystems_00789_24
crossref_primary_10_3389_frabi_2023_1126468
crossref_primary_10_1016_j_micpath_2021_104912
crossref_primary_10_12688_f1000research_129668_2
crossref_primary_10_12688_f1000research_129668_1
crossref_primary_10_3390_microorganisms12050842
crossref_primary_10_1128_msystems_00024_23
crossref_primary_10_1371_journal_pcbi_1011424
crossref_primary_10_1016_j_biosx_2023_100308
crossref_primary_10_3390_pathogens10121638
crossref_primary_10_1016_j_csbj_2024_04_035
crossref_primary_10_1038_s41564_023_01484_x
crossref_primary_10_1038_s41589_022_01040_4
crossref_primary_10_1016_j_micpath_2021_105040
crossref_primary_10_1038_s41579_020_00477_5
crossref_primary_10_3389_fmolb_2022_976705
crossref_primary_10_1073_pnas_2312874121
crossref_primary_10_1128_msystems_00734_22
crossref_primary_10_1016_j_cmi_2023_12_026
crossref_primary_10_3233_THC_240119
crossref_primary_10_1016_j_jocs_2022_101772
crossref_primary_10_1371_journal_pone_0285856
crossref_primary_10_46871_eams_1497329
crossref_primary_10_1093_bib_bbab313
crossref_primary_10_1016_j_cmi_2022_04_017
crossref_primary_10_1038_s41579_020_0357_4
crossref_primary_10_3390_app12199908
crossref_primary_10_3389_fmicb_2024_1510139
crossref_primary_10_1016_j_csbj_2025_01_006
crossref_primary_10_1186_s12941_024_00690_7
crossref_primary_10_1128_JCM_01260_20
crossref_primary_10_1038_d41586_021_02292_1
crossref_primary_10_1128_mBio_01344_20
crossref_primary_10_3390_antibiotics11060784
crossref_primary_10_1126_science_adi0908
crossref_primary_10_3389_fmed_2025_1492709
crossref_primary_10_1126_science_adh1114
crossref_primary_10_1371_journal_pcbi_1008319
crossref_primary_10_1128_jcm_00617_23
crossref_primary_10_1038_s41467_021_23451_y
crossref_primary_10_1016_j_ebiom_2024_105367
crossref_primary_10_1016_j_aca_2021_339223
crossref_primary_10_1093_jacamr_dlac066
crossref_primary_10_3389_fmicb_2022_841289
crossref_primary_10_1016_j_tim_2023_12_009
crossref_primary_10_3389_fcimb_2023_991011
crossref_primary_10_3390_antibiotics13070661
crossref_primary_10_1080_17512433_2023_2294005
crossref_primary_10_1186_s42836_023_00195_2
crossref_primary_10_1016_j_artmed_2023_102508
crossref_primary_10_1016_j_csbj_2022_03_007
crossref_primary_10_1128_mbio_02154_22
crossref_primary_10_2174_1389201024666230428121122
crossref_primary_10_3390_antibiotics13100996
crossref_primary_10_1016_j_cmi_2021_05_011
crossref_primary_10_1093_bib_bbae206
crossref_primary_10_3390_ijms241512496
crossref_primary_10_1016_j_isci_2024_110623
Cites_doi 10.1007/s10928-017-9506-4
10.1128/AAC.46.11.3406-3411.2002
10.1111/j.1469-0691.2011.03570.x
10.1371/journal.ppat.1000353
10.1128/AAC.50.5.1780-1787.2006
10.1128/mBio.01068-14
10.1002/0471250953.bi1112s47
10.1093/nar/gkw1004
10.3389/fmicb.2019.01553
10.12688/f1000research.19509.1
10.1128/AAC.47.1.27-33.2003
10.1111/j.1574-6968.2006.00293.x
10.1016/j.femsim.2005.01.004
10.1038/s41598-017-05621-5
10.1128/AAC.02676-15
10.1111/1462-2920.13419
10.1128/AAC.43.2.424
10.3389/fmicb.2018.00685
10.1089/cmb.2012.0021
10.1371/journal.pone.0034067
10.1128/CMR.00043-12
10.1016/j.drup.2015.08.002
10.1016/S1473-3099(18)30605-4
10.1128/AAC.03954-14
10.1016/j.arcmed.2005.06.009
10.1016/j.jiph.2017.09.016
10.1093/bioinformatics/bty276
10.1371/journal.pone.0009490
10.1128/AAC.00341-08
10.1093/bioinformatics/bty652
10.3389/fmicb.2017.01847
10.1128/CMR.00088-17
10.3389/fmicb.2019.01762
10.1093/jac/dks439
10.1093/bioinformatics/btu153
10.1128/AAC.43.12.2975
10.1093/bioinformatics/btr708
10.1128/JCM.03117-13
10.1128/AAC.45.2.546-552.2001
10.1128/AAC.42.1.65
10.1128/AAC.00848-18
10.1093/bioinformatics/btv421
10.7573/dic.212527
10.1371/journal.pgen.1007333
10.1093/bioinformatics/btp352
10.1615/CritRevImmunol.v30.i1.60
10.1128/CMR.00040-09
10.4137/PMC.S14459
10.1186/1471-2105-11-595
10.1128/AAC.49.11.4733-4738.2005
10.1128/mSystems.00101-16
10.1128/AAC.39.9.1948
10.1038/ncomms10063
10.1128/AAC.01581-12
10.1128/AAC.00580-08
10.1128/AAC.00507-08
10.1093/femsre/fux043
10.1093/bioinformatics/btr509
10.1128/AAC.00075-16
10.1101/gr.111120.110
10.1093/jac/48.4.553
10.1128/AAC.02445-17
10.1128/AAC.01589-17
10.1371/journal.pcbi.1006258
10.1128/AAC.48.5.1797-1802.2004
10.1016/j.drudis.2014.07.005
10.1128/AAC.01789-18
10.1038/s41598-018-30972-y
10.1093/molbev/mst010
10.1128/CMR.00047-06
10.1128/AAC.01178-17
10.1093/bioinformatics/btr174
10.1128/mBio.00749-15
ContentType Journal Article
Copyright The Author(s) 2020
2020 The Authors. Published under the terms of the CC BY 4.0 license
2020 The Authors. Published under the terms of the CC BY 4.0 license.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2020 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – sequence: 0
  name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
OIOZB
OTOTI
5PM
ADTOC
UNPAY
DOA
DOI 10.15252/emmm.201910264
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
MEDLINE



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 7
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Ariane Khaledi et al
EISSN 1757-4684
EndPage n/a
ExternalDocumentID oai_doaj_org_article_560c10c901224126867e7a313b566080
oai:escholarship.org:ark:/13030/qt4dq1g72n
PMC7059009
1627933
32048461
10_15252_emmm_201910264
EMMM201910264
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: German Federal Ministry of Education and Research
  grantid: 01 KI 9907
– fundername: Spanish Network for Research in Infectious Diseases
  grantid: PI18/00076; REIPI RD16/0016
– fundername: Instituto de Salud Carlos III
  funderid: 10.13039/501100004587
– fundername: Ministerio de Economa, Industria y Competitividad
  funderid: 10.13039/501100010198
– fundername: EC FP7 FP7 Ideas: European Research Council (FP7 Ideas)
  grantid: 724290
  funderid: 10.13039/100011199
– fundername: Ministerio de Economa, Industria y Competitividad
– fundername: German Federal Ministry of Education and Research
  funderid: 01 KI 9907
– fundername: Spanish Network for Research in Infectious Diseases
  funderid: PI18/00076; REIPI RD16/0016
– fundername: EC FP7 FP7 Ideas: European Research Council (FP7 Ideas)
  funderid: 724290
– fundername: Instituto de Salud Carlos III
– fundername: Spanish Network for Research in Infectious Diseases
  grantid: PI18/00076
– fundername: EC FP7 FP7 Ideas: European Research Council (FP7 Ideas)
  grantid: 724290
– fundername: Spanish Network for Research in Infectious Diseases
  grantid: REIPI RD16/0016
– fundername: ;
– fundername: ;
  grantid: 724290
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAJSJ
AAMMB
AAZKR
ABOCM
ABUWG
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AFBPY
AFKRA
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBS
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
LH4
LK8
M48
M7P
NNB
O9-
OIG
OK1
OVD
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
AAHHS
ABJNI
ACCFJ
ADPDF
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
M~E
OVEED
RHF
AAYXX
AJAOE
CITATION
EBLON
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
OIOZB
OTOTI
5PM
31~
AASML
ADRAZ
ADTOC
AFZJQ
EJD
GODZA
H13
LW6
NAO
UNPAY
ID FETCH-LOGICAL-c6064-de240a32e0194450b42425ee91eef7f2651defe4b0c9b31da6fa27b635826c423
IEDL.DBID M48
ISSN 1757-4676
1757-4684
IngestDate Fri Oct 03 12:47:16 EDT 2025
Sun Oct 26 03:09:05 EDT 2025
Tue Sep 30 16:07:17 EDT 2025
Thu Dec 05 06:35:14 EST 2024
Sat Sep 27 17:59:52 EDT 2025
Tue Oct 07 06:09:18 EDT 2025
Mon Jul 21 05:46:57 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Wed Oct 01 02:36:19 EDT 2025
Wed Jan 22 16:39:10 EST 2025
Tue Aug 12 01:11:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords molecular diagnostics
clinical isolates
machine learning
antibiotic resistance
biomarkers
Language English
License Attribution
2020 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6064-de240a32e0194450b42425ee91eef7f2651defe4b0c9b31da6fa27b635826c423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-05CH11231
USDOE Office of Science (SC)
These authors contributed equally to this work as the first authors
These authors contributed equally to this work as the second authors
Shared last authors
ORCID 0000-0001-6141-9102
0000-0001-6739-7899
0000-0003-2370-3430
0000-0003-4597-2471
0000000167397899
0000000161419102
0000000323703430
0000000345972471
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201910264
PMID 32048461
PQID 2371576908
PQPubID 866378
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_560c10c901224126867e7a313b566080
unpaywall_primary_10_15252_emmm_201910264
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7059009
osti_scitechconnect_1627933
proquest_miscellaneous_2354150423
proquest_journals_2371576908
pubmed_primary_32048461
crossref_primary_10_15252_emmm_201910264
crossref_citationtrail_10_15252_emmm_201910264
wiley_primary_10_15252_emmm_201910264_EMMM201910264
springer_journals_10_15252_emmm_201910264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 06 March 2020
PublicationDateYYYYMMDD 2020-03-06
PublicationDate_xml – month: 03
  year: 2020
  text: 06 March 2020
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
– name: Frankfurt
– name: United States
– name: Hoboken
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2020
Publisher Nature Publishing Group UK
EMBO Press
EMBOpress
John Wiley and Sons Inc
Springer Nature
Publisher_xml – sequence: 0
  name: EMBOpress
– name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References 2010; 11
2017; 7
2017; 8
2017; 41
1995; 39
2015; 73
2019; 10
2017; 44
2015; 21–22
2015; 31
2017; 45
2019; 19
2012; 19
1999; 43
2001; 48
2012; 18
2011; 12
2001; 45
1998; 42
2018; 7
2018; 9
2018; 8
2014; 5
2009; 53
2001
2013; 57
2013; 358
2002; 46
2003; 47
2011; 21
2018; 73
2012; 28
2014; 19
2012; 25
2014; 52
2018; 34
2007; 20
2011; 27
2012; 68
2010; 5
2014; 6
2018; 31
2010; 30
2005; 36
2018; 35
2019; 8
2017; 61
2009; 22
2015; 59
2009; 25
2015; 6
2006; 50
2012
2010
2019; 32
2004; 48
2007
2014; 47
2018; 62
2008; 52
2016; 18
2005; 49
2005; 44
2016; 1
2013; 30
2018
2016; 60
2009; 5
2006; 260
2013
2014; 30
2012; 7
2018; 11
2018; 14
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Garrison E (e_1_2_10_29_1) 2012
Javed M (e_1_2_10_38_1) 2018; 73
Cardozo C (e_1_2_10_17_1) 2019; 32
Hogardt M (e_1_2_10_35_1) 2013; 358
e_1_2_10_70_1
Friedman J (e_1_2_10_27_1) 2001
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
Pedregosa F (e_1_2_10_71_1) 2011; 12
e_1_2_10_41_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_77_1
e_1_2_10_79_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Cabot G (e_1_2_10_16_1) 2018; 73
e_1_2_10_50_1
CLSI (e_1_2_10_20_1) 2018
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_83_1
Li H (e_1_2_10_56_1) 2013
Balasubramanian D (e_1_2_10_7_1) 2015; 73
Luxburg U (e_1_2_10_62_1) 2007
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
32203299 - Nat Rev Microbiol. 2020 May;18(5):266. doi: 10.1038/s41579-020-0357-4
References_xml – volume: 36
  start-page: 697
  year: 2005
  end-page: 705
  article-title: Resistance to antibiotics: are we in the post‐antibiotic era?
  publication-title: Arch Med Res
– volume: 358
  start-page: 91
  year: 2013
  end-page: 118
  article-title: Microevolution of to a chronic pathogen of the cystic fibrosis lung
  publication-title: Curr Top Microbiol Immunol
– volume: 61
  start-page: e01178‐17
  year: 2017
  article-title: Transcriptional and mutational profiling of an aminoglycoside‐resistant small‐colony variant
  publication-title: Antimicrob Agents Chemother
– volume: 1
  start-page: e00101‐16
  year: 2016
  article-title: From genomes to phenotypes: traitar, the microbial trait analyzer
  publication-title: mSystems
– volume: 43
  start-page: 2975
  year: 1999
  end-page: 2983
  article-title: Characterization of a efflux pump contributing to aminoglycoside impermeability
  publication-title: Antimicrob Agents Chemother
– volume: 61
  start-page: e01589‐17
  year: 2017
  article-title: Genomics and susceptibility profiles of extensively drug‐resistant (XDR) from Spain
  publication-title: Antimicrob Agents Chemother
– volume: 44
  start-page: 113
  year: 2017
  end-page: 132
  article-title: What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles
  publication-title: J Pharmacokinet Pharmacodyn
– volume: 8
  start-page: 1847
  year: 2017
  article-title: Resistance of animal strains of to carbapenems
  publication-title: Front Microbiol
– volume: 11
  start-page: 595
  year: 2010
  article-title: BIGSdb: Scalable analysis of bacterial genome variation at the population level
  publication-title: BMC Bioinformatics
– year: 2007
  article-title: A tutorial on spectral clustering
  publication-title: arXiv
– volume: 260
  start-page: 23
  year: 2006
  end-page: 29
  article-title: Involvement of two related porins, OprD and OpdP, in the uptake of arginine by
  publication-title: FEMS Microbiol Lett
– volume: 52
  start-page: 1182
  year: 2014
  end-page: 1191
  article-title: Prediction of antimicrobial resistance from whole genome sequencing
  publication-title: J Clin Microbiol
– volume: 47
  start-page: 27
  year: 2003
  end-page: 33
  article-title: Contributions of MexAB‐OprM and an EmrE homolog to intrinsic resistance of to aminoglycosides and dyes
  publication-title: Antimicrob Agents Chemother
– volume: 19
  start-page: 455
  year: 2012
  end-page: 477
  article-title: SPAdes: a new genome assembly algorithm and its applications to single‐cell sequencing
  publication-title: J Comput Biol
– year: 2001
– volume: 60
  start-page: 4722
  year: 2016
  end-page: 4733
  article-title: Transcriptome profiling of antimicrobial resistance in
  publication-title: Antimicrob Agents Chemother
– volume: 27
  start-page: 1691
  year: 2011
  end-page: 1692
  article-title: BamTools: a C++ API and toolkit for analyzing and managing BAM files
  publication-title: Bioinformatics
– volume: 44
  start-page: 303
  year: 2005
  end-page: 309
  article-title: Class 1 integrons in isolates from clinical settings in Amazon region, Brazil
  publication-title: FEMS Immunol Med Microbiol
– volume: 8
  start-page: 1371
  year: 2019
  article-title: Emerging therapies against infections with
  publication-title: F1000Research
– volume: 62
  start-page: e01789‐18
  year: 2018
  article-title: Expression of antibiotic resistance genes varies greatly during infections in cystic fibrosis patients
  publication-title: Antimicrob Agents Chemother
– volume: 14
  start-page: e1007333
  year: 2018
  article-title: Machine learning identifies signatures of host adaptation in the bacterial pathogen
  publication-title: PLoS Genet
– volume: 73
  start-page: 3322
  year: 2018
  end-page: 3331
  article-title: Deciphering β‐lactamase‐independent β‐lactam resistance evolution trajectories in
  publication-title: J Antimicrob Chemother
– volume: 47
  start-page: 11.12.1–34
  year: 2014
  article-title: BEDTools: the Swiss‐Army tool for genome feature analysis
  publication-title: Curr Protoc Bioinformatics
– volume: 57
  start-page: 1361
  year: 2013
  end-page: 1368
  article-title: Quantitative contributions of target alteration and decreased drug accumulation to fluoroquinolone resistance
  publication-title: Antimicrob Agents Chemother
– volume: 39
  start-page: 1948
  year: 1995
  end-page: 1953
  article-title: Role of mexA‐mexB‐oprM in antibiotic efflux in
  publication-title: Antimicrob Agents Chemother
– year: 2018
– volume: 50
  start-page: 1780
  year: 2006
  end-page: 1787
  article-title: Stepwise upregulation of the chromosomal cephalosporinase conferring high‐level β‐lactam resistance involves three AmpD homologues
  publication-title: Antimicrob Agents Chemother
– volume: 35
  start-page: 1082
  year: 2018
  article-title: MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k‐mer based representation of shallow sub‐samples
  publication-title: Bioinformatics
– volume: 43
  start-page: 424
  year: 1999
  end-page: 427
  article-title: Carbapenem activities against : respective contributions of OprD and efflux systems
  publication-title: Antimicrob Agents Chemother
– volume: 19
  start-page: 1283
  year: 2014
  end-page: 1287
  article-title: An analysis of FDA‐approved drugs for infectious disease: antibacterial agents
  publication-title: Drug Discov Today
– volume: 31
  start-page: e00088‐17
  year: 2018
  article-title: Mobile genetic elements associated with antimicrobial resistance
  publication-title: Clin Microbiol Rev
– volume: 21
  start-page: 936
  year: 2011
  end-page: 939
  article-title: Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads
  publication-title: Genome Res
– volume: 52
  start-page: 3922
  year: 2008
  end-page: 3927
  article-title: Role of ampD homologs in overproduction of AmpC in clinical isolates of
  publication-title: Antimicrob Agents Chemother
– year: 2013
  article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM
  publication-title: arXiv
– volume: 7
  start-page: 5555
  year: 2017
  article-title: Evolution of the mutational resistome in an international Cystic Fibrosis clone
  publication-title: Sci Rep
– volume: 6
  start-page: 25
  year: 2014
  end-page: 64
  article-title: Antibiotics and bacterial resistance in the 21st century
  publication-title: Perspect Medicin Chem
– volume: 52
  start-page: 4213
  year: 2008
  end-page: 4219
  article-title: Novel genetic determinants of low‐level aminoglycoside resistance in
  publication-title: Antimicrob Agents Chemother
– volume: 27
  start-page: 2987
  year: 2011
  end-page: 2993
  article-title: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data
  publication-title: Bioinformatics
– volume: 31
  start-page: 3691
  year: 2015
  end-page: 3693
  article-title: Roary: rapid large‐scale prokaryote pan genome analysis
  publication-title: Bioinformatics
– volume: 62
  start-page: e02445‐17
  year: 2018
  article-title: Constitutive activation of MexT by amino acid substitutions results in MexEF‐OprN overproduction in clinical isolates of
  publication-title: Antimicrob Agents Chemother
– year: 2012
  article-title: Haplotype‐based variant detection from short‐read sequencing
  publication-title: arXiv
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 42
  start-page: 65
  year: 1998
  end-page: 71
  article-title: Expression of multidrug efflux pumps MexA‐MexB‐OprM and MexC‐MexD‐OprJ in a multidrug‐sensitive strain
  publication-title: Antimicrob Agents Chemother
– volume: 10
  start-page: 1762
  year: 2019
  article-title: polynucleotide phosphorylase contributes to ciprofloxacin resistance by regulating PrtR
  publication-title: Front Microbiol
– volume: 34
  start-page: i89
  year: 2018
  end-page: i95
  article-title: A pan‐genome‐based machine learning approach for predicting antimicrobial resistance activities of the strains
  publication-title: Bioinformatics
– volume: 28
  start-page: 593
  year: 2012
  end-page: 594
  article-title: ART: a next‐generation sequencing read simulator
  publication-title: Bioinformatics
– volume: 5
  start-page: e9490
  year: 2010
  article-title: FastTree 2–approximately maximum‐likelihood trees for large alignments
  publication-title: PLoS One
– volume: 9
  start-page: 685
  year: 2018
  article-title: The versatile mutational resistome of
  publication-title: Front Microbiol
– volume: 30
  start-page: 2068
  year: 2014
  end-page: 2069
  article-title: Prokka: rapid prokaryotic genome annotation
  publication-title: Bioinformatics
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 73
  start-page: 1
  year: 2015
  end-page: 14
  article-title: AmpR: an acute‐chronic switch regulator
  publication-title: Pathog Dis
– volume: 48
  start-page: 1797
  year: 2004
  end-page: 1802
  article-title: Clinical strains of overproducing MexAB‐OprM and MexXY efflux pumps simultaneously
  publication-title: Antimicrob Agents Chemother
– volume: 30
  start-page: 772
  year: 2013
  end-page: 780
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol Biol Evol
– volume: 25
  start-page: 661
  year: 2012
  end-page: 681
  article-title: Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance
  publication-title: Clin Microbiol Rev
– volume: 53
  start-page: 1074
  year: 2009
  end-page: 1079
  article-title: Effect of differences in MIC values on clinical outcomes in patients with bloodstream infections caused by gram‐negative organisms treated with levofloxacin
  publication-title: Antimicrob Agents Chemother
– volume: 10
  start-page: 1553
  year: 2019
  article-title: Mutagenesis induced by sub‐lethal doses of ciprofloxacin: genotypic and phenotypic differences between the strain PA14 and clinical isolates
  publication-title: Front Microbiol
– volume: 60
  start-page: 1767
  year: 2016
  end-page: 1778
  article-title: Evolution of antimicrobial resistance and fitness under low and high mutation rates
  publication-title: Antimicrob Agents Chemother
– volume: 41
  start-page: 781
  year: 2017
  end-page: 815
  article-title: Diversity and regulation of intrinsic β‐lactamases from non‐fermenting and other Gram‐negative opportunistic pathogens
  publication-title: FEMS Microbiol Rev
– volume: 8
  start-page: 12512
  year: 2018
  article-title: Mutations causing low level antibiotic resistance ensure bacterial survival in antibiotic‐treated hosts
  publication-title: Sci Rep
– volume: 32
  start-page: 32
  issue: Suppl 2
  year: 2019
  end-page: 34
  article-title: Antibiotic selection in the treatment of acute invasive infections by
  publication-title: Rev Esp Quimioter
– volume: 18
  start-page: 3550
  year: 2016
  end-page: 3564
  article-title: The guanidinobutyrase GbuA is essential for the alkylquinolone‐regulated pyocyanin production during parasitic growth of in co‐culture with Aeromonas hydrophila
  publication-title: Environ Microbiol
– volume: 5
  start-page: e01068
  year: 2014
  article-title: MexY‐promoted aminoglycoside resistance in : involvement of a putative proximal binding pocket in aminoglycoside recognition
  publication-title: MBio
– volume: 5
  start-page: e1000353
  year: 2009
  article-title: β‐Lactam resistance response triggered by inactivation of a nonessential penicillin‐binding protein
  publication-title: PLoS Pathog
– volume: 49
  start-page: 4733
  year: 2005
  end-page: 4738
  article-title: Molecular mechanisms of ‐lactam resistance mediated by AmpC hyperproduction in clinical strains
  publication-title: Antimicrob Agents Chemother
– volume: 59
  start-page: 427
  year: 2015
  end-page: 436
  article-title: The resistome of in relationship to phenotypic susceptibility
  publication-title: Antimicrob Agents Chemother
– year: 2010
– volume: 48
  start-page: 553
  year: 2001
  end-page: 555
  article-title: selection of a target/efflux double mutant of by ciprofloxacin therapy
  publication-title: J Antimicrob Chemother
– volume: 19
  start-page: 56
  year: 2019
  end-page: 66
  article-title: Attributable deaths and disability‐adjusted life‐years caused by infections with antibiotic‐resistant bacteria in the EU and the European Economic Area in 2015: a population‐level modelling analysis
  publication-title: Lancet Infect Dis
– volume: 7
  start-page: e34067
  year: 2012
  article-title: The regulatory repertoire of AmpC ß‐lactamase regulator AmpR includes virulence genes
  publication-title: PLoS One
– volume: 14
  start-page: e1006258
  year: 2018
  article-title: Prediction of antibiotic resistance in from large‐scale pan‐genome data
  publication-title: PLoS Comput Biol
– volume: 21–22
  start-page: 41
  year: 2015
  end-page: 59
  article-title: The increasing threat of high‐risk clones
  publication-title: Drug Resist Updat
– volume: 68
  start-page: 619
  year: 2012
  end-page: 630
  article-title: Challenges for accurate susceptibility testing, detection and interpretation of β‐lactam resistance phenotypes in : results from a Spanish multicentre study
  publication-title: J Antimicrob Chemother
– volume: 22
  start-page: 582
  year: 2009
  end-page: 610
  article-title: Antibacterial‐resistant : clinical impact and complex regulation of chromosomally encoded resistance mechanisms
  publication-title: Clin Microbiol Rev
– volume: 11
  start-page: 364
  year: 2018
  end-page: 372
  article-title: Role of MexAB‐OprM and MexXY‐OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and intensive care unit isolates of
  publication-title: J Infect Public Health
– volume: 62
  start-page: e00848‐18
  year: 2018
  article-title: Broad‐spectrum adaptive antibiotic resistance associated with mucin‐dependent surfing motility
  publication-title: Antimicrob Agents Chemother
– volume: 20
  start-page: 391
  year: 2007
  end-page: 408
  article-title: Setting and revising antibacterial susceptibility breakpoints
  publication-title: Clin Microbiol Rev
– volume: 7
  start-page: 212527
  year: 2018
  article-title: How to manage infections
  publication-title: Drugs Context
– volume: 45
  start-page: D566
  year: 2017
  end-page: D573
  article-title: CARD 2017: expansion and model‐centric curation of the comprehensive antibiotic resistance database
  publication-title: Nucleic Acids Res
– volume: 45
  start-page: 546
  year: 2001
  end-page: 552
  article-title: Characterization of Class 1 integrons from that contain the bla(VIM‐2) carbapenem‐hydrolyzing beta‐lactamase gene and of two novel aminoglycoside resistance gene cassettes
  publication-title: Antimicrob Agents Chemother
– volume: 73
  start-page: 3368
  year: 2018
  end-page: 3374
  article-title: Colistin susceptibility test evaluation of multiple‐resistance‐level isolates generated in a morbidostat device
  publication-title: J Antimicrob Chemother
– volume: 30
  start-page: 79
  year: 2010
  end-page: 93
  article-title: The global problem of antibiotic resistance
  publication-title: Crit Rev Immunol
– volume: 18
  start-page: 268
  year: 2012
  end-page: 281
  article-title: Multidrug‐resistant, extensively drug‐resistant and pandrug‐resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance
  publication-title: Clin Microbiol Infect
– volume: 6
  start-page: 10063
  year: 2015
  article-title: Rapid antibiotic‐resistance predictions from genome sequence data for and
  publication-title: Nat Commun
– volume: 46
  start-page: 3406
  year: 2002
  end-page: 3411
  article-title: Constitutive high expression of chromosomal β‐lactamase in caused by a new insertion sequence (IS1669) located in ampD
  publication-title: Antimicrob Agents Chemother
– volume: 6
  start-page: e00749
  year: 2015
  article-title: The transcriptional landscape is shaped by environmental heterogeneity and genetic variation
  publication-title: mBio
– ident: e_1_2_10_14_1
  doi: 10.1007/s10928-017-9506-4
– volume: 358
  start-page: 91
  year: 2013
  ident: e_1_2_10_35_1
  article-title: Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung
  publication-title: Curr Top Microbiol Immunol
– ident: e_1_2_10_5_1
  doi: 10.1128/AAC.46.11.3406-3411.2002
– ident: e_1_2_10_63_1
  doi: 10.1111/j.1469-0691.2011.03570.x
– ident: e_1_2_10_67_1
  doi: 10.1371/journal.ppat.1000353
– ident: e_1_2_10_42_1
  doi: 10.1128/AAC.50.5.1780-1787.2006
– ident: e_1_2_10_51_1
  doi: 10.1128/mBio.01068-14
– ident: e_1_2_10_74_1
  doi: 10.1002/0471250953.bi1112s47
– ident: e_1_2_10_39_1
  doi: 10.1093/nar/gkw1004
– ident: e_1_2_10_65_1
  doi: 10.3389/fmicb.2019.01553
– ident: e_1_2_10_82_1
  doi: 10.12688/f1000research.19509.1
– ident: e_1_2_10_53_1
  doi: 10.1128/AAC.47.1.27-33.2003
– ident: e_1_2_10_81_1
  doi: 10.1111/j.1574-6968.2006.00293.x
– ident: e_1_2_10_26_1
  doi: 10.1016/j.femsim.2005.01.004
– ident: e_1_2_10_59_1
  doi: 10.1038/s41598-017-05621-5
– volume: 73
  start-page: 3322
  year: 2018
  ident: e_1_2_10_16_1
  article-title: Deciphering β‐lactamase‐independent β‐lactam resistance evolution trajectories in Pseudomonas aeruginosa
  publication-title: J Antimicrob Chemother
– ident: e_1_2_10_15_1
  doi: 10.1128/AAC.02676-15
– ident: e_1_2_10_37_1
  doi: 10.1111/1462-2920.13419
– ident: e_1_2_10_49_1
  doi: 10.1128/AAC.43.2.424
– ident: e_1_2_10_60_1
  doi: 10.3389/fmicb.2018.00685
– ident: e_1_2_10_8_1
  doi: 10.1089/cmb.2012.0021
– ident: e_1_2_10_6_1
  doi: 10.1371/journal.pone.0034067
– ident: e_1_2_10_25_1
  doi: 10.1128/CMR.00043-12
– ident: e_1_2_10_68_1
  doi: 10.1016/j.drup.2015.08.002
– ident: e_1_2_10_18_1
  doi: 10.1016/S1473-3099(18)30605-4
– volume: 73
  start-page: 3368
  year: 2018
  ident: e_1_2_10_38_1
  article-title: Colistin susceptibility test evaluation of multiple‐resistance‐level Pseudomonas aeruginosa isolates generated in a morbidostat device
  publication-title: J Antimicrob Chemother
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_10_71_1
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 32
  start-page: 32
  issue: 2
  year: 2019
  ident: e_1_2_10_17_1
  article-title: Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa
  publication-title: Rev Esp Quimioter
– ident: e_1_2_10_50_1
  doi: 10.1128/AAC.03954-14
– ident: e_1_2_10_2_1
  doi: 10.1016/j.arcmed.2005.06.009
– ident: e_1_2_10_30_1
  doi: 10.1016/j.jiph.2017.09.016
– ident: e_1_2_10_34_1
  doi: 10.1093/bioinformatics/bty276
– ident: e_1_2_10_73_1
  doi: 10.1371/journal.pone.0009490
– ident: e_1_2_10_75_1
  doi: 10.1128/AAC.00341-08
– ident: e_1_2_10_4_1
  doi: 10.1093/bioinformatics/bty652
– ident: e_1_2_10_33_1
  doi: 10.3389/fmicb.2017.01847
– ident: e_1_2_10_70_1
  doi: 10.1128/CMR.00088-17
– ident: e_1_2_10_24_1
  doi: 10.3389/fmicb.2019.01762
– ident: e_1_2_10_43_1
  doi: 10.1093/jac/dks439
– ident: e_1_2_10_78_1
  doi: 10.1093/bioinformatics/btu153
– ident: e_1_2_10_85_1
  doi: 10.1128/AAC.43.12.2975
– ident: e_1_2_10_36_1
  doi: 10.1093/bioinformatics/btr708
– year: 2012
  ident: e_1_2_10_29_1
  article-title: Haplotype‐based variant detection from short‐read sequencing
  publication-title: arXiv
– ident: e_1_2_10_32_1
  doi: 10.1128/JCM.03117-13
– ident: e_1_2_10_72_1
  doi: 10.1128/AAC.45.2.546-552.2001
– ident: e_1_2_10_79_1
  doi: 10.1128/AAC.42.1.65
– ident: e_1_2_10_80_1
  doi: 10.1128/AAC.00848-18
– ident: e_1_2_10_69_1
  doi: 10.1093/bioinformatics/btv421
– ident: e_1_2_10_11_1
  doi: 10.7573/dic.212527
– ident: e_1_2_10_86_1
  doi: 10.1371/journal.pgen.1007333
– ident: e_1_2_10_54_1
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_2_10_31_1
  doi: 10.1615/CritRevImmunol.v30.i1.60
– ident: e_1_2_10_57_1
  doi: 10.1128/CMR.00040-09
– ident: e_1_2_10_23_1
  doi: 10.4137/PMC.S14459
– ident: e_1_2_10_40_1
  doi: 10.1186/1471-2105-11-595
– ident: e_1_2_10_41_1
  doi: 10.1128/AAC.49.11.4733-4738.2005
– ident: e_1_2_10_84_1
  doi: 10.1128/mSystems.00101-16
– ident: e_1_2_10_52_1
  doi: 10.1128/AAC.39.9.1948
– ident: e_1_2_10_12_1
  doi: 10.1038/ncomms10063
– ident: e_1_2_10_13_1
  doi: 10.1128/AAC.01581-12
– ident: e_1_2_10_21_1
  doi: 10.1128/AAC.00580-08
– ident: e_1_2_10_77_1
  doi: 10.1128/AAC.00507-08
– year: 2013
  ident: e_1_2_10_56_1
  article-title: Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM
  publication-title: arXiv
– ident: e_1_2_10_44_1
  doi: 10.1093/femsre/fux043
– ident: e_1_2_10_55_1
  doi: 10.1093/bioinformatics/btr509
– ident: e_1_2_10_47_1
  doi: 10.1128/AAC.00075-16
– volume: 73
  start-page: 1
  year: 2015
  ident: e_1_2_10_7_1
  article-title: Pseudomonas aeruginosa AmpR: an acute‐chronic switch regulator
  publication-title: Pathog Dis
– volume-title: The elements of statistical learning Springer series in statistics
  year: 2001
  ident: e_1_2_10_27_1
– ident: e_1_2_10_61_1
  doi: 10.1101/gr.111120.110
– ident: e_1_2_10_19_1
  doi: 10.1093/jac/48.4.553
– volume-title: Performance standards for antimicrobial susceptibility testing
  year: 2018
  ident: e_1_2_10_20_1
– ident: e_1_2_10_45_1
  doi: 10.1128/AAC.02445-17
– ident: e_1_2_10_10_1
  doi: 10.1128/AAC.01589-17
– ident: e_1_2_10_66_1
  doi: 10.1371/journal.pcbi.1006258
– ident: e_1_2_10_58_1
  doi: 10.1128/AAC.48.5.1797-1802.2004
– ident: e_1_2_10_48_1
  doi: 10.1016/j.drudis.2014.07.005
– year: 2007
  ident: e_1_2_10_62_1
  article-title: A tutorial on spectral clustering
  publication-title: arXiv
– ident: e_1_2_10_64_1
  doi: 10.1128/AAC.01789-18
– ident: e_1_2_10_28_1
  doi: 10.1038/s41598-018-30972-y
– ident: e_1_2_10_46_1
  doi: 10.1093/molbev/mst010
– ident: e_1_2_10_3_1
– ident: e_1_2_10_83_1
  doi: 10.1128/CMR.00047-06
– ident: e_1_2_10_76_1
  doi: 10.1128/AAC.01178-17
– ident: e_1_2_10_9_1
  doi: 10.1093/bioinformatics/btr174
– ident: e_1_2_10_22_1
  doi: 10.1128/mBio.00749-15
– reference: 32203299 - Nat Rev Microbiol. 2020 May;18(5):266. doi: 10.1038/s41579-020-0357-4
SSID ssj0065618
Score 2.594171
Snippet Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial...
Abstract Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species,...
SourceID doaj
unpaywall
pubmedcentral
osti
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e10264
SubjectTerms Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Antibiotics
Antimicrobial agents
Antimicrobial resistance
Bacteria
BASIC BIOLOGICAL SCIENCES
biomarkers
Ciprofloxacin
clinical isolates
Cloning
Drug resistance
Drug Resistance, Bacterial
EMBO02
EMBO09
EMBO23
Gene expression
Genome, Bacterial
Genomes
Genotype & phenotype
Infections
Learning algorithms
Machine Learning
Microbial Sensitivity Tests
molecular diagnostics
Mutation
Nucleotide sequence
Pathogens
Pathology, Molecular
Phylogenetics
Prediction models
Pseudomonas aeruginosa
Pseudomonas aeruginosa - drug effects
Research & Experimental Medicine
Transcriptome
Whole genome sequencing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSrwOCMortCAjcaCH0LWdOJsjoFYV0qIeqNSb5SSTEmk3W-1uhHrrT-hv5Jcw4zwggmovnPYRR0pmvoy_sSffALzTqNMCc8pUTZKFkVQYEg1xoSlKV0TcBC73Vb5fzclZ9OU8Pv-j1RfXhLXywK3hDmlGzuUkT9stIGWmJsHEaakzIiJEdzj6TqZpn0y1MZhIil_Zo7kxCSkUmE7UJ1axOsTFgl9Bp0SF8o9oNB952X76WNLj9S_K-Xfl5LB9-hDuN_Wlu_rh5vMx0fUz1fFjeNRRTPGxvbUncAfrXbjbNp282oV7s247_SmsT1f8nSufBVm4WlRelolOpiSciSUhQlS1OF1jUywJsG4tHK6ai6perp3gNVyx8NWYKLr2Exc_r2_Qv49ViEXfelcUbUEfS0I_g7Pjo2-fT8KuC0OYU3IThQXSpO-0QrJYFMWTLOIsBTGViGVSKhPLAkuMMnJSpmXhTOlUkhl-BdfkxNaew069rPEliNIRlzdEaArnKK9T2cRgLCkISIlcbxrAh94XNu8kyrlTxtxyqsLOs-w8OzgvgPfDCZetOsftQz-xc4dhLKvt_yCw2Q5sdhvYAthjW1liJyyxm3MtUr6x0igKczqA_R4xtosEa6t0IimnSyfTAN4Oh-kZ5o0ZV-Oy4TEx8SiuUArgRQuw4To1KytHRgaQjKA3upHxkbr67nXCE98SNg3goAfp78u61UoHA4q3W1R7lG8bZ49ms9nw69X_8MMePFC87uE7Ye7DzmbV4Gsih5vsjY8DvwAd3Vlr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VrXgdEJRXaEFG4kAPoWsncZoDQhRtVSHtaoWo1FvkxJNlpd1k2YdQb_wEfiO_hBnnUa2g9LSPOFIyHo-_scffB_AmwCCxmFOmquPMD6VCn2CI8bUtjA1ZBC53Vb4jfXYefr6ILnZg1J6F4bLKNia6QG2rnNfIj1QQS8LGSf_4w-K7z6pRvLvaSmiYRlrBvncUY7dgVzEzVg92Twaj8Zc2NhN4cSt-NGfGPoUI3ZD9RCpSRzif89F0SmAoLwm35ilH508fFQ27f0HRvysqu23V-3B3Uy7M5Q8zm20DYDeDnT6EBw30FB9rX3kEO1juwe1ajPJyD-4Mm232x7AaL_k7V0QLsvx0PnV0TXQzJecMOMlTxLQU4xVubEWWMSthcLmZTMtqZQSv7Yq5q9JE0chSTH7__IXunJYV81aSV9i60I-pop_A-eng66czv1Fn8HNKekLfIoEBEygki4Vh1M9Czl4QE4lYxIXSkbRYYJj18yQLpDW6MCrONB_N1TmhuKfQK6sSn4MoDGF8TUDHGkP5nsr6GiNJwUFK5DpUD961fZHmDXU5K2jMUk5huPNS7ry06zwP3nY3LGrWjuubnnDnds2Ybtv9US0naTN6U4KFuaT3qPchlT7WMcYmkEFGaJgwtwf7bKuUUAtT7-Zco5SvU6kVhb_Ag4PWY9ImQqzSK3_24HV3mcY2b9iYEqsNt4kIX3HlkgfPagfrnjNgxuVQSw_iLdfbepHtK-X0m-MPj51UbOLBYeukV491rZUOOy--2aKB8_Kb2qWD4XDY_XrxfyPtwz3FKx1O-_IAeuvlBl8SHFxnr5ox_geGKFoi
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BERQOCAqU0IKMxIEeAmsncZojVK0qpEU9UKk3y0km7UqbpNpshHrjEXhGnoQZ5wciWlWcstk4kWPPZL7xjL8BeBdgkOSYkaeq49QPpUKfYIj1dV7YPOQicJnL8v2qj0_DL2fRWU-SxHth_o7fRypSH7EsecM4uRXkLYR34R5ZKO2isvpg-OQSJnELeWQKY580X_ccPtc8YGJ-HEs_HWrSpusQ5r-JkmO09BFsttWlvfpul8sprnWG6egJPO4RpfjUicBTuIPVFtzvakxebcGDeR89fwbNyYp_c6KzoAFdlAvHwkQ3k8_NOJIEQCwqcdJgm9ckn7YRFlft-aKqGyt4yVaULvkSRV9t4vzXj5_otl_lohwq7Yq8y99jBujncHp0-O3g2O-LLvgZ-TKhnyPZeBsopBELw2iWhuyUICYSsYgLpSOZY4FhOsuSNJC51YVVcap5x63OCJy9gI2qrvAliMISdNeEX3JryY1T6UxjJEnnpUROL_XgwzAXJusZybkwxtKwZ8KTZ3jyzDh5Hrwfb7jsyDhubvqZJ3dsxiza7g8SLtMrpSG0l0l6jy68qPS-jjG2gQxSArkEpT3Y4bEyBEaYUTfj1KNsbaRW9FULPNgdJMb0it8YFcSSXLhktu_B2_EyqSzHYWyFdcttIoJNnJDkwXYnYGM_AyZSDrX0IJ6I3uRFpleqxYWjBY9dBdjEg71BSP9068ZR2hul-PYRDZyU39bOHM7n8_Hs1X_0ZgceKl7NcPUtd2FjvWrxNUG-dfrGqftvitFMEQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL2CTnw98DG-wgYKEg_sIV3tOE77ONCmCalTH6g0niwnudkq2rQ0jdB44ifwG_kl3OukmQpMg6emjaPazrFzTnx9LsCbEMNBhikpVR0ngRISA6IhNtBZbjPFSeBSF-V7oo_H6sNpdNqYRfNeGFxruvPJwi3kV3VOsn2VfRFnsSxuwpaOiHZ3YGt8Mjr45DY8RnFAA15fHvdVY-MTyUju42zGm85JmpDiUBtPIGfUTx9zGlB_I5l_xkq2C6b34E5VLOzFVzudblJb92w6elBHdZXO0pBDUj53q1XSTb_9Zvj4T81-CPcbhuof1JB6BDew2IZbdc7Ki224PWxW4x9DOVryMQdO-3SDJrOJc3Wii0nDMy8lQPmTwh-VWGVzwrstfYvLiqo1L63Pr4D9mQvmRL_JXnH28_sPdNu5Mn-2ztzrZ3U8IDtKP4Hx0eHH98dBk8QhSEkbqSBD4gw2lEjdr1TUSxSLHMSBQMzjXOpIZJijSnrpIAlFZnVuZZxo3sGrUyJ7T6FTzAt8Dn5uSQpo4kOZtSQLZdLTGAmaQ4RADlf1oLu-sSZtHM450cbUsNJhJBhGgmmR4MHb9oJFbe5xddF3jJS2GLtyux_oZplmkBtij6mgdtTLlVL3dYyxDUWYEGkmau7BDveVIXLDDr0phzKlKyO0pFky9GB3DT_TTCSlkWEsSBIOen0PXrenaQrgdR1b4LziMhHRMA5w8uBZjda2niEbMystPIg3cLzRkM0zxeTc2YzHLqPswIO9NeIvq3VlL-21Q-L6Hg3dkLmunDkcDofttxf_8Q87cFfy2xGXL3MXOqtlhS-JQq6SV83k8Qv5q2wb
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BERQOCAqU0IKMxIEeAuvEcZojoFYV0qI9UImb5SSTbaTdpNpshHrjEXhGnoQZ5wdFUFXitD-xo2Q8M_7GHn8D8CbEMMkxo0hVx6mvZIA-wRDr67ywueIicJnL8v2iz87V52_RkE3IZ2E6fohxwY0tw_lrNnCbNkPFHmYNxfWaj5JTwEFxhLoNdyShGVbyQC0GZ0xoxS3x0SQZ--QTdM_uw7d4P73BZGJy_P30UZOd_Qt7_p1COe6jPoDdtrq0V9_tajVFvG7KOn0ED3usKT50yvEYbmG1B3e76pNXe3Bv3u-rP4FmseHvnAItSNTlunT8TNSZonFGmKQaoqzEosE2r0lzbSMsbtplWdWNFbyYK9YuLRNFX4di-evHT3QHs3KxHmrwirzL7GNu6Kdwfnry9dOZ35dj8DOKcpSfI83-NgyQJKZUNEsVhyuIiUQs4iLQkcyxQJXOsiQNZW51YYM41XwWV2cE257BTlVX-BxEYQnUa0I2ubUU4AXpTGMkyRtIiZx46sG7YSxM1nOVc8mMleGYhQfP8OCZcfA8eDt2uOxoOq5v-pEHd2zG_Nruj3qzNL25GsKBmaT36DYeA32sY4xtKMOU4C-BbA8OWFaGYApz7WaclJRtjdQB-bvQg8NBY0zvEhoThLGk4C6ZHXvwerxMxsw7NLbCuuU2EQEqTlXyYL9TsPE5Q6ZYVlp6EE9Ub_Ii0ytVeeEIw2NXGzbx4GhQ0j-Pda2UjkYtvlmiodPym9qZk_l8Pv568V-9DuB-wCsergbmIexsNy2-JFi4TV85w_8Nnn1XoQ
  priority: 102
  providerName: Wiley-Blackwell
Title Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics
URI https://link.springer.com/article/10.15252/emmm.201910264
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201910264
https://www.ncbi.nlm.nih.gov/pubmed/32048461
https://www.proquest.com/docview/2371576908
https://www.proquest.com/docview/2354150423
https://www.osti.gov/servlets/purl/1627933
https://pubmed.ncbi.nlm.nih.gov/PMC7059009
https://escholarship.org/uc/item/4dq1g72n
https://doaj.org/article/560c10c901224126867e7a313b566080
UnpaywallVersion submittedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: 7X7
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: BENPR
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 20250731
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: M48
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: AAJSJ
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: AVUZU
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4676
  databaseCode: 24P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB7RVlA4IChQTEtkJA704JJdb9b1AaE2SlUhJYoQkcLJWtvjECmxS34EufEIPCNPwszacRWRqhcucexdW_bM7O43u7PzAbz10Q9TTMhT1UHsKSHRIxhiPJ1mJlVMApfYKN-evhqoT8PW8IYOqBLgfKtrx3xSg9nk9Of31Udq8B8q9h75HqdT3lROrgd5FGoH9miYCpnHoavqJQXCLXayj4bLwKPeQVd5frY8YGOIspn86VBQi9uGQv8NpqxXVB_B_jK_NqsfZjLZxL528Lp8Ao8r1Omel2byFO5hfgD3Sx7K1QE86FYr7M9g3p_xfw6Gdkno4-nYZmqim8kvZ6xJRuKOc7c_x2VakA2buWtwthyN82JuXJ7Wdac2QBPdipFi9OfXb7RbtFJ3umbjddMyxo-zRD-HwWXnS_vKq4gZvIT8HeWlSAI2vkSSmFKtZqzYcUEMBWIWZFK3RIoZqriZhLEvUqMzI4NY865cnRCAewG7eZHjS3AzQ_BeE8ZJjSFXT8ZNjS1B_YIQyCGoDpyudRElVdZyJs-YROy9sPIiVl5UK8-Bd_UN12XCjturXrBy62qcadteKGajqGq4ESHCRNB3lEuQUp_pAAPjCz8mIExw24EjllVEgIWz7iYcnpQsIqEl9Xy-A8dri4nWth1JPxDk5oXNMwfe1MXUrHmtxuRYLLlOi6AVBy05cFgaWP2ePidbVlo4EGyY3saHbJbk4282dXhgWWJDB07WRnrzWrdK6aS24rsl6lsrv6te1Ol2u_XZq_-hhyN4KHkqxJJjHsPuYrbE14QXF3EDdqTq028wDBqwd9Hp9T_TWVu3G3YGpmH7CSoZ9PrnX_8CWFdpRw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VraBwQFD-TAsYCSR6MI3X63V9qBCFVCltogq1Um_L2jsJkRI7xImq3HgEnoiH4UmYWf9UEZSeesqP15K9Mzvzze7MfIy9DiCIDaQYqcoo8YTPwUMYoj1p-toIIoFLbZZvT3bOxOfz8HyF_aprYSitsraJ1lCbPKU98h0eRD5i47i1-37y3SPWKDpdrSk0dEWtYPZsi7GqsOMIFhcYwhV7h59Q3m84P2iffux4FcuAlyJ4F54BdGo64IBgR4iwlQhC4QCxD9CP-lyGvoE-iKSVxkngGy37mkeJpBJTmQpqfIAuYE0EIsbgb22_3Tv5UvsCBEt2hxF9dOShSZJVc6GQh3wHxmMqhceACeMgseQXLX0AfuS4zP8Fff_O4GyOce-y9Xk20YsLPRotA27rMQ_us3sV1HU_lLr5gK1AtsFuleSXiw12u1sd6z9kxcmUvlMGtouSHo6Htj0U3jyFggAuaqY7zNyTAuYmR0nowtUwnQ-GWV5ol_aS3bHNCgW3osEY_P7xE2xdmHHHNQWwa8rEQmpN_Yid3YicHrPVLM_gKXP7GmMKicDKaI3xJU9aEkIfjZHvA-W9OuxdLQuVVq3SibFjpChkIuEpEp5qhOewt80Nk7JLyNVD90m4zTBq723_yKcDVVkLhTA09fE9ynNPLndlBJEO_CBB9I0Y32GbNFcKURK1-k0pJyqdKV9yNLeBw7ZqjVGVRSrU5fpx2KvmMtoSOiDSGeRzGhMinqNMKYc9KRWsec6AOjwL6TssWlK9pRdZvpINv9l-5ZGlpo0dtl0r6eVjXTlL240WXz-jgdXy68apdrfbbX49-_8kvWTrndPusTo-7B1tsjucdlks7-YWW51N5_AcoegseVGtd5d9vWkT8wftvJY8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VRRQ4ICh_pgUWCSR6MIl37XV9QAhoo5aSKgcq9bZd2-MQKbFDnKjKjUfgeXgcnoSZ9U8VQempp_x4Ldk7s99-s_vtDGOvJMgohQQjVRXGru8JcJGGGFelmUl9KgKXWJXvsTo48T-fBqdr7FdzFoZklQ0mWqBOi4TWyDtChh5y46i728lqWcRgr_d--t2lClK009qU06hc5AiW5xi-le8O99DWr4Xo7X_9dODWFQbcBIm776aAE5qRApDo-H7QjX1i4ACRB5CFmVCBl0IGftxNolh6qVGZEWGs6HipSnxKeoDwfyOUMiI5YXjaBntIk-zaIs7OoYtgpOq0QoEIRAcmEzoEj6ESRkD-yoxoCwfgR4ED_F-k92_tZruBe4fdWuRTszw34_Eq1bZzZe8eu1uTXP6h8sr7bA3yTXazKnu53GQb_XpD_wErBzP6TtprjjYeTUY2MRTePIOSqC36JB_lfFDCIi2w303JDcwWw1FelIbTKjKfWD0o8LoAxvD3j59gT4SlfNIU_-VpJSmkpNQP2cm1WOkRW8-LHJ4wnhmMJhRSqtQYjCxF3FUQeAhDngekeHXY28YWOqmTpFOtjrGmYImMp8l4ujWew960N0yr_CCXN_1Ixm2bUWJv-0cxG-oaJzQS0MTD96h2PIXaVSGERnoyRt6N7N5hW9RXGvkRJflNSA2VzLWnBAKtdNh24zG6xqJSX4wch71sLyOK0NaQyaFYUJsAmRxppBz2uHKw9jkl5Xb2leewcMX1Vl5k9Uo--mYzlYe2KG3ksJ3GSS8e69Je2mm9-OoeldbLr2qn9_v9fvvr6f876QXbQGDRXw6Pj7bYbUHLK7bg5jZbn88W8Aw56Dx-bgc7Z2fXjS5_ALbuk9Y
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL2CTnw98DG-wgYKEg_sIV3tOE77ONCmCalTH6g0niwnudkq2rQ0jdB44ifwG_kl3OukmQpMg6emjaPazrFzTnx9LsCbEMNBhikpVR0ngRISA6IhNtBZbjPFSeBSF-V7oo_H6sNpdNqYRfNeGFxruvPJwi3kV3VOsn2VfRFnsSxuwpaOiHZ3YGt8Mjr45DY8RnFAA15fHvdVY-MTyUju42zGm85JmpDiUBtPIGfUTx9zGlB_I5l_xkq2C6b34E5VLOzFVzudblJb92w6elBHdZXO0pBDUj53q1XSTb_9Zvj4T81-CPcbhuof1JB6BDew2IZbdc7Ki224PWxW4x9DOVryMQdO-3SDJrOJc3Wii0nDMy8lQPmTwh-VWGVzwrstfYvLiqo1L63Pr4D9mQvmRL_JXnH28_sPdNu5Mn-2ztzrZ3U8IDtKP4Hx0eHH98dBk8QhSEkbqSBD4gw2lEjdr1TUSxSLHMSBQMzjXOpIZJijSnrpIAlFZnVuZZxo3sGrUyJ7T6FTzAt8Dn5uSQpo4kOZtSQLZdLTGAmaQ4RADlf1oLu-sSZtHM450cbUsNJhJBhGgmmR4MHb9oJFbe5xddF3jJS2GLtyux_oZplmkBtij6mgdtTLlVL3dYyxDUWYEGkmau7BDveVIXLDDr0phzKlKyO0pFky9GB3DT_TTCSlkWEsSBIOen0PXrenaQrgdR1b4LziMhHRMA5w8uBZjda2niEbMystPIg3cLzRkM0zxeTc2YzHLqPswIO9NeIvq3VlL-21Q-L6Hg3dkLmunDkcDofttxf_8Q87cFfy2xGXL3MXOqtlhS-JQq6SV83k8Qv5q2wb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+antimicrobial+resistance+in+Pseudomonas+aeruginosa+with+machine+learning%E2%80%90enabled+molecular+diagnostics&rft.jtitle=EMBO+molecular+medicine&rft.au=Ariane+Khaledi&rft.au=Aaron+Weimann&rft.au=Monika+Schniederjans&rft.au=Ehsaneddin+Asgari&rft.date=2020-03-06&rft.pub=Springer+Nature&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=12&rft.issue=3&rft.spage=1&rft.epage=19&rft_id=info:doi/10.15252%2Femmm.201910264&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_560c10c901224126867e7a313b566080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon