Implementation of 3D spatial indexing and compression in a large-scale molecular dynamics simulation database for rapid atomic contact detection
Background Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protei...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 12; no. 1; p. 334 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        10.08.2011
     BioMed Central Ltd BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/1471-2105-12-334 | 
Cover
| Abstract | Background
Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008.
Results
Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes.
Conclusions
The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008. | 
    
|---|---|
| AbstractList | Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008.
Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes.
The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008. Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes. The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008. Background Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Results Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes. Conclusions The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008. Abstract Background Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Results Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes. Conclusions The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008. Background Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008. Results Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes. Conclusions The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008. Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008.BACKGROUNDMolecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function of time. Taken in context with experimental data, atomic interactions from simulation provide insight into the mechanics of protein folding, dynamics, and function. The calculation of atomic interactions or contacts from an MD trajectory is computationally demanding and the work required grows exponentially with the size of the simulation system. We describe the implementation of a spatial indexing algorithm in our multi-terabyte MD simulation database that significantly reduces the run-time required for discovery of contacts. The approach is applied to the Dynameomics project data. Spatial indexing, also known as spatial hashing, is a method that divides the simulation space into regular sized bins and attributes an index to each bin. Since, the calculation of contacts is widely employed in the simulation field, we also use this as the basis for testing compression of data tables. We investigate the effects of compression of the trajectory coordinate tables with different options of data and index compression within MS SQL SERVER 2008.Our implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes.RESULTSOur implementation of spatial indexing speeds up the calculation of contacts over a 1 nanosecond (ns) simulation window by between 14% and 90% (i.e., 1.2 and 10.3 times faster). For a 'full' simulation trajectory (51 ns) spatial indexing reduces the calculation run-time between 31 and 81% (between 1.4 and 5.3 times faster). Compression resulted in reduced table sizes but resulted in no significant difference in the total execution time for neighbour discovery. The greatest compression (~36%) was achieved using page level compression on both the data and indexes.The spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008.CONCLUSIONSThe spatial indexing scheme significantly decreases the time taken to calculate atomic contacts and could be applied to other multidimensional neighbor discovery problems. The speed up enables on-the-fly calculation and visualization of contacts and rapid cross simulation analysis for knowledge discovery. Using page compression for the atomic coordinate tables and indexes saves ~36% of disk space without any significant decrease in calculation time and should be considered for other non-transactional databases in MS SQL SERVER 2008.  | 
    
| ArticleNumber | 334 | 
    
| Audience | Academic | 
    
| Author | Beck, David AC Daggett, Valerie Simms, Andrew M Toofanny, Rudesh D  | 
    
| AuthorAffiliation | 3 eScience Institute, University of Washington, Box, 355013, Seattle, Washington, USA 98195-5013 2 Biomedical and Health Informatics Program, University of Washington, Box, 355013, Seattle, Washington, USA 98195-5013 4 Department of Chemical Engineering, University of Washington, Box, 355013, Seattle, Washington, USA 98195-5013 1 Department of Bioengineering, University of Washington, Box, 355013, Seattle, Washington, USA 98195-5013  | 
    
| AuthorAffiliation_xml | – name: 3 eScience Institute, University of Washington, Box, 355013, Seattle, Washington, USA 98195-5013 – name: 4 Department of Chemical Engineering, University of Washington, Box, 355013, Seattle, Washington, USA 98195-5013 – name: 2 Biomedical and Health Informatics Program, University of Washington, Box, 355013, Seattle, Washington, USA 98195-5013 – name: 1 Department of Bioengineering, University of Washington, Box, 355013, Seattle, Washington, USA 98195-5013  | 
    
| Author_xml | – sequence: 1 givenname: Rudesh D surname: Toofanny fullname: Toofanny, Rudesh D organization: Department of Bioengineering, University of Washington – sequence: 2 givenname: Andrew M surname: Simms fullname: Simms, Andrew M organization: Biomedical and Health Informatics Program, University of Washington – sequence: 3 givenname: David AC surname: Beck fullname: Beck, David AC organization: Department of Bioengineering, University of Washington, eScience Institute, University of Washington, Department of Chemical Engineering, University of Washington – sequence: 4 givenname: Valerie surname: Daggett fullname: Daggett, Valerie email: daggett@uw.edu organization: Department of Bioengineering, University of Washington, Biomedical and Health Informatics Program, University of Washington  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21831299$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkktv1DAUhSNURB-wZ4UssUAsUvwaO9kgVeU1UiUkHmvrju0EV44d7ATaf8FPxpkpVQcBQlkkvvnOsX3PPa4OQgy2qh4TfEpII14QLklNCV7VhNaM8XvV0W3p4M73YXWc8yXGRDZ49aA6pKRhhLbtUfVjPYzeDjZMMLkYUOwQe4XyWFbgkQvGXrnQIwgG6TiMyea8YC4gQB5Sb-uswVs0RG_1XCrIXAcYnM4ou6EUtq4GJthAtqiLCSUYnUEwxUIV07KznpCxk9UL-7C634HP9tHN-6T6_Ob1p_N39cX7t-vzs4taC8ynGni7wcAaw01npBSdpJxhsWm0wZ3WTIhGghSNsIZR3knRctaCoI1oCTTA2Em13vmaCJdqTG6AdK0iOLUtxNQrSJPT3irKLS-bamy45mxF29VGs20zpcSUy-JFdl5zGOH6O3h_a0iwWpJSSxRqiUIRqkpSRfNypxnnzWCNLgkk8HsH2f8T3BfVx2-KEVEuI4rBsxuDFL_ONk9qcFlb7yHYOGfVNLJl7UrSQj7dkX1JSrnQxWKoF1qdUSHIqiVbv9M_UOUxtgRV5q5zpb4neL4nWKK0V1MPc85q_fHDPvvk7m1vr_lrEAsgdoBOMedkO6XdbiTLKZz_Vx_xb8L_aP1NXLmgobdJXcY5hTJtf9f8BHJVDlw | 
    
| CitedBy_id | crossref_primary_10_1021_acs_jpcb_7b00577 crossref_primary_10_1186_1758_2946_6_4 crossref_primary_10_1007_s11227_011_0692_3  | 
    
| Cites_doi | 10.1145/1141911.1141926 10.1146/annurev.biochem.75.101304.123901 10.1016/j.ymeth.2004.03.008 10.1007/978-1-4302-1903-3 10.1016/S0092-8674(02)00620-7 10.1002/jcc.540100709 10.1093/protein/gzn011 10.1038/8283 10.1110/ps.0306803 10.1093/protein/gzn012 10.1016/S0162-0134(00)00103-3 10.1093/bioinformatics/btq625 10.1016/j.str.2010.01.012 10.1073/pnas.0408930102  | 
    
| ContentType | Journal Article | 
    
| Copyright | Toofanny et al; licensee BioMed Central Ltd. 2011 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2011 BioMed Central Ltd. Copyright ©2011 Toofanny et al; licensee BioMed Central Ltd. 2011 Toofanny et al; licensee BioMed Central Ltd.  | 
    
| Copyright_xml | – notice: Toofanny et al; licensee BioMed Central Ltd. 2011 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2011 BioMed Central Ltd. – notice: Copyright ©2011 Toofanny et al; licensee BioMed Central Ltd. 2011 Toofanny et al; licensee BioMed Central Ltd.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/1471-2105-12-334 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | 334 | 
    
| ExternalDocumentID | oai_doaj_org_article_24e4604c0d4c435295bc300178770247 10.1186/1471-2105-12-334 PMC3166946 A266159146 21831299 10_1186_1471_2105_12_334  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GeographicLocations | United States | 
    
| GeographicLocations_xml | – name: United States | 
    
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM50789  | 
    
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM 123 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c604t-a49b0a38d4dfd776f724306b8cd0fcc36687a7686ed324f769439a628691a8a33 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Fri Oct 03 12:43:28 EDT 2025 Sun Oct 26 02:59:25 EDT 2025 Tue Sep 30 16:52:24 EDT 2025 Thu Oct 02 10:32:54 EDT 2025 Mon Oct 20 22:05:27 EDT 2025 Mon Oct 20 16:02:33 EDT 2025 Thu Oct 16 14:05:40 EDT 2025 Mon Jul 21 05:43:54 EDT 2025 Wed Oct 01 04:15:19 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Sat Sep 06 07:27:16 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Molecular Dynamic Simulation Average Execution Time Total Execution Time Protein Data Bank Execution Time  | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c604t-a49b0a38d4dfd776f724306b8cd0fcc36687a7686ed324f769439a628691a8a33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://doaj.org/article/24e4604c0d4c435295bc300178770247 | 
    
| PMID | 21831299 | 
    
| PQID | 887939572 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_24e4604c0d4c435295bc300178770247 unpaywall_primary_10_1186_1471_2105_12_334 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3166946 proquest_miscellaneous_887939572 gale_infotracmisc_A266159146 gale_infotracacademiconefile_A266159146 gale_incontextgauss_ISR_A266159146 pubmed_primary_21831299 crossref_citationtrail_10_1186_1471_2105_12_334 crossref_primary_10_1186_1471_2105_12_334 springer_journals_10_1186_1471_2105_12_334  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2011-08-10 | 
    
| PublicationDateYYYYMMDD | 2011-08-10 | 
    
| PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-10 day: 10  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2011 | 
    
| Publisher | BioMed Central BioMed Central Ltd BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC  | 
    
| References | DAC Beck (4751_CR14) 2004; 34 M Karplus (4751_CR1) 2005; 102 DAC Beck (4751_CR13) 2000 AR Fersht (4751_CR2) 2002; 108 MP Allen (4751_CR11) 1987 RW Hockney (4751_CR10) 1981 D Bromley (4751_CR16) 2010 DA Beck (4751_CR15) 2008; 21 PM Bowers (4751_CR17) 1999; 6 MM David (4751_CR20) 1999 H Shimizu (4751_CR18) 2000; 81 S Lefebvre (4751_CR9) 2006; 25 V Yip (4751_CR12) 1989; 10 MW van der Kamp (4751_CR4) 2010; 18 AM Simms (4751_CR21) 2011 F Chiti (4751_CR3) 2006; 75 RD Schaeffer (4751_CR5) 2011; 27 AM Simms (4751_CR7) 2008; 21 R Day (4751_CR6) 2003; 12 G Fritchey (4751_CR19) 2009 K Clarkson (4751_CR8) 2005 14500873 - Protein Sci. 2003 Oct;12(10):2150-60 11051564 - J Inorg Biochem. 2000 Aug 31;81(3):191-205 18411223 - Protein Eng Des Sel. 2008 Jun;21(6):369-77 18411224 - Protein Eng Des Sel. 2008 Jun;21(6):353-68 16756495 - Annu Rev Biochem. 2006;75:333-66 20399180 - Structure. 2010 Mar 14;18(4):423-35 15283920 - Methods. 2004 Sep;34(1):112-20 21068000 - Bioinformatics. 2011 Jan 1;27(1):46-54 15870208 - Proc Natl Acad Sci U S A. 2005 May 10;102(19):6679-85 23204646 - J Supercomput. 2012 Oct 1;62(1):150-173 10331877 - Nat Struct Biol. 1999 May;6(5):478-85 11909527 - Cell. 2002 Feb 22;108(4):573-82  | 
    
| References_xml | – volume: 25 start-page: 579 issue: 3 year: 2006 ident: 4751_CR9 publication-title: ACM Transactions on Graphics doi: 10.1145/1141911.1141926 – volume-title: J of Supercomp year: 2011 ident: 4751_CR21 – volume: 75 start-page: 333 year: 2006 ident: 4751_CR3 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.75.101304.123901 – volume: 34 start-page: 112 issue: 1 year: 2004 ident: 4751_CR14 publication-title: Methods in Enzymology doi: 10.1016/j.ymeth.2004.03.008 – volume-title: SQL Server 2008 Query Performance Tuning Distilled year: 2009 ident: 4751_CR19 doi: 10.1007/978-1-4302-1903-3 – volume-title: Computer Simulation Using Particles year: 1981 ident: 4751_CR10 – volume: 108 start-page: 573 issue: 4 year: 2002 ident: 4751_CR2 publication-title: Cell doi: 10.1016/S0092-8674(02)00620-7 – volume: 10 start-page: 921 issue: 7 year: 1989 ident: 4751_CR12 publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.540100709 – volume-title: Computer Simulation of Liquids year: 1987 ident: 4751_CR11 – volume-title: Microsoft Research eScience Workshop year: 2010 ident: 4751_CR16 – volume-title: in lucem Molecular Mechanics (il mm) year: 2000 ident: 4751_CR13 – volume: 21 start-page: 353 issue: 6 year: 2008 ident: 4751_CR15 publication-title: Protein Engineering Design & Selection doi: 10.1093/protein/gzn011 – volume-title: Advanced ANSI SQL data modeling and structure processing year: 1999 ident: 4751_CR20 – volume: 6 start-page: 478 issue: 5 year: 1999 ident: 4751_CR17 publication-title: Nat Struct Biol doi: 10.1038/8283 – volume: 12 start-page: 2150 issue: 10 year: 2003 ident: 4751_CR6 publication-title: Protein Science doi: 10.1110/ps.0306803 – volume: 21 start-page: 369 issue: 6 year: 2008 ident: 4751_CR7 publication-title: Protein Engineering Design & Selection doi: 10.1093/protein/gzn012 – volume: 81 start-page: 191 issue: 3 year: 2000 ident: 4751_CR18 publication-title: J Inorg Biochem doi: 10.1016/S0162-0134(00)00103-3 – volume: 27 start-page: 46 issue: 1 year: 2011 ident: 4751_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq625 – volume-title: Nearest-Neighbor Methods for Learning and Visions: Theory and Practice year: 2005 ident: 4751_CR8 – volume: 18 start-page: 423 issue: 4 year: 2010 ident: 4751_CR4 publication-title: Structure doi: 10.1016/j.str.2010.01.012 – volume: 102 start-page: 6679 issue: 19 year: 2005 ident: 4751_CR1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0408930102 – reference: 18411223 - Protein Eng Des Sel. 2008 Jun;21(6):369-77 – reference: 14500873 - Protein Sci. 2003 Oct;12(10):2150-60 – reference: 11051564 - J Inorg Biochem. 2000 Aug 31;81(3):191-205 – reference: 20399180 - Structure. 2010 Mar 14;18(4):423-35 – reference: 15283920 - Methods. 2004 Sep;34(1):112-20 – reference: 11909527 - Cell. 2002 Feb 22;108(4):573-82 – reference: 15870208 - Proc Natl Acad Sci U S A. 2005 May 10;102(19):6679-85 – reference: 16756495 - Annu Rev Biochem. 2006;75:333-66 – reference: 18411224 - Protein Eng Des Sel. 2008 Jun;21(6):353-68 – reference: 10331877 - Nat Struct Biol. 1999 May;6(5):478-85 – reference: 23204646 - J Supercomput. 2012 Oct 1;62(1):150-173 – reference: 21068000 - Bioinformatics. 2011 Jan 1;27(1):46-54  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.0203378 | 
    
| Snippet | Background
Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as... Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as a function... Background Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual atoms as... Abstract Background Molecular dynamics (MD) simulations offer the ability to observe the dynamics and interactions of both whole macromolecules and individual...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 334 | 
    
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Computational biology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data Compression Databases, Protein Life Sciences Methodology Methodology Article Microarrays Molecular dynamics Molecular Dynamics Simulation Protein-protein interactions Proteins - chemistry Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae Proteins - chemistry Structural analysis  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNoeSt_dNi2iFEoDZm1Jtuxj-ghpoT20DeQmZD3ShV3tEnsJ-Rf5yZ2RH6xbSC69WmO80ow0M6tvviHkrfA1-KHaJ8x4lgjHfFJqViWydpwzB1vMYTXyt-_F8Yn4epqf7rT6QkxYRw_cLdycCSeKVJjUCgOunVV5bXhsKi8l-JdYR56W1ZBM9fcHyNQf64pklkBSkw8XlGUxH59Fuj4uJg4p8vb_ezrvuKe_oZPj_ek9cmcbNvryQi-XOy7q6AG538eW9LCb00Nyy4VH5HbXbfLyMbmKTMCrvtgo0LWn_BNtEFINb0XaRPgE1cFSBJp3ANkAA1TTJQLGkwYU6uhq6KhLbdfOvqHNYtW3AaMIOUXXSCEapud6s7AU8nqQooiK16al1rUR_xWekJOjz78-Hid9Q4bEgAraRIuqTjUvrbDeSll4yQSkHHVpbOqN4UVRSg35S-EsxGleFhWEOxqLX6tMl5rzp2QvrIN7TqjmcLBqnvqKOaFTyDOFdZzxWrjcS13NyHzQijI9Wzk2zViqmLWUhUI9KtSjypgCPc7I-_GNTcfUcY3sB1T0KIcc2_EBWJ7qLU_dZHkz8gbNRCGLRkCYzpneNo368vOHOsSwJ6_AC83Iu17Ir-H3G91XPcAqIPHWRHJ_Ignb3EyG6WCNCocQGxfcetsocBMV3rayGXnWGec4L4x_IaCD1ZQTs51MfDoSFr8jyTjPClAffPZgMHDVn27NNct6MG6BG3Xw4n_o4CW5O_zJn6X7ZK8937pXECW29et4IPwBG7dcuw priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9aEeuD-N3TKkEEsbB0N8klu4-1WqqgD2qhbyGbDz24yx3dO6T_hX-yM9kPblUqvl4mu5fMJDOzM_MbQl6KUIMeqkPGbGCZ8CxkpWFVpmrPOfNwxDxWI3_8JE_PxIfz6Xn3vQNrYbbj90UpDwu4PDNwS6YJXI-L6-QGqCiZwrLyeIgXIDJ_H4T8y6yR0knY_H_ewFsq6Pf0yCFGepvc2sSVufxh5vMtNXRyl9zp7Ed61DL8Hrnm431ys-0oefmA_Exov4uuoCjSZaD8LW0wbRpmJWhEeAU10VFMJm-TYCMMUEPnmBSeNcA0Txd911zq2pb1DW1mi67VF8W0UlR_FCxeemFWM0fBdwcqipnvxq6p8-uU4xUfkrOTd1-PT7Ou6UJmZS7WmRFVnRteOuGCU0oGxQS4FXVpXR6s5VKWyoCPIr0DWywoWYFJY7DAtSpMaTh_RHbiMvo9Qg2Hy9PwPFTMC5ODLymc54zXwk-DMtWEHPZc0bZDJMfGGHOdPJNSauSjRj7qgmng44S8HmasWjSOK2jfIKMHOsTRTj-AeOnuWGomvIBl29wJC4Yjq6a15UmelALrRU3ICxQTjUgZEVNxvplN0-j3Xz7rIzRtphVomgl51RGFJfx_a7rKBtgFBNcaUe6PKOEo29Ew7aVR4xDmv0W_3DQaVEGFEVU2IY9b4RzWhTYuGG2wm2oktqOFj0fi7HsCEueFBPbBaw96AdfdDdZcsa0HwxH4Jw-e_M-Tn5Ld_oN9ke-TnfXFxj8Di29dP0-H_RcTbUwb priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFB7WLqI-eL9UVxlEEBfSpjPTXB7rZVkFl0VdWJ-GyVzWYpvUJkXqr_Ane04yKc0qK4KvnROaczLnMsx3vkPIM-EyyEOZC5h2LBCWuSBRLA3izHLOLLiYxW7k90fR4Yl4dzo-3SHHbS9MNtfZtPCkoUhUPNhuQ581XQ44RcEuhwvjGqdPouEIgmwAx5dxTcLHxSWyG42hOu-R3ZOj48nnusnIi7S3lX94rJOdahL_30P1Vq46j6PcXKZeI1dW-UKtv6vZbCtfHdwg31pNG5jK18Gqygb6xzkSyP9pipvkui9u6aTZjbfIjs1vk8vNuMv1HfKzpiKe-26nnBaO8te0REw3PFXzNoJaVOWGItK9QejmsEAVnSFiPShhR1k6b0f6UrPO1RzemZbTuZ9DRhHzirmZgkZ0qRZTQ1WFvdcUYflKV9TYqgag5XfJycGbT68OAz8RItBRKKpAiTQLFU-MMM7EceRiJuDMkyXahE5rHkVJrOAAFVkDhaKLoxTqLYXdt-lIJYrze6SXF7l9QKjiENkVD13KrFAhHHSFsZzxTNixi1XaJ8N2J0jt6dJxasdM1semJJJoZ4l2liMmwc598mLzxKKhCrlA9iVuro0cknzXPxTLM-ljhmTCClBbh0ZoqGpZOs40x7IiiWMoreI-eYpbUyKNR444oTO1Kkv59uMHOcG6a5xCGuyT517IFfD-Wvm2C7ACMn91JPc6khBndGeZth4gcQnBebktVqWEPJXidS_rk_uNQ2z0wgIcKkqwZtxxlY7i3ZV8-qVmOeejCD4f_O1-61TSh9fyArPub9zur9_g4b8IPyJX29uEUbhHetVyZR9DOVplT3yE-QWp3oPn priority: 102 providerName: Unpaywall  | 
    
| Title | Implementation of 3D spatial indexing and compression in a large-scale molecular dynamics simulation database for rapid atomic contact detection | 
    
| URI | https://link.springer.com/article/10.1186/1471-2105-12-334 https://www.ncbi.nlm.nih.gov/pubmed/21831299 https://www.proquest.com/docview/887939572 https://pubmed.ncbi.nlm.nih.gov/PMC3166946 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-12-334 https://doaj.org/article/24e4604c0d4c435295bc300178770247  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELfYJgQ8IP5TGJWFkBCTwlLbjZMHhLqyMiqtmjYqdU-W4zijUpuWphX0W_CRuXOSboFp8NJK8aWpfXe-u_jud4S8EWkMdihOPWZS5gnLUi_ULPJkbDlnFlTMYjXy8SA4Gor-qD26LI8uFzC_NrTDflLDxeT9z-_rj6DwH5zCh8F-CzZYD0KXtgPg42KL7ICdirCRw7G4PFNA9H5Xa1RSV4eW1_xCzUg5LP-_d-wrJuvPdMrNmeo9cmeVzfX6h55Mrpit3gNyv_Q3aacQkIfkls0ekdtFB8r1Y_LLoQNPywKkjM5Syj_RHNOs4S4HpQiPoDpLKCafF0mzGQxQTSeYRO7lwGRLp1WXXZoULe5zmo-nZWswimmoaC4peMh0oefjhEKsD1QUM-W1WdLELl1OWPaEDHuHX7tHXtmkwTOBL5aeFlHsax4mIkkTKYNUMgFhSByaxE-N4UEQSg0xTWAT8N1SGUTgAmksiI1aOtScPyXb2SyzzwnVHDZbzf00YlZoH2JPkVjOeCxsO5U6apD9iivKlAjm2EhjolwkEwYK-aiQj6rFFPCxQd5t7pgX6B030B4gozd0iLvtLswWF6pUY8WEFTBt4yfCgKPJonZsuJMtKcHbkQ3yGsVEIbJGhqk7F3qV5-rL2anqoCvUjsAyNcjbkiidwf83uqyEgFVAMK4a5W6NElTf1IZpJY0KhzBfLrOzVa7AdER4Assa5FkhnJt5oU8MTh6spqyJbW3i9ZFs_M0Bj_NWAOyDx-5VAq4qhb1hWfc2KvBPHrz475V5Se5Wb_db_i7ZXi5W9hW4h8u4SbbkSMJn2PvcJDudTv-sD98Hh4OTU7jaDbpN9-Kl6XYHGBkOTjrnvwGR0WWE | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKK1R6QLwKgQIWQkJUWnVjO-vdY3hUaWh7oK3Um-X1o0RKNlE2UdV_wU9mxvtQF1AR13icjXdmPDPx528IeS98DnEo9xEznkXCMR-lmmWRzB3nzIGLObyNfHKajC7E-HJwuUFYcxcmoN2bI8mwUwe3TpODPmyjERQog0Czx8U9soUQK3DGreFwfDZuzw6Qpb85kPzLvE4ACjz9f-7Gt8LR71DJ9rx0h2yvi4W-udbT6a2QdPiIPKxzSTqslP-YbLjiCblfdZe8eUp-BubfWX25qKBzT_kXWiKEGmYFmkR4BNWFpQgsrwCxBQxQTacIEI9KUKCjs6aDLrVV-_qSlpNZ3faLIsQUQyGF7Jcu9WJiKdTxIEURBa_Nilq3Cniv4hm5OPx6_nkU1Q0YIpPEYhVpkeWx5qkV1lspEy-ZgBIjT42NvTE8SVKpoV5JnIW8zMskg_RG42XXrK9Tzfku2SzmhXtBqOawkWoe-4w5oWOoK4V1nPFcuIGXOuuRg0YrytTs5NgkY6pClZImCvWoUI-qzxTosUc-tjMWFTPHHbKfUNGtHHJqhw_myytVu6hiwglYtomtMJBEsmyQGx7sSUrIZGSPvEMzUciaUSAs50qvy1IdnX1XQ0xzBhlEnR75UAv5Ofx-o-tbDvAWkGirI7nXkQS3Np1h2lijwiHEwhVuvi4VhIUMT1dZjzyvjLNdF-a7kMDB25Qds-0svDtSTH4EUnHeT0B98Nj9xsBVvZuVd7zW_dYF_qmDl__zzW_J9uj85FgdH51-e0UeNH_k9-M9srlart1ryARX-Zva9X8B-rFUdA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgCBgfEI_BCgMshISYFDW13Tj5ODqqjceEgEn7Zjl-jEqtWzWp0P4L_mTu8tICaIiv9TmpfXe-u9z5d4S8Ej4HO5T7iBnPIuGYj1LNskjmjnPmQMUc3kb-dJIcnYr3Z-Oz5oNb0Va7tynJ-k4DojSFcriyvlbxNBmO4EiNIFgZV5B7XFwnNwTYNuxgMEkmXRYB8frb1ORfZvVMUYXY_-e5fMkw_V402WVO75Dbm7DSFz_0fH7JOE3vkbuNV0kPajG4T6658IDcrPtMXjwkPysM4EVzzSjQpaf8kBZYTA2zKsBEeAXVwVIsMa9LYwMMUE3nWCoeFcBKRxdtL11q60b2BS1mi6YBGMViUzSKFPxgutarmaUQ0QMVxc3VpqTWlVXlV9ghp9N33yZHUdOKITJJLMpIiyyPNU-tsN5KmXjJBAQbeWps7I3hSZJKDZFL4ix4aF4mGTg6Gq-9ZiOdas4fka2wDG6XUM3hSNU89hlzQscQYQrrOOO5cGMvdTYgw5YryjQ45dguY66qeCVNFPJRIR_ViCng44C86WasaoyOK2jfIqM7OkTXrn5Yrs9Vo6yKCSdg2Sa2woA7ybJxbnglT1KCTyMH5CWKiUL8jIAFOud6UxTq-OsXdYAOzzgD-zMgrxsiv4T_b3Rz3wF2ASG3epR7PUpQcNMbpq00KhzCqrjglptCgYHIMM_KBuRxLZzdutDzBVcOdlP2xLa38P5ImH2v4MX5KAH2wWv3WwFXzblWXLGt-50K_JMHT_7nyS_Irc-HU_Xx-OTDU7LdftEfxXtkq1xv3DNwCcv8eaX3vwAgBldR | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9NAFB7WLqI-eL9UVxlEEBfSpjPTXB7rZVkFl0VdWJ-GyVzWYpvUJkXqr_Ane04yKc0qK4KvnROaczLnMsx3vkPIM-EyyEOZC5h2LBCWuSBRLA3izHLOLLiYxW7k90fR4Yl4dzo-3SHHbS9MNtfZtPCkoUhUPNhuQ581XQ44RcEuhwvjGqdPouEIgmwAx5dxTcLHxSWyG42hOu-R3ZOj48nnusnIi7S3lX94rJOdahL_30P1Vq46j6PcXKZeI1dW-UKtv6vZbCtfHdwg31pNG5jK18Gqygb6xzkSyP9pipvkui9u6aTZjbfIjs1vk8vNuMv1HfKzpiKe-26nnBaO8te0REw3PFXzNoJaVOWGItK9QejmsEAVnSFiPShhR1k6b0f6UrPO1RzemZbTuZ9DRhHzirmZgkZ0qRZTQ1WFvdcUYflKV9TYqgag5XfJycGbT68OAz8RItBRKKpAiTQLFU-MMM7EceRiJuDMkyXahE5rHkVJrOAAFVkDhaKLoxTqLYXdt-lIJYrze6SXF7l9QKjiENkVD13KrFAhHHSFsZzxTNixi1XaJ8N2J0jt6dJxasdM1semJJJoZ4l2liMmwc598mLzxKKhCrlA9iVuro0cknzXPxTLM-ljhmTCClBbh0ZoqGpZOs40x7IiiWMoreI-eYpbUyKNR444oTO1Kkv59uMHOcG6a5xCGuyT517IFfD-Wvm2C7ACMn91JPc6khBndGeZth4gcQnBebktVqWEPJXidS_rk_uNQ2z0wgIcKkqwZtxxlY7i3ZV8-qVmOeejCD4f_O1-61TSh9fyArPub9zur9_g4b8IPyJX29uEUbhHetVyZR9DOVplT3yE-QWp3oPn | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+3D+spatial+indexing+and+compression+in+a+large-scale+molecular+dynamics+simulation+database+for+rapid+atomic+contact+detection&rft.jtitle=BMC+bioinformatics&rft.au=Toofanny%2C+Rudesh+D&rft.au=Simms%2C+Andrew+M&rft.au=Beck%2C+David+AC&rft.au=Daggett%2C+Valerie&rft.date=2011-08-10&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=12&rft.spage=334&rft_id=info:doi/10.1186%2F1471-2105-12-334&rft.externalDocID=A266159146 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |