Bayes Variable Selection in Semiparametric Linear Models
There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture fo...
Saved in:
| Published in | Journal of the American Statistical Association Vol. 109; no. 505; pp. 437 - 447 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Taylor & Francis
01.03.2014
Taylor & Francis Group, LLC Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1537-274X 0162-1459 1537-274X |
| DOI | 10.1080/01621459.2014.881153 |
Cover
| Abstract | There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric g-prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes' factor and variable selection consistency is shown to result under a class of proper priors on g even when the number of candidate predictors p is allowed to increase much faster than sample size n, while making sparsity assumptions on the true model size. |
|---|---|
| AbstractList | There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric g-prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes' factor and variable selection consistency is shown to result under a class of proper priors on g even when the number of candidate predictors p is allowed to increase much faster than sample size n, while making sparsity assumptions on the true model size. There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of -priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric -prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes factor and variable selection consistency is shown to result under a class of proper priors on even when the number of candidate predictors is allowed to increase much faster than sample size , while making sparsity assumptions on the true model size. There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric g-prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes factor and variable selection consistency is shown to result under a class of proper priors on g even when the number of candidate predictors p is allowed to increase much faster than sample size n, while making sparsity assumptions on the true model size.There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for mixtures of g-priors to semiparametric linear regression models having unknown residual densities. Using a Dirichlet process location mixture for the residual density, we propose a semiparametric g-prior which incorporates an unknown matrix of cluster allocation indicators. For this class of priors, posterior computation can proceed via a straightforward stochastic search variable selection algorithm. In addition, Bayes factor and variable selection consistency is shown to result under a class of proper priors on g even when the number of candidate predictors p is allowed to increase much faster than sample size n, while making sparsity assumptions on the true model size. |
| Author | Dunson, David B. Kundu, Suprateek |
| AuthorAffiliation | 1 Postdoctoral Research Associate in the Dept. of Statistics, Texas A&M University, College Station, TX 77843, USA 2 Arts & Sciences Distinguished Professor in Dept. Statistical Science, Duke University, Durham, NC 27708, USA |
| AuthorAffiliation_xml | – name: 1 Postdoctoral Research Associate in the Dept. of Statistics, Texas A&M University, College Station, TX 77843, USA – name: 2 Arts & Sciences Distinguished Professor in Dept. Statistical Science, Duke University, Durham, NC 27708, USA |
| Author_xml | – sequence: 1 givenname: Suprateek surname: Kundu fullname: Kundu, Suprateek – sequence: 2 givenname: David B. surname: Dunson fullname: Dunson, David B. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25071298$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAQxy1URB_wDXhE4sJlF9txHKcHEFS8pEUcShE3a5KMi1eOvdgJ1X57vEpLSy-tD35o_v_x-Dc-JHs-eCTkKaNLRhV9TZnkTFTNklMmlkoxVpUPyEGe6wWvxc-9G_t9cpjSmuZRK_WI7POK1ow36oCo97DFVPyAaKF1WJyiw260wRfW58NgNxBhwDHarlhZjxCLr6FHlx6ThwZcwieX6xE5-_jh-8nnxerbpy8n71aLTlIxLjpTKkU5qzhXyBgDWhkhTcNagSg47xAqiVxQVXKkrO9bwRW0TasaYxppyiNSzXknv4HtBTinN9EOELeaUb0joa9I6B0JPZPIvjezbzO1A_Yd-jHCtTeA1f9HvP2lz8MfLXKVnDY5wavLBDH8njCNerCpQ-fAY5iSZorL_ETO5T2ktKQqK0WWvrwlXYcp-kxQM5lB0apuaFY9v1n8v6qv-pYFYhZ0MaQU0dwXyvEtW2dH2LU7I7DuLvOz2bxOY4jXNQkuaiZ3FN7OcetNiANchOh6PcLWhWgi-M4mXd5xw4s5g4Gg4Txmw9lpFsj8cVUlqSz_An_H4EA |
| CODEN | JSTNAL |
| CitedBy_id | crossref_primary_10_1214_17_BA1086 crossref_primary_10_1080_00949655_2016_1264399 crossref_primary_10_1007_s11222_014_9500_2 crossref_primary_10_1111_rssc_12549 crossref_primary_10_1093_imaiai_iay022 crossref_primary_10_1111_biom_13743 crossref_primary_10_5351_KJAS_2014_27_6_867 crossref_primary_10_1214_20_BA1214 crossref_primary_10_1080_01621459_2017_1371025 crossref_primary_10_1111_biom_13355 crossref_primary_10_3934_era_2022098 crossref_primary_10_1007_s10651_021_00499_z crossref_primary_10_1080_0740817X_2014_982840 crossref_primary_10_1111_rssb_12095 crossref_primary_10_1080_00031305_2017_1397548 crossref_primary_10_1007_s10463_021_00810_6 crossref_primary_10_1214_16_EJS1184 crossref_primary_10_1007_s11222_024_10380_1 |
| Cites_doi | 10.2337/diacare.15.7.912 10.1214/aos/1176346412 10.1214/aos/1176350366 10.1093/biomet/ast028 10.1214/12-AOS1029 10.1198/016214507000001337 10.1111/j.1467-9868.2005.00503.x 10.1001/jama.286.10.1195 10.1038/nm1546 10.4310/SII.2013.v6.n2.a9 10.1016/j.spl.2009.08.024 10.1214/aos/1176342360 10.1111/j.2517-6161.1996.tb02080.x 10.1080/01621459.1992.10475289 10.1016/j.csda.2011.02.014 10.1214/aos/1176342871 10.1161/01.HYP.19.5.403 10.1214/009053607000000019 10.1214/09-BA403 10.1214/08-AOS606 10.1080/03610910601096262 |
| ContentType | Journal Article |
| Copyright | 2014 American Statistical Association 2014 copyright © 2014 American Statistical Association Copyright Taylor & Francis Ltd. Mar 2014 |
| Copyright_xml | – notice: 2014 American Statistical Association 2014 – notice: copyright © 2014 American Statistical Association – notice: Copyright Taylor & Francis Ltd. Mar 2014 |
| DBID | FBQ AAYXX CITATION NPM 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM ADTOC UNPAY |
| DOI | 10.1080/01621459.2014.881153 |
| DatabaseName | AGRIS CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) AGRICOLA PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1537-274X |
| EndPage | 447 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4111209 PMC4111209 3681323371 25071298 10_1080_01621459_2014_881153 24247166 881153 US201600085606 |
| Genre | Article Journal Article Feature |
| GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES017240 |
| GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 07G 0BK 0R~ 1OL 29L 2AX 30N 3R3 3V. 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAVI AAAVZ AABCJ AAENE AAFWJ AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABJVF ABLIJ ABLJU ABPEM ABPFR ABPPZ ABQHQ ABRLO ABTAI ABUWG ABXUL ABXYU ABYAD ABYWD ACAGQ ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADBBV ADCVX ADGTB ADLSF ADODI ADULT AEGYZ AEISY AELPN AENEX AEOZL AEPSL AEUMN AEUPB AEYOC AFFNX AFKRA AFOLD AFSUE AFVYC AFWLO AFXHP AFXKK AGCQS AGDLA AGLEN AGMYJ AGROQ AHDLD AHMOU AI. AIHXQ AIJEM AIRXU AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMATQ AMXXU AQRUH AQUVI AVBZW AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BPLKW BVXVI C06 CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWIFK DWQXO E.L EBS ECEWR EFSUC EJD E~A E~B F20 F5P FBQ FEDTE FJW FRNLG FUNRP FVMVE FVPDL FYUFA GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IVXBP J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ K9- KQ8 KYCEM L6V LJTGL LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 N95 NA5 NHB NUSFT NY~ O9- OFU OK1 P-O P2P PADUT PQBIZ PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TAQ TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI U5U UB9 UKHRP UPT UQL UT5 UU3 V1K VH1 VOH WH7 WHG WZA XFK YQT YXB YYM YYP ZCG ZGI ZGOLN ZUP ZXP ~S~ AAGDL AAHBH AAHIA AAWIL ABAWQ ABPAQ ABPQH ABUFD ABXSQ ACHJO ADMHG ADXHL AFRVT AGLNM AHDZW AIHAF AIYEW ALRMG AMVHM AQTUD AWYRJ H13 IPSME TASJS TBQAZ TDBHL TUROJ ADYSH ALIPV AMPGV AAYXX CITATION NPM 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM ACGEE ACTCW ADTOC AFQQW AMEWO PHGZM PHGZT PJZUB PPXIY PQBZA PQGLB UNPAY |
| ID | FETCH-LOGICAL-c604t-cf3880215228e111a05f46f91b4ee422cea56e240832e01ddb428ab9b89ff96f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1537-274X 0162-1459 |
| IngestDate | Sun Oct 26 04:01:55 EDT 2025 Tue Sep 30 16:55:44 EDT 2025 Sat Sep 27 23:34:01 EDT 2025 Fri Oct 03 00:02:15 EDT 2025 Sat Oct 25 06:52:05 EDT 2025 Mon Jul 21 05:21:02 EDT 2025 Thu Apr 24 23:12:23 EDT 2025 Wed Oct 01 03:21:27 EDT 2025 Fri May 30 11:46:41 EDT 2025 Mon Oct 20 23:43:51 EDT 2025 Wed Dec 27 19:16:53 EST 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 505 |
| Keywords | Stochastic search variable selection small n Model selection Posterior consistency Bayes factor Asymptotic theory Large p Subset selection g-prior |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c604t-cf3880215228e111a05f46f91b4ee422cea56e240832e01ddb428ab9b89ff96f3 |
| Notes | http://dx.doi.org/10.1080/01621459.2014.881153 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1080/01621459.2014.881153 |
| PMID | 25071298 |
| PQID | 1680205790 |
| PQPubID | 41715 |
| PageCount | 11 |
| ParticipantIDs | jstor_primary_24247166 proquest_miscellaneous_1803082264 crossref_citationtrail_10_1080_01621459_2014_881153 proquest_miscellaneous_1826604226 proquest_journals_1680205790 informaworld_taylorfrancis_310_1080_01621459_2014_881153 crossref_primary_10_1080_01621459_2014_881153 pubmed_primary_25071298 unpaywall_primary_10_1080_01621459_2014_881153 fao_agris_US201600085606 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4111209 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-03-01 |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Alexandria |
| PublicationTitle | Journal of the American Statistical Association |
| PublicationTitleAlternate | J Am Stat Assoc |
| PublicationYear | 2014 |
| Publisher | Taylor & Francis Taylor & Francis Group, LLC Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group, LLC – name: Taylor & Francis Ltd |
| References | cit0010 Zellner A. (cit0026) 1980 George E.I. (cit0008) 1997; 7 Guo R. (cit0009) 2009 Schmidt M.I. (cit0019) 1992; 15 Yau C. (cit0022) 2011; 73 cit0017 cit0018 cit0016 cit0013 cit0014 cit0001 cit0023 Ferguson T.S. (cit0007) 1972; 1 cit0021 Armagan A. (cit0002) 2013; 100 Zellner A. (cit0025) 1986 Sethuraman J. (cit0028) 1994; 4 Brunham L.R. (cit0003) 2007; 13 Kyung M. (cit0012) 2009; 79 cit0006 cit0004 Koller M. (cit0011) 2011; 55 cit0005 cit0027 cit0024 Tibshirani R. (cit0020) 1996; 58 |
| References_xml | – volume: 15 start-page: 912 year: 1992 ident: cit0019 publication-title: Diabetes Care doi: 10.2337/diacare.15.7.912 – ident: cit0014 doi: 10.1214/aos/1176346412 – ident: cit0023 doi: 10.1214/aos/1176350366 – volume: 100 start-page: 1011 year: 2013 ident: cit0002 publication-title: Biometrika doi: 10.1093/biomet/ast028 – volume: 4 start-page: 639 year: 1994 ident: cit0028 publication-title: Statistica Sinica – volume: 73 start-page: 33 year: 2011 ident: cit0022 publication-title: Journal of the Royal Statical Society, Series B – ident: cit0005 doi: 10.1214/12-AOS1029 – ident: cit0013 doi: 10.1198/016214507000001337 – volume: 7 start-page: 339 year: 1997 ident: cit0008 publication-title: Statistica Sinica – start-page: 233 year: 1986 ident: cit0025 publication-title: Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti – ident: cit0027 doi: 10.1111/j.1467-9868.2005.00503.x – ident: cit0016 doi: 10.1001/jama.286.10.1195 – volume: 13 start-page: 340 year: 2007 ident: cit0003 publication-title: Nature Medicine doi: 10.1038/nm1546 – ident: cit0024 doi: 10.4310/SII.2013.v6.n2.a9 – volume: 79 start-page: 2343 year: 2009 ident: cit0012 publication-title: Statistics and Probability Letters doi: 10.1016/j.spl.2009.08.024 – volume: 1 start-page: 209 year: 1972 ident: cit0007 publication-title: The Annals of Statistics doi: 10.1214/aos/1176342360 – volume: 58 start-page: 267 year: 1996 ident: cit0020 publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: cit0018 doi: 10.1080/01621459.1992.10475289 – volume: 55 start-page: 2504 year: 2011 ident: cit0011 publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2011.02.014 – ident: cit0001 doi: 10.1214/aos/1176342871 – year: 2009 ident: cit0009 publication-title: the 2009 International Workshop on Objective Bayes Methodology – ident: cit0006 doi: 10.1161/01.HYP.19.5.403 – ident: cit0010 doi: 10.1214/009053607000000019 – ident: cit0017 doi: 10.1214/09-BA403 – ident: cit0004 doi: 10.1214/08-AOS606 – ident: cit0021 doi: 10.1080/03610910601096262 – start-page: 585 volume-title: Bayesian Statistics: Proceedings of the First International Meeting year: 1980 ident: cit0026 |
| SSID | ssj0000788 |
| Score | 2.2494144 |
| Snippet | There is a rich literature on Bayesian variable selection for parametric models. Our focus is on generalizing methods and asymptotic theory established for... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref jstor informaworld fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 437 |
| SubjectTerms | algorithms Asymptotic methods Asymptotic properties Asymptotic theory Bayes' factor Bayesian analysis Candidates Diabetes Feature selection g-prior Large p, small n Linear analysis Linear models Linear regression Marginalization Matrix Mixtures Model selection Obesity Parametric models Posterior consistency Regression analysis Sample size Simulation Statistics Stochastic models Stochastic search variable selection Subset selection Theory and Methods Type 2 diabetes mellitus |
| Title | Bayes Variable Selection in Semiparametric Linear Models |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.881153 https://www.jstor.org/stable/24247166 https://www.ncbi.nlm.nih.gov/pubmed/25071298 https://www.proquest.com/docview/1680205790 https://www.proquest.com/docview/1803082264 https://www.proquest.com/docview/1826604226 https://pubmed.ncbi.nlm.nih.gov/PMC4111209 http://doi.org/10.1080/01621459.2014.881153 |
| UnpaywallVersion | submittedVersion |
| Volume | 109 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1537-274X dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AMVHM dateStart: 20121201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-274X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000788 issn: 0162-1459 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7R7oG9wPgxFtimIPHqKnES13kciGnaQ4U0isqTZSc2VOvSiaZC46_nLk6ydYMxHqNc3PTubH8X330H8C5LCvpOJZhMjWa4QyfMSJew0uBeK20elz7LdyJOpunpLJtd82xvHN8TBXYsiEqbKkriFI2K-CUZwJbIEHgPYWs6-XT01bN3c0Zynh11zDDWmnWFcn8ZZmMjGji9vEVW2iUo_gl63s2gfLyuLvXVT71Y3Niejp_6uu9Vw2pIWSnno3VtRsWvu5yPD_nnO_CkhanhkferZ_DIVs9hm5CpJ3Z-AfK9vrKr8AvG2lR9FZ41DXXQyuG8wouLOZGKX1C_riLEgBcnVEh91xarlzA9_vj5wwlr2zCwQkRpzQpHhDHU_5ZLi0ujjjKXCpfHJrU25bywOhOWqNISbqO4LA2GNNrkRubO5cIluzCslpXdg3AsSm7zSJRFrOlA1kSxdqWwJTdlEbk8gKSziSpajnJqlbFQcUdl2qpFkVqUV0sArH_q0nN0_EN-D82t9DdcRtX0jBPJHkFPjOUCkDd9QNXNZxPne5yo5P5Rdxt_6V-BCm8wGsUx9zsHUu0CsVKxQJVSIXAUwNv-Nk5tOq_RlV2uUUY2ZEIIWe-TQYRFPG74M6-8T16_AGF9nssAxhve2gsQtfjmnWr-vaEYT9HOPEJ7jHq_fpBqX__vA29gm658Vt8-DOsfa3uAMK82hzBIoslhO8l_A7YmPCo |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcmgvUB5tUwoEiauXJE68zhEqqgXKXtpF3Cw7sWHVbbZis6rKr2cmTtJugYLgGPmRZDwZf-PMfAPwMuMFnVMJJlOjGe7QnBnpOCsN7rXS5nHpo3zHYjRJ33_OumjCRRtWST6080QRja2mj5sOo7uQuFcIU4hgm_JM4hSXGlENX4O7GWJ9KmLAo_GVMR42pSdpBKMhXfbcb2ZZ2Z3WnJ7fYDDtohZ_hUd_DqvcWFbn-vJCz2bX9qzD-2C6t_WhKqeDZW0GxfcbRJD_JY4tuNci2vC1V8EHcMdWD2GTQKzngH4E8o2-tIvwE7rllKgVHje1d1AhwmmFF2dT4h8_o9JeRYi-MX57IZVomy0ew-Tw7cnBiLUVG1ghorRmhSNuGSqVm0iLVlRHmUuFy2OTWpsmSWF1JiyxqvHERnFZGvR-tMmNzJ3LhePbsF7NK7sL4VCUic0jURaxpn-3Joq1K4UtE1MWkcsD4N1KqaKlM6eqGjMVd6ynrVgUiUV5sQTA-lHnns7jD_13UQmU_oIWV02OE-LjI5SKbl8A8rpmqLo5YXG-HIrit8-63WhR_wiUo4OOK86536mVam3JQsUCRUo5w1EAL_pmtAL0a0dXdr7EPrLhHUJ0e1sfBGNE-Ya32fGaevUA5BYkuQxguKLDfQdiIV9tqaZfGzbyFNc5iXA9Br22_5Vo9_5dfs9hY3Ty8UgdvRt_eAKb1OLDAvdhvf62tE8RJ9bmWWMJfgClW1Kp |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIcFeNr7GwgYEideUxEld53EDqvGhCmkU7c2yYxsqurRaU6Hx13MXJ1k7YCB4jPyR5PzL-S6--x3A835a0H8qHolMqwh36DTSwqWR0bjXCpsnxkf5jvjxOHt72j9dyeKnsEryoZ0niqh1NX3cc-PaiLgXaKUQvzalmSQZrjQaNekG3OR0KEZJHPHoUhcP6sqTNCKiIW3y3G9mWducNpyaXSEwbYMWf2WO_hxVeXtZztXFNzWdrmxZwx1Q7cv6SJWvvWWle8X3KzyQ_yONO7Dd2LPhoQfgXbhhy3uwRSasZ4C-D-JIXdhF-AmdckrTCk_qyjsIh3BS4sXZhNjHz6iwVxGiZ4xfXkgF2qaLBzAevv748jhq6jVEBY-zKiocMctQoVwmLOpQFfddxl2e6MzajLHCqj63xKmWMhsnxmj0fZTOtcidy7lLd2GznJV2D8IBN8zmMTdFoujkVseJcoZbw7QpYpcHkLYLJYuGzJxqakxl0nKeNmKRJBbpxRJA1I2aezKPP_TfQwxI9Rn1rRyfMGLjIxsVnb4AxCowZFX_X3G-GIpMr591twZR9wiUoYNuK8550KJKNppkIROOIqWM4TiAZ10z6gA62FGlnS2xj6hZh9C2va4PmmJE-Ia3eeiBevkA5BSwXAQwWINw14E4yNdbysmXmos8w3VmMa5HrwP7X4n20b_L7ync-vBqKN-_Gb3bhy1q8DGBB7BZnS_tYzQSK_2k1gM_AB86UU0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdY98Be-B4LDBQkXl3FTuI6jwMxTTxMSKOoPFn-hIounWiqafvruYuTbGUwxmOUi5vene3fxXe_I-RtmVv8TiWoLIymsEPn1MiQU2dgr5W-Yi5m-R6Lo2nxcVbOrni2N47vkQKbCaTSxooSVoBRAb_kW2RblAC8R2R7evzp4Gtk7-YU5SI76oRCrDXrC-X-MszGRrQV9PI3stI-QfFP0PNmBuX9dX2mL871YnFtezp8GOu-Vy2rIWal_BivGzO2lzc5H-_yzx-RBx1MTQ-iXz0m93z9hOwgMo3Ezk-JfKcv_Cr9ArE2Vl-lJ21DHbByOq_h4nSOpOKn2K_LphDwwoRKse_aYvWMTA8_fH5_RLs2DNSKrGioDUgYg_1vufSwNOqsDIUIFTOF9wXn1utSeKRKy7nPmHMGQhptKiOrECoR8l0yqpe13yPpRDjuq0w4yzQeyJqM6eCEd9w4m4UqIXlvE2U7jnJslbFQrKcy7dSiUC0qqiUhdHjqLHJ0_EN-D8yt9DdYRtX0hCPJHkJPiOUSIq_7gGrazyYh9jhR-e2j7rb-MrwCFt5ANApj7vcOpLoFYqWYAJViIXCWkDfDbZjaeF6ja79cg4xsyYQAst4mAwgLedzgZ55Hn7x6AcT6vJIJmWx46yCA1OKbd-r595ZivAA78wzsMR78-k6qffG_D7wkO3gVs_r2yaj5ufavAOY15nU3vX8BU5A7WA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayes+Variable+Selection+in+Semiparametric+Linear+Models&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Kundu%2C+Suprateek&rft.au=Dunson%2C+David+B&rft.date=2014-03-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=109&rft.issue=505&rft.spage=437&rft_id=info:doi/10.1080%2F01621459.2014.881153&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3681323371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon |