Texture feature ranking with relevance learning to classify interstitial lung disease patterns
The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images. After a stochastic gradient descent, the GMLVQ algorithm provides a discrim...
Saved in:
| Published in | Artificial intelligence in medicine Vol. 56; no. 2; pp. 91 - 97 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
01.10.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0933-3657 1873-2860 1873-2860 |
| DOI | 10.1016/j.artmed.2012.07.001 |
Cover
| Abstract | The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images.
After a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k-nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf).
For all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance (p<0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features (p<0.05).
While this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features. |
|---|---|
| AbstractList | The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images.OBJECTIVEThe generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images.After a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k-nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf).METHODOLOGYAfter a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k-nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf).For all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance (p<0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features (p<0.05).RESULTSFor all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance (p<0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features (p<0.05).While this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features.CONCLUSIONWhile this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features. The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images. After a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k-nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf). For all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance (p<0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features (p<0.05). While this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features. Abstract Objective The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images. Methodology After a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k -nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf). Results For all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance ( p < 0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features ( p < 0.05). Conclusion While this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features. |
| Author | Ray, Lawrence A. Nagarajan, Mahesh B. Wismüller, Axel Huber, Markus B. Biehl, Michael Bunte, Kerstin |
| AuthorAffiliation | b Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands a Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States c Research Laboratories, Carestream Health, Inc., New York, United States |
| AuthorAffiliation_xml | – name: a Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States – name: c Research Laboratories, Carestream Health, Inc., New York, United States – name: b Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands |
| Author_xml | – sequence: 1 givenname: Markus B. surname: Huber fullname: Huber, Markus B. email: markus.huber@rochester.edu, mbh@bme.rochester.edu organization: Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, NY, United States – sequence: 2 givenname: Kerstin surname: Bunte fullname: Bunte, Kerstin organization: Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands – sequence: 3 givenname: Mahesh B. surname: Nagarajan fullname: Nagarajan, Mahesh B. organization: Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, NY, United States – sequence: 4 givenname: Michael surname: Biehl fullname: Biehl, Michael organization: Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands – sequence: 5 givenname: Lawrence A. surname: Ray fullname: Ray, Lawrence A. organization: Research Laboratories, Carestream Health, Inc., NY, United States – sequence: 6 givenname: Axel surname: Wismüller fullname: Wismüller, Axel organization: Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, NY, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23010586$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVUl1rFDEUDVKx2-o_EJlHX2ZNJpnJjIhQil9Q8MH6arhN7rTZZpM1yWzdf2_GrZ8gpU8XcnLOSc65R-TAB4-EPGV0ySjrXqyWEPMazbKhrFlSuaSUPSAL1kteN31HD8iCDpzXvGvlITlKaUUplYJ1j8hhwymjbd8tyJdz_JaniNWI8GNG8NfWX1Y3Nl9VER1uwWusHEL083kOlXaQkh13lfUZY8o2W3CVmwpqbEJIWG0gF8inx-ThCC7hk9t5TD6_fXN--r4--_juw-nJWa07KnLdazEA56IdBAoD0PKR9qZvBj1cSGnGVnMD2EuJZqBGthQEQy46PjZ9axD5MWn3upPfwO4GnFObaNcQd4pRNeelVmqfl5rzUlSqklfhvd7zNtNFwTT6HOE3N4BVfyPeXqnLsFWCDuXlogg8vxWI4euEKau1TRqdA49hSoqxlknayG72evan1y-Tn2WUCy_3F3QMKUUclbYZsg2ztXV3_UT8Q75fAFja2VqMKmmLpXFjI-qsTLD3FdDOeqvBXeMO0ypM0ZfmFVOpcNSneSfnlWRNWceBySLw6v8Cd_t_B0-69Rw |
| CitedBy_id | crossref_primary_10_1016_j_acra_2017_07_002 crossref_primary_10_3389_fict_2016_00033 crossref_primary_10_1016_j_eswa_2017_05_073 crossref_primary_10_1021_acs_jpcb_0c05981 crossref_primary_10_1080_13682199_2018_1462916 crossref_primary_10_1016_j_media_2020_101860 crossref_primary_10_1088_0031_9155_61_16_5906 |
| Cites_doi | 10.1023/A:1010933404324 10.1109/TSMC.1973.4309314 10.1016/j.neucom.2009.11.017 10.1118/1.3566070 10.1118/1.1597431 10.1109/36.469481 10.1109/TPAMI.2005.159 10.1162/neco.2009.11-08-908 10.1164/ajrccm.160.2.9804094 10.1016/0925-2312(94)00071-9 10.1109/TMI.2005.862753 10.1016/j.acra.2006.04.017 10.1118/1.1418724 10.1007/s00330-008-1082-y 10.1007/s10278-008-9158-4 10.1016/S0893-6080(02)00079-5 10.1118/1.3003066 10.1007/s11063-004-1547-1 10.1118/1.2207131 10.1109/TNN.2010.2042729 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. Elsevier B.V. Copyright © 2012 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2012 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2012 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.artmed.2012.07.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Computer Science |
| EISSN | 1873-2860 |
| EndPage | 97 |
| ExternalDocumentID | rug:oai:pure.rug.nl:publications/8f6bad46-a573-441b-bb4d-536e1580f7a6 PMC4096044 23010586 10_1016_j_artmed_2012_07_001 S0933365712000917 1_s2_0_S0933365712000917 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01-DA-034977 – fundername: NIDA NIH HHS grantid: R01 DA034977 |
| GroupedDBID | --- --K --M .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 77K 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEA HMK HMO HVGLF HZ~ IHE J1W KOM LZ2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WH7 WUQ Z5R ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c604t-8c49a334594e4daa53f08d829c9b77df5c3dae877ed90d750a41e3463f285dee3 |
| IEDL.DBID | .~1 |
| ISSN | 0933-3657 1873-2860 |
| IngestDate | Sun Oct 26 03:43:36 EDT 2025 Tue Sep 30 16:36:46 EDT 2025 Sat Sep 27 18:40:01 EDT 2025 Thu Apr 03 07:08:55 EDT 2025 Wed Oct 01 00:45:52 EDT 2025 Thu Apr 24 23:01:04 EDT 2025 Fri Feb 23 02:25:16 EST 2024 Sun Feb 23 10:19:33 EST 2025 Tue Oct 14 19:30:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | High-resolution computed tomography of the chest Relevance learning Feature selection Texture analysis Supervised learning Interstitial lung disease patterns |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier B.V. All rights reserved. other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c604t-8c49a334594e4daa53f08d829c9b77df5c3dae877ed90d750a41e3463f285dee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://research.rug.nl/en/publications/8f6bad46-a573-441b-bb4d-536e1580f7a6 |
| PMID | 23010586 |
| PQID | 1151702761 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1016_j_artmed_2012_07_001 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4096044 proquest_miscellaneous_1151702761 pubmed_primary_23010586 crossref_citationtrail_10_1016_j_artmed_2012_07_001 crossref_primary_10_1016_j_artmed_2012_07_001 elsevier_sciencedirect_doi_10_1016_j_artmed_2012_07_001 elsevier_clinicalkeyesjournals_1_s2_0_S0933365712000917 elsevier_clinicalkey_doi_10_1016_j_artmed_2012_07_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-10-01 |
| PublicationDateYYYYMMDD | 2012-10-01 |
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Artificial intelligence in medicine |
| PublicationTitleAlternate | Artif Intell Med |
| PublicationYear | 2012 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | A. Jaiantilal, Random Forest (Regression, Classification and Clustering) implementation for MATLAB (and Standalone), 2010, software available at Haralick, Shanmugam, Dinstein (bib0095) 1973; 3 Schneider, Bunte, Hammer, Biehl (bib0130) 2010; 21 Pregenzer, Pfurtscheller, Flotzinger (bib0050) 1996; 11 Boehm, Fink, Attenberger, Becker, Behr, Reiser (bib0015) 2008; 18 Peng, Long, Ding (bib0110) 2005; 27 (assessed 01.02.12). Breiman (bib0135) 2001; 45 Schneider, Biehl, Hammer (bib0120) 2007 K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, M. Biehl, Discriminative Visualization by Limited Rank Matrix Learning, Tech. Rep. MLR-03-2008, Leipzig University, 2008 Xu, van Beek, Hwanjo, Guo, McLennan, Hoffman (bib0010) 2006; 13 Weinberger, Saul (bib0055) 2009; 10 Duda, Hart, Stork (bib0020) 2000 Anys, He (bib0100) 1995; 33 Tourassi, Frederick, Markey, Carey, Floyd (bib0105) 2001; 28 Kohonen (bib0035) 2001 Hammer, Villmann (bib0045) 2002; 15 Huber, Nagarajan, Leinsinger, Eibel, Ray, Wismüller (bib0030) 2011; 38 Hammer, Strickert, Villmann (bib0115) 2005; 21 Bunte, Hammer, Wismüller, Biehl (bib0065) 2010; 73 Sluimer, Schilham, Prokop, van Ginneken (bib0005) 2006; 25 Sato, Yamada (bib0040) 1996 Depeursinge, Iavindrasana, Hidki, Cohen, Geissbuhler, Platon (bib0090) 2010; 23 Uchiyama, Katsuragawa, Abe, Shiraishi, Li, Li (bib0085) 2003; 30 Korfiatis, Kalogeropoulou, Karahaliou, Kazantzi, Skiadopoulos, Costaridou (bib0080) 2008; 35 Bunte, Biehl, Petkov, Jonkman (bib0060) 2009 Uppaluri, Hoffman, Sonka, Hartley, Hunninghake, McLennen (bib0070) 1999; 160 Schneider, Biehl, Hammer (bib0125) 2009; 21 Sluimer, Prokop, Hartmann, van Ginneken (bib0075) 2006; 33 Huber (10.1016/j.artmed.2012.07.001_bib0030) 2011; 38 Kohonen (10.1016/j.artmed.2012.07.001_bib0035) 2001 Bunte (10.1016/j.artmed.2012.07.001_bib0060) 2009 10.1016/j.artmed.2012.07.001_bib0140 Uchiyama (10.1016/j.artmed.2012.07.001_bib0085) 2003; 30 Schneider (10.1016/j.artmed.2012.07.001_bib0120) 2007 Sluimer (10.1016/j.artmed.2012.07.001_bib0005) 2006; 25 Schneider (10.1016/j.artmed.2012.07.001_bib0130) 2010; 21 Xu (10.1016/j.artmed.2012.07.001_bib0010) 2006; 13 Duda (10.1016/j.artmed.2012.07.001_bib0020) 2000 Bunte (10.1016/j.artmed.2012.07.001_bib0065) 2010; 73 10.1016/j.artmed.2012.07.001_bib0025 Sluimer (10.1016/j.artmed.2012.07.001_bib0075) 2006; 33 Breiman (10.1016/j.artmed.2012.07.001_bib0135) 2001; 45 Hammer (10.1016/j.artmed.2012.07.001_bib0115) 2005; 21 Depeursinge (10.1016/j.artmed.2012.07.001_bib0090) 2010; 23 Tourassi (10.1016/j.artmed.2012.07.001_bib0105) 2001; 28 Pregenzer (10.1016/j.artmed.2012.07.001_bib0050) 1996; 11 Uppaluri (10.1016/j.artmed.2012.07.001_bib0070) 1999; 160 Anys (10.1016/j.artmed.2012.07.001_bib0100) 1995; 33 Korfiatis (10.1016/j.artmed.2012.07.001_bib0080) 2008; 35 Boehm (10.1016/j.artmed.2012.07.001_bib0015) 2008; 18 Schneider (10.1016/j.artmed.2012.07.001_bib0125) 2009; 21 Peng (10.1016/j.artmed.2012.07.001_bib0110) 2005; 27 Weinberger (10.1016/j.artmed.2012.07.001_bib0055) 2009; 10 Hammer (10.1016/j.artmed.2012.07.001_bib0045) 2002; 15 Haralick (10.1016/j.artmed.2012.07.001_bib0095) 1973; 3 Sato (10.1016/j.artmed.2012.07.001_bib0040) 1996 18618121 - Eur Radiol. 2008 Dec;18(12):2745-55 10430742 - Am J Respir Crit Care Med. 1999 Aug;160(2):648-54 14528966 - Med Phys. 2003 Sep;30(9):2440-54 16608056 - IEEE Trans Med Imaging. 2006 Apr;25(4):385-405 20236882 - IEEE Trans Neural Netw. 2010 May;21(5):831-40 19764875 - Neural Comput. 2009 Dec;21(12):3532-61 11797941 - Med Phys. 2001 Dec;28(12):2394-402 16898465 - Med Phys. 2006 Jul;33(7):2610-20 19175088 - Med Phys. 2008 Dec;35(12):5290-302 16843849 - Acad Radiol. 2006 Aug;13(8):969-78 21626936 - Med Phys. 2011 Apr;38(4):2035-44 18982390 - J Digit Imaging. 2010 Feb;23(1):18-30 12416694 - Neural Netw. 2002 Oct-Nov;15(8-9):1059-68 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 |
| References_xml | – reference: A. Jaiantilal, Random Forest (Regression, Classification and Clustering) implementation for MATLAB (and Standalone), 2010, software available at – volume: 21 start-page: 3532 year: 2009 end-page: 3561 ident: bib0125 article-title: Adaptive relevance matrices in learning vector quantization publication-title: Neural Computation – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib0110 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 37 year: 2007 end-page: 42 ident: bib0120 article-title: Relevance Matrices in LVQ publication-title: Proc. of European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium – volume: 15 start-page: 1059 year: 2002 end-page: 1068 ident: bib0045 article-title: Generalized relevance learning vector quantization publication-title: Neural Networks – year: 2001 ident: bib0035 article-title: Self-Organizing Maps – year: 2000 ident: bib0020 article-title: Pattern Classification – year: 2009 ident: bib0060 article-title: Adaptive metrics for content based image retrieval in dermatology publication-title: Proc. of the European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium – reference: (assessed 01.02.12). – volume: 35 start-page: 5290 year: 2008 end-page: 5302 ident: bib0080 article-title: Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT publication-title: Medical Physics – volume: 33 start-page: 1170 year: 1995 end-page: 1181 ident: bib0100 article-title: Evaluation of textural and multipolarization radar features for crop classification publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 23 start-page: 18 year: 2010 end-page: 30 ident: bib0090 article-title: Comparative performance analysis of state-of-the-art classification algorithms applied to lung tissue categorization publication-title: Journal of Digital Imaging – volume: 38 start-page: 2035 year: 2011 end-page: 2044 ident: bib0030 article-title: Performance of topological texture features to classify fibrotic interstitial lung disease patterns publication-title: Medical Physics – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0135 article-title: Random forests publication-title: Machine Learning – volume: 18 start-page: 2745 year: 2008 end-page: 2755 ident: bib0015 article-title: Automated classification of normal and pathologic pulmonary tissue by topological texture features extracted from multi-detector CT in 3D publication-title: European Radiology – volume: 73 start-page: 1074 year: 2010 end-page: 1092 ident: bib0065 article-title: Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data publication-title: Neurocomputing – volume: 33 start-page: 2610 year: 2006 end-page: 2620 ident: bib0075 article-title: Automated classification of hyperlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution CT of the lung publication-title: Medical Physics – volume: 11 start-page: 19 year: 1996 end-page: 29 ident: bib0050 article-title: Automated feature selection with a distinction sensitive learning vector quantizer publication-title: Neurocomputing – volume: 30 start-page: 2440 year: 2003 end-page: 2454 ident: bib0085 article-title: Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography publication-title: Medical Physics – volume: 160 start-page: 648 year: 1999 end-page: 654 ident: bib0070 article-title: Computer recognition of regional lung disease patterns publication-title: American Journal of Respiratory and Critical Care Medicine – reference: K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, M. Biehl, Discriminative Visualization by Limited Rank Matrix Learning, Tech. Rep. MLR-03-2008, Leipzig University, 2008, – volume: 21 start-page: 109 year: 2005 end-page: 120 ident: bib0115 article-title: On the generalization ability of GRLVQ networks publication-title: Neural Processing Letters – start-page: 423 year: 1996 end-page: 429 ident: bib0040 article-title: Generalized learning vector quantization publication-title: Advances in Neural Information Processing Systems, vol. 8 – volume: 28 start-page: 2394 year: 2001 end-page: 2402 ident: bib0105 article-title: Application of the mutual information criterion for feature selection in computer-aided diagnosis publication-title: Medical Physics – volume: 13 start-page: 969 year: 2006 end-page: 978 ident: bib0010 article-title: Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM) publication-title: Academic Radiology – volume: 10 start-page: 207 year: 2009 end-page: 244 ident: bib0055 article-title: Distance metric learning for large margin nearest neighbor classification publication-title: Journal of Machine Learning Research – volume: 3 start-page: 610 year: 1973 end-page: 621 ident: bib0095 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems Man and Cybernetics – volume: 25 start-page: 385 year: 2006 end-page: 405 ident: bib0005 article-title: Computer analysis of computed tomography scans of the lung: a survey publication-title: IEEE Transactions on Medical Imaging – volume: 21 start-page: 831 year: 2010 end-page: 840 ident: bib0130 article-title: Regularization in matrix relevance learning publication-title: IEEE Transactions on Neural Networks – volume: 10 start-page: 207 year: 2009 ident: 10.1016/j.artmed.2012.07.001_bib0055 article-title: Distance metric learning for large margin nearest neighbor classification publication-title: Journal of Machine Learning Research – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.artmed.2012.07.001_bib0135 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 3 start-page: 610 issue: 6 year: 1973 ident: 10.1016/j.artmed.2012.07.001_bib0095 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems Man and Cybernetics doi: 10.1109/TSMC.1973.4309314 – volume: 73 start-page: 1074 issue: 7–9 year: 2010 ident: 10.1016/j.artmed.2012.07.001_bib0065 article-title: Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.11.017 – volume: 38 start-page: 2035 issue: 4 year: 2011 ident: 10.1016/j.artmed.2012.07.001_bib0030 article-title: Performance of topological texture features to classify fibrotic interstitial lung disease patterns publication-title: Medical Physics doi: 10.1118/1.3566070 – volume: 30 start-page: 2440 issue: 9 year: 2003 ident: 10.1016/j.artmed.2012.07.001_bib0085 article-title: Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography publication-title: Medical Physics doi: 10.1118/1.1597431 – volume: 33 start-page: 1170 issue: 5 year: 1995 ident: 10.1016/j.artmed.2012.07.001_bib0100 article-title: Evaluation of textural and multipolarization radar features for crop classification publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.469481 – year: 2000 ident: 10.1016/j.artmed.2012.07.001_bib0020 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.artmed.2012.07.001_bib0110 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2005.159 – volume: 21 start-page: 3532 issue: 12 year: 2009 ident: 10.1016/j.artmed.2012.07.001_bib0125 article-title: Adaptive relevance matrices in learning vector quantization publication-title: Neural Computation doi: 10.1162/neco.2009.11-08-908 – volume: 160 start-page: 648 issue: 2 year: 1999 ident: 10.1016/j.artmed.2012.07.001_bib0070 article-title: Computer recognition of regional lung disease patterns publication-title: American Journal of Respiratory and Critical Care Medicine doi: 10.1164/ajrccm.160.2.9804094 – year: 2009 ident: 10.1016/j.artmed.2012.07.001_bib0060 article-title: Adaptive metrics for content based image retrieval in dermatology – start-page: 37 year: 2007 ident: 10.1016/j.artmed.2012.07.001_bib0120 article-title: Relevance Matrices in LVQ – volume: 11 start-page: 19 issue: 1 year: 1996 ident: 10.1016/j.artmed.2012.07.001_bib0050 article-title: Automated feature selection with a distinction sensitive learning vector quantizer publication-title: Neurocomputing doi: 10.1016/0925-2312(94)00071-9 – ident: 10.1016/j.artmed.2012.07.001_bib0025 – volume: 25 start-page: 385 issue: 4 year: 2006 ident: 10.1016/j.artmed.2012.07.001_bib0005 article-title: Computer analysis of computed tomography scans of the lung: a survey publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2005.862753 – volume: 13 start-page: 969 issue: 8 year: 2006 ident: 10.1016/j.artmed.2012.07.001_bib0010 article-title: Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM) publication-title: Academic Radiology doi: 10.1016/j.acra.2006.04.017 – volume: 28 start-page: 2394 issue: 12 year: 2001 ident: 10.1016/j.artmed.2012.07.001_bib0105 article-title: Application of the mutual information criterion for feature selection in computer-aided diagnosis publication-title: Medical Physics doi: 10.1118/1.1418724 – volume: 18 start-page: 2745 issue: 12 year: 2008 ident: 10.1016/j.artmed.2012.07.001_bib0015 article-title: Automated classification of normal and pathologic pulmonary tissue by topological texture features extracted from multi-detector CT in 3D publication-title: European Radiology doi: 10.1007/s00330-008-1082-y – volume: 23 start-page: 18 year: 2010 ident: 10.1016/j.artmed.2012.07.001_bib0090 article-title: Comparative performance analysis of state-of-the-art classification algorithms applied to lung tissue categorization publication-title: Journal of Digital Imaging doi: 10.1007/s10278-008-9158-4 – volume: 15 start-page: 1059 issue: 8-9 year: 2002 ident: 10.1016/j.artmed.2012.07.001_bib0045 article-title: Generalized relevance learning vector quantization publication-title: Neural Networks doi: 10.1016/S0893-6080(02)00079-5 – year: 2001 ident: 10.1016/j.artmed.2012.07.001_bib0035 – start-page: 423 year: 1996 ident: 10.1016/j.artmed.2012.07.001_bib0040 article-title: Generalized learning vector quantization – ident: 10.1016/j.artmed.2012.07.001_bib0140 – volume: 35 start-page: 5290 issue: 12 year: 2008 ident: 10.1016/j.artmed.2012.07.001_bib0080 article-title: Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT publication-title: Medical Physics doi: 10.1118/1.3003066 – volume: 21 start-page: 109 issue: 2 year: 2005 ident: 10.1016/j.artmed.2012.07.001_bib0115 article-title: On the generalization ability of GRLVQ networks publication-title: Neural Processing Letters doi: 10.1007/s11063-004-1547-1 – volume: 33 start-page: 2610 issue: 7 year: 2006 ident: 10.1016/j.artmed.2012.07.001_bib0075 article-title: Automated classification of hyperlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution CT of the lung publication-title: Medical Physics doi: 10.1118/1.2207131 – volume: 21 start-page: 831 issue: 5 year: 2010 ident: 10.1016/j.artmed.2012.07.001_bib0130 article-title: Regularization in matrix relevance learning publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2042729 – reference: 18618121 - Eur Radiol. 2008 Dec;18(12):2745-55 – reference: 21626936 - Med Phys. 2011 Apr;38(4):2035-44 – reference: 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 – reference: 20236882 - IEEE Trans Neural Netw. 2010 May;21(5):831-40 – reference: 19175088 - Med Phys. 2008 Dec;35(12):5290-302 – reference: 19764875 - Neural Comput. 2009 Dec;21(12):3532-61 – reference: 16843849 - Acad Radiol. 2006 Aug;13(8):969-78 – reference: 16608056 - IEEE Trans Med Imaging. 2006 Apr;25(4):385-405 – reference: 12416694 - Neural Netw. 2002 Oct-Nov;15(8-9):1059-68 – reference: 10430742 - Am J Respir Crit Care Med. 1999 Aug;160(2):648-54 – reference: 11797941 - Med Phys. 2001 Dec;28(12):2394-402 – reference: 18982390 - J Digit Imaging. 2010 Feb;23(1):18-30 – reference: 16898465 - Med Phys. 2006 Jul;33(7):2610-20 – reference: 14528966 - Med Phys. 2003 Sep;30(9):2440-54 |
| SSID | ssj0007416 |
| Score | 2.2285297 |
| Snippet | The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial... Abstract Objective The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 91 |
| SubjectTerms | Algorithms Cluster Analysis Feature selection High-resolution computed tomography of the chest Humans Internal Medicine Interstitial lung disease patterns Lung Diseases, Interstitial - classification Lung Diseases, Interstitial - diagnosis Other Relevance learning Supervised learning Support Vector Machine Texture analysis Tomography, X-Ray Computed - methods |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELagk2AvDAaM8ktG4tWtEzuO8zghpglpExKrNF6w7OSyDUJatYnQ-Os5J07VsUkbEo9VfbGSfLn7bN99R8h7riEuATKWCFyiSMgsc1Io5vLUQZSABfD7HUfH6nAmP50mp6E82tfCBImb88myPZvU1RTq6WJj_2qqS-VsIRWzSSoYxnLHnJMFTqXw0pqXqVX3yZZKkJmPyNbs-PP-105uTwgmVCf8GWm0jLXiQyVdl-6FLwrDj8_1ijs1z9Al5oZIdZ2JXk-ofNjWC3v5y1bVRrQ62CE_h_vsk1R-TNrGTfLff0lA_q8H8Zg8CrSW7vc4fELuQb1LdoaWETR4kF3y4Cic5T8l304wLrRLoCV04qLUt4_HQEr91jD1vVy67AQa-lqc0WZOc8_1L8pL6lUulj7NAT8fWqHDouGkiS46wdB69YzMDj6efDhkodsDyxWXDdO5zKwQMskkyMLaRJRcFzrO8sylaVEmuSgs6DSFIuMFEh0rIxBSiTLWSQEgnpNRPa_hBaFcW-WJYCSQfHDFs5zjBaUGJDQgMzcmYnizJg9S6L4jR2WGnLfvpseD8Xgw3J_RR2PC1laLXgrklvHJABozlLmiYzYYq26xS2-yg1XwLisTmRUONl88qj2oI19vhevuTctAoHpidIc53w2oNuhf_KGRrWHe4lxICVMepwrH7PUoX989Ll-RnmuF817B_3qA1y6_-k99cd5pmEu_dJZyTCbrL-VOD_Xlvxq8Itv-V59_-ZqMmmULb5BHNu5tcA9_ADgAcU4 priority: 102 providerName: Unpaywall |
| Title | Texture feature ranking with relevance learning to classify interstitial lung disease patterns |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0933365712000917 https://www.clinicalkey.es/playcontent/1-s2.0-S0933365712000917 https://dx.doi.org/10.1016/j.artmed.2012.07.001 https://www.ncbi.nlm.nih.gov/pubmed/23010586 https://www.proquest.com/docview/1151702761 https://pubmed.ncbi.nlm.nih.gov/PMC4096044 https://research.rug.nl/en/publications/8f6bad46-a573-441b-bb4d-536e1580f7a6 |
| UnpaywallVersion | submittedVersion |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2860 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007416 issn: 0933-3657 databaseCode: AKRWK dateStart: 19890101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CCm0vaZu-3EfYQq-KV9qXdDShwW2JKTSG9NJlJY1SFyMbPwi59Ld3Rlq5MQ4k9CQkzWql3dmZb7TzYOyjSCGpALJISzRRFGQ-ypU0UV7YHGINHoD-d5yNzHCsvlzoiz120sXCkFtlkP2tTG-kdbjSD6PZn08m_e9ki0ujbUzRJmh1UAS7slTF4PjPPzcPQhxNvj0pI6LuwucaHy98HuoccvBKmhSeoTTMLeppF37uelE-Wtdzf33lp9MbKur0KTsI2JIP2td_xvagPmRPuroNPCzjQ_bwLGyoP2c_z1E4rxfAK2gyfHKq4Y7ajNP_WU4FVRoXAR6KS1zy1YwXBLgn1TWnVBML8jVAHuZTlBo8bPfweZO1s16-YOPTT-cnwyiUXIgKI9QqSguVeSmVzhSo0nstK5GWaZIVWW5tWelClh5Sa6HMRIlow6sYpDKySlJdAsiXbL-e1fCacZF6Q2gslogAhBFZIfCBKgVEFaCyvMdkN9KuCPnIqSzG1HWOZ79dOz-O5scJ2iiPeyzatJq3-TjuoNfdJLou1hSlo0OFcUc7e1s7WIYlvnSxWyKx22HDmy23OPkefX7ouMzhIqedG1_DbI19IS6zIrEGaV61XLf5erQhESOnBvvd4scNASUQ375TT341icQV2a9K9djxhnPvNahv_vsT37LHdNZ6Q75j-6vFGt4jqlvlR82yPWIPBp-_Dkd4HI--DX78BT_5T-s |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkBgvDAaD8mkkXrM6sR07j2jaVGDdC520JywnuUCnKq36IbQX_nbuEqes6qRNvCbnOLHPd7-Lz79j7JOwkFQAWaQlhigKMh_lSqZRXpgcYg0egP53DM_TwYX6eqkvd9hxdxaG0iqD7W9temOtw5V-GM3-bDzuf6dYXKbaxHTaBKOOB-yh0omhCOzoz788D4IcDeGelBGJd-fnmiQvfCA6HcrwShoOz1Ab5hb_tI0_t9Mo91b1zF__9pPJDR91-pQ9CeCSf27f_xnbgfqA7XeFG3hYxwfs0TDsqD9nP0ZonVdz4BU0FJ-cirijO-P0g5ZTRZUmR4CH6hI_-XLKC0Lc4-qaE9fEnJINUIn5BM0GD_s9fNbQdtaLF-zi9GR0PIhCzYWoSIVaRrZQmZdS6UyBKr3XshK2tElWZLkxZaULWXqwxkCZiRLhhlcxSJXKKrG6BJCHbLee1vCKcWF9SnAslggBRCqyQuADlQWEFaCyvMdkN9KuCITkVBdj4rrMsyvXzo-j-XGCdsrjHovWrWYtIccd8rqbRNcdNkXz6NBj3NHO3NYOFmGNL1zsFijstvTwZssNVb5Hnx87LXO4ymnrxtcwXWFfCMyMSEyKMi9brVt_PQaRCJJtiv1u6ONagBjEN-_U418Nk7iiAFapHjtaa-69BvX1f3_iB7Y3GA3P3NmX829v2GO606ZGvmW7y_kK3iHEW-bvmyX8FxOuT9A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELagk2AvDAaM8ktG4tWtEzuO8zghpglpExKrNF6w7OSyDUJatYnQ-Os5J07VsUkbEo9VfbGSfLn7bN99R8h7riEuATKWCFyiSMgsc1Io5vLUQZSABfD7HUfH6nAmP50mp6E82tfCBImb88myPZvU1RTq6WJj_2qqS-VsIRWzSSoYxnLHnJMFTqXw0pqXqVX3yZZKkJmPyNbs-PP-105uTwgmVCf8GWm0jLXiQyVdl-6FLwrDj8_1ijs1z9Al5oZIdZ2JXk-ofNjWC3v5y1bVRrQ62CE_h_vsk1R-TNrGTfLff0lA_q8H8Zg8CrSW7vc4fELuQb1LdoaWETR4kF3y4Cic5T8l304wLrRLoCV04qLUt4_HQEr91jD1vVy67AQa-lqc0WZOc8_1L8pL6lUulj7NAT8fWqHDouGkiS46wdB69YzMDj6efDhkodsDyxWXDdO5zKwQMskkyMLaRJRcFzrO8sylaVEmuSgs6DSFIuMFEh0rIxBSiTLWSQEgnpNRPa_hBaFcW-WJYCSQfHDFs5zjBaUGJDQgMzcmYnizJg9S6L4jR2WGnLfvpseD8Xgw3J_RR2PC1laLXgrklvHJABozlLmiYzYYq26xS2-yg1XwLisTmRUONl88qj2oI19vhevuTctAoHpidIc53w2oNuhf_KGRrWHe4lxICVMepwrH7PUoX989Ll-RnmuF817B_3qA1y6_-k99cd5pmEu_dJZyTCbrL-VOD_Xlvxq8Itv-V59_-ZqMmmULb5BHNu5tcA9_ADgAcU4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+feature+ranking+with+relevance+learning+to+classify+interstitial+lung+disease+patterns&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Huber%2C+Markus+B.&rft.au=Bunte%2C+Kerstin&rft.au=Nagarajan%2C+Mahesh+B.&rft.au=Biehl%2C+Michael&rft.date=2012-10-01&rft.pub=Elsevier+B.V&rft.issn=0933-3657&rft.eissn=1873-2860&rft.volume=56&rft.issue=2&rft.spage=91&rft.epage=97&rft_id=info:doi/10.1016%2Fj.artmed.2012.07.001&rft.externalDocID=S0933365712000917 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09333657%2FS0933365712X00083%2Fcov150h.gif |