Mapping biological entities using the longest approximately common prefix method
Background The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching algorithms that can expedite tasks such as named entity recognition, duplicate detection, terminology integration, and spelling correction. The task...
Saved in:
| Published in | BMC bioinformatics Vol. 15; no. 1; p. 187 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
14.06.2014
BioMed Central Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-15-187 |
Cover
| Abstract | Background
The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching algorithms that can expedite tasks such as named entity recognition, duplicate detection, terminology integration, and spelling correction. The task of source integration in the Unified Medical Language System (UMLS) requires considerable expert effort despite the presence of various computational tools. This problem warrants the search for a new method for approximate string matching and its UMLS-based evaluation.
Results
This paper introduces the Longest Approximately Common Prefix (LACP) method as an algorithm for approximate string matching that runs in linear time. We compare the LACP method for performance, precision and speed to nine other well-known string matching algorithms. As test data, we use two multiple-source samples from the Unified Medical Language System (UMLS) and two SNOMED Clinical Terms-based samples. In addition, we present a spell checker based on the LACP method.
Conclusions
The Longest Approximately Common Prefix method completes its string similarity evaluations in less time than all nine string similarity methods used for comparison. The Longest Approximately Common Prefix outperforms these nine approximate string matching methods in its Maximum
F
1
measure when evaluated on three out of the four datasets, and in its average precision on two of the four datasets. |
|---|---|
| AbstractList | The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching algorithms that can expedite tasks such as named entity recognition, duplicate detection, terminology integration, and spelling correction. The task of source integration in the Unified Medical Language System (UMLS) requires considerable expert effort despite the presence of various computational tools. This problem warrants the search for a new method for approximate string matching and its UMLS-based evaluation. This paper introduces the Longest Approximately Common Prefix (LACP) method as an algorithm for approximate string matching that runs in linear time. We compare the LACP method for performance, precision and speed to nine other well-known string matching algorithms. As test data, we use two multiple-source samples from the Unified Medical Language System (UMLS) and two SNOMED Clinical Terms-based samples. In addition, we present a spell checker based on the LACP method. The Longest Approximately Common Prefix method completes its string similarity evaluations in less time than all nine string similarity methods used for comparison. The Longest Approximately Common Prefix outperforms these nine approximate string matching methods in its Maximum F.sub.1 measure when evaluated on three out of the four datasets, and in its average precision on two of the four datasets. Background The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching algorithms that can expedite tasks such as named entity recognition, duplicate detection, terminology integration, and spelling correction. The task of source integration in the Unified Medical Language System (UMLS) requires considerable expert effort despite the presence of various computational tools. This problem warrants the search for a new method for approximate string matching and its UMLS-based evaluation. Results This paper introduces the Longest Approximately Common Prefix (LACP) method as an algorithm for approximate string matching that runs in linear time. We compare the LACP method for performance, precision and speed to nine other well-known string matching algorithms. As test data, we use two multiple-source samples from the Unified Medical Language System (UMLS) and two SNOMED Clinical Terms-based samples. In addition, we present a spell checker based on the LACP method. Conclusions The Longest Approximately Common Prefix method completes its string similarity evaluations in less time than all nine string similarity methods used for comparison. The Longest Approximately Common Prefix outperforms these nine approximate string matching methods in its Maximum F.sub.1 measure when evaluated on three out of the four datasets, and in its average precision on two of the four datasets. The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching algorithms that can expedite tasks such as named entity recognition, duplicate detection, terminology integration, and spelling correction. The task of source integration in the Unified Medical Language System (UMLS) requires considerable expert effort despite the presence of various computational tools. This problem warrants the search for a new method for approximate string matching and its UMLS-based evaluation.BACKGROUNDThe significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching algorithms that can expedite tasks such as named entity recognition, duplicate detection, terminology integration, and spelling correction. The task of source integration in the Unified Medical Language System (UMLS) requires considerable expert effort despite the presence of various computational tools. This problem warrants the search for a new method for approximate string matching and its UMLS-based evaluation.This paper introduces the Longest Approximately Common Prefix (LACP) method as an algorithm for approximate string matching that runs in linear time. We compare the LACP method for performance, precision and speed to nine other well-known string matching algorithms. As test data, we use two multiple-source samples from the Unified Medical Language System (UMLS) and two SNOMED Clinical Terms-based samples. In addition, we present a spell checker based on the LACP method.RESULTSThis paper introduces the Longest Approximately Common Prefix (LACP) method as an algorithm for approximate string matching that runs in linear time. We compare the LACP method for performance, precision and speed to nine other well-known string matching algorithms. As test data, we use two multiple-source samples from the Unified Medical Language System (UMLS) and two SNOMED Clinical Terms-based samples. In addition, we present a spell checker based on the LACP method.The Longest Approximately Common Prefix method completes its string similarity evaluations in less time than all nine string similarity methods used for comparison. The Longest Approximately Common Prefix outperforms these nine approximate string matching methods in its Maximum F1 measure when evaluated on three out of the four datasets, and in its average precision on two of the four datasets.CONCLUSIONSThe Longest Approximately Common Prefix method completes its string similarity evaluations in less time than all nine string similarity methods used for comparison. The Longest Approximately Common Prefix outperforms these nine approximate string matching methods in its Maximum F1 measure when evaluated on three out of the four datasets, and in its average precision on two of the four datasets. Background The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching algorithms that can expedite tasks such as named entity recognition, duplicate detection, terminology integration, and spelling correction. The task of source integration in the Unified Medical Language System (UMLS) requires considerable expert effort despite the presence of various computational tools. This problem warrants the search for a new method for approximate string matching and its UMLS-based evaluation. Results This paper introduces the Longest Approximately Common Prefix (LACP) method as an algorithm for approximate string matching that runs in linear time. We compare the LACP method for performance, precision and speed to nine other well-known string matching algorithms. As test data, we use two multiple-source samples from the Unified Medical Language System (UMLS) and two SNOMED Clinical Terms-based samples. In addition, we present a spell checker based on the LACP method. Conclusions The Longest Approximately Common Prefix method completes its string similarity evaluations in less time than all nine string similarity methods used for comparison. The Longest Approximately Common Prefix outperforms these nine approximate string matching methods in its Maximum F 1 measure when evaluated on three out of the four datasets, and in its average precision on two of the four datasets. The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching algorithms that can expedite tasks such as named entity recognition, duplicate detection, terminology integration, and spelling correction. The task of source integration in the Unified Medical Language System (UMLS) requires considerable expert effort despite the presence of various computational tools. This problem warrants the search for a new method for approximate string matching and its UMLS-based evaluation. This paper introduces the Longest Approximately Common Prefix (LACP) method as an algorithm for approximate string matching that runs in linear time. We compare the LACP method for performance, precision and speed to nine other well-known string matching algorithms. As test data, we use two multiple-source samples from the Unified Medical Language System (UMLS) and two SNOMED Clinical Terms-based samples. In addition, we present a spell checker based on the LACP method. The Longest Approximately Common Prefix method completes its string similarity evaluations in less time than all nine string similarity methods used for comparison. The Longest Approximately Common Prefix outperforms these nine approximate string matching methods in its Maximum F1 measure when evaluated on three out of the four datasets, and in its average precision on two of the four datasets. |
| ArticleNumber | 187 |
| Audience | Academic |
| Author | Geller, James Rudniy, Alex Song, Min |
| AuthorAffiliation | 1 Computer Science Department, New Jersey Institute of Technology, Newark, NJ 07102, USA 2 Department of Library and Information Science, Yonsei University, 50 Yonsei-ro, Seoul 120-749, Korea |
| AuthorAffiliation_xml | – name: 1 Computer Science Department, New Jersey Institute of Technology, Newark, NJ 07102, USA – name: 2 Department of Library and Information Science, Yonsei University, 50 Yonsei-ro, Seoul 120-749, Korea |
| Author_xml | – sequence: 1 givenname: Alex surname: Rudniy fullname: Rudniy, Alex organization: Computer Science Department, New Jersey Institute of Technology – sequence: 2 givenname: Min surname: Song fullname: Song, Min email: min.song@yonsei.ac.kr organization: Department of Library and Information Science, Yonsei University – sequence: 3 givenname: James surname: Geller fullname: Geller, James organization: Computer Science Department, New Jersey Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24928653$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstv1DAQxiNURB9w54QicaGHFNtxbOeCVFUUKhWBeJwtx3Gyrhw7xA7s_vdMtEvpIh6VLTma-X0Tz_g7zg588CbLnmJ0hrFgLzHluCAYVQWGLfiD7Og2dHDn-zA7jvEGIcwFqh5lh4TWRLCqPMo-vFPjaH2fNza40FutXG58ssmamM9xyaSVyV3wvYkpB3gKazuoZNwm12EYgs_HyXR2nQ8mrUL7OHvYKRfNk915kn25fP354m1x_f7N1cX5daEZqlLR1rymBHWataKuStJpajCDVKMbo3DbdR2HMNOICoM05zWpEVOCtqoUHWrKkwxv685-VJvvyjk5TnCxaSMxkst05NK-XNqXGLbgoHm11YxzM5hWQ6OT-qULysr9jLcr2YdvkiLBWC2gwItdgSl8nWEgcrBRG-eUN2GOEvO6JIIyhP6PVgxhRCrK7oFSWpKSUwzo8y3aK2ek9V2Ae-oFl-dVWVMGjROgzv5AwWrNYDVYqLMQ3xOc7gmASWadejXHKK8-fdxnn90d4u30fnoKALQF9BRiBG_c52HYbxJtk0o2LM9g3b-EOxdE-AdYdJI3YZ48GO_vmh8vyPud |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0159644 crossref_primary_10_1093_database_baw163 crossref_primary_10_1371_journal_pone_0162287 crossref_primary_10_1093_database_baw164 crossref_primary_10_1093_jamia_ocv108 |
| Cites_doi | 10.1002/9780470510520 10.1186/1471-2164-13-S3-S8 10.1016/0022-2836(81)90087-5 10.1109/71.674320 10.1016/j.artmed.2010.02.005 10.1145/375360.375365 10.1017/CBO9780511809071 10.1109/CBMS.2013.6627828 10.1136/jamia.1998.0050001 10.1016/j.artmed.2011.06.005 10.1111/j.1469-8137.1912.tb05611.x 10.1080/01621459.1989.10478785 10.1109/BIBM.2008.34 10.1016/0306-4573(88)90021-0 10.1186/1472-6947-7-3 10.1016/j.compbiomed.2004.06.002 10.1016/0022-2836(70)90057-4 10.1186/1472-6947-5-32 10.1136/amiajnl-2012-001063 10.1186/1471-2105-15-59 |
| ContentType | Journal Article |
| Copyright | Rudniy et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated. COPYRIGHT 2014 BioMed Central Ltd. Copyright © 2014 Rudniy et al.; licensee BioMed Central Ltd. 2014 Rudniy et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Rudniy et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated. – notice: COPYRIGHT 2014 BioMed Central Ltd. – notice: Copyright © 2014 Rudniy et al.; licensee BioMed Central Ltd. 2014 Rudniy et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D 5PM ADTOC UNPAY |
| DOI | 10.1186/1471-2105-15-187 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Engineering Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 187 |
| ExternalDocumentID | 10.1186/1471-2105-15-187 PMC4086698 A539461182 24928653 10_1186_1471_2105_15_187 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D 5PM 123 2VQ ADTOC AFFHD C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c605t-d979420fc6d89532fc4e16605bcbea1dfff75326c048e0c7792906a84da38f0b3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Wed Oct 29 11:22:33 EDT 2025 Tue Sep 30 16:37:36 EDT 2025 Thu Sep 04 16:05:20 EDT 2025 Tue Oct 07 09:50:59 EDT 2025 Thu Oct 02 10:16:02 EDT 2025 Mon Oct 20 22:49:41 EDT 2025 Mon Oct 20 17:02:21 EDT 2025 Thu Oct 16 16:00:18 EDT 2025 Thu Apr 03 07:05:07 EDT 2025 Wed Oct 01 04:15:24 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Sat Sep 06 07:27:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Common Prefix Unify Medical Language System Average Precision String Similarity Histogram Intersection |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c605t-d979420fc6d89532fc4e16605bcbea1dfff75326c048e0c7792906a84da38f0b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-15-187 |
| PMID | 24928653 |
| PQID | 1544323741 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1186_1471_2105_15_187 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4086698 proquest_miscellaneous_1793284600 proquest_miscellaneous_1560102546 proquest_miscellaneous_1544323741 gale_infotracmisc_A539461182 gale_infotracacademiconefile_A539461182 gale_incontextgauss_ISR_A539461182 pubmed_primary_24928653 crossref_primary_10_1186_1471_2105_15_187 crossref_citationtrail_10_1186_1471_2105_15_187 springer_journals_10_1186_1471_2105_15_187 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-14 |
| PublicationDateYYYYMMDD | 2014-06-14 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2014 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | M Song (6480_CR18) 2008 6480_CR8 SB Needleman (6480_CR35) 1970; 48 KC Huang (6480_CR4) 2007 MA Jaro (6480_CR31) 1989; 89 S Sahay (6480_CR14) 2007 H Tan (6480_CR12) 2007 EA Sauleau (6480_CR22) 2005; 5 JF Wang (6480_CR5) 2005; 35 C Funk (6480_CR11) 2014; 15 C Manning (6480_CR40) 2008 W Cohen (6480_CR15) 2003 EA Sauleau (6480_CR3) 2005; 0 6480_CR29 WE Winkler (6480_CR32) 1990 P Jaccard (6480_CR30) 1912; 11 6480_CR24 VI Levenshtein (6480_CR33) 1966; 10 6480_CR25 L Plaza (6480_CR16) 2011; 53 A Rudniy (6480_CR27) 2010 TK Yap (6480_CR2) 1998; 9 A Yamaguchi (6480_CR21) 2012; 13 E Parcero (6480_CR26) 2013 AE Monge (6480_CR34) 1996 BL Humphreys (6480_CR38) 1998; 5 TD Smith (6480_CR36) 1981; 147 A Rudniy (6480_CR41) 2012 H-T Zheng (6480_CR17) 2010; 49 G Navarro (6480_CR1) 2001; 33 O Bodenreider (6480_CR20) 2004; 107 6480_CR39 C Zunner (6480_CR23) 2013; 20 G Salton (6480_CR37) 1988; 24 6480_CR13 B Wellner (6480_CR19) 2005 C Jonquet (6480_CR9) 2009; 2009 6480_CR10 6480_CR7 6480_CR6 AK Maini (6480_CR28) 2007 24571547 - BMC Bioinformatics. 2014;15:59 7265238 - J Mol Biol. 1981 Mar 25;147(1):195-7 9452981 - J Am Med Inform Assoc. 1998 Jan-Feb;5(1):1-11 21347068 - AMIA Annu Symp Proc. 2010;2010:697-701 17295907 - BMC Med Inform Decis Mak. 2007;7:3 5420325 - J Mol Biol. 1970 Mar;48(3):443-53 16219102 - BMC Med Inform Decis Mak. 2005;5:32 20371168 - Artif Intell Med. 2010 Jun;49(2):67-78 18693854 - AMIA Annu Symp Proc. 2007;:339-43 22759617 - BMC Genomics. 2012;13 Suppl 3:S8 15360828 - Stud Health Technol Inform. 2004;107(Pt 1):327-31 21347171 - Summit Transl Bioinform. 2009 Mar 01;2009:56-60 22802268 - J Am Med Inform Assoc. 2013 Mar-Apr;20(2):293-7 16124992 - Comput Biol Med. 2005 Oct;35(8):717-24 21752612 - Artif Intell Med. 2011 Sep;53(1):1-14 |
| References_xml | – volume-title: Digital electronics: principles, devices and applications year: 2007 ident: 6480_CR28 doi: 10.1002/9780470510520 – ident: 6480_CR10 – volume: 13 start-page: S8 issue: Suppl 3 year: 2012 ident: 6480_CR21 publication-title: BMC Genomics doi: 10.1186/1471-2164-13-S3-S8 – ident: 6480_CR29 – volume: 147 start-page: 195 year: 1981 ident: 6480_CR36 publication-title: J Mol Biol doi: 10.1016/0022-2836(81)90087-5 – start-page: 9 volume-title: Proceedings of the 13th International Conference on Intelligent Systems for Molecular Biology: 25-29 June 2005 year: 2005 ident: 6480_CR19 – ident: 6480_CR39 – ident: 6480_CR6 – volume: 9 start-page: 283 issue: 3 year: 1998 ident: 6480_CR2 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/71.674320 – ident: 6480_CR8 – volume: 49 start-page: 67 issue: 2 year: 2010 ident: 6480_CR17 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2010.02.005 – volume: 33 start-page: 31 issue: 1 year: 2001 ident: 6480_CR1 publication-title: ACM Comp Surv doi: 10.1145/375360.375365 – volume-title: Introduction to information retrieval year: 2008 ident: 6480_CR40 doi: 10.1017/CBO9780511809071 – start-page: 409 volume-title: Proceedings of 26th IEEE International Symposium on Computer-Based Medical Systems: 20-22 June 2013 year: 2013 ident: 6480_CR26 doi: 10.1109/CBMS.2013.6627828 – volume: 5 start-page: 1 issue: 1 year: 1998 ident: 6480_CR38 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.1998.0050001 – volume: 53 start-page: 1 year: 2011 ident: 6480_CR16 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2011.06.005 – volume-title: The field matching problem: algorithms and applications year: 1996 ident: 6480_CR34 – volume: 11 start-page: 37 issue: 2 year: 1912 ident: 6480_CR30 publication-title: New Phytol doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: 6480_CR25 – volume: 89 start-page: 414 year: 1989 ident: 6480_CR31 publication-title: Florida J Amer Stat Assoc doi: 10.1080/01621459.1989.10478785 – start-page: 101 volume-title: Proceedings of the NSF Symp. on Next Generation of Data Mining: 10-12 October 2007 year: 2007 ident: 6480_CR14 – start-page: 457 volume-title: Proceedings of 2008 IEEE International Conference on Bioinformatics and Biomedicine: 5-7 November 2008 year: 2008 ident: 6480_CR18 doi: 10.1109/BIBM.2008.34 – start-page: 354 volume-title: Proc Section Survey Research Methods Amer Stat Assn year: 1990 ident: 6480_CR32 – start-page: 494 volume-title: The Semantic Web, Volume 4825 year: 2007 ident: 6480_CR12 – volume: 24 start-page: 513 issue: 5 year: 1988 ident: 6480_CR37 publication-title: Inf Process Manage doi: 10.1016/0306-4573(88)90021-0 – ident: 6480_CR13 doi: 10.1186/1472-6947-7-3 – volume: 35 start-page: 717 issue: 8 year: 2005 ident: 6480_CR5 publication-title: Comput Biology Medicine doi: 10.1016/j.compbiomed.2004.06.002 – start-page: 697 volume-title: Proceedings American Medical Informatics Association Annual Symposium: 13-17 November 2010 year: 2010 ident: 6480_CR27 – volume: 48 start-page: 443 year: 1970 ident: 6480_CR35 publication-title: J Mol Biol doi: 10.1016/0022-2836(70)90057-4 – volume: 5 start-page: 32 year: 2005 ident: 6480_CR22 publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-5-32 – volume: 10 start-page: 707 year: 1966 ident: 6480_CR33 publication-title: Sov Phys Dokl – ident: 6480_CR7 – start-page: 73 volume-title: Proceedings of Information Integration on the Web: 9-10 August 2003 year: 2003 ident: 6480_CR15 – volume: 0 start-page: 5 year: 2005 ident: 6480_CR3 publication-title: BMC Med Inf and Decision Making – ident: 6480_CR24 – volume: 107 start-page: 327 year: 2004 ident: 6480_CR20 publication-title: Stud Health Technol Inform – volume: 20 start-page: 293 year: 2013 ident: 6480_CR23 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2012-001063 – start-page: 339 volume-title: Proc. AMIA Annual Symp year: 2007 ident: 6480_CR4 – volume: 2009 start-page: 56 year: 2009 ident: 6480_CR9 publication-title: Summit Transl Bioinformatics – volume: 15 start-page: 59 year: 2014 ident: 6480_CR11 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-59 – volume-title: Ph.D. Dissertation year: 2012 ident: 6480_CR41 – reference: 20371168 - Artif Intell Med. 2010 Jun;49(2):67-78 – reference: 22802268 - J Am Med Inform Assoc. 2013 Mar-Apr;20(2):293-7 – reference: 17295907 - BMC Med Inform Decis Mak. 2007;7:3 – reference: 15360828 - Stud Health Technol Inform. 2004;107(Pt 1):327-31 – reference: 7265238 - J Mol Biol. 1981 Mar 25;147(1):195-7 – reference: 5420325 - J Mol Biol. 1970 Mar;48(3):443-53 – reference: 21752612 - Artif Intell Med. 2011 Sep;53(1):1-14 – reference: 16219102 - BMC Med Inform Decis Mak. 2005;5:32 – reference: 16124992 - Comput Biol Med. 2005 Oct;35(8):717-24 – reference: 21347171 - Summit Transl Bioinform. 2009 Mar 01;2009:56-60 – reference: 21347068 - AMIA Annu Symp Proc. 2010;2010:697-701 – reference: 24571547 - BMC Bioinformatics. 2014;15:59 – reference: 9452981 - J Am Med Inform Assoc. 1998 Jan-Feb;5(1):1-11 – reference: 18693854 - AMIA Annu Symp Proc. 2007;:339-43 – reference: 22759617 - BMC Genomics. 2012;13 Suppl 3:S8 |
| SSID | ssj0017805 |
| Score | 2.1504197 |
| Snippet | Background
The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching... The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching algorithms that... Background The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching... Background: The significant growth in the volume of electronic biomedical data in recent decades has pointed to the need for approximate string matching... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 187 |
| SubjectTerms | Algorithms Approximate string matching Bioinformatics Biomedical and Life Sciences Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer Graphics Humans Knowledge-based analysis Language Life Sciences Medical Methodology Methodology Article Microarrays Natural Language Processing Searching Similarity Strings Tasks Terminology as Topic Unified Medical Language System Unified Modeling Language |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEB-0IuoH8d1olVUEsRB6m2w2m4-lWKpQEbXQb8tmH-dByB29O-z9987kxaXIiZBvO5vHzmNnMrO_AXgvhXMyJEUsRDaJRW7TWBXWxLxMHJ8UhssmY3r-VZ5diC-X2WX3v4POwmzn77mSRxyNZ4xhSRZzvFR-G-7gFiWbtKw8GfIFhMzfJyH_Mmu06dw0vVt7z826yCE5-gDureuF2fw2VbW1_5w-goed48iOW04_hlu-fgJ321aSm6fw7dwQ0sKUtahKtPSsx0tlVNw-ZejqsWpeU0KJNVDi1zN0V321YSh1KI1sgS8-u2ZtU-lncHH66efJWdx1S4gthiSr2BWoWskkWOlUkaVJsMJziUOlLb3hLoSAoUkiLeqsn9g8Lwjp3SjhTKrCpEyfw149r_0-MOdKn7jE8jIXwgeurCh9VgaeOk9thiI46pdT2w5KnDpaVLoJKZTUxABNDNAcL5VH8HGYsWhhNHbQviMOaUKnqKn8ZWrWy6X-_OO7Ps7SQkiKiSL40BGFOT7amu40AX4AAVqNKA9GlKg-djT8thcETUNUc1b7-XqpCacoTVJ0uXbRUEBLPQV20KAJRCcAPcsIXrQCNqwB4TUqmaUR5CPRGwgI_Xs8Us9-NSjgAoNRWagIDnsh1Z35We5Y2sNBjP_Jh5f_c-dXcB9dSUFFdFwcwN7qau1fo7u2Kt80mvoHd2U1gA priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_OHqI--Hlq9JRVBPEgbTfZbDaPRTxO4Y6iHpxPS_arFmNary1e_eudaZLSFKkIQt72F5JMZmZn2JnfEPJKcGuFj7KQ86Qf8tTEocxMHjIdWdbPciZWJ6anZ-LknH-4SC72yLDphdHfjR5PatJQJCrubrahF1WXA05RcJe9qfWV0UvRY-BkQ0hfkpDBJdNrZF8kEJ13yP752XDwZdVkVEOa08o_3NbanbZ99MYmtV1AuT5FvUVuLMppvvyZF8XGRnV8h_xoPrGqT_nWXcx11_zaYn_8nzK4S27XUS0dVGp4j-y58j65Xs25XD4gw9McaSBGtKJ8Qr2gDZkrxcr7EYU4lBaTEk-76Irn_GoMb-WKJYX3AFOhUxDW-IpWE68PyPnxu89vT8J6lENoIF-ahzYDu4_63ggrsySOvOGOCVjSRrucWe895E2RMOBQXN-kaYY09LnkNo-l7-v4IemUk9I9JtRa7SIbGaZTzp1n0nDtEu1ZbB3OQApIr_mFytQ85zhuo1CrfEcKhXJSKCfF4JJpQN6s75hWHB87sC9RKxRSZ5RYmzPKF7OZev_poxokccYFJmwBeV2D_AQebfK61QE-ANm2WsjDFhJs27SWXzTKp3AJC-JKN1nMFJIoxVEM8eAuDGbbOPBgBwb8M0QoEPYG5FGl1GsZIJmkFEkckLSl7msAUpO3V8rx1xVFOYdMWWQyIEeNYajaN852iPZobTp__Q9P_gX8lNyEOJdjhR_jh6Qzv1y4ZxBLzvXz2j38BmBEbVU priority: 102 providerName: Unpaywall |
| Title | Mapping biological entities using the longest approximately common prefix method |
| URI | https://link.springer.com/article/10.1186/1471-2105-15-187 https://www.ncbi.nlm.nih.gov/pubmed/24928653 https://www.proquest.com/docview/1544323741 https://www.proquest.com/docview/1560102546 https://www.proquest.com/docview/1793284600 https://pubmed.ncbi.nlm.nih.gov/PMC4086698 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-15-187 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (ODIN) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals at publisher websites customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (ODIN) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBdry9j2MPY9b13QxmCs4DWyZVl-GCMLzbpAQmgX6J6ELclZwDhZk7Dkv9-dP9K6dBmYBHJnrOjupDvf6XeEvBfcGJF6kct50HZ5qH1XRjp2WeIZ1o5iJoqM6WAoTse8fxFcXB2PriZwcWtoh_2kxpfZp_XvzRcw-M-FwUtxzGCBdSF0CVwGlwz3yAHsUxE2chjwq5wCovfXicpb7kJYYB7hQU2_sUfdXKmvbVU3yyi3udQH5N4qn8ebP3GWXduueo_Iw8rPpJ1SMR6TOzZ_Qu6WnSc3T8loECMww4SWIEwoKVrDq1KshZ9Q8AxpNssx_0QL5PH1FLxbm20oKCkoL53DwKdrWvagfkbGvZMf3VO3aq7gaohglq6JwBK9dqqFkVHge6nmlgkgJTqxMTNpmkIk4wkNJm7bOgwjBIaPJTexL9N24j8n-_ksty8JNSaxnvE0S0LObcqk5okNkpT5xmJXIocc19OpdIU8jg0wMlVEIFIolIVCWSgGlwwd8nF7x7xE3djB-w4lpBDMIsdqmUm8WizU9_Mz1Qn8iAsMoRzyoWJKZ_BoHVeHD-APIP5Vg_OwwQnWphvkt7UiKCRhiVpuZ6uFQlgj3_PBQ9vFg_EvtiDYwQMrJvgM4Ig65EWpYNs5qBXUIWFD9bYMCBbepOTTXwVoOIfYVUTSIUe1kqra2HZM7dFWjf8rh1f_HO1rch_cTI4Fdowfkv3l5cq-AVdumbTIXngRwqfsfWuRg06nf96H768nw9EZ_NoV3VbxkqRVWDJQxsNR5-dfOwhIzw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEB9qi1Q_iK_qatUoglhYetnNZrMfD7Fcz14R20K_hd0kex4se4d3h73_3pl90S1yIuRbJvvIPDLDTH4D8FEKa2UeJL4Q0cAXsQl9lZjU51lg-SBJuawyppNzOboS4-voegeC9i5MVe3epiQrS12ptZLHHM2ojwFK5HMcKr4He1Rihcq4NxyOL8Zd7oBQ-tuE5F_W9Q6gu2b41jl0t0ayS5Q-hP11uUg3v9OiuHUWnTyGR40TyYY115_Ajiufwv26reTmGXyfpIS6MGU1whKxgbXYqYwK3acM3T5WzEtKLrEKVvxmhq6rKzYMNwMlky3ww2c3rG4w_RyuTr5efhn5TecE32B4svJtgmoWDHIjrUqiMMiNcFziVGYyl3Kb5zmGKYE0qL9uYOI4IdT3VAmbhiofZOEB7Jbz0r0EZm3mAhsYnsVCuJwrIzIXZTkPraOWQx4ct9upTQMrTt0tCl2FF0pqYoAmBmiOQ8UefO5WLGpIjS20H4hDmpAqSiqFmabr5VKfXvzQwyhMhKT4yINPDVE-x1ebtLlZgD9A4FY9ysMeJaqS6U2_bwVB0xTVn5Vuvl5qwiwKgxDdr200FNxSf4EtNGgO0SFAL9ODF7WAdXtA2I1KRqEHcU_0OgJCAu_PlLOfFSK4wMBUJsqDo1ZIdWOKllu29qgT43_y4dX_PPkd7I8uJ2f67PT822t4gC6moOI6Lg5hd_Vr7d6gG7fK3jZ6-wfYfz3Z |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF-04uuD-KzRqqsIYiFcNtlsNh_L6dGqLUUt9Nuy2cf1IOQOc4e9_96Zy4OmyImQbzubxzx2ZzKzvyHkveDWCh_nIedpFPLMJKHMjQ5ZEVsW5ZqJTcb0-EQcnvEv5-l5-8Ot7qrdu5Rkc6YBUZqq5WhhfWPiUowYLKkhBCtpyOCS2U1yi8Pehh0MxmLcZxEQr79LTf5l1mArur4gX9mRrldL9inT--Tuqlro9W9dlld2pclD8qB1J-lBI_9H5IarHpPbTYPJ9RNyeqwRf2FKG6wlFAjtUFQplrxPKTiAtJxXmGaiG4Dxyxk4sa5cU2AL6ChdwIvPLmnTavopOZt8_jk-DNseCqGBQGUZ2hwMLo68EVbmaRJ7wx0TMFSYwmlmvfcQsMTCgCW7yGRZjvjvWnKrE-mjInlGdqp55Z4Tam3hYhsbVmScO8-k4YVLC88S67D5UEBGHTuVaQHGsc9FqTaBhhQKBaBQAIrBJbOAfOxnLBpwjS2071BCCjErKiyKmepVXaujH9_VQZrkXGCkFJAPLZGfw6ONbs8YwAcgzNWAcm9ACUZlBsNvO0VQOISVaJWbr2qF6EVJnIAjto0Gw1zsNLCFBhZGcA3A3wzIbqNgPQ8QxVGKNAlINlC9ngAxwYcj1exigw0OZiBELgOy3ympahelegtr93s1_qccXvzPnd-QO6efJurb0cnXl-Qe-Jocq-wY3yM7y18r9wr8uWXxemO0fwAyhUC2 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_OHqI--Hlq9JRVBPEgbTfZbDaPRTxO4Y6iHpxPS_arFmNary1e_eudaZLSFKkIQt72F5JMZmZn2JnfEPJKcGuFj7KQ86Qf8tTEocxMHjIdWdbPciZWJ6anZ-LknH-4SC72yLDphdHfjR5PatJQJCrubrahF1WXA05RcJe9qfWV0UvRY-BkQ0hfkpDBJdNrZF8kEJ13yP752XDwZdVkVEOa08o_3NbanbZ99MYmtV1AuT5FvUVuLMppvvyZF8XGRnV8h_xoPrGqT_nWXcx11_zaYn_8nzK4S27XUS0dVGp4j-y58j65Xs25XD4gw9McaSBGtKJ8Qr2gDZkrxcr7EYU4lBaTEk-76Irn_GoMb-WKJYX3AFOhUxDW-IpWE68PyPnxu89vT8J6lENoIF-ahzYDu4_63ggrsySOvOGOCVjSRrucWe895E2RMOBQXN-kaYY09LnkNo-l7-v4IemUk9I9JtRa7SIbGaZTzp1n0nDtEu1ZbB3OQApIr_mFytQ85zhuo1CrfEcKhXJSKCfF4JJpQN6s75hWHB87sC9RKxRSZ5RYmzPKF7OZev_poxokccYFJmwBeV2D_AQebfK61QE-ANm2WsjDFhJs27SWXzTKp3AJC-JKN1nMFJIoxVEM8eAuDGbbOPBgBwb8M0QoEPYG5FGl1GsZIJmkFEkckLSl7msAUpO3V8rx1xVFOYdMWWQyIEeNYajaN852iPZobTp__Q9P_gX8lNyEOJdjhR_jh6Qzv1y4ZxBLzvXz2j38BmBEbVU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+biological+entities+using+the+longest+approximately+common+prefix+method&rft.jtitle=BMC+bioinformatics&rft.au=Rudniy%2C+Alex&rft.au=Song%2C+Min&rft.au=Geller%2C+James&rft.date=2014-06-14&rft.eissn=1471-2105&rft.volume=15&rft.spage=187&rft_id=info:doi/10.1186%2F1471-2105-15-187&rft_id=info%3Apmid%2F24928653&rft.externalDocID=24928653 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |