Bayes Variable Selection in Semiparametric Linear Models

There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture fo...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 109; no. 505; pp. 437 - 447
Main Authors Kundu, Suprateek, Dunson, David B.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.03.2014
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1537-274X
0162-1459
1537-274X
DOI10.1080/01621459.2014.881153

Cover

Abstract There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric g-prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes' factor and variable selection consistency is shown to result under a class of proper priors on g even when the number of candidate predictors p is allowed to increase much faster than sample size n, while making sparsity assumptions on the true model size.
AbstractList There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric g-prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes' factor and variable selection consistency is shown to result under a class of proper priors on g even when the number of candidate predictors p is allowed to increase much faster than sample size n, while making sparsity assumptions on the true model size.
There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of -priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric -prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes factor and variable selection consistency is shown to result under a class of proper priors on even when the number of candidate predictors is allowed to increase much faster than sample size , while making sparsity assumptions on the true model size.
There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric g-prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes factor and variable selection consistency is shown to result under a class of proper priors on g even when the number of candidate predictors p is allowed to increase much faster than sample size n, while making sparsity assumptions on the true model size.There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric g-prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes factor and variable selection consistency is shown to result under a class of proper priors on g even when the number of candidate predictors p is allowed to increase much faster than sample size n, while making sparsity assumptions on the true model size.
Author Dunson, David B.
Kundu, Suprateek
AuthorAffiliation 1 Postdoctoral Research Associate in the Dept. of Statistics, Texas A&M University, College Station, TX 77843, USA
2 Arts & Sciences Distinguished Professor in Dept. Statistical Science, Duke University, Durham, NC 27708, USA
AuthorAffiliation_xml – name: 1 Postdoctoral Research Associate in the Dept. of Statistics, Texas A&M University, College Station, TX 77843, USA
– name: 2 Arts & Sciences Distinguished Professor in Dept. Statistical Science, Duke University, Durham, NC 27708, USA
Author_xml – sequence: 1
  givenname: Suprateek
  surname: Kundu
  fullname: Kundu, Suprateek
– sequence: 2
  givenname: David B.
  surname: Dunson
  fullname: Dunson, David B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25071298$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAQxy1URB_wDXhE4sJlF9txHKcHEFS8pEUcShE3a5KMi1eOvdgJ1X57vEpLSy-tD35o_v_x-Dc-JHs-eCTkKaNLRhV9TZnkTFTNklMmlkoxVpUPyEGe6wWvxc-9G_t9cpjSmuZRK_WI7POK1ow36oCo97DFVPyAaKF1WJyiw260wRfW58NgNxBhwDHarlhZjxCLr6FHlx6ThwZcwieX6xE5-_jh-8nnxerbpy8n71aLTlIxLjpTKkU5qzhXyBgDWhkhTcNagSg47xAqiVxQVXKkrO9bwRW0TasaYxppyiNSzXknv4HtBTinN9EOELeaUb0joa9I6B0JPZPIvjezbzO1A_Yd-jHCtTeA1f9HvP2lz8MfLXKVnDY5wavLBDH8njCNerCpQ-fAY5iSZorL_ETO5T2ktKQqK0WWvrwlXYcp-kxQM5lB0apuaFY9v1n8v6qv-pYFYhZ0MaQU0dwXyvEtW2dH2LU7I7DuLvOz2bxOY4jXNQkuaiZ3FN7OcetNiANchOh6PcLWhWgi-M4mXd5xw4s5g4Gg4Txmw9lpFsj8cVUlqSz_An_H4EA
CODEN JSTNAL
CitedBy_id crossref_primary_10_1214_17_BA1086
crossref_primary_10_1080_00949655_2016_1264399
crossref_primary_10_1007_s11222_014_9500_2
crossref_primary_10_1111_rssc_12549
crossref_primary_10_1093_imaiai_iay022
crossref_primary_10_1111_biom_13743
crossref_primary_10_5351_KJAS_2014_27_6_867
crossref_primary_10_1214_20_BA1214
crossref_primary_10_1080_01621459_2017_1371025
crossref_primary_10_1111_biom_13355
crossref_primary_10_3934_era_2022098
crossref_primary_10_1007_s10651_021_00499_z
crossref_primary_10_1080_0740817X_2014_982840
crossref_primary_10_1111_rssb_12095
crossref_primary_10_1080_00031305_2017_1397548
crossref_primary_10_1007_s10463_021_00810_6
crossref_primary_10_1214_16_EJS1184
crossref_primary_10_1007_s11222_024_10380_1
Cites_doi 10.2337/diacare.15.7.912
10.1214/aos/1176346412
10.1214/aos/1176350366
10.1093/biomet/ast028
10.1214/12-AOS1029
10.1198/016214507000001337
10.1111/j.1467-9868.2005.00503.x
10.1001/jama.286.10.1195
10.1038/nm1546
10.4310/SII.2013.v6.n2.a9
10.1016/j.spl.2009.08.024
10.1214/aos/1176342360
10.1111/j.2517-6161.1996.tb02080.x
10.1080/01621459.1992.10475289
10.1016/j.csda.2011.02.014
10.1214/aos/1176342871
10.1161/01.HYP.19.5.403
10.1214/009053607000000019
10.1214/09-BA403
10.1214/08-AOS606
10.1080/03610910601096262
ContentType Journal Article
Copyright 2014 American Statistical Association 2014
copyright © 2014 American Statistical Association
Copyright Taylor & Francis Ltd. Mar 2014
Copyright_xml – notice: 2014 American Statistical Association 2014
– notice: copyright © 2014 American Statistical Association
– notice: Copyright Taylor & Francis Ltd. Mar 2014
DBID FBQ
AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
ADTOC
UNPAY
DOI 10.1080/01621459.2014.881153
DatabaseName AGRIS
CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
AGRICOLA
PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 447
ExternalDocumentID oai:pubmedcentral.nih.gov:4111209
PMC4111209
3681323371
25071298
10_1080_01621459_2014_881153
24247166
881153
US201600085606
Genre Article
Journal Article
Feature
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES017240
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
07G
0BK
0R~
1OL
29L
2AX
30N
3R3
3V.
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAVI
AAAVZ
AABCJ
AAENE
AAFWJ
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABJVF
ABLIJ
ABLJU
ABPEM
ABPFR
ABPPZ
ABQHQ
ABRLO
ABTAI
ABUWG
ABXUL
ABXYU
ABYAD
ABYWD
ACAGQ
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADODI
ADULT
AEGYZ
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUMN
AEUPB
AEYOC
AFFNX
AFKRA
AFOLD
AFSUE
AFVYC
AFWLO
AFXHP
AFXKK
AGCQS
AGDLA
AGLEN
AGMYJ
AGROQ
AHDLD
AHMOU
AI.
AIHXQ
AIJEM
AIRXU
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMATQ
AMXXU
AQRUH
AQUVI
AVBZW
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BPLKW
BVXVI
C06
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWIFK
DWQXO
E.L
EBS
ECEWR
EFSUC
EJD
E~A
E~B
F20
F5P
FBQ
FEDTE
FJW
FRNLG
FUNRP
FVMVE
FVPDL
FYUFA
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IVXBP
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
K9-
KQ8
KYCEM
L6V
LJTGL
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
N95
NA5
NHB
NUSFT
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PQBIZ
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TAQ
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
U5U
UB9
UKHRP
UPT
UQL
UT5
UU3
V1K
VH1
VOH
WH7
WHG
WZA
XFK
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
ZUP
ZXP
~S~
AAGDL
AAHBH
AAHIA
AAWIL
ABAWQ
ABPAQ
ABPQH
ABUFD
ABXSQ
ACHJO
ADMHG
ADXHL
AFRVT
AGLNM
AHDZW
AIHAF
AIYEW
ALRMG
AMVHM
AQTUD
AWYRJ
H13
IPSME
TASJS
TBQAZ
TDBHL
TUROJ
ADYSH
ALIPV
AMPGV
AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
ACGEE
ACTCW
ADTOC
AFQQW
AMEWO
PHGZM
PHGZT
PJZUB
PPXIY
PQBZA
PQGLB
UNPAY
ID FETCH-LOGICAL-c604t-cf3880215228e111a05f46f91b4ee422cea56e240832e01ddb428ab9b89ff96f3
IEDL.DBID UNPAY
ISSN 1537-274X
0162-1459
IngestDate Sun Oct 26 04:01:55 EDT 2025
Tue Sep 30 16:55:44 EDT 2025
Sat Sep 27 23:34:01 EDT 2025
Fri Oct 03 00:02:15 EDT 2025
Sat Oct 25 06:52:05 EDT 2025
Mon Jul 21 05:21:02 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
Wed Oct 01 03:21:27 EDT 2025
Fri May 30 11:46:41 EDT 2025
Mon Oct 20 23:43:51 EDT 2025
Wed Dec 27 19:16:53 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 505
Keywords Stochastic search variable selection
small n
Model selection
Posterior consistency
Bayes factor
Asymptotic theory
Large p
Subset selection
g-prior
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c604t-cf3880215228e111a05f46f91b4ee422cea56e240832e01ddb428ab9b89ff96f3
Notes http://dx.doi.org/10.1080/01621459.2014.881153
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1080/01621459.2014.881153
PMID 25071298
PQID 1680205790
PQPubID 41715
PageCount 11
ParticipantIDs jstor_primary_24247166
proquest_miscellaneous_1803082264
crossref_citationtrail_10_1080_01621459_2014_881153
proquest_miscellaneous_1826604226
proquest_journals_1680205790
informaworld_taylorfrancis_310_1080_01621459_2014_881153
crossref_primary_10_1080_01621459_2014_881153
pubmed_primary_25071298
unpaywall_primary_10_1080_01621459_2014_881153
fao_agris_US201600085606
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4111209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group, LLC
– name: Taylor & Francis Ltd
References cit0010
Zellner A. (cit0026) 1980
George E.I. (cit0008) 1997; 7
Guo R. (cit0009) 2009
Schmidt M.I. (cit0019) 1992; 15
Yau C. (cit0022) 2011; 73
cit0017
cit0018
cit0016
cit0013
cit0014
cit0001
cit0023
Ferguson T.S. (cit0007) 1972; 1
cit0021
Armagan A. (cit0002) 2013; 100
Zellner A. (cit0025) 1986
Sethuraman J. (cit0028) 1994; 4
Brunham L.R. (cit0003) 2007; 13
Kyung M. (cit0012) 2009; 79
cit0006
cit0004
Koller M. (cit0011) 2011; 55
cit0005
cit0027
cit0024
Tibshirani R. (cit0020) 1996; 58
References_xml – volume: 15
  start-page: 912
  year: 1992
  ident: cit0019
  publication-title: Diabetes Care
  doi: 10.2337/diacare.15.7.912
– ident: cit0014
  doi: 10.1214/aos/1176346412
– ident: cit0023
  doi: 10.1214/aos/1176350366
– volume: 100
  start-page: 1011
  year: 2013
  ident: cit0002
  publication-title: Biometrika
  doi: 10.1093/biomet/ast028
– volume: 4
  start-page: 639
  year: 1994
  ident: cit0028
  publication-title: Statistica Sinica
– volume: 73
  start-page: 33
  year: 2011
  ident: cit0022
  publication-title: Journal of the Royal Statical Society, Series B
– ident: cit0005
  doi: 10.1214/12-AOS1029
– ident: cit0013
  doi: 10.1198/016214507000001337
– volume: 7
  start-page: 339
  year: 1997
  ident: cit0008
  publication-title: Statistica Sinica
– start-page: 233
  year: 1986
  ident: cit0025
  publication-title: Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti
– ident: cit0027
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: cit0016
  doi: 10.1001/jama.286.10.1195
– volume: 13
  start-page: 340
  year: 2007
  ident: cit0003
  publication-title: Nature Medicine
  doi: 10.1038/nm1546
– ident: cit0024
  doi: 10.4310/SII.2013.v6.n2.a9
– volume: 79
  start-page: 2343
  year: 2009
  ident: cit0012
  publication-title: Statistics and Probability Letters
  doi: 10.1016/j.spl.2009.08.024
– volume: 1
  start-page: 209
  year: 1972
  ident: cit0007
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176342360
– volume: 58
  start-page: 267
  year: 1996
  ident: cit0020
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: cit0018
  doi: 10.1080/01621459.1992.10475289
– volume: 55
  start-page: 2504
  year: 2011
  ident: cit0011
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2011.02.014
– ident: cit0001
  doi: 10.1214/aos/1176342871
– year: 2009
  ident: cit0009
  publication-title: the 2009 International Workshop on Objective Bayes Methodology
– ident: cit0006
  doi: 10.1161/01.HYP.19.5.403
– ident: cit0010
  doi: 10.1214/009053607000000019
– ident: cit0017
  doi: 10.1214/09-BA403
– ident: cit0004
  doi: 10.1214/08-AOS606
– ident: cit0021
  doi: 10.1080/03610910601096262
– start-page: 585
  volume-title: Bayesian Statistics: Proceedings of the First International Meeting
  year: 1980
  ident: cit0026
SSID ssj0000788
Score 2.2494144
Snippet There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 437
SubjectTerms algorithms
Asymptotic methods
Asymptotic properties
Asymptotic theory
Bayes' factor
Bayesian analysis
Candidates
Diabetes
Feature selection
g-prior
Large p, small n
Linear analysis
Linear models
Linear regression
Marginalization
Matrix
Mixtures
Model selection
Obesity
Parametric models
Posterior consistency
Regression analysis
Sample size
Simulation
Statistics
Stochastic models
Stochastic search variable selection
Subset selection
Theory and Methods
Type 2 diabetes mellitus
Title Bayes Variable Selection in Semiparametric Linear Models
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.881153
https://www.jstor.org/stable/24247166
https://www.ncbi.nlm.nih.gov/pubmed/25071298
https://www.proquest.com/docview/1680205790
https://www.proquest.com/docview/1803082264
https://www.proquest.com/docview/1826604226
https://pubmed.ncbi.nlm.nih.gov/PMC4111209
http://doi.org/10.1080/01621459.2014.881153
UnpaywallVersion submittedVersion
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AMVHM
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7R7oG9wPgxFtimIPHqKnES13kciGnaQ4U0isqTZSc2VOvSiaZC46_nLk6ydYMxHqNc3PTubH8X330H8C5LCvpOJZhMjWa4QyfMSJew0uBeK20elz7LdyJOpunpLJtd82xvHN8TBXYsiEqbKkriFI2K-CUZwJbIEHgPYWs6-XT01bN3c0Zynh11zDDWmnWFcn8ZZmMjGji9vEVW2iUo_gl63s2gfLyuLvXVT71Y3Niejp_6uu9Vw2pIWSnno3VtRsWvu5yPD_nnO_CkhanhkferZ_DIVs9hm5CpJ3Z-AfK9vrKr8AvG2lR9FZ41DXXQyuG8wouLOZGKX1C_riLEgBcnVEh91xarlzA9_vj5wwlr2zCwQkRpzQpHhDHU_5ZLi0ujjjKXCpfHJrU25bywOhOWqNISbqO4LA2GNNrkRubO5cIluzCslpXdg3AsSm7zSJRFrOlA1kSxdqWwJTdlEbk8gKSziSpajnJqlbFQcUdl2qpFkVqUV0sArH_q0nN0_EN-D82t9DdcRtX0jBPJHkFPjOUCkDd9QNXNZxPne5yo5P5Rdxt_6V-BCm8wGsUx9zsHUu0CsVKxQJVSIXAUwNv-Nk5tOq_RlV2uUUY2ZEIIWe-TQYRFPG74M6-8T16_AGF9nssAxhve2gsQtfjmnWr-vaEYT9HOPEJ7jHq_fpBqX__vA29gm658Vt8-DOsfa3uAMK82hzBIoslhO8l_A7YmPCo
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcmgvUB5tUwoEiauXJE68zhEqqgXKXtpF3Cw7sWHVbbZis6rKr2cmTtJugYLgGPmRZDwZf-PMfAPwMuMFnVMJJlOjGe7QnBnpOCsN7rXS5nHpo3zHYjRJ33_OumjCRRtWST6080QRja2mj5sOo7uQuFcIU4hgm_JM4hSXGlENX4O7GWJ9KmLAo_GVMR42pSdpBKMhXfbcb2ZZ2Z3WnJ7fYDDtohZ_hUd_DqvcWFbn-vJCz2bX9qzD-2C6t_WhKqeDZW0GxfcbRJD_JY4tuNci2vC1V8EHcMdWD2GTQKzngH4E8o2-tIvwE7rllKgVHje1d1AhwmmFF2dT4h8_o9JeRYi-MX57IZVomy0ew-Tw7cnBiLUVG1ghorRmhSNuGSqVm0iLVlRHmUuFy2OTWpsmSWF1JiyxqvHERnFZGvR-tMmNzJ3LhePbsF7NK7sL4VCUic0jURaxpn-3Joq1K4UtE1MWkcsD4N1KqaKlM6eqGjMVd6ynrVgUiUV5sQTA-lHnns7jD_13UQmU_oIWV02OE-LjI5SKbl8A8rpmqLo5YXG-HIrit8-63WhR_wiUo4OOK86536mVam3JQsUCRUo5w1EAL_pmtAL0a0dXdr7EPrLhHUJ0e1sfBGNE-Ya32fGaevUA5BYkuQxguKLDfQdiIV9tqaZfGzbyFNc5iXA9Br22_5Vo9_5dfs9hY3Ty8UgdvRt_eAKb1OLDAvdhvf62tE8RJ9bmWWMJfgClW1Kp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIcFeNr7GwgYEideUxEld53EDqvGhCmkU7c2yYxsqurRaU6Hx13MXJ1k7YCB4jPyR5PzL-S6--x3A835a0H8qHolMqwh36DTSwqWR0bjXCpsnxkf5jvjxOHt72j9dyeKnsEryoZ0niqh1NX3cc-PaiLgXaKUQvzalmSQZrjQaNekG3OR0KEZJHPHoUhcP6sqTNCKiIW3y3G9mWducNpyaXSEwbYMWf2WO_hxVeXtZztXFNzWdrmxZwx1Q7cv6SJWvvWWle8X3KzyQ_yONO7Dd2LPhoQfgXbhhy3uwRSasZ4C-D-JIXdhF-AmdckrTCk_qyjsIh3BS4sXZhNjHz6iwVxGiZ4xfXkgF2qaLBzAevv748jhq6jVEBY-zKiocMctQoVwmLOpQFfddxl2e6MzajLHCqj63xKmWMhsnxmj0fZTOtcidy7lLd2GznJV2D8IBN8zmMTdFoujkVseJcoZbw7QpYpcHkLYLJYuGzJxqakxl0nKeNmKRJBbpxRJA1I2aezKPP_TfQwxI9Rn1rRyfMGLjIxsVnb4AxCowZFX_X3G-GIpMr591twZR9wiUoYNuK8550KJKNppkIROOIqWM4TiAZ10z6gA62FGlnS2xj6hZh9C2va4PmmJE-Ia3eeiBevkA5BSwXAQwWINw14E4yNdbysmXmos8w3VmMa5HrwP7X4n20b_L7ync-vBqKN-_Gb3bhy1q8DGBB7BZnS_tYzQSK_2k1gM_AB86UU0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdY98Be-B4LDBQkXl3FTuI6jwMxTTxMSKOoPFn-hIounWiqafvruYuTbGUwxmOUi5vene3fxXe_I-RtmVv8TiWoLIymsEPn1MiQU2dgr5W-Yi5m-R6Lo2nxcVbOrni2N47vkQKbCaTSxooSVoBRAb_kW2RblAC8R2R7evzp4Gtk7-YU5SI76oRCrDXrC-X-MszGRrQV9PI3stI-QfFP0PNmBuX9dX2mL871YnFtezp8GOu-Vy2rIWal_BivGzO2lzc5H-_yzx-RBx1MTQ-iXz0m93z9hOwgMo3Ezk-JfKcv_Cr9ArE2Vl-lJ21DHbByOq_h4nSOpOKn2K_LphDwwoRKse_aYvWMTA8_fH5_RLs2DNSKrGioDUgYg_1vufSwNOqsDIUIFTOF9wXn1utSeKRKy7nPmHMGQhptKiOrECoR8l0yqpe13yPpRDjuq0w4yzQeyJqM6eCEd9w4m4UqIXlvE2U7jnJslbFQrKcy7dSiUC0qqiUhdHjqLHJ0_EN-D8yt9DdYRtX0hCPJHkJPiOUSIq_7gGrazyYh9jhR-e2j7rb-MrwCFt5ANApj7vcOpLoFYqWYAJViIXCWkDfDbZjaeF6ja79cg4xsyYQAst4mAwgLedzgZ55Hn7x6AcT6vJIJmWx46yCA1OKbd-r595ZivAA78wzsMR78-k6qffG_D7wkO3gVs_r2yaj5ufavAOY15nU3vX8BU5A7WA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayes+Variable+Selection+in+Semiparametric+Linear+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Kundu%2C+Suprateek&rft.au=Dunson%2C+David+B&rft.date=2014-03-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=109&rft.issue=505&rft.spage=437&rft_id=info:doi/10.1080%2F01621459.2014.881153&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3681323371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon