Automated multiclass tissue segmentation of clinical brain MRIs with lesions
•A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types.•The U-Net was able to segment gray and white matter in the presence of lesions.•The U-Net surpassed the performance of its source algorithm in an external dataset.•Segmentations were produced in a hundred...
Saved in:
| Published in | NeuroImage clinical Vol. 31; p. 102769 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.01.2021
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2213-1582 2213-1582 |
| DOI | 10.1016/j.nicl.2021.102769 |
Cover
| Abstract | •A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types.•The U-Net was able to segment gray and white matter in the presence of lesions.•The U-Net surpassed the performance of its source algorithm in an external dataset.•Segmentations were produced in a hundredth of the time of its predecessor algorithm.
Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions. |
|---|---|
| AbstractList | Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions. •A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types.•The U-Net was able to segment gray and white matter in the presence of lesions.•The U-Net surpassed the performance of its source algorithm in an external dataset.•Segmentations were produced in a hundredth of the time of its predecessor algorithm. Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions. Highlights•A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types. •The U-Net was able to segment gray and white matter in the presence of lesions. •The U-Net surpassed the performance of its source algorithm in an external dataset. •Segmentations were produced in a hundredth of the time of its predecessor algorithm. • A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types. • The U-Net was able to segment gray and white matter in the presence of lesions. • The U-Net surpassed the performance of its source algorithm in an external dataset. • Segmentations were produced in a hundredth of the time of its predecessor algorithm. Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions. Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions.Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions. |
| ArticleNumber | 102769 |
| Author | Xie, Long Nick Bryan, R. Sugrue, Leo P Rauschecker, Andreas M. Saluja, Rachit Weiss, David A. Pradhan, Abhijeet Gee, James C. Rudie, Jeffrey D. |
| Author_xml | – sequence: 1 givenname: David A. surname: Weiss fullname: Weiss, David A. email: dweiss044@gmail.com organization: University of Pennsylvania, United States – sequence: 2 givenname: Rachit surname: Saluja fullname: Saluja, Rachit organization: University of Pennsylvania, United States – sequence: 3 givenname: Long surname: Xie fullname: Xie, Long organization: University of Pennsylvania, United States – sequence: 4 givenname: James C. surname: Gee fullname: Gee, James C. organization: University of Pennsylvania, United States – sequence: 5 givenname: Leo P surname: Sugrue fullname: Sugrue, Leo P organization: University of California, San Francisco, United States – sequence: 6 givenname: Abhijeet surname: Pradhan fullname: Pradhan, Abhijeet organization: University of Texas, Austin, United States – sequence: 7 givenname: R. surname: Nick Bryan fullname: Nick Bryan, R. organization: University of Texas, Austin, United States – sequence: 8 givenname: Andreas M. surname: Rauschecker fullname: Rauschecker, Andreas M. organization: University of California, San Francisco, United States – sequence: 9 givenname: Jeffrey D. surname: Rudie fullname: Rudie, Jeffrey D. organization: University of California, San Francisco, United States |
| BookMark | eNqNkk1v1DAQhiNUREvpH-CUI5dd_B0HIaSqKrDSIiQ-zpbjTLYOjr3YSav99zikVBQJqC-27Hmf8bwzT4sjHzwUxXOM1hhh8bJfe2vcmiCC8wWpRP2oOCEE0xXmkhz9dj4uzlLqUV4SoUqIJ8UxZZRSUqGTYns-jWHQI7TlMLkxI3VK5WhTmqBMsBvAj3q0wZehK42zOal2ZRO19eWHT5tU3tjxqnSQckh6VjzutEtwdrufFl_fXn65eL_afny3uTjfroxAbFwJw5FpmBbSUILAoA4aTAAJzSuiJXQEcdky3gHGtQGNTcNR3ZpGM2N4U9PTYrNw26B7tY920PGggrbq50WIO6XjXAsoLJmgrKoFSMNYJeuGt6iRFOFOa46bzKILa_J7fbjRzt0BMVKz1apXs9VqtlotVmfVm0W1n5oBWpNditrd-8r9F2-v1C5cK0mZEHIGvLgFxPB9gjSqwSYDzmkPYUqKcF5xWhNW5VC5hJoYUorQKWOXnmSydf_-JvlD-qDaXi8iyC28thBVMha8gdZGMGP22D7Imjv5r7H5BgdIfZiiz8OhsEpEIfV5ntN5TAlGmUJlBrz6O-B_2X8AThz3xA |
| CitedBy_id | crossref_primary_10_1007_s40747_024_01639_1 crossref_primary_10_1016_j_neuroimage_2022_119486 crossref_primary_10_3390_app142411575 crossref_primary_10_3390_bioengineering10020181 crossref_primary_10_1007_s11042_023_17259_9 crossref_primary_10_3389_frai_2022_780405 crossref_primary_10_3174_ajnr_A7845 crossref_primary_10_3389_fnins_2023_1177540 crossref_primary_10_1162_imag_a_00446 crossref_primary_10_1007_s12021_024_09708_z |
| Cites_doi | 10.1109/TMI.2016.2548501 10.1007/s12021-011-9109-y 10.3174/ajnr.A4262 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.neuroimage.2009.01.011 10.1148/ryai.2020190146 10.1016/j.neuroimage.2017.04.041 10.1186/alzrt263 10.1161/01.STR.0000199847.96188.12 10.1109/IJCNN.2017.7966333 10.1016/j.media.2010.05.010 10.1111/1467-9868.00083 10.1007/978-3-319-24574-4_28 10.1007/978-3-030-72084-1_4 10.1155/2015/813696 10.1016/j.neuroimage.2017.04.039 10.3174/ajnr.A6138 10.1016/j.media.2020.101688 10.1111/1754-9485.12726 10.1101/2020.01.29.924985 10.2214/AJR.07.2249 10.1016/j.neuroimage.2006.01.015 10.1148/radiol.2512072071 10.1038/s41592-020-01008-z 10.1016/j.neuroimage.2018.11.042 10.1002/mrm.28547 10.1016/j.neuroimage.2021.117934 10.1186/s12880-020-0409-2 10.1109/42.511747 10.1016/j.media.2016.08.014 10.1162/jocn.2007.19.9.1498 10.1148/ryai.2020190183 10.1016/S0896-6273(02)00569-X 10.1109/JBHI.2020.3016306 10.1007/s10278-017-9983-4 10.1016/j.acra.2015.05.007 10.1002/hbm.21344 10.1146/annurev-bioeng-071516-044442 10.3174/ajnr.A2800 10.1016/j.neuroimage.2014.05.044 10.1016/j.neuroimage.2020.117012 10.1109/TPAMI.2016.2644615 10.1148/radiol.2020190283 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. 2021 The Authors 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2021 The Authors 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1016/j.nicl.2021.102769 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2213-1582 |
| EndPage | 102769 |
| ExternalDocumentID | oai_doaj_org_article_184634796e8c44789b5d0b8301faa51b 10.1016/j.nicl.2021.102769 PMC8346689 10_1016_j_nicl_2021_102769 S2213158221002138 1_s2_0_S2213158221002138 |
| GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c604t-6c50cb4a68c320ec0feb12e06a572a8ef2058d45fe119cea1cb509dcba4cc5b93 |
| IEDL.DBID | M48 |
| ISSN | 2213-1582 |
| IngestDate | Fri Oct 03 12:52:10 EDT 2025 Sun Oct 26 04:05:28 EDT 2025 Tue Sep 30 16:38:30 EDT 2025 Wed Oct 01 15:06:47 EDT 2025 Wed Oct 01 01:54:10 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Tue Jul 25 20:59:25 EDT 2023 Tue Feb 25 20:08:55 EST 2025 Tue Aug 26 16:33:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Segmentation Convolutional neural networks Artificial Intelligence Magnetic resonance images |
| Language | English |
| License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c604t-6c50cb4a68c320ec0feb12e06a572a8ef2058d45fe119cea1cb509dcba4cc5b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2021.102769 |
| PMID | 34333270 |
| PQID | 2557539247 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_184634796e8c44789b5d0b8301faa51b unpaywall_primary_10_1016_j_nicl_2021_102769 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8346689 proquest_miscellaneous_2557539247 crossref_citationtrail_10_1016_j_nicl_2021_102769 crossref_primary_10_1016_j_nicl_2021_102769 elsevier_sciencedirect_doi_10_1016_j_nicl_2021_102769 elsevier_clinicalkeyesjournals_1_s2_0_S2213158221002138 elsevier_clinicalkey_doi_10_1016_j_nicl_2021_102769 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | NeuroImage clinical |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Myronenko, 2018., A. 3D MRI brain tumor segmentation using autoencoder regularization. ArXiv181011654 Cs Q-Bio [Internet]. 2018 Nov 19 [cited 2021 Jan 28]; Available from Blitstein, Tung (b0030) 2007; 189 Rauschecker, Rudie, Xie, Wang, Duong, Botzolakis, Kovalovich, Egan, Cook, Bryan, Nasrallah, Mohan, Gee (b0185) 2020; 295 Fedorov, A., Johnson, J., Damaraju, E., Ozerin, A., Calhoun, V., Plis, S., 2017. End-to-end learning of brain tissue segmentation from imperfect labeling. ArXiv161200940 Cs [Internet]. [cited 2021 Feb 11]; Available from Mendrik, A.M., Vincken, K.L., Kuijf, H.J., Breeuwer, M., Bouvy, W.H., de Bresser, J., et al., 2015. MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans [Internet]. Vol. 2015, Computational Intelligence and Neuroscience. Hindawi; [cited 2021 Jan 28]. p. e813696. Available from Battaglini, Jenkinson, De Stefano (b0025) 2012; 33 Tustison, Cook, Klein, Song, Das, Duda, Kandel, van Strien, Stone, Gee, Avants (b0225) 2014; 99 Jamshidian, Jennrich (b0110) 1997; 59 Liu, Z., Gu, D., Zhang, Y., Cao, X., Xue, Z., 2021. Automatic Segmentation of Non-tumor Tissues in Glioma MR Brain Images Using Deformable Registration with Partial Convolutional Networks. In: Crimi A, Bakas S, editors. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [Internet]. Cham: Springer International Publishing; [cited 2021 Jun 3]. p. 41–50. (Lecture Notes in Computer Science; vol. 12658). DOI:10.1007/978-3-030-72084-1_4. Avants, Tustison, Wu, Cook, Gee (b0010) 2011; 9 Martinez-Ramirez, Greenberg, Viswanathan (b0150) 2014; 6 Sharma, Dearaugo, Infeld, O'Sullivan, Gerraty (b0205) 2018; 62 Shen, Wu, Suk (b0210) 2017; 19 Liu, Wu, Wang, Wang (b0130) 2020; 24 Kingma, D.P., Ba, J., 2017. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs [Internet]. [cited 2021 Jan 28]; Available from Valverde, Oliver, Díez, Cabezas, Vilanova, Ramió-Torrentà, Rovira, Lladó (b0230) 2015; 36 Viswanathan, Chabriat (b0240) 2006; 37 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (b0250) 2006; 31 Badrinarayanan, Kendall, Cipolla (b0015) 2017; 39 Milletari, Navab, Ahmadi (b0165) 2016 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (b0105) 2021; 18 Guha Roy, Conjeti, Navab, Wachinger (b0085) 2019; 1 Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. in: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41. (Lecture Notes in Computer Science). . Bontempi, Benini, Signoroni, Svanera, Muckli (b0035) 2020; 62 Isensee, Kickingereder, Wick, Bendszus, Maier-Hein (b0100) 2017 Akkus, Galimzianova, Hoogi, Rubin, Erickson (b0005) 2017; 30 Kim, Na, Kim, Kim, Kim, Yun, Chang (b0115) 2009; 251 McDonald, Schwartz, Eckel, Diehn, Hunt, Bartholmai, Erickson, Kallmes (b0155) 2015; 22 Marcus, Wang, Parker, Csernansky, Morris, Buckner (b0145) 2007; 19 Dempster, Laird, Rubin (b0060) 1977; 39 Dolz, Desrosiers, Ben (b0065) 2018; 15 Manjón, Coupé, Buades, Fonov, Louis Collins, Robles (b0140) 2010; 14 de Boer, Vrooman, van der Lijn, Vernooij, Ikram, van der Lugt, Breteler, Niessen (b0055) 2009; 45 Luna, Park (b0135) 2018 Tushar, Alyafi, Hasan, Dahal (b0220) 2019 Henschel, Conjeti, Estrada, Diers, Fischl, Reuter (b0090) 2020; 219 Moeskops, Viergever, Mendrik, de Vries, Benders, Isgum (b0170) 2016; 35 Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al., 2019. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. ArXiv181102629 Cs Stat [Internet]. 2019 Apr 23 [cited 2021 Jan 28]; Available from Hu, Luo, Hu, Guo, Huang, Scott, Wiest, Dahlweid, Reyes (b0095) 2020; 20 Cai, Akkus, Philbrick, Boonrod, Hoodeshenas, Weston, Rouzrokh, Conte, Zeinoddini, Vogelsang, Huang, Erickson (b0040) 2020; 2 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (b0080) 2002; 33 Mueller, Keeser, Reiser, Teipel, Meindl (b0175) 2012; 33 Song (b0215) 2018 Valverde, Oliver, Roura, González-Villà, Pareto, Vilanova, Ramió-Torrentà, Rovira, Lladó (b0235) 2017; 35 Zhang, Breger, Cho, Ning, Westin, O’Donnell, Pasternak (b0255) 2021; 233 Dadar, Collins (b0050) 2021; 85 Duong, Rudie, Wang, Xie, Mohan, Gee, Rauschecker (b0070) 2019; 40 Wells, Grimson, Kikinis, Jolesz (b0245) 1996; 15 Chen, Dou, Yu, Qin, Heng (b0045) 2018; 15 Sendra-Balcells, C., Salvador, R., Pedro, J.B., Biagi, M.C., Aubinet, C., Manor, B., et al., 2020. Convolutional neural network MRI segmentation for fast and robust optimization of transcranial electrical current stimulation of the human brain. bioRxiv. 2020 Jan 29;2020.01.29.924985. Rudie, Rauschecker, Xie, Wang, Duong, Botzolakis, Kovalovich, Egan, Cook, Bryan, Nasrallah, Mohan, Gee (b0195) 2020; 2 Yushkevich (10.1016/j.nicl.2021.102769_b0250) 2006; 31 Milletari (10.1016/j.nicl.2021.102769_b0165) 2016 Isensee (10.1016/j.nicl.2021.102769_b0105) 2021; 18 Blitstein (10.1016/j.nicl.2021.102769_b0030) 2007; 189 Cai (10.1016/j.nicl.2021.102769_b0040) 2020; 2 Jamshidian (10.1016/j.nicl.2021.102769_b0110) 1997; 59 Zhang (10.1016/j.nicl.2021.102769_b0255) 2021; 233 Fischl (10.1016/j.nicl.2021.102769_b0080) 2002; 33 10.1016/j.nicl.2021.102769_b0020 Song (10.1016/j.nicl.2021.102769_b0215) 2018 Henschel (10.1016/j.nicl.2021.102769_b0090) 2020; 219 Mueller (10.1016/j.nicl.2021.102769_b0175) 2012; 33 Bontempi (10.1016/j.nicl.2021.102769_b0035) 2020; 62 Hu (10.1016/j.nicl.2021.102769_b0095) 2020; 20 10.1016/j.nicl.2021.102769_b0180 Rauschecker (10.1016/j.nicl.2021.102769_b0185) 2020; 295 Rudie (10.1016/j.nicl.2021.102769_b0195) 2020; 2 Sharma (10.1016/j.nicl.2021.102769_b0205) 2018; 62 Valverde (10.1016/j.nicl.2021.102769_b0235) 2017; 35 Martinez-Ramirez (10.1016/j.nicl.2021.102769_b0150) 2014; 6 Duong (10.1016/j.nicl.2021.102769_b0070) 2019; 40 Valverde (10.1016/j.nicl.2021.102769_b0230) 2015; 36 de Boer (10.1016/j.nicl.2021.102769_b0055) 2009; 45 Akkus (10.1016/j.nicl.2021.102769_b0005) 2017; 30 10.1016/j.nicl.2021.102769_b0125 Tushar (10.1016/j.nicl.2021.102769_b0220) 2019 10.1016/j.nicl.2021.102769_b0200 10.1016/j.nicl.2021.102769_b0120 Isensee (10.1016/j.nicl.2021.102769_b0100) 2017 Shen (10.1016/j.nicl.2021.102769_b0210) 2017; 19 Avants (10.1016/j.nicl.2021.102769_b0010) 2011; 9 Battaglini (10.1016/j.nicl.2021.102769_b0025) 2012; 33 Tustison (10.1016/j.nicl.2021.102769_b0225) 2014; 99 Moeskops (10.1016/j.nicl.2021.102769_b0170) 2016; 35 McDonald (10.1016/j.nicl.2021.102769_b0155) 2015; 22 Chen (10.1016/j.nicl.2021.102769_b0045) 2018; 15 Wells (10.1016/j.nicl.2021.102769_b0245) 1996; 15 10.1016/j.nicl.2021.102769_b0160 Badrinarayanan (10.1016/j.nicl.2021.102769_b0015) 2017; 39 Luna (10.1016/j.nicl.2021.102769_b0135) 2018 Marcus (10.1016/j.nicl.2021.102769_b0145) 2007; 19 Dadar (10.1016/j.nicl.2021.102769_b0050) 2021; 85 Dempster (10.1016/j.nicl.2021.102769_b0060) 1977; 39 Guha Roy (10.1016/j.nicl.2021.102769_b0085) 2019; 1 Kim (10.1016/j.nicl.2021.102769_b0115) 2009; 251 Manjón (10.1016/j.nicl.2021.102769_b0140) 2010; 14 10.1016/j.nicl.2021.102769_b0075 Dolz (10.1016/j.nicl.2021.102769_b0065) 2018; 15 Liu (10.1016/j.nicl.2021.102769_b0130) 2020; 24 10.1016/j.nicl.2021.102769_b0190 Viswanathan (10.1016/j.nicl.2021.102769_b0240) 2006; 37 |
| References_xml | – reference: Kingma, D.P., Ba, J., 2017. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs [Internet]. [cited 2021 Jan 28]; Available from: – volume: 35 start-page: 1252 year: 2016 end-page: 1261 ident: b0170 article-title: Automatic segmentation of MR brain images with a convolutional neural network publication-title: IEEE Trans. Med. Imaging – volume: 62 start-page: 101688 year: 2020 ident: b0035 article-title: CEREBRUM: a fast and fully-volumetric Convolutional Encoder-decodeR for weakly-supervised sEgmentation of BRain strUctures from out-of-the-scanner MRI publication-title: Med. Image Anal. – reference: Liu, Z., Gu, D., Zhang, Y., Cao, X., Xue, Z., 2021. Automatic Segmentation of Non-tumor Tissues in Glioma MR Brain Images Using Deformable Registration with Partial Convolutional Networks. In: Crimi A, Bakas S, editors. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [Internet]. Cham: Springer International Publishing; [cited 2021 Jun 3]. p. 41–50. (Lecture Notes in Computer Science; vol. 12658). DOI:10.1007/978-3-030-72084-1_4. – volume: 18 start-page: 203 year: 2021 end-page: 211 ident: b0105 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods – volume: 251 start-page: 467 year: 2009 end-page: 475 ident: b0115 article-title: Distinguishing tumefactive demyelinating lesions from glioma or central nervous system lymphoma: added value of unenhanced CT compared with conventional contrast-enhanced MR imaging publication-title: Radiology – volume: 22 start-page: 1191 year: 2015 end-page: 1198 ident: b0155 article-title: The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload publication-title: Acad. Radiol. – start-page: 287 year: 2017 end-page: 297 ident: b0100 article-title: Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge publication-title: International MICCAI Brainlesion Workshop – volume: 189 start-page: 720 year: 2007 end-page: 725 ident: b0030 article-title: MRI of Cerebral Microhemorrhages publication-title: Am. J. Roentgenol. – volume: 33 start-page: 2033 year: 2012 end-page: 2037 ident: b0175 article-title: Functional and structural MR imaging in neuropsychiatric disorders, part 2: application in schizophrenia and autism publication-title: Am J Neuroradiol. – reference: Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al., 2019. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. ArXiv181102629 Cs Stat [Internet]. 2019 Apr 23 [cited 2021 Jan 28]; Available from: – volume: 219 start-page: 117012 year: 2020 ident: b0090 article-title: FastSurfer - a fast and accurate deep learning based neuroimaging pipeline publication-title: NeuroImage – volume: 30 start-page: 449 year: 2017 end-page: 459 ident: b0005 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J. Digit. Imaging – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: b0250 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 1 start-page: 713 year: 2019 end-page: 727 ident: b0085 article-title: QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy publication-title: NeuroImage – year: 2018 ident: b0215 article-title: 3D multi-scale U-net with atrous convolution for ischemic stroke lesion segmentation publication-title: Proc MICCAI ISLES 2018 Chall. – volume: 15 start-page: 446 year: 2018 end-page: 455 ident: b0045 article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images publication-title: NeuroImage – start-page: 223 year: 2019 end-page: 227 ident: b0220 article-title: Brain Tissue Segmentation Using NeuroNet With Different Pre-processing Techniques publication-title: 2019 Joint 8th International Conference on Informatics, Electronics Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision Pattern Recognition (icIVPR) – volume: 36 start-page: 1109 year: 2015 end-page: 1115 ident: b0230 article-title: Evaluating the effects of white matter multiple sclerosis lesions on the volume estimation of 6 brain tissue segmentation methods publication-title: AJNR Am. J. Neuroradiol. – volume: 62 start-page: 451 year: 2018 end-page: 463 ident: b0205 article-title: Cerebral amyloid angiopathy: review of clinico-radiological features and mimics publication-title: J. Med. Imaging Radiat. Oncol. – reference: Fedorov, A., Johnson, J., Damaraju, E., Ozerin, A., Calhoun, V., Plis, S., 2017. End-to-end learning of brain tissue segmentation from imperfect labeling. ArXiv161200940 Cs [Internet]. [cited 2021 Feb 11]; Available from: – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b0015 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 20 year: 2020 ident: b0095 article-title: Brain SegNet: 3D local refinement network for brain lesion segmentation publication-title: BMC Med. Imaging – start-page: 565 year: 2016 end-page: 571 ident: b0165 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 Fourth International Conference on 3D Vision (3DV) – volume: 295 start-page: 626 year: 2020 end-page: 637 ident: b0185 article-title: Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI publication-title: Radiology – volume: 45 start-page: 1151 year: 2009 end-page: 1161 ident: b0055 article-title: White matter lesion extension to automatic brain tissue segmentation on MRI publication-title: NeuroImage – volume: 40 start-page: 1282 year: 2019 end-page: 1290 ident: b0070 article-title: Convolutional neural network for automated FLAIR lesion segmentation on clinical brain MR imaging publication-title: Am. J. Neuroradiol. – volume: 39 start-page: 1 year: 1977 end-page: 22 ident: b0060 article-title: Maximum likelihood from incomplete data via the publication-title: J. R. Stat. Soc. Ser. B Methodol. – volume: 19 start-page: 221 year: 2017 end-page: 248 ident: b0210 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: b0080 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 24 start-page: 3215 year: 2020 end-page: 3225 ident: b0130 article-title: Multi-receptive-field CNN for semantic segmentation of medical images publication-title: IEEE J. Biomed. Health Inform. – volume: 14 start-page: 784 year: 2010 end-page: 792 ident: b0140 article-title: Non-local MRI upsampling publication-title: Med. Image Anal. – volume: 59 start-page: 569 year: 1997 end-page: 587 ident: b0110 article-title: Acceleration of the EM algorithm by using quasi-newton methods publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 35 start-page: 446 year: 2017 end-page: 457 ident: b0235 article-title: Automated tissue segmentation of MR brain images in the presence of white matter lesions publication-title: Med. Image Anal. – volume: 37 start-page: 550 year: 2006 end-page: 555 ident: b0240 article-title: Cerebral microhemorrhage publication-title: Stroke – volume: 33 start-page: 2062 year: 2012 end-page: 2071 ident: b0025 article-title: Evaluating and reducing the impact of white matter lesions on brain volume measurements publication-title: Hum. Brain Mapp. – volume: 2 start-page: e190146 year: 2020 ident: b0195 article-title: Subspecialty-level deep gray matter differential diagnoses with deep learning and Bayesian networks on clinical brain MRI: a pilot study publication-title: Radiol. Artif. Intell. – volume: 85 start-page: 1881 year: 2021 end-page: 1894 ident: b0050 article-title: BISON: Brain tissue segmentation pipeline using T1-weighted magnetic resonance images and a random forest classifier publication-title: Magn. Reson. Med. – volume: 15 start-page: 456 year: 2018 end-page: 470 ident: b0065 article-title: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study publication-title: NeuroImage – volume: 99 start-page: 166 year: 2014 end-page: 179 ident: b0225 article-title: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements publication-title: NeuroImage – volume: 233 start-page: 117934 year: 2021 ident: b0255 article-title: Deep learning based segmentation of brain tissue from diffusion MRI publication-title: NeuroImage – start-page: 394 year: 2018 end-page: 403 ident: b0135 article-title: 3D patchwise U-Net with transition layers for MR brain segmentation publication-title: International MICCAI Brainlesion Workshop – volume: 2 start-page: e190183 year: 2020 ident: b0040 article-title: Fully Automated Segmentation of Head CT Neuroanatomy Using Deep Learning publication-title: Radiol. Artif. Intell. – volume: 19 start-page: 1498 year: 2007 end-page: 1507 ident: b0145 article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults publication-title: J. Cogn. Neurosci. – volume: 9 start-page: 381 year: 2011 end-page: 400 ident: b0010 article-title: An open source multivariate framework for n-tissue segmentation with evaluation on public data publication-title: Neuroinformatics – reference: Myronenko, 2018., A. 3D MRI brain tumor segmentation using autoencoder regularization. ArXiv181011654 Cs Q-Bio [Internet]. 2018 Nov 19 [cited 2021 Jan 28]; Available from: – volume: 6 start-page: 33 year: 2014 ident: b0150 article-title: Cerebral microbleeds: overview and implications in cognitive impairment publication-title: Alzheimers Res. Ther. – reference: . – volume: 15 start-page: 429 year: 1996 end-page: 442 ident: b0245 article-title: Adaptive segmentation of MRI data publication-title: IEEE Trans. Med. Imaging. – reference: Sendra-Balcells, C., Salvador, R., Pedro, J.B., Biagi, M.C., Aubinet, C., Manor, B., et al., 2020. Convolutional neural network MRI segmentation for fast and robust optimization of transcranial electrical current stimulation of the human brain. bioRxiv. 2020 Jan 29;2020.01.29.924985. – reference: Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. in: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41. (Lecture Notes in Computer Science). – reference: Mendrik, A.M., Vincken, K.L., Kuijf, H.J., Breeuwer, M., Bouvy, W.H., de Bresser, J., et al., 2015. MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans [Internet]. Vol. 2015, Computational Intelligence and Neuroscience. Hindawi; [cited 2021 Jan 28]. p. e813696. Available from: – volume: 35 start-page: 1252 issue: 5 year: 2016 ident: 10.1016/j.nicl.2021.102769_b0170 article-title: Automatic segmentation of MR brain images with a convolutional neural network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2548501 – volume: 9 start-page: 381 issue: 4 year: 2011 ident: 10.1016/j.nicl.2021.102769_b0010 article-title: An open source multivariate framework for n-tissue segmentation with evaluation on public data publication-title: Neuroinformatics doi: 10.1007/s12021-011-9109-y – start-page: 565 year: 2016 ident: 10.1016/j.nicl.2021.102769_b0165 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation – volume: 36 start-page: 1109 issue: 6 year: 2015 ident: 10.1016/j.nicl.2021.102769_b0230 article-title: Evaluating the effects of white matter multiple sclerosis lesions on the volume estimation of 6 brain tissue segmentation methods publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A4262 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.nicl.2021.102769_b0060 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – start-page: 394 year: 2018 ident: 10.1016/j.nicl.2021.102769_b0135 article-title: 3D patchwise U-Net with transition layers for MR brain segmentation – volume: 45 start-page: 1151 issue: 4 year: 2009 ident: 10.1016/j.nicl.2021.102769_b0055 article-title: White matter lesion extension to automatic brain tissue segmentation on MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.011 – volume: 2 start-page: e190146 issue: 5 year: 2020 ident: 10.1016/j.nicl.2021.102769_b0195 article-title: Subspecialty-level deep gray matter differential diagnoses with deep learning and Bayesian networks on clinical brain MRI: a pilot study publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2020190146 – volume: 15 start-page: 446 issue: 170 year: 2018 ident: 10.1016/j.nicl.2021.102769_b0045 article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.04.041 – volume: 6 start-page: 33 issue: 3 year: 2014 ident: 10.1016/j.nicl.2021.102769_b0150 article-title: Cerebral microbleeds: overview and implications in cognitive impairment publication-title: Alzheimers Res. Ther. doi: 10.1186/alzrt263 – volume: 37 start-page: 550 issue: 2 year: 2006 ident: 10.1016/j.nicl.2021.102769_b0240 article-title: Cerebral microhemorrhage publication-title: Stroke doi: 10.1161/01.STR.0000199847.96188.12 – ident: 10.1016/j.nicl.2021.102769_b0075 doi: 10.1109/IJCNN.2017.7966333 – volume: 14 start-page: 784 issue: 6 year: 2010 ident: 10.1016/j.nicl.2021.102769_b0140 article-title: Non-local MRI upsampling publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.05.010 – volume: 59 start-page: 569 issue: 3 year: 1997 ident: 10.1016/j.nicl.2021.102769_b0110 article-title: Acceleration of the EM algorithm by using quasi-newton methods publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00083 – ident: 10.1016/j.nicl.2021.102769_b0190 doi: 10.1007/978-3-319-24574-4_28 – ident: 10.1016/j.nicl.2021.102769_b0125 doi: 10.1007/978-3-030-72084-1_4 – ident: 10.1016/j.nicl.2021.102769_b0160 doi: 10.1155/2015/813696 – volume: 15 start-page: 456 issue: 170 year: 2018 ident: 10.1016/j.nicl.2021.102769_b0065 article-title: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.04.039 – volume: 40 start-page: 1282 issue: 8 year: 2019 ident: 10.1016/j.nicl.2021.102769_b0070 article-title: Convolutional neural network for automated FLAIR lesion segmentation on clinical brain MR imaging publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A6138 – ident: 10.1016/j.nicl.2021.102769_b0020 – start-page: 223 year: 2019 ident: 10.1016/j.nicl.2021.102769_b0220 article-title: Brain Tissue Segmentation Using NeuroNet With Different Pre-processing Techniques – volume: 62 start-page: 101688 year: 2020 ident: 10.1016/j.nicl.2021.102769_b0035 article-title: CEREBRUM: a fast and fully-volumetric Convolutional Encoder-decodeR for weakly-supervised sEgmentation of BRain strUctures from out-of-the-scanner MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101688 – volume: 62 start-page: 451 issue: 4 year: 2018 ident: 10.1016/j.nicl.2021.102769_b0205 article-title: Cerebral amyloid angiopathy: review of clinico-radiological features and mimics publication-title: J. Med. Imaging Radiat. Oncol. doi: 10.1111/1754-9485.12726 – ident: 10.1016/j.nicl.2021.102769_b0200 doi: 10.1101/2020.01.29.924985 – volume: 189 start-page: 720 issue: 3 year: 2007 ident: 10.1016/j.nicl.2021.102769_b0030 article-title: MRI of Cerebral Microhemorrhages publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.07.2249 – year: 2018 ident: 10.1016/j.nicl.2021.102769_b0215 article-title: 3D multi-scale U-net with atrous convolution for ischemic stroke lesion segmentation – volume: 31 start-page: 1116 issue: 3 year: 2006 ident: 10.1016/j.nicl.2021.102769_b0250 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 251 start-page: 467 issue: 2 year: 2009 ident: 10.1016/j.nicl.2021.102769_b0115 article-title: Distinguishing tumefactive demyelinating lesions from glioma or central nervous system lymphoma: added value of unenhanced CT compared with conventional contrast-enhanced MR imaging publication-title: Radiology doi: 10.1148/radiol.2512072071 – volume: 18 start-page: 203 issue: 2 year: 2021 ident: 10.1016/j.nicl.2021.102769_b0105 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – volume: 1 start-page: 713 issue: 186 year: 2019 ident: 10.1016/j.nicl.2021.102769_b0085 article-title: QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.11.042 – volume: 85 start-page: 1881 issue: 4 year: 2021 ident: 10.1016/j.nicl.2021.102769_b0050 article-title: BISON: Brain tissue segmentation pipeline using T1-weighted magnetic resonance images and a random forest classifier publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28547 – volume: 233 start-page: 117934 year: 2021 ident: 10.1016/j.nicl.2021.102769_b0255 article-title: Deep learning based segmentation of brain tissue from diffusion MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.117934 – volume: 20 issue: 1 year: 2020 ident: 10.1016/j.nicl.2021.102769_b0095 article-title: Brain SegNet: 3D local refinement network for brain lesion segmentation publication-title: BMC Med. Imaging doi: 10.1186/s12880-020-0409-2 – ident: 10.1016/j.nicl.2021.102769_b0120 – volume: 15 start-page: 429 issue: 4 year: 1996 ident: 10.1016/j.nicl.2021.102769_b0245 article-title: Adaptive segmentation of MRI data publication-title: IEEE Trans. Med. Imaging. doi: 10.1109/42.511747 – volume: 35 start-page: 446 year: 2017 ident: 10.1016/j.nicl.2021.102769_b0235 article-title: Automated tissue segmentation of MR brain images in the presence of white matter lesions publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.08.014 – volume: 19 start-page: 1498 issue: 9 year: 2007 ident: 10.1016/j.nicl.2021.102769_b0145 article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2007.19.9.1498 – volume: 2 start-page: e190183 issue: 5 year: 2020 ident: 10.1016/j.nicl.2021.102769_b0040 article-title: Fully Automated Segmentation of Head CT Neuroanatomy Using Deep Learning publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2020190183 – volume: 33 start-page: 341 issue: 3 year: 2002 ident: 10.1016/j.nicl.2021.102769_b0080 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 24 start-page: 3215 issue: 11 year: 2020 ident: 10.1016/j.nicl.2021.102769_b0130 article-title: Multi-receptive-field CNN for semantic segmentation of medical images publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3016306 – volume: 30 start-page: 449 issue: 4 year: 2017 ident: 10.1016/j.nicl.2021.102769_b0005 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J. Digit. Imaging doi: 10.1007/s10278-017-9983-4 – volume: 22 start-page: 1191 issue: 9 year: 2015 ident: 10.1016/j.nicl.2021.102769_b0155 article-title: The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload publication-title: Acad. Radiol. doi: 10.1016/j.acra.2015.05.007 – volume: 33 start-page: 2062 issue: 9 year: 2012 ident: 10.1016/j.nicl.2021.102769_b0025 article-title: Evaluating and reducing the impact of white matter lesions on brain volume measurements publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21344 – volume: 19 start-page: 221 issue: 1 year: 2017 ident: 10.1016/j.nicl.2021.102769_b0210 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – volume: 33 start-page: 2033 issue: 11 year: 2012 ident: 10.1016/j.nicl.2021.102769_b0175 article-title: Functional and structural MR imaging in neuropsychiatric disorders, part 2: application in schizophrenia and autism publication-title: Am J Neuroradiol. doi: 10.3174/ajnr.A2800 – volume: 99 start-page: 166 year: 2014 ident: 10.1016/j.nicl.2021.102769_b0225 article-title: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.05.044 – volume: 219 start-page: 117012 year: 2020 ident: 10.1016/j.nicl.2021.102769_b0090 article-title: FastSurfer - a fast and accurate deep learning based neuroimaging pipeline publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117012 – start-page: 287 year: 2017 ident: 10.1016/j.nicl.2021.102769_b0100 article-title: Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.nicl.2021.102769_b0015 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 295 start-page: 626 issue: 3 year: 2020 ident: 10.1016/j.nicl.2021.102769_b0185 article-title: Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI publication-title: Radiology doi: 10.1148/radiol.2020190283 – ident: 10.1016/j.nicl.2021.102769_b0180 |
| SSID | ssj0000800766 |
| Score | 2.3016996 |
| Snippet | •A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types.•The U-Net was able to segment gray and white matter in the... Highlights•A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types. •The U-Net was able to segment gray and white matter... Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of... • A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types. • The U-Net was able to segment gray and white matter in the... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102769 |
| SubjectTerms | Artificial Intelligence Convolutional neural networks Magnetic resonance images Radiology Regular Segmentation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD8AF8SmWLxmJG0TYju04x4KoCmI5AJV6s2zHhlbbbEWyqvrvmUmcVRahlgPX3Xiy-zy239gzz4S8apgvQ1CuEDD3FcD_WWGSKosaqEGquDO6xGrk5Rd9eCQ_Havj2VVfmBM2ygOPwL2FCERjtaOOJkhZmdorsG_AL5NzinucfZmpZ8HUaeZB1XBQKQQvC66MyBUzY3IXqs5CcCg4ShdUmO08W5UG8f6dxWlGPv9Mnby1ac_d5YVbrWbr0sFdcicTSro__pF75EZs75Oby3xk_oB83t_0a6ClsaFD8mBAukz7AW_axR9nufiopetEpzpJ6vHmCLr8-rGjuFNLVxF31bqH5Ojgw_f3h0W-QqEImsm-0EGx4KXTJpSCxcASzM0iMu1UJZyJSTBlGqlS5LwO0fHggUE0wTsJPejr8hHZa9dtfExoEs4JGZjxYDmCnQaPrJ3wsdGqSWpB-AShDVlfHK-5WNkpkezUIuwWYbcj7AvyetvmfFTXuPLpd9gz2ydRGXv4APzFZn-x1_nLgpRTv9oJVJguwdDJla-u_tYqdnnEd5bbTlhmv6G_obsJ1LblpVkQtW2ZSc1IVq5948vJ6SyMeDzGcW1cbzoLQSDEmBA3V_CrdrxxB5ndb9qTn4N2uCml1gasv9n67T8g_-R_IP-U3EaT4_7VM7LX_9rE58Doev9iGLy_AZ9oRnM priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHoAL4ikWCjISN4g2tmPHe2wrqoJYDkClvVm245RFS7JqskL998wkTrQBVBDHzfqRfB6Pv7FnxoS8KlInvJc24aD7EuD_aaJLKZIFUIMyZ1YrgdHIy4_q_CJ7v5KrA3I6xMKgW2XU_b1O77R1fDKPaM636_X8M-dMMAkLHGYRZQIDfgX0hUF8q5NxnwUZUd4dWWL5BCvE2JnezQvzz4KZyBkmMcjR73lvferS-E-WqT0a-qsT5e1dtbXXP-xms7dCnd0jdyO1pMf9298nB6F6QG4t4-H5Q_LheNfWQFBDQTs3Qo_EmbYd8rQJl99jGFJF65IOEZPU4R0SdPnpXUNxz5ZuAu6vNY_IxdnbL6fnSbxMIfEqzdpEeZl6l1mlveBp8GkJWpqHVFmZc6tDyVOpi0yWgbGFD5Z5B1yi8M5mMJZuIR6Tw6quwhNCS24tz3yqHbQcoJ0CD68td6FQsijljLABQuNjpnG88GJjBpeybwZhNwi76WGfkddjnW2fZ-PG0ic4MmNJzJHdPaivLk0UEgO2q8I4WRW0z7JcL5wEydSg0UprJXMzIoZxNQOooDihofWNXed_qhWaOPcbw0zDTWp-k88ZkWPNiYj_tceXg9AZmPt4oGOrUO8aA-YgWJtgQefwVhNpnCAz_adaf-2yiGuRKaWh9Tej3P4D8k__8yOekTv4q9-8OiKH7dUuPAc617oX3Xz9CYdCR48 priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk4AXvhHlS0biDTLZTuw4jwUxDUQnBFQaT5btODAo6UQSIfjruUucapmmMR7b2k56dz7_zr77mZBnJXOp99ImAnxfAvifJbqSaVIANKhybrVKsRp5eaD2V9nbQ3kYaXKwFmZyft_nYSFBLMRxgiPLQK6Ky2RHScDdM7KzOni_-Iy3xwmeJlxqEatizu44WXl6gv7JAnQCYJ5Oj7za1cf29y-7Xp9Ye_ZuDJcYNT1lIaacfN_tWrfr_5widLzY37pJrkcISheDzdwil0J9m1xZxkP2O-Tdoms3AGRDSft0Q48Am7a9hmgTvvyI5Uo13VR0rKykDu-aoMsPbxqKe7t0HXAfrrlLVnuvP73aT-KlC4lXLGsT5SXzLrNK-1Sw4FkF3lwEpqzMhdWhEkzqMpNV4LzwwXLvAHOU3tkMdO6K9B6Z1Zs63Ce0EtaKzDPtYOQA45R4yG2FC6WSZSXnhI8KMT4ykuPFGGszpp59Mygmg2Iyg5jm5Pm2z_HAx3Fu65eo521L5NLuvwBdmDg1DcS4CutpVdA-y3JdOAkWrMHzVdZK7uYkHa3EjEIFBwsDHZ376PysXqGJPqIx3DTCMPMRrReNVyAbLk_1nMhtzwiDBnjzzyc-HU3YgI_Agx9bh03XGAgbISqFSDuHt5rY9kQy01_qo68927hOM6U0jP5iOwsuIPkH_9f8IbmGn4a9rUdk1v7swmNAe617Eqf5X9EkUA4 priority: 102 providerName: Unpaywall |
| Title | Automated multiclass tissue segmentation of clinical brain MRIs with lesions |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213158221002138 https://www.clinicalkey.es/playcontent/1-s2.0-S2213158221002138 https://dx.doi.org/10.1016/j.nicl.2021.102769 https://www.proquest.com/docview/2557539247 https://pubmed.ncbi.nlm.nih.gov/PMC8346689 https://doi.org/10.1016/j.nicl.2021.102769 https://doaj.org/article/184634796e8c44789b5d0b8301faa51b |
| UnpaywallVersion | publishedVersion |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: IXB dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: AKRWK dateStart: 20120101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2213-1582 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: M48 dateStart: 20120101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJgEvE59aGVRGQrxAUOzEjvOAUIeYNkQnBFQqT5btOGNTSLumFey_5y51yoqqsZc8JPElOp_Pv_N9EfKiiG3inDARB90XAf6PI1WKJMoBGpQZM0ommI08PJFHo_TjWIy3SBduGxjYbDTtsJ_UaFa9-X1x-Q4W_Nu_sVpYRBZsPc6wEkEm85fTiwgbS6EDNnTZuEV2YPPKsbvDMFgA5wEwZa1Hk3OWREwoHlJrNlNe277aKv9ru9gVlPpvjOWdRT01l79MVV3ZwA7vkd2APOlgKSr3yZavH5Dbw-Bbf0g-DRbzCeBXX9A2ytAhrqbzdmJo409_hiylmk5K2iVUUostJujwy3FD8UiXVh6P35pHZHT44dv7oyj0WoicjNN5JJ2InU2NVC7hsXdxCUqc-1gakXGjfMljoYpUlJ6x3HnDnAWoUThrUphqmyePyXY9qf0eoSU3hqcuVhYoe6BToG_bcOsLKYpS9AjrWKhdKESO_TAq3UWcnWtku0a26yXbe-TVasx0WYbj2rcPcGZWb2IJ7fbGZHaqw4rUYNpKTKOVXrk0zVRuBQiuAoVXGiOY7ZGkm1fdMRX0KhA6u_bT2aZRvukkWzPdcB3rryhvKG4ci-CyRPWIWI0M6GeJav77xeed0GlQDejvMbWfLBoN1iIYo2BgZ_BXa9K4xpn1J_XZj7bIuEpSKRVQf72S2xtw_skNfmaf3MURy3Osp2R7Plv4Z4Ds5rbfnojA9Xh80G_XaZ_sjE4-D77_AQOjUB0 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkBgviE9RPo3EG0SNndhxH7eJqYN2D7BJfbNsx9mKSlItqRD_PXeJE7WABuI1yTnJz-fz7-y7MyFv89gmzgkTcbB9EfD_OFKFSKIJUIMiY0bJBLOR52dyepF-XIjFHjnuc2EwrDLY_s6mt9Y6XBkHNMfr5XL8hXOWMAETHFYRZYm6RW6nAtgJZvEtjoaFFqREWbtniQIRSoTkmS7OCwvQgp_IGVYxyDDweWuCauv478xTWzz01yjKg025Nj--m9Vqa4o6uU_uBW5JD7vPf0D2fPmQ3JmH3fNHZHa4aSpgqD6nbRyhQ-ZMmxZ6WvvLbyEPqaRVQfuUSWrxEAk6_3xaU1y0pSuPC2z1Y3Jx8uH8eBqF0xQiJ-O0iaQTsbOpkcolPPYuLsBMcx9LIzJulC94LFSeisIzNnHeMGeBTOTOmhQ6006SJ2S_rEr_lNCCG8NTFysLLXtoJ8fda8Otz6XICzEirIdQu1BqHE-8WOk-puyrRtg1wq472Efk3SCz7gpt3Pj0EfbM8CQWyW4vVNeXOmiJBudVYqKs9MqlaaYmVoBqKjBphTGC2RFJ-n7VPahgOaGh5Y2vzv4k5esw-GvNdM11rH9T0BERg-SOjv_1jW96pdMw-HFHx5S-2tQa_EFwN8GFzuCrdrRxB5ndO-Xyqi0jrpJUSgWtvx_09h-Qf_afP_GaHEzP5zM9Oz379JzcxTvdStYLst9cb_xL4HaNfdWO3Z8ISkq1 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk4AXvhHlS0biDTLZTuw4jwUxDUQnBFQaT5btODAo6UQSIfjruUucapmmMR7b2k56dz7_zr77mZBnJXOp99ImAnxfAvifJbqSaVIANKhybrVKsRp5eaD2V9nbQ3kYaXKwFmZyft_nYSFBLMRxgiPLQK6Ky2RHScDdM7KzOni_-Iy3xwmeJlxqEatizu44WXl6gv7JAnQCYJ5Oj7za1cf29y-7Xp9Ye_ZuDJcYNT1lIaacfN_tWrfr_5widLzY37pJrkcISheDzdwil0J9m1xZxkP2O-Tdoms3AGRDSft0Q48Am7a9hmgTvvyI5Uo13VR0rKykDu-aoMsPbxqKe7t0HXAfrrlLVnuvP73aT-KlC4lXLGsT5SXzLrNK-1Sw4FkF3lwEpqzMhdWhEkzqMpNV4LzwwXLvAHOU3tkMdO6K9B6Z1Zs63Ce0EtaKzDPtYOQA45R4yG2FC6WSZSXnhI8KMT4ykuPFGGszpp59Mygmg2Iyg5jm5Pm2z_HAx3Fu65eo521L5NLuvwBdmDg1DcS4CutpVdA-y3JdOAkWrMHzVdZK7uYkHa3EjEIFBwsDHZ376PysXqGJPqIx3DTCMPMRrReNVyAbLk_1nMhtzwiDBnjzzyc-HU3YgI_Agx9bh03XGAgbISqFSDuHt5rY9kQy01_qo68927hOM6U0jP5iOwsuIPkH_9f8IbmGn4a9rUdk1v7swmNAe617Eqf5X9EkUA4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+multiclass+tissue+segmentation+of+clinical+brain+MRIs+with+lesions&rft.jtitle=NeuroImage+clinical&rft.au=Weiss%2C+David+A&rft.au=Saluja%2C+Rachit&rft.au=Xie%2C+Long&rft.au=Gee%2C+James+C&rft.date=2021-01-01&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=31&rft.spage=102769&rft_id=info:doi/10.1016%2Fj.nicl.2021.102769&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2Fcov200h.gif |