转移概率部分未知的时滞不确定Markov跳跃系统稳定性分析

研究转移概率部分未知的时滞不确定的Markov 跳跃系统随机稳定性问题,基于Lyapunov稳定理论,构造合适的Lyapunov泛函,使用自由权矩阵技术和凸结合技术来估计积分项的上界,同时也充分考虑时滞下界和上界的关系,得到保证Markov 跳跃系统随机稳定性的充分性条件,该条件以线性矩阵不等式的形式表示。最后,数值例子和其仿真验证了所提方法的有效性和优越性。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 7; pp. 1993 - 1996
Main Author 张芬 张艳邦
Format Journal Article
LanguageChinese
Published 咸阳师范学院 数学与信息科学学院, 陕西 咸阳 712000 2017
西安电子科技大学 机电工程学院, 西安 710071%咸阳师范学院 数学与信息科学学院,陕西 咸阳,712000
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.07.016

Cover

Abstract 研究转移概率部分未知的时滞不确定的Markov 跳跃系统随机稳定性问题,基于Lyapunov稳定理论,构造合适的Lyapunov泛函,使用自由权矩阵技术和凸结合技术来估计积分项的上界,同时也充分考虑时滞下界和上界的关系,得到保证Markov 跳跃系统随机稳定性的充分性条件,该条件以线性矩阵不等式的形式表示。最后,数值例子和其仿真验证了所提方法的有效性和优越性。
AbstractList TP302.7; 研究转移概率部分未知的时滞不确定的Markov 跳跃系统随机稳定性问题,基于Lyapunov稳定理论,构造合适的Lyapunov泛函,使用自由权矩阵技术和凸结合技术来估计积分项的上界,同时也充分考虑时滞下界和上界的关系,得到保证Markov 跳跃系统随机稳定性的充分性条件,该条件以线性矩阵不等式的形式表示.最后,数值例子和其仿真验证了所提方法的有效性和优越性.
研究转移概率部分未知的时滞不确定的Markov 跳跃系统随机稳定性问题,基于Lyapunov稳定理论,构造合适的Lyapunov泛函,使用自由权矩阵技术和凸结合技术来估计积分项的上界,同时也充分考虑时滞下界和上界的关系,得到保证Markov 跳跃系统随机稳定性的充分性条件,该条件以线性矩阵不等式的形式表示。最后,数值例子和其仿真验证了所提方法的有效性和优越性。
Abstract_FL This paper focused on the stability problems of delayed Markovian jumping systems with uncertainty and partial information on transition probabilities.Based on Lyapunov stability theory,it constructed proper Lyapunov functional,and used free-weighting matrix technique and convex combination technique to estimate the upper of the integral terms.It derived some sufficient conditions to guarantee that the Markovian jumping systems were stochastic stability in terms of linear matrix inequalities,in which the relationship between the lower and the upper of delay were fully taken into account.Finally,a numerical example and its simulation verify the effectiveness and superiority of the proposed method.
Author 张芬 张艳邦
AuthorAffiliation 咸阳师范学院数学与信息科学学院,陕西咸阳712000 西安电子科技大学机电工程学院,西安710071
AuthorAffiliation_xml – name: 咸阳师范学院 数学与信息科学学院, 陕西 咸阳 712000;西安电子科技大学 机电工程学院, 西安 710071%咸阳师范学院 数学与信息科学学院,陕西 咸阳,712000
Author_FL Zhang Yanbang
Zhang Fen
Author_FL_xml – sequence: 1
  fullname: Zhang Fen
– sequence: 2
  fullname: Zhang Yanbang
Author_xml – sequence: 1
  fullname: 张芬 张艳邦
BookMark eNo9j81Kw0AUhWdRwbb6EuLCTeKdZDKTLKX4hxU33ZdpkqmNmmiCSnZiRd0o7oQiLS60RaSbgBWCb2Mz9S1MqQgXDhy-cy6nhAp-4LsILWNQdYtaq57aiiJfxQBY0allqBpgpkJ-mBZQ8d-fR6Uo8gCIhi0oop3J17vsp9nrpby_-WkPxrfX2dOb7L3IzlX2-JGl3e_PO_k8HA87uzw8CM4mo2QyassklWlPDpLczy7601T3YQHNCX4YuYt_Wka1jfVaZUup7m1uV9aqik2BKpoQAuOGCdgBzeUEc2Y4tsNcXdiCE8PViSZs23G4A8Q1OBiMmeAahDJisoaul9HKrPac-4L7zboXnIZ-_rDuRV4cx950ObB8d44uzVB7P_CbJ60cPg5bRzyM65RpRKMmEP0XvY94Kw
ClassificationCodes TP302.7
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.07.016
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Stability analysis of delayed Markovian jumping systems with uncertainty and partial information on transition probabilities
DocumentTitle_FL Stability analysis of delayed Markovian jumping systems with uncertainty and partial information on transition probabilities
EndPage 1996
ExternalDocumentID jsjyyyj201707016
672426804
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (61501388,11501482)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c606-2fff11b801d02ea41a75dcd7e3fcfa45e342fccddad04e5a057780e5467487b33
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 10:00:20 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords Markov跳跃系统
stochastic stability
随机稳定性
转移概率部分未知
linear matrix inequalities
unknown transition probabilities
线性矩阵不等式
Markovian jumping systems (MJS)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c606-2fff11b801d02ea41a75dcd7e3fcfa45e342fccddad04e5a057780e5467487b33
Notes 51-1196/TP
Markovian jumping systems(MJS); unknown transition probabilities; stochastic stability; linear matrix inequalities
This paper focused on the stability problems of delayed Markovian jumping systems with uncertainty and partial information on transition probabilities. Based on Lyapunov stability theory, it constructed proper Lyapunov functional, and used free-weighting matrix technique and convex combination technique to estimate the upper of the integral terms. It derived some sufficient conditions to guarantee that the Markovian jumping systems were stochastic stability in terms of linear matrix inequalities, in which the relationship between the lower and the upper of delay were fully taken into account. Finally, a numerical example and its simulation verify the effectiveness and superiority of the proposed method.
Zhang Fen1,2, Zhang Yanbang1 (1. College of Mathematics & Information Science, Xianyang Normal University, Xianyang Shaanxi 712000, China; 2. School of Mechano-electronic Engineering, Xidi
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201707016
chongqing_primary_672426804
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 咸阳师范学院 数学与信息科学学院, 陕西 咸阳 712000
西安电子科技大学 机电工程学院, 西安 710071%咸阳师范学院 数学与信息科学学院,陕西 咸阳,712000
Publisher_xml – name: 咸阳师范学院 数学与信息科学学院, 陕西 咸阳 712000
– name: 西安电子科技大学 机电工程学院, 西安 710071%咸阳师范学院 数学与信息科学学院,陕西 咸阳,712000
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0859678
Snippet 研究转移概率部分未知的时滞不确定的Markov 跳跃系统随机稳定性问题,基于Lyapunov稳定理论,构造合适的Lyapunov泛函,使用自由权矩阵技术和凸结合技术来估计积分项的上...
TP302.7; 研究转移概率部分未知的时滞不确定的Markov 跳跃系统随机稳定性问题,基于Lyapunov稳定理论,构造合适的Lyapunov泛函,使用自由权矩阵技术和凸结合技术来估计积分项...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1993
SubjectTerms Markov跳跃系统
线性矩阵不等式
转移概率部分未知
随机稳定性
Title 转移概率部分未知的时滞不确定Markov跳跃系统稳定性分析
URI http://lib.cqvip.com/qk/93231X/201707/672426804.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201707016
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1001-3695
  databaseCode: ABDBF
  dateStart: 20130901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib025702191
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNJQWxIvfYq1KheYkU2cmk0lyzOxOKYqeKvS2zGdLD7tqW2F7EivqRfEmFGnxoC0ivRSssPgj_A92p_4L38tMt1MpRb2ETPK-Ji8kLyHvPUImYsVF5sbMSsHasDzOhBXLLLJyV4jciaKYO-jvfO--P_3AuzPLZ4eGftReLS0vxZPJyrF-Jf-jVWgDvaKX7D9odkAUGqAO-oUSNAzlX-mYhpIGTaobNBRUCxoENPSp9ql0sUWGFI76oaKSUS1pyKmUVPoIoxpUa4RRU1RzU9FUeqYL6BgYoKZCGno0AKymYeFQHSIdKJVGN5_OEyMDoLCqArxC84nCGJGABeJKA1PhIn1po8xHpIIuu24uI02AB75IIUTZSuEDjYhQKs8I75kfBBi7atEK_uJgNhnYBnYCPalhwG4dbVJGNoXjpv36RUjp8Vmt2vgujPllts6DZb26Iy2nr6it0fhksbbf4zPs4_YSpnxl9hJkMTlgga8BhYn36vwRwtsYBb5Am0dihNoRF6-IhsmIDprB1KGNCiZdPWahi-GADs-EGNDfry3CmGUQdpXBIswdJrhJWVCaGx50liE3KgFPkYlK-tsnyY6xROY77blHYCEZh7V2HrXnarbVzDlypjoUjetyhp8nQyvzF8jZg4Qj49X-c5Hc3f_-pdjs9T89K968_LW6tffqRf_952LjY7H2vP_ua7-3_vPb6-LD9t72Wjk593d39ndXi51e0dsotnagvf90E7HW314iM1PhTGPaqrKBWAkcsi03z3PHicGgSm03izwnEjxNUpGxPMkjj2fMc_MkSdMotb2MR3AOEdLOuMmmI2LGLpPhdqedXSHjdha5yuE5mNoY7TBScc4541EuUpZ6TjJKxgZD03pYBn1pDRQ7Sm5Wg9WqloLF1sLiQrfbXcDhhS3U8a-eSGGMnEbI8iLvGhleerycXQfTdim-UU2W39czhyk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%BD%AC%E7%A7%BB%E6%A6%82%E7%8E%87%E9%83%A8%E5%88%86%E6%9C%AA%E7%9F%A5%E7%9A%84%E6%97%B6%E6%BB%9E%E4%B8%8D%E7%A1%AE%E5%AE%9AMarkov%E8%B7%B3%E8%B7%83%E7%B3%BB%E7%BB%9F%E7%A8%B3%E5%AE%9A%E6%80%A7%E5%88%86%E6%9E%90&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E5%BC%A0%E8%8A%AC+%E5%BC%A0%E8%89%B3%E9%82%A6&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=7&rft.spage=1993&rft.epage=1996&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.07.016&rft.externalDocID=672426804
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg