Generic Path Algorithm for Regularized Statistical Estimation

Regularization is widely used in statistics and machine learning to prevent overfitting and gear solution toward prior information. In general, a regularized estimation problem minimizes the sum of a loss function and a penalty term. The penalty term is usually weighted by a tuning parameter and enc...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 109; no. 506; pp. 686 - 699
Main Authors Zhou, Hua, Wu, Yichao
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.06.2014
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1537-274X
0162-1459
1537-274X
DOI10.1080/01621459.2013.864166

Cover

More Information
Summary:Regularization is widely used in statistics and machine learning to prevent overfitting and gear solution toward prior information. In general, a regularized estimation problem minimizes the sum of a loss function and a penalty term. The penalty term is usually weighted by a tuning parameter and encourages certain constraints on the parameters to be estimated. Particular choices of constraints lead to the popular lasso, fused-lasso, and other generalized ℓ ₁ penalized regression methods. In this article we follow a recent idea by Wu and propose an exact path solver based on ordinary differential equations (EPSODE) that works for any convex loss function and can deal with generalized ℓ ₁ penalties as well as more complicated regularization such as inequality constraints encountered in shape-restricted regressions and nonparametric density estimation. Nonasymptotic error bounds for the equality regularized estimates are derived. In practice, the EPSODE can be coupled with AIC, BIC, C ₚ or cross-validation to select an optimal tuning parameter, or provide a convenient model space for performing model averaging or aggregation. Our applications to generalized ℓ ₁ regularized generalized linear models, shape-restricted regressions, Gaussian graphical models, and nonparametric density estimation showcase the potential of the EPSODE algorithm. Supplementary materials for this article are available online.
Bibliography:http://dx.doi.org/10.1080/01621459.2013.864166
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1537-274X
0162-1459
1537-274X
DOI:10.1080/01621459.2013.864166