Automatic detection and classification of lung cancer CT scans based on deep learning and ebola optimization search algorithm

Recently, research has shown an increased spread of non-communicable diseases such as cancer. Lung cancer diagnosis and detection has become one of the biggest obstacles in recent years. Early lung cancer diagnosis and detection would reliably promote safety and the survival of many lives globally....

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 8; p. e0285796
Main Authors Mohamed, Tehnan I. A., Oyelade, Olaide N., Ezugwu, Absalom E.
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 17.08.2023
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0285796

Cover

Abstract Recently, research has shown an increased spread of non-communicable diseases such as cancer. Lung cancer diagnosis and detection has become one of the biggest obstacles in recent years. Early lung cancer diagnosis and detection would reliably promote safety and the survival of many lives globally. The precise classification of lung cancer using medical images will help physicians select suitable therapy to reduce cancer mortality. Much work has been carried out in lung cancer detection using CNN. However, lung cancer prediction still becomes difficult due to the multifaceted designs in the CT scan. Moreover, CNN models have challenges that affect their performance, including choosing the optimal architecture, selecting suitable model parameters, and picking the best values for weights and biases. To address the problem of selecting optimal weight and bias combination required for classification of lung cancer in CT images, this study proposes a hybrid metaheuristic and CNN algorithm. We first designed a CNN architecture and then computed the solution vector of the model. The resulting solution vector was passed to the Ebola optimization search algorithm (EOSA) to select the best combination of weights and bias to train the CNN model to handle the classification problem. After thoroughly training the EOSA-CNN hybrid model, we obtained the optimal configuration, which yielded good performance. Experimentation with the publicly accessible Iraq-Oncology Teaching Hospital / National Center for Cancer Diseases (IQ-OTH/NCCD) lung cancer dataset showed that the EOSA metaheuristic algorithm yielded a classification accuracy of 0.9321. Similarly, the performance comparisons of EOSA-CNN with other methods, namely, GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and the classical CNN, were also computed and presented. The result showed that EOSA-CNN achieved a specificity of 0.7941, 0.97951, 0.9328, and sensitivity of 0.9038, 0.13333, and 0.9071 for normal, benign, and malignant cases, respectively. This confirms that the hybrid algorithm provides a good solution for the classification of lung cancer.
AbstractList Recently, research has shown an increased spread of non-communicable diseases such as cancer. Lung cancer diagnosis and detection has become one of the biggest obstacles in recent years. Early lung cancer diagnosis and detection would reliably promote safety and the survival of many lives globally. The precise classification of lung cancer using medical images will help physicians select suitable therapy to reduce cancer mortality. Much work has been carried out in lung cancer detection using CNN. However, lung cancer prediction still becomes difficult due to the multifaceted designs in the CT scan. Moreover, CNN models have challenges that affect their performance, including choosing the optimal architecture, selecting suitable model parameters, and picking the best values for weights and biases. To address the problem of selecting optimal weight and bias combination required for classification of lung cancer in CT images, this study proposes a hybrid metaheuristic and CNN algorithm. We first designed a CNN architecture and then computed the solution vector of the model. The resulting solution vector was passed to the Ebola optimization search algorithm (EOSA) to select the best combination of weights and bias to train the CNN model to handle the classification problem. After thoroughly training the EOSA-CNN hybrid model, we obtained the optimal configuration, which yielded good performance. Experimentation with the publicly accessible Iraq-Oncology Teaching Hospital / National Center for Cancer Diseases (IQ-OTH/NCCD) lung cancer dataset showed that the EOSA metaheuristic algorithm yielded a classification accuracy of 0.9321. Similarly, the performance comparisons of EOSA-CNN with other methods, namely, GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and the classical CNN, were also computed and presented. The result showed that EOSA-CNN achieved a specificity of 0.7941, 0.97951, 0.9328, and sensitivity of 0.9038, 0.13333, and 0.9071 for normal, benign, and malignant cases, respectively. This confirms that the hybrid algorithm provides a good solution for the classification of lung cancer.
Recently, research has shown an increased spread of non-communicable diseases such as cancer. Lung cancer diagnosis and detection has become one of the biggest obstacles in recent years. Early lung cancer diagnosis and detection would reliably promote safety and the survival of many lives globally. The precise classification of lung cancer using medical images will help physicians select suitable therapy to reduce cancer mortality. Much work has been carried out in lung cancer detection using CNN. However, lung cancer prediction still becomes difficult due to the multifaceted designs in the CT scan. Moreover, CNN models have challenges that affect their performance, including choosing the optimal architecture, selecting suitable model parameters, and picking the best values for weights and biases. To address the problem of selecting optimal weight and bias combination required for classification of lung cancer in CT images, this study proposes a hybrid metaheuristic and CNN algorithm. We first designed a CNN architecture and then computed the solution vector of the model. The resulting solution vector was passed to the Ebola optimization search algorithm (EOSA) to select the best combination of weights and bias to train the CNN model to handle the classification problem. After thoroughly training the EOSA-CNN hybrid model, we obtained the optimal configuration, which yielded good performance. Experimentation with the publicly accessible Iraq-Oncology Teaching Hospital / National Center for Cancer Diseases (IQ-OTH/NCCD) lung cancer dataset showed that the EOSA metaheuristic algorithm yielded a classification accuracy of 0.9321. Similarly, the performance comparisons of EOSA-CNN with other methods, namely, GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and the classical CNN, were also computed and presented. The result showed that EOSA-CNN achieved a specificity of 0.7941, 0.97951, 0.9328, and sensitivity of 0.9038, 0.13333, and 0.9071 for normal, benign, and malignant cases, respectively. This confirms that the hybrid algorithm provides a good solution for the classification of lung cancer.Recently, research has shown an increased spread of non-communicable diseases such as cancer. Lung cancer diagnosis and detection has become one of the biggest obstacles in recent years. Early lung cancer diagnosis and detection would reliably promote safety and the survival of many lives globally. The precise classification of lung cancer using medical images will help physicians select suitable therapy to reduce cancer mortality. Much work has been carried out in lung cancer detection using CNN. However, lung cancer prediction still becomes difficult due to the multifaceted designs in the CT scan. Moreover, CNN models have challenges that affect their performance, including choosing the optimal architecture, selecting suitable model parameters, and picking the best values for weights and biases. To address the problem of selecting optimal weight and bias combination required for classification of lung cancer in CT images, this study proposes a hybrid metaheuristic and CNN algorithm. We first designed a CNN architecture and then computed the solution vector of the model. The resulting solution vector was passed to the Ebola optimization search algorithm (EOSA) to select the best combination of weights and bias to train the CNN model to handle the classification problem. After thoroughly training the EOSA-CNN hybrid model, we obtained the optimal configuration, which yielded good performance. Experimentation with the publicly accessible Iraq-Oncology Teaching Hospital / National Center for Cancer Diseases (IQ-OTH/NCCD) lung cancer dataset showed that the EOSA metaheuristic algorithm yielded a classification accuracy of 0.9321. Similarly, the performance comparisons of EOSA-CNN with other methods, namely, GA-CNN, LCBO-CNN, MVO-CNN, SBO-CNN, WOA-CNN, and the classical CNN, were also computed and presented. The result showed that EOSA-CNN achieved a specificity of 0.7941, 0.97951, 0.9328, and sensitivity of 0.9038, 0.13333, and 0.9071 for normal, benign, and malignant cases, respectively. This confirms that the hybrid algorithm provides a good solution for the classification of lung cancer.
Audience Academic
Author Oyelade, Olaide N.
Ezugwu, Absalom E.
Mohamed, Tehnan I. A.
AuthorAffiliation Firat Universitesi, TURKEY
4 Unit for Data Science and Computing, North-West University, Potchefstroom, South Africa
2 School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, KwaZulu-Natal, South Africa
3 Department of Computer Science, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
1 Department of Computer Science, Faculty of Mathematical and Computer Sciences, University of Gezira, Wad Madani, Sudan
AuthorAffiliation_xml – name: 4 Unit for Data Science and Computing, North-West University, Potchefstroom, South Africa
– name: Firat Universitesi, TURKEY
– name: 1 Department of Computer Science, Faculty of Mathematical and Computer Sciences, University of Gezira, Wad Madani, Sudan
– name: 2 School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, KwaZulu-Natal, South Africa
– name: 3 Department of Computer Science, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
Author_xml – sequence: 1
  givenname: Tehnan I. A.
  orcidid: 0000-0002-7793-7999
  surname: Mohamed
  fullname: Mohamed, Tehnan I. A.
– sequence: 2
  givenname: Olaide N.
  surname: Oyelade
  fullname: Oyelade, Olaide N.
– sequence: 3
  givenname: Absalom E.
  orcidid: 0000-0002-3721-3400
  surname: Ezugwu
  fullname: Ezugwu, Absalom E.
BookMark eNqNkl9rFDEUxQepYLv6DQQDgujDrslkdv74IstStVAoaPU1ZDI3uymZZJxktBX87t7dHbFTCpZ5mMvN75zknuQkOXLeQZI8Z3TBeMHeXvmhd9IuOmwvaFouiyp_lByziqfzPKX86Fb9JDkJ4YrSJS_z_Dj5vRqib2U0ijQQQUXjHZGuIcrKEIw2Su5bXhM7uA1R0inoyfqSBCwDqWWAhiDQAHTEguydQWznALW3kvgumtb8OrgEXFdbIu3G9yZu26fJYy1tgGfjf5Z8_XB6uf40P7_4eLZenc9VTrM4x3EymmpW1mWTclCZ5pDnFWVNSTljNaNVjaTWhdIlTbFY5owWijLFoKbAZ8mLg29nfRBjXEFgUmlOGeMUieWBGFwnb35Ka0XXm1b2N4JRsUv5r0zsUhZjyqh7PzoPdQuNAhd7-U_rpRHTFWe2YuN_oGvGs4pzdHg9OvT--wAhitYEBdZKB37YH5JXWVoiP0te3kHvH2WkNtKCME573FjtTMWqyFlalEWxRGpxD4VfA61ROKI22J8I3kwEyES4jhs5hCDOvnx-OHvxbcq-usVuQdq4Dd4OuwcTpuC7A6h6H0IPWigT9-8KT27s_-4puyN-0PX-ATnKEgY
CitedBy_id crossref_primary_10_1016_j_aej_2024_11_117
crossref_primary_10_1038_s41598_024_79250_0
crossref_primary_10_1186_s12880_024_01345_x
crossref_primary_10_21015_vtse_v12i2_1852
crossref_primary_10_3390_a17040161
crossref_primary_10_26583_vestnik_2024_6_7
crossref_primary_10_1038_s41598_024_72013_x
crossref_primary_10_1016_j_bea_2024_100138
crossref_primary_10_48175_IJARSCT_22714
crossref_primary_10_32604_cmc_2024_052404
crossref_primary_10_1186_s13677_024_00597_w
crossref_primary_10_1016_j_patcog_2024_110657
crossref_primary_10_1016_j_heliyon_2023_e21520
crossref_primary_10_1063_5_0208520
crossref_primary_10_1016_j_compbiomed_2023_107723
crossref_primary_10_1038_s41598_024_71551_8
crossref_primary_10_1016_j_heliyon_2024_e30625
crossref_primary_10_3390_diagnostics14202282
crossref_primary_10_1016_j_compeleceng_2024_109891
crossref_primary_10_1109_ACCESS_2024_3369900
crossref_primary_10_1007_s10278_024_01257_w
crossref_primary_10_3390_ai4040044
crossref_primary_10_1007_s40745_024_00537_0
Cites_doi 10.1016/j.semcancer.2020.02.009
10.1177/00405175221115472
10.1007/s00500-018-3102-4
10.47760/ijcsmc.2021.v10i02.009
10.1016/j.advengsoft.2016.01.008
10.1016/j.chaos.2020.110434
10.1155/2014/739768
10.1109/ICECET52533.2021.9698751
10.1007/s10462-020-09952-0
10.2174/1573405613666170602123329
10.1109/ACCESS.2020.3016223
10.5755/j01.itc.48.3.20627
10.1007/s11042-019-7354-5
10.1007/s10489-019-01507-3
10.1038/s41598-021-98978-7
10.18280/ts.390422
10.1016/j.patrec.2019.11.013
10.1038/s41591-018-0177-5
10.1007/s13369-016-2200-9
10.3390/cancers12061604
10.1177/00405175221117614
10.1515/med-2020-0028
10.1177/00405175221114633
10.1109/ACCESS.2022.3147821
10.1371/journal.pone.0246716
10.1080/15440478.2022.2163026
10.1007/s11042-019-08394-3
10.1186/s12913-021-06627-6
10.1007/s00521-018-3896-0
10.1016/j.advengsoft.2013.12.007
10.1016/j.eswa.2018.10.045
10.1007/978-981-13-1595-4_55
10.1007/s13369-019-04026-y
ContentType Journal Article
Copyright COPYRIGHT 2023 Public Library of Science
2023 Mohamed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2023 Mohamed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2023 Mohamed et al 2023 Mohamed et al
2023 Mohamed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Mohamed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2023 Mohamed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2023 Mohamed et al 2023 Mohamed et al
– notice: 2023 Mohamed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1371/journal.pone.0285796
DatabaseName CrossRef
Gale In Context: Opposing Viewpoints
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central - New (Subscription)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Agricultural Science Database
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Public Health
DocumentTitleAlternate Ebola optimization search algorithm for detection and classification of lung cancer on CT images
EISSN 1932-6203
ExternalDocumentID 2852601130
10.1371/journal.pone.0285796
PMC10434933
A761278775
10_1371_journal_pone_0285796
GeographicLocations South Africa
GeographicLocations_xml – name: South Africa
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c604t-796402f18b8d23ec4f3e66901d80311b109bc60ff7cf8020ff56107c01c1eb0e3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Thu Nov 28 02:59:08 EST 2024
Sun Oct 26 04:01:33 EDT 2025
Tue Sep 30 17:12:09 EDT 2025
Fri Sep 05 07:02:25 EDT 2025
Tue Oct 07 07:44:08 EDT 2025
Mon Oct 20 21:47:55 EDT 2025
Mon Oct 20 17:13:56 EDT 2025
Thu Oct 16 16:18:48 EDT 2025
Thu Oct 16 16:03:13 EDT 2025
Thu May 22 21:22:28 EDT 2025
Thu Apr 24 22:58:36 EDT 2025
Wed Oct 01 01:56:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c604t-796402f18b8d23ec4f3e66901d80311b109bc60ff7cf8020ff56107c01c1eb0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-7793-7999
0000-0002-3721-3400
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0285796
PQID 2852601130
PQPubID 1436336
PageCount e0285796
ParticipantIDs plos_journals_2852601130
unpaywall_primary_10_1371_journal_pone_0285796
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10434933
proquest_miscellaneous_2853942804
proquest_journals_2852601130
gale_infotracmisc_A761278775
gale_infotracacademiconefile_A761278775
gale_incontextgauss_ISR_A761278775
gale_incontextgauss_IOV_A761278775
gale_healthsolutions_A761278775
crossref_citationtrail_10_1371_journal_pone_0285796
crossref_primary_10_1371_journal_pone_0285796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-17
PublicationDateYYYYMMDD 2023-08-17
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-17
  day: 17
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2023
Publisher Public Library of Science
Publisher_xml – name: Public Library of Science
References J. Li (pone.0285796.ref033) 2019; 78
B. Alatas (pone.0285796.ref029) 2019; 48
O. N. Oyelade (pone.0285796.ref008) 2020; 65
B. Alatas (pone.0285796.ref030); 28
A. Khamparia (pone.0285796.ref057) 2020; 32
O. N. Oyelade (pone.0285796.ref009) 2021
A. E. Ezugwu (pone.0285796.ref013) 2021; 54
A. Shankar (pone.0285796.ref006) 2019; 8
M. Kriegsmann (pone.0285796.ref046) 2020; 12
H. F. Al-Yasriy (pone.0285796.ref064) 2020; 928
D. Karaboga (pone.0285796.ref019) 2005; 200
B. Akay (pone.0285796.ref042) 2021
S. Sivanandam (pone.0285796.ref017) 2008
R. Hans (pone.0285796.ref055) 2020
O. N. Oyelade (pone.0285796.ref025) 2022; 10
H. Bingol (pone.0285796.ref059) 2022; 39
O. N. Oyelade (pone.0285796.ref007) 2020; 8
Z. Zhou (pone.0285796.ref041) 2022; 92
P. O. Mattila (pone.0285796.ref003) 2021; 21
H. Bingol (pone.0285796.ref028) 2016; 41
L. Lyu (pone.0285796.ref066) 2021
H. Sung (pone.0285796.ref002) 2021; 71
R. Shan (pone.0285796.ref054) 2021
J. M. A. Dass (pone.0285796.ref065) 2022; 13
O. Olaide (pone.0285796.ref010) 2021; 34
H. Bingol (pone.0285796.ref031) 2020; 141
K. Senthil Kumar (pone.0285796.ref053) 2019
J. Chen (pone.0285796.ref061) 2021
E. Cengil (pone.0285796.ref050) 2018
S. Bhatia (pone.0285796.ref044) 2019
S. Salcedo-Sanz (pone.0285796.ref018) 2014
S. Arora (pone.0285796.ref020) 2019; 23
S. Zheng (pone.0285796.ref049) 2021; 10919
C. Woodman (pone.0285796.ref001) 2021; 69
S. Mirjalili (pone.0285796.ref022) 2014; 69
S. Wang (pone.0285796.ref056) 2020; 15
S. Fong (pone.0285796.ref016) 2018
A. Chon (pone.0285796.ref052) 2017
Z. Zhou (pone.0285796.ref040) 2023; 93
A. Bhandary (pone.0285796.ref048) 2020; 129
M. S. Alrahhal (pone.0285796.ref047) 2021; 10
X. Lu (pone.0285796.ref035) 2021
O. Olaide (pone.0285796.ref012) 2022; 12
E. Gedraite (pone.0285796.ref060) 2011
A. Sultana (pone.0285796.ref062) 2021
S. Das (pone.0285796.ref037) 2020; 45
N. Coudray (pone.0285796.ref051) 2018; 24
pone.0285796.ref011
IEEE (pone.0285796.ref026) 2021
S. Mirjalili (pone.0285796.ref023) 2016; 95
S. L. Bangare (pone.0285796.ref063) 2022
A. Asuntha (pone.0285796.ref036) 2020; 79
W. Mapanga (pone.0285796.ref004) 2021; 16
S. C. Chu (pone.0285796.ref021) 2006
Q. Song (pone.0285796.ref043) 2017
P. Priyadharshini (pone.0285796.ref032) 2021; 24
O. N. Oyelade (pone.0285796.ref058) 2021; 11
M. F. Abdullah (pone.0285796.ref034) 2019
A. Kaur (pone.0285796.ref027) 2020; 50
Z. Zhou (pone.0285796.ref038) 2023; 20
Z. Zhou (pone.0285796.ref039) 2023; 93
S. A. El-Regaily (pone.0285796.ref045) 2018; 14
A. E. Ezugwu (pone.0285796.ref014) 2019; 191
Z. Zhang (pone.0285796.ref005) 2021; 21
A. Banharnsakun (pone.0285796.ref015) 2019; 10
M. Mahmood (pone.0285796.ref024) 2019
References_xml – volume: 69
  start-page: 349
  year: 2021
  ident: pone.0285796.ref001
  article-title: Applications and strategies in nanodiagnosis and nanotherapy in lung cancer
  publication-title: Seminars in cancer biology
  doi: 10.1016/j.semcancer.2020.02.009
– year: 2017
  ident: pone.0285796.ref043
  article-title: Using deep learning for classification of lung nodules on computed tomography images
  publication-title: Journal of healthcare engineering
– year: 2019
  ident: pone.0285796.ref053
  article-title: Lung cancer detection using image segmentation by means of various evolutionary algorithms
  publication-title: Computational and mathematical methods in medicine
– start-page: 1
  year: 2021
  ident: pone.0285796.ref042
  article-title: A comprehensive survey on optimizing deep learning models by metaheuristics.
  publication-title: Artificial Intelligence Review
– start-page: 854
  volume-title: Cat swarm optimization. In Pacific Rim international conference on artificial intelligence.
  year: 2006
  ident: pone.0285796.ref021
– volume: 92
  start-page: 5106
  issue: 23–24
  year: 2022
  ident: pone.0285796.ref041
  article-title: Clothing image classification algorithm based on convolutional neural network and optimized regularized extreme learning machine
  publication-title: Textile Research Journal
  doi: 10.1177/00405175221115472
– volume: 23
  start-page: 715
  issue: 3
  year: 2019
  ident: pone.0285796.ref020
  article-title: Butterfly optimization algorithm: a novel approach for global optimization.
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3102-4
– volume: 10
  start-page: 57
  year: 2021
  ident: pone.0285796.ref047
  article-title: Deep learning-based system for detection of lung cancer using fusion of features
  publication-title: International Journal of Computer Science & Mobile Computing
  doi: 10.47760/ijcsmc.2021.v10i02.009
– volume: 95
  start-page: 51
  year: 2016
  ident: pone.0285796.ref023
  article-title: The whale optimization algorithm.
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2021
  ident: pone.0285796.ref009
  article-title: CovFrameNet: An enhanced deep learning framework for COVID-19 detection
  publication-title: IEEE Access
– volume: 12
  issue: 1
  year: 2022
  ident: pone.0285796.ref012
  article-title: A novel wavelet decomposition and transformation convolutional neural network with data augmentation for breast cancer detection using digital mammogram
  publication-title: Scientific Reports
– volume: 141
  start-page: 110434
  year: 2020
  ident: pone.0285796.ref031
  article-title: Chaos based optics inspired optimization algorithms as global solution search approach
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110434
– start-page: 1
  year: 2014
  ident: pone.0285796.ref018
  article-title: The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems
  publication-title: The Scientific World Journal
  doi: 10.1155/2014/739768
– start-page: 72
  year: 2019
  ident: pone.0285796.ref034
  article-title: A comparative study of image segmentation technique applied for lung cancer detection
– ident: pone.0285796.ref011
  doi: 10.1109/ICECET52533.2021.9698751
– volume: 54
  start-page: 4237
  year: 2021
  ident: pone.0285796.ref013
  article-title: Metaheuristics: a comprehensive overview and classification along with bibliometric analysis
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-020-09952-0
– volume: 200
  start-page: 1
  year: 2005
  ident: pone.0285796.ref019
  article-title: An idea based on honey bee swarm for numerical optimization).,"
  publication-title: Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
– volume: 65
  year: 2020
  ident: pone.0285796.ref008
  article-title: A Deep Learning Model Using Data Augmentation of Digital Mammograms for Detection of Architectural Distortion in Whole Images and Patches
  publication-title: Biomedical Signal Processing and Control
– volume: 14
  start-page: 3
  issue: 1
  year: 2018
  ident: pone.0285796.ref045
  article-title: Survey of computer aided detection systems for lung cancer in computed tomography
  publication-title: Current Medical Imaging
  doi: 10.2174/1573405613666170602123329
– year: 2021
  ident: pone.0285796.ref061
  article-title: A Lung Cancer Detection System Based on Convolutional Neural Networks and Natural Language Processing
  publication-title: 2nd International Seminar on Artificial IntelligenceNetworking and Information Technology (AINIT)
– volume: 8
  start-page: 148644
  year: 2020
  ident: pone.0285796.ref007
  article-title: A State-of-the-art Survey on Deep Learning Approaches in Detection of Architectural Distortion from Digital Mammographic Data
  publication-title: IEEE Acces
  doi: 10.1109/ACCESS.2020.3016223
– volume: 24
  start-page: 65
  issue: 1
  year: 2021
  ident: pone.0285796.ref032
  article-title: Bat-inspired metaheuristic convolutional neural network algorithms for CAD-based lung cancer prediction
  publication-title: Journal of Applied Science and Engineering
– volume: 48
  start-page: 373
  issue: 3
  year: 2019
  ident: pone.0285796.ref029
  article-title: A physics based novel approach for travelling tournament problem: Optics inspired optimization
  publication-title: Information Technology and Control
  doi: 10.5755/j01.itc.48.3.20627
– volume: 78
  start-page: 20913
  issue: 15
  year: 2019
  ident: pone.0285796.ref033
  article-title: Dual feature selection and rebalancing strategy using metaheuristic optimization algorithms in x-ray image datasets
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-019-7354-5
– year: 2021
  ident: pone.0285796.ref062
  article-title: Comparison of Four Transfer Learning and Hybrid CNN Models on Three Types of Lung Cancer
  publication-title: International Conference on Electrical Information and Communication Technology
– year: 2021
  ident: pone.0285796.ref026
  article-title: Ebola Optimization Search Algorithm (EOSA): A new metaheuristic algorithm based on the propagation model of Ebola virus disease," International Conference on Electrical
  publication-title: Computer and Energy Technologies––ICECET Cape Town
– volume: 50
  start-page: 582
  issue: 2
  year: 2020
  ident: pone.0285796.ref027
  article-title: Sandpiper optimization algorithm: a novel approach for solving real-life engineering problems
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-019-01507-3
– volume: 928
  year: 2020
  ident: pone.0285796.ref064
  article-title: Diagnosis of Lung Cancer Based on CT Scans Using CNN
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0285796.ref058
  article-title: A Bioinspired Neural Architecture Search Based Convolutional Neural Network for Breast Cancer Detection Using Histopathology Images
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-98978-7
– volume: 39
  year: 2022
  ident: pone.0285796.ref059
  article-title: Classification of OME with Eardrum Otoendoscopic Images Using Hybrid-Based Deep Models, NCA, and Gaussian Method
  publication-title: Traitement du Signal
  doi: 10.18280/ts.390422
– volume: 129
  start-page: 271
  year: 2020
  ident: pone.0285796.ref048
  article-title: Deep-learning framework to detect lung abnormality–a study with chest x-ray and lung ct scan images
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2019.11.013
– volume: 10919
  year: 2021
  ident: pone.0285796.ref049
  article-title: Interpretative computer-aided lung cancer diagnosis: from radiology analysis to malignancy evaluation.
  publication-title: arXiv preprint arXiv:2102.
– volume: 24
  start-page: 1559
  issue: 10
  year: 2018
  ident: pone.0285796.ref051
  article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning.
  publication-title: Nature medicine
  doi: 10.1038/s41591-018-0177-5
– start-page: 1
  year: 2018
  ident: pone.0285796.ref016
  article-title: How Meta-Heuristic Algorithms Contribute to Deep Learning in the Hype of Big Data Analytics.
– volume: 28
  start-page: 2020
  issue: 6
  ident: pone.0285796.ref030
  article-title: Comparative assessment of light-based intelligent search and optimization algorithms
  publication-title: Light & Engineering
– volume: 41
  start-page: 5123
  year: 2016
  ident: pone.0285796.ref028
  article-title: Chaotic League Championship Algorithms
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-016-2200-9
– year: 2019
  ident: pone.0285796.ref024
  article-title: The blue monkey: A new nature inspired metaheuristic optimization algorithm
  publication-title: Periodicals of Engineering and Natural Sciences
– volume: 12
  start-page: 1604
  issue: 6
  year: 2020
  ident: pone.0285796.ref046
  article-title: Deep learning for the classification of small-cell and non-small-cell lung cancer.
  publication-title: Cancers
  doi: 10.3390/cancers12061604
– volume: 13
  start-page: 1
  issue: 3
  year: 2022
  ident: pone.0285796.ref065
  article-title: A Novel Approach for Small Object Detection in Medical Images through Deep Ensemble Convolution Neural Network
  publication-title: International Journal of Advanced Computer Science and Applications
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: pone.0285796.ref002
  article-title: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA: a cancer journal for clinicians
– volume: 10
  issue: 6
  year: 2019
  ident: pone.0285796.ref015
  article-title: Towards improving the convolutional neural networks for deep learning using the distributed artificial bee colony method.
  publication-title: Springer, International Journal of Machine Learning and Cybernetics
– volume: 93
  start-page: 172
  issue: 1–2
  year: 2023
  ident: pone.0285796.ref040
  article-title: Fabric wrinkle rating model based on ResNet18 and optimized random vector functional-link network
  publication-title: Textile Research Journal
  doi: 10.1177/00405175221117614
– start-page: 558
  year: 2020
  ident: pone.0285796.ref055
  article-title: Feature selection using metaheuristic algorithms: Concept, applications and population based comparison
  publication-title: In 2020 International Conference on Computational Performance Evaluation
– year: 2021
  ident: pone.0285796.ref054
  article-title: Lung cancer diagnosis based on an ann optimized by improved teo algorithm.
  publication-title: Computational Intelligence and Neuroscience
– start-page: 1
  year: 2018
  ident: pone.0285796.ref050
  article-title: A deep learning based approach to lung cancer identification
  publication-title: International Conference on Artificial Intelligence and Data Processing
– volume: 8
  issue: 1
  year: 2019
  ident: pone.0285796.ref006
  article-title: Feasibility of lung cancer screening in developing countries: challenges, opportunities and way forward.
  publication-title: Translational lung cancer research
– volume: 15
  start-page: 190
  issue: 1
  year: 2020
  ident: pone.0285796.ref056
  article-title: Classification of pathological types of lung cancer from ct images by deep residual neural networks with transfer learning strategy.
  publication-title: Open Medicine
  doi: 10.1515/med-2020-0028
– start-page: 393
  year: 2011
  ident: pone.0285796.ref060
  article-title: Investigation on the effect of a Gaussian Blur in image filtering and segmentation
  publication-title: Proceedings of ELMAR ConferenceZadar, Croatia
– year: 2017
  ident: pone.0285796.ref052
  article-title: Deep convolutional neural networks for lung cancer detection.
  publication-title: Standford University
– year: 2021
  ident: pone.0285796.ref066
  article-title: Lung Cancer Diagnosis Based on Convolutional Neural Networks Ensemble Model
  publication-title: International Seminar on Artificial IntelligenceNetworking and Information Technology (AINIT)
– volume: 93
  start-page: 936
  issue: 3–4
  year: 2023
  ident: pone.0285796.ref039
  article-title: Classifying fabric defects with evolving Inception v3 by improved L2, 1-norm regularized extreme learning machine
  publication-title: Textile Research Journal
  doi: 10.1177/00405175221114633
– volume: 34
  issue: 4
  year: 2021
  ident: pone.0285796.ref010
  article-title: Characterization of abnormalities in breast cancer images using nature-inspired metaheuristic optimized convolutional neural networks model
  publication-title: Concurrency and Computation Practice and Experience
– volume: 10
  start-page: 1
  year: 2022
  ident: pone.0285796.ref025
  article-title: Ebola Optimization Search Algorithm (EOSA): A new metaheuristic algorithm based on the propagation model of Ebola virus disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147821
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0285796.ref005
  article-title: Development of a prognostic signature for esophageal cancer based on nine immune related genes
  publication-title: BMC cancer
– volume-title: Introduction to genetic algorithms.
  year: 2008
  ident: pone.0285796.ref017
– volume: 16
  start-page: e0246716
  issue: 2
  year: 2021
  ident: pone.0285796.ref004
  article-title: Consensus study on the health system and patient-related barriers for lung cancer management in South Africa
  publication-title: Plos one
  doi: 10.1371/journal.pone.0246716
– volume: 20
  start-page: 2163026
  issue: 1
  year: 2023
  ident: pone.0285796.ref038
  article-title: Fabric Wrinkle Objective Evaluation Model with Random Vector Function Link Based on Optimized Artificial Hummingbird Algorithm
  publication-title: Journal of Natural Fibers
  doi: 10.1080/15440478.2022.2163026
– start-page: 1
  year: 2022
  ident: pone.0285796.ref063
  article-title: Computer-Aided Lung Cancer Detection and Classification of CT Images Using Convolutional Neural Network
  publication-title: Computer Vision and Internet of Things
– year: 2021
  ident: pone.0285796.ref035
  article-title: A method for optimal detection of lung cancer based on deep learning optimized by marine predators algorithm
  publication-title: Computational Intelligence and Neuroscience
– volume: 79
  start-page: 7731
  issue: 11
  year: 2020
  ident: pone.0285796.ref036
  article-title: Deep learning for lung cancer detection and classification.
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-019-08394-3
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0285796.ref003
  article-title: Assessing the prices and affordability of oncology medicines for three common cancers within the private sector of South Africa
  publication-title: BMC Health Services Research
  doi: 10.1186/s12913-021-06627-6
– volume: 32
  start-page: 11083
  issue: 15
  year: 2020
  ident: pone.0285796.ref057
  article-title: A novel deep learning-based multi-model ensemble method for the prediction of neuromuscular disorders.
  publication-title: Neural computing and applications
  doi: 10.1007/s00521-018-3896-0
– volume: 69
  start-page: 46
  year: 2014
  ident: pone.0285796.ref022
  article-title: Grey wolf optimizer.
  publication-title: Advances in engineering software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 191
  start-page: 184
  issue: 1
  year: 2019
  ident: pone.0285796.ref014
  article-title: Symbiotic organisms search algorithm: Theory, recent advances and applications
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.10.045
– start-page: 699
  year: 2019
  ident: pone.0285796.ref044
  article-title: Lung cancer detection: a deep learning approach.
  publication-title: In Soft Computing for Problem SolvingSpringer
  doi: 10.1007/978-981-13-1595-4_55
– volume: 45
  start-page: 2459
  issue: 4
  year: 2020
  ident: pone.0285796.ref037
  article-title: New approaches in metaheuristic to classify medical data using artificial neural network.
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-019-04026-y
SSID ssj0053866
Score 2.5712428
Snippet Recently, research has shown an increased spread of non-communicable diseases such as cancer. Lung cancer diagnosis and detection has become one of the biggest...
SourceID plos
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0285796
SubjectTerms Accuracy
Algorithms
Analysis
Bias
Biology and Life Sciences
Care and treatment
Classification
Computed tomography
Computer and Information Sciences
Configuration management
CT imaging
Datasets
Deep learning
Design
Diagnosis
Ebola virus
Engineering and Technology
Evaluation
Feature selection
Heuristic methods
Lung cancer
Lung diseases
Machine learning
Medical imaging
Medicine and Health Sciences
Methods
Modelling
Neural networks
Optimization
Optimization algorithms
Optimization techniques
Outdoor air quality
Performance assessment
Physical Sciences
Public health
Research and Analysis Methods
Search algorithms
Viruses
SummonAdditionalLinks – databaseName: ProQuest Central - New (Subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_q9UFBxFalp1VXEdSHXJNskk0eRM7SUgVPqa30LeznVUiT2OQQH_zfnUk2pxHRvgV2EpL53s3Mbwh5FlmOWULqscgXHkSowBM8Mp6MZZyFOpHSx-bk94vk6DR6dxafbZDF0AuDZZWDT-wcta4UnpHvhWmM6Ffgcl_XXz2cGoV_V4cRGsKNVtCvOoixa2QzRGSsCdl8c7D4eDz4ZrDuJHENdIwHe05es7oqzQwiLTZmjgKUc9OTuqiaUQ76ZwXl9VVZi-_fRFH8Fp4Ob5NbLq-k814RtsiGKbfJzf5Qjva9Rttky1lyQ184uOmXd8iP-aqtOuBWqk3bVWaVVJSaKkyssZKoEx6tLC3AM1CFenJJ909oA5cNxTioKRBoY2rqplAsuyeALysErcArXbh2T9pbFhXFEpjbnl_cJaeHByf7R54byuCpxI9aD1tX_dAGqUx1yIyKLDMJTrXSKfiHQAZ-JoHSWq5sCrmotZihceUHKjDSN-wemZTA7h1ClRaZzSKexSmLmNbC8kyaVKU2ZlaEckrYIIlcOcRyHJxR5N1vOA47l565Ocovd_KbEm99V90jdvyH_jEKOe_7TtcGn885JH_gzng8JU87CoTLKLEeZylWTZO__fD5CkSfjkdEzx2RreBLlHA9EPA6CMM1otwdUYLRq9HyDqrk8EFN_ss84M5BTf--_GS9jA_FGrvSVKuOhmWwG_WjKUlH6r3mI2KRj1fKL-cdJjns6lmUMTYls7UlXIn99__9ug_IjRDSSjzFD_gumbSXK_MQ0sBWPnK2_RM97mDU
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAXoHyoCwUMQnwckiZxEifHVUVVkCgIuqgcUGQ79rYiTVabRAgk-O3MJM6KVCDKgVskP1vxxB4_xzPPhDwODUeWkDgs9IQDK5TvCB5qR0YySoM8ltLD5OTXh_HBPHx1HB1vkE9DLoy1IOwRi6ruTvLxoSr1rrXkLuoV9aenrs-4P9RwlwByYbXE5MonneIQ_hlrMAHpEtmMI6DqE7I5P3w7-9ifNAdOHHjMptP9qaXRcmWd9gRfacRIz8dTXm7Lpfj6RRTFL4vV_jXyY-hmH6Py2W0b6apv5xQg_5sdrpOrlubSWd_KFtnQ5Q2yZR1JTZ9ZtevnN8n3WdtUnW4szXXTBYaVVJQ5VcjrMZCpGzu0MrQAx0QVDtMV3TuiNTzWFJfhnAIg13pJ7SUYi64FcKWFoBU4xTObbUr7iU1FsahWp83J2S0y339xtHfg2DshHBV7YeNg5qwXGD-RSR4wrULDdIyXauUJuCdf-l4qAWkMVyYBKmwMEkSuPF_5Wnqa3SaTEiy0TajKRWrSkKdRwkKW58LwVOpEJSZiRgRyStjw6TNlBdPx3o4i604BOWycemNmaPLMmnxKnHWtZS8Y8hf8AxxVWZ_2uvY32YwD9wRvyqMpedQhUK2jxHCghWjrOnv55sMFQO_fjUBPLchU0BMlbAoGvA6OphFyZ4QEn6NGxds4HIcO1Rn0BbXpgBBBzWFe_L744boYG8UQv1JXbYdhKWyGvXBKktF8WtsRpdDHJeXpSSeJ7nshC1PGpsRdT70Lmf_Ov1a4S64EwHPxWMHnO2TSrFp9D3hpI-9b7_ITnMGVVg
  priority: 102
  providerName: Unpaywall
Title Automatic detection and classification of lung cancer CT scans based on deep learning and ebola optimization search algorithm
URI https://www.proquest.com/docview/2852601130
https://www.proquest.com/docview/2853942804
https://pubmed.ncbi.nlm.nih.gov/PMC10434933
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0285796&type=printable
http://dx.doi.org/10.1371/journal.pone.0285796
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw0Nq6B5AQYgO0wigGIT4eUiV1EicPCJVqZSBtTGNF3VPkOHaHlCVZkwr2wH_nLnEjggbsJYrisxXf-T5s3wchL1zN0UoILObawgIN5ViCu8qKvdgLR4kfxzYGJx8e-Qcz99Pcm2-Q9UW7QWB57dYO60nNlunwx-XVO2D4t3XVBu6sOw2LPFND0JcYXvmyuLSwtBRewZo6G5tkC9RXiPUdDt32qgEY3vdNTN3fBuvoLCO5e0Walx2z9E-nylurrBBX30Wa_qaxpvfIXWNq0nGzNrbJhsp2yJ3mnI424Uc7ZNswd0lfmwzUb-6Tn-NVlde5XGmiqtpZK6MiS6hEWxudi2p60lzTFIQFlbh0lnRySkt4LSmqxoQCQKJUQU1hikU9Aoi3VNAcBNWFiQClDbNRkS4AldX5xQMym-6fTg4sU6fBkr7tVhZGs9oj7QRxkIyYkq5mysdCV0kAIsOJHTuMAVJrLnUA5qnWaLRxaTvSUbGt2EPSywDdu4TKRIQ6dHnoBcxlSSI0D2MVyEB7TItR3CdsTYlImiTmWEsjjeqbOQ6bmQa5EdIvMvTrE6vtVTRJPP4D_xSJHDWhqK0MiMYc7EGQcNzrk-c1BGbQyNBFZyFWZRl9_Pz1BkBfTjpArwyQzmEmUpiwCPgdzMzVgdzrQIIckJ3mXVyS6wmVEcwF88WBkQI918v0-uZnbTMOim53mcpXNQwLYYNqu30SdJZ3i0dMT95tyb6d12nKYaPP3JCxPhm2nHAj9D_69-8-JrdHYGniwb7D90ivWq7UE7AMq3hANvmcwzOYOPicfhiQrff7R8cng_qsZVBzPnybHR2Pz34BwBlumw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb5RAFJ_U9VATY2zVdLXa0WjUA1tghgUOxmyqza79MNG22RsOw8zWhAIWNk0P_kv-jb4HA4ox2ktvJPODwLw3v_eGeR-EPOfaRy8hsBi3hQUWyrGEz5UVe7EXusk4jm1MTj44HE-P-Ye5N18hP9pcGAyrbDmxJuokl_iPfNsNPKx-BZT7tvhmYdcoPF1tW2g0arGnLi9gy1a-mb0D-b5w3d33RztTy3QVsOTY5pWFuZe2q50gDhKXKck1U2Nsy5QEoOBO7NhhDEitfakDcKa0RhfDl7YjHRXbisFzb5CbnAGXwPrx590GD7hjPDbpecx3to02jIo8UyOw45j22TN_xggMijQvex7un_GZq8usEJcXIk1_M367d8kd47XSSaNma2RFZevkdvPLjzaZTOtkzfBESV-ZYtav75Hvk2WV12VhaaKqOu4royJLqES3HeOUatWguaYp8A6VqIXndOeIlnBZUrSyCQVAolRBTY-LRf0EYMpU0Bw478wkk9JGQFSkCxBddXp2nxxfi3AekEEG071BqExEqEPuh17AOEsSof0wVoEMtMe0cOMhYa0kImnqoWNbjjSqD_l82Bc1kxuh_CIjvyGxuruKph7If_BbKOSoyWrt6CSa-OBaAln63pA8qxFYjCPDaJ-FWJZlNPt4cgXQ50890EsD0jl8iRQmwwJeB4t89ZCbPSRQiuwNb6BKth9URr8WH9zZqunfh592w_hQjODLVL6sMSyEva7NhyToqXc3j1jpvD-SfT2tK547Nmc8ZGxIRt1KuNL0P_z3626R1enRwX60Pzvce0RuueDA4nmB42-SQXW-VI_B4aziJ_Uqp-TLddPKT0IWlfk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb5RAEN7UM1ETY2zV9LTa1Wi0D9wBCyw8GHNpvbRWq9HW3Bsuy-7VhAIWLk0f_Mf865yB5RRjtC99I9mBwM6338yy84OQp57m6CWEFvNsYYGFcizBPWUlfuJHbhokiY3Jye8Ogt0j783Mn62QH10uDIZVdpzYEHVaSPxHPnZDH6tfAeWOtQmL-LAzfVV-s7CDFJ60du00Wojsq_Mz2L5VL_d2QNfPXHf6-nB71zIdBiwZ2F5tYR6m7WonTMLUZUp6mqkAWzSlIYDdSRw7SkBSay51CI6V1uhucGk70lGJrRg89wq5yhmLMJyQz5abPeCRIDCpeow7Y4OMUVnkagQ2HVNAe6bQGIRBmRVVz9v9M1bz-iIvxfmZyLLfDOH0NrllPFg6aSG3SlZUvkZutr__aJvVtEZWDWdU9IUpbL11h3yfLOqiKRFLU1U3MWA5FXlKJbrwGLPUwIQWmmbAQVQiIk_p9iGt4LKiaHFTCgKpUiU1_S7mzROANTNBC-C_E5NYSlsFUZHNQXX18cldcnQpyrlHBjlM9zqhMhWRjjwe-SHzWJoKzaNEhTLUPtPCTYaEdZqIpamNji06srg58OOwR2onN0b9xUZ_Q2It7yrb2iD_kd9EJcdthuuSWuIJBzcTiJP7Q_KkkcDCHDlCfC4WVRXvvf98AaFPH3tCz42QLuBLpDDZFvA6WPCrJ7nRkwR6kb3hdYRk90FV_Gshwp0dTP8-_Hg5jA_FaL5cFYtGhkWw77W9IQl78F7OI1Y974_kX4-b6ueO7TEvYmxIRsuVcKHpv__v190k14BQ4rd7B_sPyA0XfFk8OnD4BhnUpwv1EHzPOnnULHJKvlw2q_wEY3maPA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAXoHyoCwUMQnwckiZxEifHVUVVkCgIuqgcUGQ79rYiTVabRAgk-O3MJM6KVCDKgVskP1vxxB4_xzPPhDwODUeWkDgs9IQDK5TvCB5qR0YySoM8ltLD5OTXh_HBPHx1HB1vkE9DLoy1IOwRi6ruTvLxoSr1rrXkLuoV9aenrs-4P9RwlwByYbXE5MonneIQ_hlrMAHpEtmMI6DqE7I5P3w7-9ifNAdOHHjMptP9qaXRcmWd9gRfacRIz8dTXm7Lpfj6RRTFL4vV_jXyY-hmH6Py2W0b6apv5xQg_5sdrpOrlubSWd_KFtnQ5Q2yZR1JTZ9ZtevnN8n3WdtUnW4szXXTBYaVVJQ5VcjrMZCpGzu0MrQAx0QVDtMV3TuiNTzWFJfhnAIg13pJ7SUYi64FcKWFoBU4xTObbUr7iU1FsahWp83J2S0y339xtHfg2DshHBV7YeNg5qwXGD-RSR4wrULDdIyXauUJuCdf-l4qAWkMVyYBKmwMEkSuPF_5Wnqa3SaTEiy0TajKRWrSkKdRwkKW58LwVOpEJSZiRgRyStjw6TNlBdPx3o4i604BOWycemNmaPLMmnxKnHWtZS8Y8hf8AxxVWZ_2uvY32YwD9wRvyqMpedQhUK2jxHCghWjrOnv55sMFQO_fjUBPLchU0BMlbAoGvA6OphFyZ4QEn6NGxds4HIcO1Rn0BbXpgBBBzWFe_L744boYG8UQv1JXbYdhKWyGvXBKktF8WtsRpdDHJeXpSSeJ7nshC1PGpsRdT70Lmf_Ov1a4S64EwHPxWMHnO2TSrFp9D3hpI-9b7_ITnMGVVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+and+classification+of+lung+cancer+CT+scans+based+on+deep+learning+and+ebola+optimization+search+algorithm&rft.jtitle=PloS+one&rft.au=Mohamed%2C+Tehnan+I+A&rft.au=Oyelade%2C+Olaide+N&rft.au=Ezugwu%2C+Absalom+E&rft.date=2023-08-17&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=8&rft.spage=e0285796&rft_id=info:doi/10.1371%2Fjournal.pone.0285796&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon