Texture feature ranking with relevance learning to classify interstitial lung disease patterns

The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images. After a stochastic gradient descent, the GMLVQ algorithm provides a discrim...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 56; no. 2; pp. 91 - 97
Main Authors Huber, Markus B., Bunte, Kerstin, Nagarajan, Mahesh B., Biehl, Michael, Ray, Lawrence A., Wismüller, Axel
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2012
Subjects
Online AccessGet full text
ISSN0933-3657
1873-2860
1873-2860
DOI10.1016/j.artmed.2012.07.001

Cover

Abstract The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images. After a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k-nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf). For all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance (p<0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features (p<0.05). While this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features.
AbstractList The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images.OBJECTIVEThe generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images.After a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k-nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf).METHODOLOGYAfter a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k-nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf).For all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance (p<0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features (p<0.05).RESULTSFor all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance (p<0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features (p<0.05).While this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features.CONCLUSIONWhile this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features.
The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images. After a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k-nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf). For all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance (p<0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features (p<0.05). While this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features.
Abstract Objective The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images. Methodology After a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k -nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf). Results For all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance ( p < 0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features ( p < 0.05). Conclusion While this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features.
Author Ray, Lawrence A.
Nagarajan, Mahesh B.
Wismüller, Axel
Huber, Markus B.
Biehl, Michael
Bunte, Kerstin
AuthorAffiliation b Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands
a Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
c Research Laboratories, Carestream Health, Inc., New York, United States
AuthorAffiliation_xml – name: a Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, New York, United States
– name: c Research Laboratories, Carestream Health, Inc., New York, United States
– name: b Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands
Author_xml – sequence: 1
  givenname: Markus B.
  surname: Huber
  fullname: Huber, Markus B.
  email: markus.huber@rochester.edu, mbh@bme.rochester.edu
  organization: Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, NY, United States
– sequence: 2
  givenname: Kerstin
  surname: Bunte
  fullname: Bunte, Kerstin
  organization: Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands
– sequence: 3
  givenname: Mahesh B.
  surname: Nagarajan
  fullname: Nagarajan, Mahesh B.
  organization: Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, NY, United States
– sequence: 4
  givenname: Michael
  surname: Biehl
  fullname: Biehl, Michael
  organization: Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, The Netherlands
– sequence: 5
  givenname: Lawrence A.
  surname: Ray
  fullname: Ray, Lawrence A.
  organization: Research Laboratories, Carestream Health, Inc., NY, United States
– sequence: 6
  givenname: Axel
  surname: Wismüller
  fullname: Wismüller, Axel
  organization: Departments of Imaging Sciences and Biomedical Engineering, University of Rochester, NY, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23010586$$D View this record in MEDLINE/PubMed
BookMark eNqVUl1rFDEUDVKx2-o_EJlHX2ZNJpnJjIhQil9Q8MH6arhN7rTZZpM1yWzdf2_GrZ8gpU8XcnLOSc65R-TAB4-EPGV0ySjrXqyWEPMazbKhrFlSuaSUPSAL1kteN31HD8iCDpzXvGvlITlKaUUplYJ1j8hhwymjbd8tyJdz_JaniNWI8GNG8NfWX1Y3Nl9VER1uwWusHEL083kOlXaQkh13lfUZY8o2W3CVmwpqbEJIWG0gF8inx-ThCC7hk9t5TD6_fXN--r4--_juw-nJWa07KnLdazEA56IdBAoD0PKR9qZvBj1cSGnGVnMD2EuJZqBGthQEQy46PjZ9axD5MWn3upPfwO4GnFObaNcQd4pRNeelVmqfl5rzUlSqklfhvd7zNtNFwTT6HOE3N4BVfyPeXqnLsFWCDuXlogg8vxWI4euEKau1TRqdA49hSoqxlknayG72evan1y-Tn2WUCy_3F3QMKUUclbYZsg2ztXV3_UT8Q75fAFja2VqMKmmLpXFjI-qsTLD3FdDOeqvBXeMO0ypM0ZfmFVOpcNSneSfnlWRNWceBySLw6v8Cd_t_B0-69Rw
CitedBy_id crossref_primary_10_1016_j_acra_2017_07_002
crossref_primary_10_3389_fict_2016_00033
crossref_primary_10_1016_j_eswa_2017_05_073
crossref_primary_10_1021_acs_jpcb_0c05981
crossref_primary_10_1080_13682199_2018_1462916
crossref_primary_10_1016_j_media_2020_101860
crossref_primary_10_1088_0031_9155_61_16_5906
Cites_doi 10.1023/A:1010933404324
10.1109/TSMC.1973.4309314
10.1016/j.neucom.2009.11.017
10.1118/1.3566070
10.1118/1.1597431
10.1109/36.469481
10.1109/TPAMI.2005.159
10.1162/neco.2009.11-08-908
10.1164/ajrccm.160.2.9804094
10.1016/0925-2312(94)00071-9
10.1109/TMI.2005.862753
10.1016/j.acra.2006.04.017
10.1118/1.1418724
10.1007/s00330-008-1082-y
10.1007/s10278-008-9158-4
10.1016/S0893-6080(02)00079-5
10.1118/1.3003066
10.1007/s11063-004-1547-1
10.1118/1.2207131
10.1109/TNN.2010.2042729
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Elsevier B.V.
Copyright © 2012 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.artmed.2012.07.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
EndPage 97
ExternalDocumentID rug:oai:pure.rug.nl:publications/8f6bad46-a573-441b-bb4d-536e1580f7a6
PMC4096044
23010586
10_1016_j_artmed_2012_07_001
S0933365712000917
1_s2_0_S0933365712000917
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01-DA-034977
– fundername: NIDA NIH HHS
  grantid: R01 DA034977
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c604t-8c49a334594e4daa53f08d829c9b77df5c3dae877ed90d750a41e3463f285dee3
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Sun Oct 26 03:43:36 EDT 2025
Tue Sep 30 16:36:46 EDT 2025
Sat Sep 27 18:40:01 EDT 2025
Thu Apr 03 07:08:55 EDT 2025
Wed Oct 01 00:45:52 EDT 2025
Thu Apr 24 23:01:04 EDT 2025
Fri Feb 23 02:25:16 EST 2024
Sun Feb 23 10:19:33 EST 2025
Tue Oct 14 19:30:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords High-resolution computed tomography of the chest
Relevance learning
Feature selection
Texture analysis
Supervised learning
Interstitial lung disease patterns
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier B.V. All rights reserved.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c604t-8c49a334594e4daa53f08d829c9b77df5c3dae877ed90d750a41e3463f285dee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://research.rug.nl/en/publications/8f6bad46-a573-441b-bb4d-536e1580f7a6
PMID 23010586
PQID 1151702761
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1016_j_artmed_2012_07_001
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4096044
proquest_miscellaneous_1151702761
pubmed_primary_23010586
crossref_citationtrail_10_1016_j_artmed_2012_07_001
crossref_primary_10_1016_j_artmed_2012_07_001
elsevier_sciencedirect_doi_10_1016_j_artmed_2012_07_001
elsevier_clinicalkeyesjournals_1_s2_0_S0933365712000917
elsevier_clinicalkey_doi_10_1016_j_artmed_2012_07_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References A. Jaiantilal, Random Forest (Regression, Classification and Clustering) implementation for MATLAB (and Standalone), 2010, software available at
Haralick, Shanmugam, Dinstein (bib0095) 1973; 3
Schneider, Bunte, Hammer, Biehl (bib0130) 2010; 21
Pregenzer, Pfurtscheller, Flotzinger (bib0050) 1996; 11
Boehm, Fink, Attenberger, Becker, Behr, Reiser (bib0015) 2008; 18
Peng, Long, Ding (bib0110) 2005; 27
(assessed 01.02.12).
Breiman (bib0135) 2001; 45
Schneider, Biehl, Hammer (bib0120) 2007
K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, M. Biehl, Discriminative Visualization by Limited Rank Matrix Learning, Tech. Rep. MLR-03-2008, Leipzig University, 2008
Xu, van Beek, Hwanjo, Guo, McLennan, Hoffman (bib0010) 2006; 13
Weinberger, Saul (bib0055) 2009; 10
Duda, Hart, Stork (bib0020) 2000
Anys, He (bib0100) 1995; 33
Tourassi, Frederick, Markey, Carey, Floyd (bib0105) 2001; 28
Kohonen (bib0035) 2001
Hammer, Villmann (bib0045) 2002; 15
Huber, Nagarajan, Leinsinger, Eibel, Ray, Wismüller (bib0030) 2011; 38
Hammer, Strickert, Villmann (bib0115) 2005; 21
Bunte, Hammer, Wismüller, Biehl (bib0065) 2010; 73
Sluimer, Schilham, Prokop, van Ginneken (bib0005) 2006; 25
Sato, Yamada (bib0040) 1996
Depeursinge, Iavindrasana, Hidki, Cohen, Geissbuhler, Platon (bib0090) 2010; 23
Uchiyama, Katsuragawa, Abe, Shiraishi, Li, Li (bib0085) 2003; 30
Korfiatis, Kalogeropoulou, Karahaliou, Kazantzi, Skiadopoulos, Costaridou (bib0080) 2008; 35
Bunte, Biehl, Petkov, Jonkman (bib0060) 2009
Uppaluri, Hoffman, Sonka, Hartley, Hunninghake, McLennen (bib0070) 1999; 160
Schneider, Biehl, Hammer (bib0125) 2009; 21
Sluimer, Prokop, Hartmann, van Ginneken (bib0075) 2006; 33
Huber (10.1016/j.artmed.2012.07.001_bib0030) 2011; 38
Kohonen (10.1016/j.artmed.2012.07.001_bib0035) 2001
Bunte (10.1016/j.artmed.2012.07.001_bib0060) 2009
10.1016/j.artmed.2012.07.001_bib0140
Uchiyama (10.1016/j.artmed.2012.07.001_bib0085) 2003; 30
Schneider (10.1016/j.artmed.2012.07.001_bib0120) 2007
Sluimer (10.1016/j.artmed.2012.07.001_bib0005) 2006; 25
Schneider (10.1016/j.artmed.2012.07.001_bib0130) 2010; 21
Xu (10.1016/j.artmed.2012.07.001_bib0010) 2006; 13
Duda (10.1016/j.artmed.2012.07.001_bib0020) 2000
Bunte (10.1016/j.artmed.2012.07.001_bib0065) 2010; 73
10.1016/j.artmed.2012.07.001_bib0025
Sluimer (10.1016/j.artmed.2012.07.001_bib0075) 2006; 33
Breiman (10.1016/j.artmed.2012.07.001_bib0135) 2001; 45
Hammer (10.1016/j.artmed.2012.07.001_bib0115) 2005; 21
Depeursinge (10.1016/j.artmed.2012.07.001_bib0090) 2010; 23
Tourassi (10.1016/j.artmed.2012.07.001_bib0105) 2001; 28
Pregenzer (10.1016/j.artmed.2012.07.001_bib0050) 1996; 11
Uppaluri (10.1016/j.artmed.2012.07.001_bib0070) 1999; 160
Anys (10.1016/j.artmed.2012.07.001_bib0100) 1995; 33
Korfiatis (10.1016/j.artmed.2012.07.001_bib0080) 2008; 35
Boehm (10.1016/j.artmed.2012.07.001_bib0015) 2008; 18
Schneider (10.1016/j.artmed.2012.07.001_bib0125) 2009; 21
Peng (10.1016/j.artmed.2012.07.001_bib0110) 2005; 27
Weinberger (10.1016/j.artmed.2012.07.001_bib0055) 2009; 10
Hammer (10.1016/j.artmed.2012.07.001_bib0045) 2002; 15
Haralick (10.1016/j.artmed.2012.07.001_bib0095) 1973; 3
Sato (10.1016/j.artmed.2012.07.001_bib0040) 1996
18618121 - Eur Radiol. 2008 Dec;18(12):2745-55
10430742 - Am J Respir Crit Care Med. 1999 Aug;160(2):648-54
14528966 - Med Phys. 2003 Sep;30(9):2440-54
16608056 - IEEE Trans Med Imaging. 2006 Apr;25(4):385-405
20236882 - IEEE Trans Neural Netw. 2010 May;21(5):831-40
19764875 - Neural Comput. 2009 Dec;21(12):3532-61
11797941 - Med Phys. 2001 Dec;28(12):2394-402
16898465 - Med Phys. 2006 Jul;33(7):2610-20
19175088 - Med Phys. 2008 Dec;35(12):5290-302
16843849 - Acad Radiol. 2006 Aug;13(8):969-78
21626936 - Med Phys. 2011 Apr;38(4):2035-44
18982390 - J Digit Imaging. 2010 Feb;23(1):18-30
12416694 - Neural Netw. 2002 Oct-Nov;15(8-9):1059-68
16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38
References_xml – reference: A. Jaiantilal, Random Forest (Regression, Classification and Clustering) implementation for MATLAB (and Standalone), 2010, software available at
– volume: 21
  start-page: 3532
  year: 2009
  end-page: 3561
  ident: bib0125
  article-title: Adaptive relevance matrices in learning vector quantization
  publication-title: Neural Computation
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: bib0110
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 37
  year: 2007
  end-page: 42
  ident: bib0120
  article-title: Relevance Matrices in LVQ
  publication-title: Proc. of European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium
– volume: 15
  start-page: 1059
  year: 2002
  end-page: 1068
  ident: bib0045
  article-title: Generalized relevance learning vector quantization
  publication-title: Neural Networks
– year: 2001
  ident: bib0035
  article-title: Self-Organizing Maps
– year: 2000
  ident: bib0020
  article-title: Pattern Classification
– year: 2009
  ident: bib0060
  article-title: Adaptive metrics for content based image retrieval in dermatology
  publication-title: Proc. of the European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium
– reference: (assessed 01.02.12).
– volume: 35
  start-page: 5290
  year: 2008
  end-page: 5302
  ident: bib0080
  article-title: Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT
  publication-title: Medical Physics
– volume: 33
  start-page: 1170
  year: 1995
  end-page: 1181
  ident: bib0100
  article-title: Evaluation of textural and multipolarization radar features for crop classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 23
  start-page: 18
  year: 2010
  end-page: 30
  ident: bib0090
  article-title: Comparative performance analysis of state-of-the-art classification algorithms applied to lung tissue categorization
  publication-title: Journal of Digital Imaging
– volume: 38
  start-page: 2035
  year: 2011
  end-page: 2044
  ident: bib0030
  article-title: Performance of topological texture features to classify fibrotic interstitial lung disease patterns
  publication-title: Medical Physics
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0135
  article-title: Random forests
  publication-title: Machine Learning
– volume: 18
  start-page: 2745
  year: 2008
  end-page: 2755
  ident: bib0015
  article-title: Automated classification of normal and pathologic pulmonary tissue by topological texture features extracted from multi-detector CT in 3D
  publication-title: European Radiology
– volume: 73
  start-page: 1074
  year: 2010
  end-page: 1092
  ident: bib0065
  article-title: Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data
  publication-title: Neurocomputing
– volume: 33
  start-page: 2610
  year: 2006
  end-page: 2620
  ident: bib0075
  article-title: Automated classification of hyperlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution CT of the lung
  publication-title: Medical Physics
– volume: 11
  start-page: 19
  year: 1996
  end-page: 29
  ident: bib0050
  article-title: Automated feature selection with a distinction sensitive learning vector quantizer
  publication-title: Neurocomputing
– volume: 30
  start-page: 2440
  year: 2003
  end-page: 2454
  ident: bib0085
  article-title: Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography
  publication-title: Medical Physics
– volume: 160
  start-page: 648
  year: 1999
  end-page: 654
  ident: bib0070
  article-title: Computer recognition of regional lung disease patterns
  publication-title: American Journal of Respiratory and Critical Care Medicine
– reference: K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, M. Biehl, Discriminative Visualization by Limited Rank Matrix Learning, Tech. Rep. MLR-03-2008, Leipzig University, 2008,
– volume: 21
  start-page: 109
  year: 2005
  end-page: 120
  ident: bib0115
  article-title: On the generalization ability of GRLVQ networks
  publication-title: Neural Processing Letters
– start-page: 423
  year: 1996
  end-page: 429
  ident: bib0040
  article-title: Generalized learning vector quantization
  publication-title: Advances in Neural Information Processing Systems, vol. 8
– volume: 28
  start-page: 2394
  year: 2001
  end-page: 2402
  ident: bib0105
  article-title: Application of the mutual information criterion for feature selection in computer-aided diagnosis
  publication-title: Medical Physics
– volume: 13
  start-page: 969
  year: 2006
  end-page: 978
  ident: bib0010
  article-title: Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM)
  publication-title: Academic Radiology
– volume: 10
  start-page: 207
  year: 2009
  end-page: 244
  ident: bib0055
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 610
  year: 1973
  end-page: 621
  ident: bib0095
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems Man and Cybernetics
– volume: 25
  start-page: 385
  year: 2006
  end-page: 405
  ident: bib0005
  article-title: Computer analysis of computed tomography scans of the lung: a survey
  publication-title: IEEE Transactions on Medical Imaging
– volume: 21
  start-page: 831
  year: 2010
  end-page: 840
  ident: bib0130
  article-title: Regularization in matrix relevance learning
  publication-title: IEEE Transactions on Neural Networks
– volume: 10
  start-page: 207
  year: 2009
  ident: 10.1016/j.artmed.2012.07.001_bib0055
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: Journal of Machine Learning Research
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.artmed.2012.07.001_bib0135
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 3
  start-page: 610
  issue: 6
  year: 1973
  ident: 10.1016/j.artmed.2012.07.001_bib0095
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems Man and Cybernetics
  doi: 10.1109/TSMC.1973.4309314
– volume: 73
  start-page: 1074
  issue: 7–9
  year: 2010
  ident: 10.1016/j.artmed.2012.07.001_bib0065
  article-title: Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.017
– volume: 38
  start-page: 2035
  issue: 4
  year: 2011
  ident: 10.1016/j.artmed.2012.07.001_bib0030
  article-title: Performance of topological texture features to classify fibrotic interstitial lung disease patterns
  publication-title: Medical Physics
  doi: 10.1118/1.3566070
– volume: 30
  start-page: 2440
  issue: 9
  year: 2003
  ident: 10.1016/j.artmed.2012.07.001_bib0085
  article-title: Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography
  publication-title: Medical Physics
  doi: 10.1118/1.1597431
– volume: 33
  start-page: 1170
  issue: 5
  year: 1995
  ident: 10.1016/j.artmed.2012.07.001_bib0100
  article-title: Evaluation of textural and multipolarization radar features for crop classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/36.469481
– year: 2000
  ident: 10.1016/j.artmed.2012.07.001_bib0020
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.artmed.2012.07.001_bib0110
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.159
– volume: 21
  start-page: 3532
  issue: 12
  year: 2009
  ident: 10.1016/j.artmed.2012.07.001_bib0125
  article-title: Adaptive relevance matrices in learning vector quantization
  publication-title: Neural Computation
  doi: 10.1162/neco.2009.11-08-908
– volume: 160
  start-page: 648
  issue: 2
  year: 1999
  ident: 10.1016/j.artmed.2012.07.001_bib0070
  article-title: Computer recognition of regional lung disease patterns
  publication-title: American Journal of Respiratory and Critical Care Medicine
  doi: 10.1164/ajrccm.160.2.9804094
– year: 2009
  ident: 10.1016/j.artmed.2012.07.001_bib0060
  article-title: Adaptive metrics for content based image retrieval in dermatology
– start-page: 37
  year: 2007
  ident: 10.1016/j.artmed.2012.07.001_bib0120
  article-title: Relevance Matrices in LVQ
– volume: 11
  start-page: 19
  issue: 1
  year: 1996
  ident: 10.1016/j.artmed.2012.07.001_bib0050
  article-title: Automated feature selection with a distinction sensitive learning vector quantizer
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(94)00071-9
– ident: 10.1016/j.artmed.2012.07.001_bib0025
– volume: 25
  start-page: 385
  issue: 4
  year: 2006
  ident: 10.1016/j.artmed.2012.07.001_bib0005
  article-title: Computer analysis of computed tomography scans of the lung: a survey
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2005.862753
– volume: 13
  start-page: 969
  issue: 8
  year: 2006
  ident: 10.1016/j.artmed.2012.07.001_bib0010
  article-title: Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM)
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2006.04.017
– volume: 28
  start-page: 2394
  issue: 12
  year: 2001
  ident: 10.1016/j.artmed.2012.07.001_bib0105
  article-title: Application of the mutual information criterion for feature selection in computer-aided diagnosis
  publication-title: Medical Physics
  doi: 10.1118/1.1418724
– volume: 18
  start-page: 2745
  issue: 12
  year: 2008
  ident: 10.1016/j.artmed.2012.07.001_bib0015
  article-title: Automated classification of normal and pathologic pulmonary tissue by topological texture features extracted from multi-detector CT in 3D
  publication-title: European Radiology
  doi: 10.1007/s00330-008-1082-y
– volume: 23
  start-page: 18
  year: 2010
  ident: 10.1016/j.artmed.2012.07.001_bib0090
  article-title: Comparative performance analysis of state-of-the-art classification algorithms applied to lung tissue categorization
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-008-9158-4
– volume: 15
  start-page: 1059
  issue: 8-9
  year: 2002
  ident: 10.1016/j.artmed.2012.07.001_bib0045
  article-title: Generalized relevance learning vector quantization
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(02)00079-5
– year: 2001
  ident: 10.1016/j.artmed.2012.07.001_bib0035
– start-page: 423
  year: 1996
  ident: 10.1016/j.artmed.2012.07.001_bib0040
  article-title: Generalized learning vector quantization
– ident: 10.1016/j.artmed.2012.07.001_bib0140
– volume: 35
  start-page: 5290
  issue: 12
  year: 2008
  ident: 10.1016/j.artmed.2012.07.001_bib0080
  article-title: Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT
  publication-title: Medical Physics
  doi: 10.1118/1.3003066
– volume: 21
  start-page: 109
  issue: 2
  year: 2005
  ident: 10.1016/j.artmed.2012.07.001_bib0115
  article-title: On the generalization ability of GRLVQ networks
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-004-1547-1
– volume: 33
  start-page: 2610
  issue: 7
  year: 2006
  ident: 10.1016/j.artmed.2012.07.001_bib0075
  article-title: Automated classification of hyperlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution CT of the lung
  publication-title: Medical Physics
  doi: 10.1118/1.2207131
– volume: 21
  start-page: 831
  issue: 5
  year: 2010
  ident: 10.1016/j.artmed.2012.07.001_bib0130
  article-title: Regularization in matrix relevance learning
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2042729
– reference: 18618121 - Eur Radiol. 2008 Dec;18(12):2745-55
– reference: 21626936 - Med Phys. 2011 Apr;38(4):2035-44
– reference: 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38
– reference: 20236882 - IEEE Trans Neural Netw. 2010 May;21(5):831-40
– reference: 19175088 - Med Phys. 2008 Dec;35(12):5290-302
– reference: 19764875 - Neural Comput. 2009 Dec;21(12):3532-61
– reference: 16843849 - Acad Radiol. 2006 Aug;13(8):969-78
– reference: 16608056 - IEEE Trans Med Imaging. 2006 Apr;25(4):385-405
– reference: 12416694 - Neural Netw. 2002 Oct-Nov;15(8-9):1059-68
– reference: 10430742 - Am J Respir Crit Care Med. 1999 Aug;160(2):648-54
– reference: 11797941 - Med Phys. 2001 Dec;28(12):2394-402
– reference: 18982390 - J Digit Imaging. 2010 Feb;23(1):18-30
– reference: 16898465 - Med Phys. 2006 Jul;33(7):2610-20
– reference: 14528966 - Med Phys. 2003 Sep;30(9):2440-54
SSID ssj0007416
Score 2.2285297
Snippet The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial...
Abstract Objective The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 91
SubjectTerms Algorithms
Cluster Analysis
Feature selection
High-resolution computed tomography of the chest
Humans
Internal Medicine
Interstitial lung disease patterns
Lung Diseases, Interstitial - classification
Lung Diseases, Interstitial - diagnosis
Other
Relevance learning
Supervised learning
Support Vector Machine
Texture analysis
Tomography, X-Ray Computed - methods
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELagk2AvDAaM8ktG4tWtEzuO8zghpglpExKrNF6w7OSyDUJatYnQ-Os5J07VsUkbEo9VfbGSfLn7bN99R8h7riEuATKWCFyiSMgsc1Io5vLUQZSABfD7HUfH6nAmP50mp6E82tfCBImb88myPZvU1RTq6WJj_2qqS-VsIRWzSSoYxnLHnJMFTqXw0pqXqVX3yZZKkJmPyNbs-PP-105uTwgmVCf8GWm0jLXiQyVdl-6FLwrDj8_1ijs1z9Al5oZIdZ2JXk-ofNjWC3v5y1bVRrQ62CE_h_vsk1R-TNrGTfLff0lA_q8H8Zg8CrSW7vc4fELuQb1LdoaWETR4kF3y4Cic5T8l304wLrRLoCV04qLUt4_HQEr91jD1vVy67AQa-lqc0WZOc8_1L8pL6lUulj7NAT8fWqHDouGkiS46wdB69YzMDj6efDhkodsDyxWXDdO5zKwQMskkyMLaRJRcFzrO8sylaVEmuSgs6DSFIuMFEh0rIxBSiTLWSQEgnpNRPa_hBaFcW-WJYCSQfHDFs5zjBaUGJDQgMzcmYnizJg9S6L4jR2WGnLfvpseD8Xgw3J_RR2PC1laLXgrklvHJABozlLmiYzYYq26xS2-yg1XwLisTmRUONl88qj2oI19vhevuTctAoHpidIc53w2oNuhf_KGRrWHe4lxICVMepwrH7PUoX989Ll-RnmuF817B_3qA1y6_-k99cd5pmEu_dJZyTCbrL-VOD_Xlvxq8Itv-V59_-ZqMmmULb5BHNu5tcA9_ADgAcU4
  priority: 102
  providerName: Unpaywall
Title Texture feature ranking with relevance learning to classify interstitial lung disease patterns
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365712000917
https://www.clinicalkey.es/playcontent/1-s2.0-S0933365712000917
https://dx.doi.org/10.1016/j.artmed.2012.07.001
https://www.ncbi.nlm.nih.gov/pubmed/23010586
https://www.proquest.com/docview/1151702761
https://pubmed.ncbi.nlm.nih.gov/PMC4096044
https://research.rug.nl/en/publications/8f6bad46-a573-441b-bb4d-536e1580f7a6
UnpaywallVersion submittedVersion
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2860
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007416
  issn: 0933-3657
  databaseCode: AKRWK
  dateStart: 19890101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CCm0vaZu-3EfYQq-KV9qXdDShwW2JKTSG9NJlJY1SFyMbPwi59Ld3Rlq5MQ4k9CQkzWql3dmZb7TzYOyjSCGpALJISzRRFGQ-ypU0UV7YHGINHoD-d5yNzHCsvlzoiz120sXCkFtlkP2tTG-kdbjSD6PZn08m_e9ki0ujbUzRJmh1UAS7slTF4PjPPzcPQhxNvj0pI6LuwucaHy98HuoccvBKmhSeoTTMLeppF37uelE-Wtdzf33lp9MbKur0KTsI2JIP2td_xvagPmRPuroNPCzjQ_bwLGyoP2c_z1E4rxfAK2gyfHKq4Y7ajNP_WU4FVRoXAR6KS1zy1YwXBLgn1TWnVBML8jVAHuZTlBo8bPfweZO1s16-YOPTT-cnwyiUXIgKI9QqSguVeSmVzhSo0nstK5GWaZIVWW5tWelClh5Sa6HMRIlow6sYpDKySlJdAsiXbL-e1fCacZF6Q2gslogAhBFZIfCBKgVEFaCyvMdkN9KuCPnIqSzG1HWOZ79dOz-O5scJ2iiPeyzatJq3-TjuoNfdJLou1hSlo0OFcUc7e1s7WIYlvnSxWyKx22HDmy23OPkefX7ouMzhIqedG1_DbI19IS6zIrEGaV61XLf5erQhESOnBvvd4scNASUQ375TT341icQV2a9K9djxhnPvNahv_vsT37LHdNZ6Q75j-6vFGt4jqlvlR82yPWIPBp-_Dkd4HI--DX78BT_5T-s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkBgvDAaD8mkkXrM6sR07j2jaVGDdC520JywnuUCnKq36IbQX_nbuEqes6qRNvCbnOLHPd7-Lz79j7JOwkFQAWaQlhigKMh_lSqZRXpgcYg0egP53DM_TwYX6eqkvd9hxdxaG0iqD7W9temOtw5V-GM3-bDzuf6dYXKbaxHTaBKOOB-yh0omhCOzoz788D4IcDeGelBGJd-fnmiQvfCA6HcrwShoOz1Ab5hb_tI0_t9Mo91b1zF__9pPJDR91-pQ9CeCSf27f_xnbgfqA7XeFG3hYxwfs0TDsqD9nP0ZonVdz4BU0FJ-cirijO-P0g5ZTRZUmR4CH6hI_-XLKC0Lc4-qaE9fEnJINUIn5BM0GD_s9fNbQdtaLF-zi9GR0PIhCzYWoSIVaRrZQmZdS6UyBKr3XshK2tElWZLkxZaULWXqwxkCZiRLhhlcxSJXKKrG6BJCHbLee1vCKcWF9SnAslggBRCqyQuADlQWEFaCyvMdkN9KuCITkVBdj4rrMsyvXzo-j-XGCdsrjHovWrWYtIccd8rqbRNcdNkXz6NBj3NHO3NYOFmGNL1zsFijstvTwZssNVb5Hnx87LXO4ymnrxtcwXWFfCMyMSEyKMi9brVt_PQaRCJJtiv1u6ONagBjEN-_U418Nk7iiAFapHjtaa-69BvX1f3_iB7Y3GA3P3NmX829v2GO606ZGvmW7y_kK3iHEW-bvmyX8FxOuT9A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELagk2AvDAaM8ktG4tWtEzuO8zghpglpExKrNF6w7OSyDUJatYnQ-Os5J07VsUkbEo9VfbGSfLn7bN99R8h7riEuATKWCFyiSMgsc1Io5vLUQZSABfD7HUfH6nAmP50mp6E82tfCBImb88myPZvU1RTq6WJj_2qqS-VsIRWzSSoYxnLHnJMFTqXw0pqXqVX3yZZKkJmPyNbs-PP-105uTwgmVCf8GWm0jLXiQyVdl-6FLwrDj8_1ijs1z9Al5oZIdZ2JXk-ofNjWC3v5y1bVRrQ62CE_h_vsk1R-TNrGTfLff0lA_q8H8Zg8CrSW7vc4fELuQb1LdoaWETR4kF3y4Cic5T8l304wLrRLoCV04qLUt4_HQEr91jD1vVy67AQa-lqc0WZOc8_1L8pL6lUulj7NAT8fWqHDouGkiS46wdB69YzMDj6efDhkodsDyxWXDdO5zKwQMskkyMLaRJRcFzrO8sylaVEmuSgs6DSFIuMFEh0rIxBSiTLWSQEgnpNRPa_hBaFcW-WJYCSQfHDFs5zjBaUGJDQgMzcmYnizJg9S6L4jR2WGnLfvpseD8Xgw3J_RR2PC1laLXgrklvHJABozlLmiYzYYq26xS2-yg1XwLisTmRUONl88qj2oI19vhevuTctAoHpidIc53w2oNuhf_KGRrWHe4lxICVMepwrH7PUoX989Ll-RnmuF817B_3qA1y6_-k99cd5pmEu_dJZyTCbrL-VOD_Xlvxq8Itv-V59_-ZqMmmULb5BHNu5tcA9_ADgAcU4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture+feature+ranking+with+relevance+learning+to+classify+interstitial+lung+disease+patterns&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Huber%2C+Markus+B.&rft.au=Bunte%2C+Kerstin&rft.au=Nagarajan%2C+Mahesh+B.&rft.au=Biehl%2C+Michael&rft.date=2012-10-01&rft.pub=Elsevier+B.V&rft.issn=0933-3657&rft.eissn=1873-2860&rft.volume=56&rft.issue=2&rft.spage=91&rft.epage=97&rft_id=info:doi/10.1016%2Fj.artmed.2012.07.001&rft.externalDocID=S0933365712000917
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09333657%2FS0933365712X00083%2Fcov150h.gif