Automated multiclass tissue segmentation of clinical brain MRIs with lesions

•A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types.•The U-Net was able to segment gray and white matter in the presence of lesions.•The U-Net surpassed the performance of its source algorithm in an external dataset.•Segmentations were produced in a hundred...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 31; p. 102769
Main Authors Weiss, David A., Saluja, Rachit, Xie, Long, Gee, James C., Sugrue, Leo P, Pradhan, Abhijeet, Nick Bryan, R., Rauschecker, Andreas M., Rudie, Jeffrey D.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2213-1582
2213-1582
DOI10.1016/j.nicl.2021.102769

Cover

Abstract •A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types.•The U-Net was able to segment gray and white matter in the presence of lesions.•The U-Net surpassed the performance of its source algorithm in an external dataset.•Segmentations were produced in a hundredth of the time of its predecessor algorithm. Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions.
AbstractList Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions.
•A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types.•The U-Net was able to segment gray and white matter in the presence of lesions.•The U-Net surpassed the performance of its source algorithm in an external dataset.•Segmentations were produced in a hundredth of the time of its predecessor algorithm. Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions.
Highlights•A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types. •The U-Net was able to segment gray and white matter in the presence of lesions. •The U-Net surpassed the performance of its source algorithm in an external dataset. •Segmentations were produced in a hundredth of the time of its predecessor algorithm.
• A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types. • The U-Net was able to segment gray and white matter in the presence of lesions. • The U-Net surpassed the performance of its source algorithm in an external dataset. • Segmentations were produced in a hundredth of the time of its predecessor algorithm. Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions.
Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions.Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions.
ArticleNumber 102769
Author Xie, Long
Nick Bryan, R.
Sugrue, Leo P
Rauschecker, Andreas M.
Saluja, Rachit
Weiss, David A.
Pradhan, Abhijeet
Gee, James C.
Rudie, Jeffrey D.
Author_xml – sequence: 1
  givenname: David A.
  surname: Weiss
  fullname: Weiss, David A.
  email: dweiss044@gmail.com
  organization: University of Pennsylvania, United States
– sequence: 2
  givenname: Rachit
  surname: Saluja
  fullname: Saluja, Rachit
  organization: University of Pennsylvania, United States
– sequence: 3
  givenname: Long
  surname: Xie
  fullname: Xie, Long
  organization: University of Pennsylvania, United States
– sequence: 4
  givenname: James C.
  surname: Gee
  fullname: Gee, James C.
  organization: University of Pennsylvania, United States
– sequence: 5
  givenname: Leo P
  surname: Sugrue
  fullname: Sugrue, Leo P
  organization: University of California, San Francisco, United States
– sequence: 6
  givenname: Abhijeet
  surname: Pradhan
  fullname: Pradhan, Abhijeet
  organization: University of Texas, Austin, United States
– sequence: 7
  givenname: R.
  surname: Nick Bryan
  fullname: Nick Bryan, R.
  organization: University of Texas, Austin, United States
– sequence: 8
  givenname: Andreas M.
  surname: Rauschecker
  fullname: Rauschecker, Andreas M.
  organization: University of California, San Francisco, United States
– sequence: 9
  givenname: Jeffrey D.
  surname: Rudie
  fullname: Rudie, Jeffrey D.
  organization: University of California, San Francisco, United States
BookMark eNqNkk1v1DAQhiNUREvpH-CUI5dd_B0HIaSqKrDSIiQ-zpbjTLYOjr3YSav99zikVBQJqC-27Hmf8bwzT4sjHzwUxXOM1hhh8bJfe2vcmiCC8wWpRP2oOCEE0xXmkhz9dj4uzlLqUV4SoUqIJ8UxZZRSUqGTYns-jWHQI7TlMLkxI3VK5WhTmqBMsBvAj3q0wZehK42zOal2ZRO19eWHT5tU3tjxqnSQckh6VjzutEtwdrufFl_fXn65eL_afny3uTjfroxAbFwJw5FpmBbSUILAoA4aTAAJzSuiJXQEcdky3gHGtQGNTcNR3ZpGM2N4U9PTYrNw26B7tY920PGggrbq50WIO6XjXAsoLJmgrKoFSMNYJeuGt6iRFOFOa46bzKILa_J7fbjRzt0BMVKz1apXs9VqtlotVmfVm0W1n5oBWpNditrd-8r9F2-v1C5cK0mZEHIGvLgFxPB9gjSqwSYDzmkPYUqKcF5xWhNW5VC5hJoYUorQKWOXnmSydf_-JvlD-qDaXi8iyC28thBVMha8gdZGMGP22D7Imjv5r7H5BgdIfZiiz8OhsEpEIfV5ntN5TAlGmUJlBrz6O-B_2X8AThz3xA
CitedBy_id crossref_primary_10_1007_s40747_024_01639_1
crossref_primary_10_1016_j_neuroimage_2022_119486
crossref_primary_10_3390_app142411575
crossref_primary_10_3390_bioengineering10020181
crossref_primary_10_1007_s11042_023_17259_9
crossref_primary_10_3389_frai_2022_780405
crossref_primary_10_3174_ajnr_A7845
crossref_primary_10_3389_fnins_2023_1177540
crossref_primary_10_1162_imag_a_00446
crossref_primary_10_1007_s12021_024_09708_z
Cites_doi 10.1109/TMI.2016.2548501
10.1007/s12021-011-9109-y
10.3174/ajnr.A4262
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.neuroimage.2009.01.011
10.1148/ryai.2020190146
10.1016/j.neuroimage.2017.04.041
10.1186/alzrt263
10.1161/01.STR.0000199847.96188.12
10.1109/IJCNN.2017.7966333
10.1016/j.media.2010.05.010
10.1111/1467-9868.00083
10.1007/978-3-319-24574-4_28
10.1007/978-3-030-72084-1_4
10.1155/2015/813696
10.1016/j.neuroimage.2017.04.039
10.3174/ajnr.A6138
10.1016/j.media.2020.101688
10.1111/1754-9485.12726
10.1101/2020.01.29.924985
10.2214/AJR.07.2249
10.1016/j.neuroimage.2006.01.015
10.1148/radiol.2512072071
10.1038/s41592-020-01008-z
10.1016/j.neuroimage.2018.11.042
10.1002/mrm.28547
10.1016/j.neuroimage.2021.117934
10.1186/s12880-020-0409-2
10.1109/42.511747
10.1016/j.media.2016.08.014
10.1162/jocn.2007.19.9.1498
10.1148/ryai.2020190183
10.1016/S0896-6273(02)00569-X
10.1109/JBHI.2020.3016306
10.1007/s10278-017-9983-4
10.1016/j.acra.2015.05.007
10.1002/hbm.21344
10.1146/annurev-bioeng-071516-044442
10.3174/ajnr.A2800
10.1016/j.neuroimage.2014.05.044
10.1016/j.neuroimage.2020.117012
10.1109/TPAMI.2016.2644615
10.1148/radiol.2020190283
ContentType Journal Article
Copyright 2021 The Authors
The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.nicl.2021.102769
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 102769
ExternalDocumentID oai_doaj_org_article_184634796e8c44789b5d0b8301faa51b
10.1016/j.nicl.2021.102769
PMC8346689
10_1016_j_nicl_2021_102769
S2213158221002138
1_s2_0_S2213158221002138
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c604t-6c50cb4a68c320ec0feb12e06a572a8ef2058d45fe119cea1cb509dcba4cc5b93
IEDL.DBID M48
ISSN 2213-1582
IngestDate Fri Oct 03 12:52:10 EDT 2025
Sun Oct 26 04:05:28 EDT 2025
Tue Sep 30 16:38:30 EDT 2025
Wed Oct 01 15:06:47 EDT 2025
Wed Oct 01 01:54:10 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Tue Jul 25 20:59:25 EDT 2023
Tue Feb 25 20:08:55 EST 2025
Tue Aug 26 16:33:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Segmentation
Convolutional neural networks
Artificial Intelligence
Magnetic resonance images
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c604t-6c50cb4a68c320ec0feb12e06a572a8ef2058d45fe119cea1cb509dcba4cc5b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2021.102769
PMID 34333270
PQID 2557539247
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_184634796e8c44789b5d0b8301faa51b
unpaywall_primary_10_1016_j_nicl_2021_102769
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8346689
proquest_miscellaneous_2557539247
crossref_citationtrail_10_1016_j_nicl_2021_102769
crossref_primary_10_1016_j_nicl_2021_102769
elsevier_sciencedirect_doi_10_1016_j_nicl_2021_102769
elsevier_clinicalkeyesjournals_1_s2_0_S2213158221002138
elsevier_clinicalkey_doi_10_1016_j_nicl_2021_102769
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle NeuroImage clinical
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Myronenko, 2018., A. 3D MRI brain tumor segmentation using autoencoder regularization. ArXiv181011654 Cs Q-Bio [Internet]. 2018 Nov 19 [cited 2021 Jan 28]; Available from
Blitstein, Tung (b0030) 2007; 189
Rauschecker, Rudie, Xie, Wang, Duong, Botzolakis, Kovalovich, Egan, Cook, Bryan, Nasrallah, Mohan, Gee (b0185) 2020; 295
Fedorov, A., Johnson, J., Damaraju, E., Ozerin, A., Calhoun, V., Plis, S., 2017. End-to-end learning of brain tissue segmentation from imperfect labeling. ArXiv161200940 Cs [Internet]. [cited 2021 Feb 11]; Available from
Mendrik, A.M., Vincken, K.L., Kuijf, H.J., Breeuwer, M., Bouvy, W.H., de Bresser, J., et al., 2015. MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans [Internet]. Vol. 2015, Computational Intelligence and Neuroscience. Hindawi; [cited 2021 Jan 28]. p. e813696. Available from
Battaglini, Jenkinson, De Stefano (b0025) 2012; 33
Tustison, Cook, Klein, Song, Das, Duda, Kandel, van Strien, Stone, Gee, Avants (b0225) 2014; 99
Jamshidian, Jennrich (b0110) 1997; 59
Liu, Z., Gu, D., Zhang, Y., Cao, X., Xue, Z., 2021. Automatic Segmentation of Non-tumor Tissues in Glioma MR Brain Images Using Deformable Registration with Partial Convolutional Networks. In: Crimi A, Bakas S, editors. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [Internet]. Cham: Springer International Publishing; [cited 2021 Jun 3]. p. 41–50. (Lecture Notes in Computer Science; vol. 12658). DOI:10.1007/978-3-030-72084-1_4.
Avants, Tustison, Wu, Cook, Gee (b0010) 2011; 9
Martinez-Ramirez, Greenberg, Viswanathan (b0150) 2014; 6
Sharma, Dearaugo, Infeld, O'Sullivan, Gerraty (b0205) 2018; 62
Shen, Wu, Suk (b0210) 2017; 19
Liu, Wu, Wang, Wang (b0130) 2020; 24
Kingma, D.P., Ba, J., 2017. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs [Internet]. [cited 2021 Jan 28]; Available from
Valverde, Oliver, Díez, Cabezas, Vilanova, Ramió-Torrentà, Rovira, Lladó (b0230) 2015; 36
Viswanathan, Chabriat (b0240) 2006; 37
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (b0250) 2006; 31
Badrinarayanan, Kendall, Cipolla (b0015) 2017; 39
Milletari, Navab, Ahmadi (b0165) 2016
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (b0105) 2021; 18
Guha Roy, Conjeti, Navab, Wachinger (b0085) 2019; 1
Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. in: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41. (Lecture Notes in Computer Science).
.
Bontempi, Benini, Signoroni, Svanera, Muckli (b0035) 2020; 62
Isensee, Kickingereder, Wick, Bendszus, Maier-Hein (b0100) 2017
Akkus, Galimzianova, Hoogi, Rubin, Erickson (b0005) 2017; 30
Kim, Na, Kim, Kim, Kim, Yun, Chang (b0115) 2009; 251
McDonald, Schwartz, Eckel, Diehn, Hunt, Bartholmai, Erickson, Kallmes (b0155) 2015; 22
Marcus, Wang, Parker, Csernansky, Morris, Buckner (b0145) 2007; 19
Dempster, Laird, Rubin (b0060) 1977; 39
Dolz, Desrosiers, Ben (b0065) 2018; 15
Manjón, Coupé, Buades, Fonov, Louis Collins, Robles (b0140) 2010; 14
de Boer, Vrooman, van der Lijn, Vernooij, Ikram, van der Lugt, Breteler, Niessen (b0055) 2009; 45
Luna, Park (b0135) 2018
Tushar, Alyafi, Hasan, Dahal (b0220) 2019
Henschel, Conjeti, Estrada, Diers, Fischl, Reuter (b0090) 2020; 219
Moeskops, Viergever, Mendrik, de Vries, Benders, Isgum (b0170) 2016; 35
Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al., 2019. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. ArXiv181102629 Cs Stat [Internet]. 2019 Apr 23 [cited 2021 Jan 28]; Available from
Hu, Luo, Hu, Guo, Huang, Scott, Wiest, Dahlweid, Reyes (b0095) 2020; 20
Cai, Akkus, Philbrick, Boonrod, Hoodeshenas, Weston, Rouzrokh, Conte, Zeinoddini, Vogelsang, Huang, Erickson (b0040) 2020; 2
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (b0080) 2002; 33
Mueller, Keeser, Reiser, Teipel, Meindl (b0175) 2012; 33
Song (b0215) 2018
Valverde, Oliver, Roura, González-Villà, Pareto, Vilanova, Ramió-Torrentà, Rovira, Lladó (b0235) 2017; 35
Zhang, Breger, Cho, Ning, Westin, O’Donnell, Pasternak (b0255) 2021; 233
Dadar, Collins (b0050) 2021; 85
Duong, Rudie, Wang, Xie, Mohan, Gee, Rauschecker (b0070) 2019; 40
Wells, Grimson, Kikinis, Jolesz (b0245) 1996; 15
Chen, Dou, Yu, Qin, Heng (b0045) 2018; 15
Sendra-Balcells, C., Salvador, R., Pedro, J.B., Biagi, M.C., Aubinet, C., Manor, B., et al., 2020. Convolutional neural network MRI segmentation for fast and robust optimization of transcranial electrical current stimulation of the human brain. bioRxiv. 2020 Jan 29;2020.01.29.924985.
Rudie, Rauschecker, Xie, Wang, Duong, Botzolakis, Kovalovich, Egan, Cook, Bryan, Nasrallah, Mohan, Gee (b0195) 2020; 2
Yushkevich (10.1016/j.nicl.2021.102769_b0250) 2006; 31
Milletari (10.1016/j.nicl.2021.102769_b0165) 2016
Isensee (10.1016/j.nicl.2021.102769_b0105) 2021; 18
Blitstein (10.1016/j.nicl.2021.102769_b0030) 2007; 189
Cai (10.1016/j.nicl.2021.102769_b0040) 2020; 2
Jamshidian (10.1016/j.nicl.2021.102769_b0110) 1997; 59
Zhang (10.1016/j.nicl.2021.102769_b0255) 2021; 233
Fischl (10.1016/j.nicl.2021.102769_b0080) 2002; 33
10.1016/j.nicl.2021.102769_b0020
Song (10.1016/j.nicl.2021.102769_b0215) 2018
Henschel (10.1016/j.nicl.2021.102769_b0090) 2020; 219
Mueller (10.1016/j.nicl.2021.102769_b0175) 2012; 33
Bontempi (10.1016/j.nicl.2021.102769_b0035) 2020; 62
Hu (10.1016/j.nicl.2021.102769_b0095) 2020; 20
10.1016/j.nicl.2021.102769_b0180
Rauschecker (10.1016/j.nicl.2021.102769_b0185) 2020; 295
Rudie (10.1016/j.nicl.2021.102769_b0195) 2020; 2
Sharma (10.1016/j.nicl.2021.102769_b0205) 2018; 62
Valverde (10.1016/j.nicl.2021.102769_b0235) 2017; 35
Martinez-Ramirez (10.1016/j.nicl.2021.102769_b0150) 2014; 6
Duong (10.1016/j.nicl.2021.102769_b0070) 2019; 40
Valverde (10.1016/j.nicl.2021.102769_b0230) 2015; 36
de Boer (10.1016/j.nicl.2021.102769_b0055) 2009; 45
Akkus (10.1016/j.nicl.2021.102769_b0005) 2017; 30
10.1016/j.nicl.2021.102769_b0125
Tushar (10.1016/j.nicl.2021.102769_b0220) 2019
10.1016/j.nicl.2021.102769_b0200
10.1016/j.nicl.2021.102769_b0120
Isensee (10.1016/j.nicl.2021.102769_b0100) 2017
Shen (10.1016/j.nicl.2021.102769_b0210) 2017; 19
Avants (10.1016/j.nicl.2021.102769_b0010) 2011; 9
Battaglini (10.1016/j.nicl.2021.102769_b0025) 2012; 33
Tustison (10.1016/j.nicl.2021.102769_b0225) 2014; 99
Moeskops (10.1016/j.nicl.2021.102769_b0170) 2016; 35
McDonald (10.1016/j.nicl.2021.102769_b0155) 2015; 22
Chen (10.1016/j.nicl.2021.102769_b0045) 2018; 15
Wells (10.1016/j.nicl.2021.102769_b0245) 1996; 15
10.1016/j.nicl.2021.102769_b0160
Badrinarayanan (10.1016/j.nicl.2021.102769_b0015) 2017; 39
Luna (10.1016/j.nicl.2021.102769_b0135) 2018
Marcus (10.1016/j.nicl.2021.102769_b0145) 2007; 19
Dadar (10.1016/j.nicl.2021.102769_b0050) 2021; 85
Dempster (10.1016/j.nicl.2021.102769_b0060) 1977; 39
Guha Roy (10.1016/j.nicl.2021.102769_b0085) 2019; 1
Kim (10.1016/j.nicl.2021.102769_b0115) 2009; 251
Manjón (10.1016/j.nicl.2021.102769_b0140) 2010; 14
10.1016/j.nicl.2021.102769_b0075
Dolz (10.1016/j.nicl.2021.102769_b0065) 2018; 15
Liu (10.1016/j.nicl.2021.102769_b0130) 2020; 24
10.1016/j.nicl.2021.102769_b0190
Viswanathan (10.1016/j.nicl.2021.102769_b0240) 2006; 37
References_xml – reference: Kingma, D.P., Ba, J., 2017. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs [Internet]. [cited 2021 Jan 28]; Available from:
– volume: 35
  start-page: 1252
  year: 2016
  end-page: 1261
  ident: b0170
  article-title: Automatic segmentation of MR brain images with a convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
– volume: 62
  start-page: 101688
  year: 2020
  ident: b0035
  article-title: CEREBRUM: a fast and fully-volumetric Convolutional Encoder-decodeR for weakly-supervised sEgmentation of BRain strUctures from out-of-the-scanner MRI
  publication-title: Med. Image Anal.
– reference: Liu, Z., Gu, D., Zhang, Y., Cao, X., Xue, Z., 2021. Automatic Segmentation of Non-tumor Tissues in Glioma MR Brain Images Using Deformable Registration with Partial Convolutional Networks. In: Crimi A, Bakas S, editors. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [Internet]. Cham: Springer International Publishing; [cited 2021 Jun 3]. p. 41–50. (Lecture Notes in Computer Science; vol. 12658). DOI:10.1007/978-3-030-72084-1_4.
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: b0105
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
– volume: 251
  start-page: 467
  year: 2009
  end-page: 475
  ident: b0115
  article-title: Distinguishing tumefactive demyelinating lesions from glioma or central nervous system lymphoma: added value of unenhanced CT compared with conventional contrast-enhanced MR imaging
  publication-title: Radiology
– volume: 22
  start-page: 1191
  year: 2015
  end-page: 1198
  ident: b0155
  article-title: The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload
  publication-title: Acad. Radiol.
– start-page: 287
  year: 2017
  end-page: 297
  ident: b0100
  article-title: Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge
  publication-title: International MICCAI Brainlesion Workshop
– volume: 189
  start-page: 720
  year: 2007
  end-page: 725
  ident: b0030
  article-title: MRI of Cerebral Microhemorrhages
  publication-title: Am. J. Roentgenol.
– volume: 33
  start-page: 2033
  year: 2012
  end-page: 2037
  ident: b0175
  article-title: Functional and structural MR imaging in neuropsychiatric disorders, part 2: application in schizophrenia and autism
  publication-title: Am J Neuroradiol.
– reference: Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al., 2019. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. ArXiv181102629 Cs Stat [Internet]. 2019 Apr 23 [cited 2021 Jan 28]; Available from:
– volume: 219
  start-page: 117012
  year: 2020
  ident: b0090
  article-title: FastSurfer - a fast and accurate deep learning based neuroimaging pipeline
  publication-title: NeuroImage
– volume: 30
  start-page: 449
  year: 2017
  end-page: 459
  ident: b0005
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J. Digit. Imaging
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: b0250
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 1
  start-page: 713
  year: 2019
  end-page: 727
  ident: b0085
  article-title: QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy
  publication-title: NeuroImage
– year: 2018
  ident: b0215
  article-title: 3D multi-scale U-net with atrous convolution for ischemic stroke lesion segmentation
  publication-title: Proc MICCAI ISLES 2018 Chall.
– volume: 15
  start-page: 446
  year: 2018
  end-page: 455
  ident: b0045
  article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images
  publication-title: NeuroImage
– start-page: 223
  year: 2019
  end-page: 227
  ident: b0220
  article-title: Brain Tissue Segmentation Using NeuroNet With Different Pre-processing Techniques
  publication-title: 2019 Joint 8th International Conference on Informatics, Electronics Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision Pattern Recognition (icIVPR)
– volume: 36
  start-page: 1109
  year: 2015
  end-page: 1115
  ident: b0230
  article-title: Evaluating the effects of white matter multiple sclerosis lesions on the volume estimation of 6 brain tissue segmentation methods
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 62
  start-page: 451
  year: 2018
  end-page: 463
  ident: b0205
  article-title: Cerebral amyloid angiopathy: review of clinico-radiological features and mimics
  publication-title: J. Med. Imaging Radiat. Oncol.
– reference: Fedorov, A., Johnson, J., Damaraju, E., Ozerin, A., Calhoun, V., Plis, S., 2017. End-to-end learning of brain tissue segmentation from imperfect labeling. ArXiv161200940 Cs [Internet]. [cited 2021 Feb 11]; Available from:
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b0015
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 20
  year: 2020
  ident: b0095
  article-title: Brain SegNet: 3D local refinement network for brain lesion segmentation
  publication-title: BMC Med. Imaging
– start-page: 565
  year: 2016
  end-page: 571
  ident: b0165
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
– volume: 295
  start-page: 626
  year: 2020
  end-page: 637
  ident: b0185
  article-title: Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI
  publication-title: Radiology
– volume: 45
  start-page: 1151
  year: 2009
  end-page: 1161
  ident: b0055
  article-title: White matter lesion extension to automatic brain tissue segmentation on MRI
  publication-title: NeuroImage
– volume: 40
  start-page: 1282
  year: 2019
  end-page: 1290
  ident: b0070
  article-title: Convolutional neural network for automated FLAIR lesion segmentation on clinical brain MR imaging
  publication-title: Am. J. Neuroradiol.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: b0060
  article-title: Maximum likelihood from incomplete data via the
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: b0210
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: b0080
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 24
  start-page: 3215
  year: 2020
  end-page: 3225
  ident: b0130
  article-title: Multi-receptive-field CNN for semantic segmentation of medical images
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 14
  start-page: 784
  year: 2010
  end-page: 792
  ident: b0140
  article-title: Non-local MRI upsampling
  publication-title: Med. Image Anal.
– volume: 59
  start-page: 569
  year: 1997
  end-page: 587
  ident: b0110
  article-title: Acceleration of the EM algorithm by using quasi-newton methods
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 35
  start-page: 446
  year: 2017
  end-page: 457
  ident: b0235
  article-title: Automated tissue segmentation of MR brain images in the presence of white matter lesions
  publication-title: Med. Image Anal.
– volume: 37
  start-page: 550
  year: 2006
  end-page: 555
  ident: b0240
  article-title: Cerebral microhemorrhage
  publication-title: Stroke
– volume: 33
  start-page: 2062
  year: 2012
  end-page: 2071
  ident: b0025
  article-title: Evaluating and reducing the impact of white matter lesions on brain volume measurements
  publication-title: Hum. Brain Mapp.
– volume: 2
  start-page: e190146
  year: 2020
  ident: b0195
  article-title: Subspecialty-level deep gray matter differential diagnoses with deep learning and Bayesian networks on clinical brain MRI: a pilot study
  publication-title: Radiol. Artif. Intell.
– volume: 85
  start-page: 1881
  year: 2021
  end-page: 1894
  ident: b0050
  article-title: BISON: Brain tissue segmentation pipeline using T1-weighted magnetic resonance images and a random forest classifier
  publication-title: Magn. Reson. Med.
– volume: 15
  start-page: 456
  year: 2018
  end-page: 470
  ident: b0065
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study
  publication-title: NeuroImage
– volume: 99
  start-page: 166
  year: 2014
  end-page: 179
  ident: b0225
  article-title: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements
  publication-title: NeuroImage
– volume: 233
  start-page: 117934
  year: 2021
  ident: b0255
  article-title: Deep learning based segmentation of brain tissue from diffusion MRI
  publication-title: NeuroImage
– start-page: 394
  year: 2018
  end-page: 403
  ident: b0135
  article-title: 3D patchwise U-Net with transition layers for MR brain segmentation
  publication-title: International MICCAI Brainlesion Workshop
– volume: 2
  start-page: e190183
  year: 2020
  ident: b0040
  article-title: Fully Automated Segmentation of Head CT Neuroanatomy Using Deep Learning
  publication-title: Radiol. Artif. Intell.
– volume: 19
  start-page: 1498
  year: 2007
  end-page: 1507
  ident: b0145
  article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J. Cogn. Neurosci.
– volume: 9
  start-page: 381
  year: 2011
  end-page: 400
  ident: b0010
  article-title: An open source multivariate framework for n-tissue segmentation with evaluation on public data
  publication-title: Neuroinformatics
– reference: Myronenko, 2018., A. 3D MRI brain tumor segmentation using autoencoder regularization. ArXiv181011654 Cs Q-Bio [Internet]. 2018 Nov 19 [cited 2021 Jan 28]; Available from:
– volume: 6
  start-page: 33
  year: 2014
  ident: b0150
  article-title: Cerebral microbleeds: overview and implications in cognitive impairment
  publication-title: Alzheimers Res. Ther.
– reference: .
– volume: 15
  start-page: 429
  year: 1996
  end-page: 442
  ident: b0245
  article-title: Adaptive segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging.
– reference: Sendra-Balcells, C., Salvador, R., Pedro, J.B., Biagi, M.C., Aubinet, C., Manor, B., et al., 2020. Convolutional neural network MRI segmentation for fast and robust optimization of transcranial electrical current stimulation of the human brain. bioRxiv. 2020 Jan 29;2020.01.29.924985.
– reference: Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. in: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41. (Lecture Notes in Computer Science).
– reference: Mendrik, A.M., Vincken, K.L., Kuijf, H.J., Breeuwer, M., Bouvy, W.H., de Bresser, J., et al., 2015. MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans [Internet]. Vol. 2015, Computational Intelligence and Neuroscience. Hindawi; [cited 2021 Jan 28]. p. e813696. Available from:
– volume: 35
  start-page: 1252
  issue: 5
  year: 2016
  ident: 10.1016/j.nicl.2021.102769_b0170
  article-title: Automatic segmentation of MR brain images with a convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2548501
– volume: 9
  start-page: 381
  issue: 4
  year: 2011
  ident: 10.1016/j.nicl.2021.102769_b0010
  article-title: An open source multivariate framework for n-tissue segmentation with evaluation on public data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-011-9109-y
– start-page: 565
  year: 2016
  ident: 10.1016/j.nicl.2021.102769_b0165
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
– volume: 36
  start-page: 1109
  issue: 6
  year: 2015
  ident: 10.1016/j.nicl.2021.102769_b0230
  article-title: Evaluating the effects of white matter multiple sclerosis lesions on the volume estimation of 6 brain tissue segmentation methods
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4262
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.nicl.2021.102769_b0060
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– start-page: 394
  year: 2018
  ident: 10.1016/j.nicl.2021.102769_b0135
  article-title: 3D patchwise U-Net with transition layers for MR brain segmentation
– volume: 45
  start-page: 1151
  issue: 4
  year: 2009
  ident: 10.1016/j.nicl.2021.102769_b0055
  article-title: White matter lesion extension to automatic brain tissue segmentation on MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.011
– volume: 2
  start-page: e190146
  issue: 5
  year: 2020
  ident: 10.1016/j.nicl.2021.102769_b0195
  article-title: Subspecialty-level deep gray matter differential diagnoses with deep learning and Bayesian networks on clinical brain MRI: a pilot study
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2020190146
– volume: 15
  start-page: 446
  issue: 170
  year: 2018
  ident: 10.1016/j.nicl.2021.102769_b0045
  article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.04.041
– volume: 6
  start-page: 33
  issue: 3
  year: 2014
  ident: 10.1016/j.nicl.2021.102769_b0150
  article-title: Cerebral microbleeds: overview and implications in cognitive impairment
  publication-title: Alzheimers Res. Ther.
  doi: 10.1186/alzrt263
– volume: 37
  start-page: 550
  issue: 2
  year: 2006
  ident: 10.1016/j.nicl.2021.102769_b0240
  article-title: Cerebral microhemorrhage
  publication-title: Stroke
  doi: 10.1161/01.STR.0000199847.96188.12
– ident: 10.1016/j.nicl.2021.102769_b0075
  doi: 10.1109/IJCNN.2017.7966333
– volume: 14
  start-page: 784
  issue: 6
  year: 2010
  ident: 10.1016/j.nicl.2021.102769_b0140
  article-title: Non-local MRI upsampling
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.05.010
– volume: 59
  start-page: 569
  issue: 3
  year: 1997
  ident: 10.1016/j.nicl.2021.102769_b0110
  article-title: Acceleration of the EM algorithm by using quasi-newton methods
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00083
– ident: 10.1016/j.nicl.2021.102769_b0190
  doi: 10.1007/978-3-319-24574-4_28
– ident: 10.1016/j.nicl.2021.102769_b0125
  doi: 10.1007/978-3-030-72084-1_4
– ident: 10.1016/j.nicl.2021.102769_b0160
  doi: 10.1155/2015/813696
– volume: 15
  start-page: 456
  issue: 170
  year: 2018
  ident: 10.1016/j.nicl.2021.102769_b0065
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.04.039
– volume: 40
  start-page: 1282
  issue: 8
  year: 2019
  ident: 10.1016/j.nicl.2021.102769_b0070
  article-title: Convolutional neural network for automated FLAIR lesion segmentation on clinical brain MR imaging
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A6138
– ident: 10.1016/j.nicl.2021.102769_b0020
– start-page: 223
  year: 2019
  ident: 10.1016/j.nicl.2021.102769_b0220
  article-title: Brain Tissue Segmentation Using NeuroNet With Different Pre-processing Techniques
– volume: 62
  start-page: 101688
  year: 2020
  ident: 10.1016/j.nicl.2021.102769_b0035
  article-title: CEREBRUM: a fast and fully-volumetric Convolutional Encoder-decodeR for weakly-supervised sEgmentation of BRain strUctures from out-of-the-scanner MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101688
– volume: 62
  start-page: 451
  issue: 4
  year: 2018
  ident: 10.1016/j.nicl.2021.102769_b0205
  article-title: Cerebral amyloid angiopathy: review of clinico-radiological features and mimics
  publication-title: J. Med. Imaging Radiat. Oncol.
  doi: 10.1111/1754-9485.12726
– ident: 10.1016/j.nicl.2021.102769_b0200
  doi: 10.1101/2020.01.29.924985
– volume: 189
  start-page: 720
  issue: 3
  year: 2007
  ident: 10.1016/j.nicl.2021.102769_b0030
  article-title: MRI of Cerebral Microhemorrhages
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.07.2249
– year: 2018
  ident: 10.1016/j.nicl.2021.102769_b0215
  article-title: 3D multi-scale U-net with atrous convolution for ischemic stroke lesion segmentation
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 10.1016/j.nicl.2021.102769_b0250
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 251
  start-page: 467
  issue: 2
  year: 2009
  ident: 10.1016/j.nicl.2021.102769_b0115
  article-title: Distinguishing tumefactive demyelinating lesions from glioma or central nervous system lymphoma: added value of unenhanced CT compared with conventional contrast-enhanced MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2512072071
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  ident: 10.1016/j.nicl.2021.102769_b0105
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 1
  start-page: 713
  issue: 186
  year: 2019
  ident: 10.1016/j.nicl.2021.102769_b0085
  article-title: QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.11.042
– volume: 85
  start-page: 1881
  issue: 4
  year: 2021
  ident: 10.1016/j.nicl.2021.102769_b0050
  article-title: BISON: Brain tissue segmentation pipeline using T1-weighted magnetic resonance images and a random forest classifier
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28547
– volume: 233
  start-page: 117934
  year: 2021
  ident: 10.1016/j.nicl.2021.102769_b0255
  article-title: Deep learning based segmentation of brain tissue from diffusion MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.117934
– volume: 20
  issue: 1
  year: 2020
  ident: 10.1016/j.nicl.2021.102769_b0095
  article-title: Brain SegNet: 3D local refinement network for brain lesion segmentation
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-020-0409-2
– ident: 10.1016/j.nicl.2021.102769_b0120
– volume: 15
  start-page: 429
  issue: 4
  year: 1996
  ident: 10.1016/j.nicl.2021.102769_b0245
  article-title: Adaptive segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/42.511747
– volume: 35
  start-page: 446
  year: 2017
  ident: 10.1016/j.nicl.2021.102769_b0235
  article-title: Automated tissue segmentation of MR brain images in the presence of white matter lesions
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.014
– volume: 19
  start-page: 1498
  issue: 9
  year: 2007
  ident: 10.1016/j.nicl.2021.102769_b0145
  article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2007.19.9.1498
– volume: 2
  start-page: e190183
  issue: 5
  year: 2020
  ident: 10.1016/j.nicl.2021.102769_b0040
  article-title: Fully Automated Segmentation of Head CT Neuroanatomy Using Deep Learning
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2020190183
– volume: 33
  start-page: 341
  issue: 3
  year: 2002
  ident: 10.1016/j.nicl.2021.102769_b0080
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 24
  start-page: 3215
  issue: 11
  year: 2020
  ident: 10.1016/j.nicl.2021.102769_b0130
  article-title: Multi-receptive-field CNN for semantic segmentation of medical images
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3016306
– volume: 30
  start-page: 449
  issue: 4
  year: 2017
  ident: 10.1016/j.nicl.2021.102769_b0005
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-017-9983-4
– volume: 22
  start-page: 1191
  issue: 9
  year: 2015
  ident: 10.1016/j.nicl.2021.102769_b0155
  article-title: The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2015.05.007
– volume: 33
  start-page: 2062
  issue: 9
  year: 2012
  ident: 10.1016/j.nicl.2021.102769_b0025
  article-title: Evaluating and reducing the impact of white matter lesions on brain volume measurements
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21344
– volume: 19
  start-page: 221
  issue: 1
  year: 2017
  ident: 10.1016/j.nicl.2021.102769_b0210
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 33
  start-page: 2033
  issue: 11
  year: 2012
  ident: 10.1016/j.nicl.2021.102769_b0175
  article-title: Functional and structural MR imaging in neuropsychiatric disorders, part 2: application in schizophrenia and autism
  publication-title: Am J Neuroradiol.
  doi: 10.3174/ajnr.A2800
– volume: 99
  start-page: 166
  year: 2014
  ident: 10.1016/j.nicl.2021.102769_b0225
  article-title: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.044
– volume: 219
  start-page: 117012
  year: 2020
  ident: 10.1016/j.nicl.2021.102769_b0090
  article-title: FastSurfer - a fast and accurate deep learning based neuroimaging pipeline
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117012
– start-page: 287
  year: 2017
  ident: 10.1016/j.nicl.2021.102769_b0100
  article-title: Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.nicl.2021.102769_b0015
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 295
  start-page: 626
  issue: 3
  year: 2020
  ident: 10.1016/j.nicl.2021.102769_b0185
  article-title: Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI
  publication-title: Radiology
  doi: 10.1148/radiol.2020190283
– ident: 10.1016/j.nicl.2021.102769_b0180
SSID ssj0000800766
Score 2.3016996
Snippet •A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types.•The U-Net was able to segment gray and white matter in the...
Highlights•A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types. •The U-Net was able to segment gray and white matter...
Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of...
• A U-Net incorporating spatial prior information can successfully segment 6 brain tissue types. • The U-Net was able to segment gray and white matter in the...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102769
SubjectTerms Artificial Intelligence
Convolutional neural networks
Magnetic resonance images
Radiology
Regular
Segmentation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD8AF8SmWLxmJG0TYju04x4KoCmI5AJV6s2zHhlbbbEWyqvrvmUmcVRahlgPX3Xiy-zy239gzz4S8apgvQ1CuEDD3FcD_WWGSKosaqEGquDO6xGrk5Rd9eCQ_Havj2VVfmBM2ygOPwL2FCERjtaOOJkhZmdorsG_AL5NzinucfZmpZ8HUaeZB1XBQKQQvC66MyBUzY3IXqs5CcCg4ShdUmO08W5UG8f6dxWlGPv9Mnby1ac_d5YVbrWbr0sFdcicTSro__pF75EZs75Oby3xk_oB83t_0a6ClsaFD8mBAukz7AW_axR9nufiopetEpzpJ6vHmCLr8-rGjuFNLVxF31bqH5Ojgw_f3h0W-QqEImsm-0EGx4KXTJpSCxcASzM0iMu1UJZyJSTBlGqlS5LwO0fHggUE0wTsJPejr8hHZa9dtfExoEs4JGZjxYDmCnQaPrJ3wsdGqSWpB-AShDVlfHK-5WNkpkezUIuwWYbcj7AvyetvmfFTXuPLpd9gz2ydRGXv4APzFZn-x1_nLgpRTv9oJVJguwdDJla-u_tYqdnnEd5bbTlhmv6G_obsJ1LblpVkQtW2ZSc1IVq5948vJ6SyMeDzGcW1cbzoLQSDEmBA3V_CrdrxxB5ndb9qTn4N2uCml1gasv9n67T8g_-R_IP-U3EaT4_7VM7LX_9rE58Doev9iGLy_AZ9oRnM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHoAL4ikWCjISN4g2tmPHe2wrqoJYDkClvVm245RFS7JqskL998wkTrQBVBDHzfqRfB6Pv7FnxoS8KlInvJc24aD7EuD_aaJLKZIFUIMyZ1YrgdHIy4_q_CJ7v5KrA3I6xMKgW2XU_b1O77R1fDKPaM636_X8M-dMMAkLHGYRZQIDfgX0hUF8q5NxnwUZUd4dWWL5BCvE2JnezQvzz4KZyBkmMcjR73lvferS-E-WqT0a-qsT5e1dtbXXP-xms7dCnd0jdyO1pMf9298nB6F6QG4t4-H5Q_LheNfWQFBDQTs3Qo_EmbYd8rQJl99jGFJF65IOEZPU4R0SdPnpXUNxz5ZuAu6vNY_IxdnbL6fnSbxMIfEqzdpEeZl6l1mlveBp8GkJWpqHVFmZc6tDyVOpi0yWgbGFD5Z5B1yi8M5mMJZuIR6Tw6quwhNCS24tz3yqHbQcoJ0CD68td6FQsijljLABQuNjpnG88GJjBpeybwZhNwi76WGfkddjnW2fZ-PG0ic4MmNJzJHdPaivLk0UEgO2q8I4WRW0z7JcL5wEydSg0UprJXMzIoZxNQOooDihofWNXed_qhWaOPcbw0zDTWp-k88ZkWPNiYj_tceXg9AZmPt4oGOrUO8aA-YgWJtgQefwVhNpnCAz_adaf-2yiGuRKaWh9Tej3P4D8k__8yOekTv4q9-8OiKH7dUuPAc617oX3Xz9CYdCR48
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk4AXvhHlS0biDTLZTuw4jwUxDUQnBFQaT5btODAo6UQSIfjruUucapmmMR7b2k56dz7_zr77mZBnJXOp99ImAnxfAvifJbqSaVIANKhybrVKsRp5eaD2V9nbQ3kYaXKwFmZyft_nYSFBLMRxgiPLQK6Ky2RHScDdM7KzOni_-Iy3xwmeJlxqEatizu44WXl6gv7JAnQCYJ5Oj7za1cf29y-7Xp9Ye_ZuDJcYNT1lIaacfN_tWrfr_5widLzY37pJrkcISheDzdwil0J9m1xZxkP2O-Tdoms3AGRDSft0Q48Am7a9hmgTvvyI5Uo13VR0rKykDu-aoMsPbxqKe7t0HXAfrrlLVnuvP73aT-KlC4lXLGsT5SXzLrNK-1Sw4FkF3lwEpqzMhdWhEkzqMpNV4LzwwXLvAHOU3tkMdO6K9B6Z1Zs63Ce0EtaKzDPtYOQA45R4yG2FC6WSZSXnhI8KMT4ykuPFGGszpp59Mygmg2Iyg5jm5Pm2z_HAx3Fu65eo521L5NLuvwBdmDg1DcS4CutpVdA-y3JdOAkWrMHzVdZK7uYkHa3EjEIFBwsDHZ376PysXqGJPqIx3DTCMPMRrReNVyAbLk_1nMhtzwiDBnjzzyc-HU3YgI_Agx9bh03XGAgbISqFSDuHt5rY9kQy01_qo68927hOM6U0jP5iOwsuIPkH_9f8IbmGn4a9rUdk1v7swmNAe617Eqf5X9EkUA4
  priority: 102
  providerName: Unpaywall
Title Automated multiclass tissue segmentation of clinical brain MRIs with lesions
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158221002138
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158221002138
https://dx.doi.org/10.1016/j.nicl.2021.102769
https://www.proquest.com/docview/2557539247
https://pubmed.ncbi.nlm.nih.gov/PMC8346689
https://doi.org/10.1016/j.nicl.2021.102769
https://doaj.org/article/184634796e8c44789b5d0b8301faa51b
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: IXB
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: AKRWK
  dateStart: 20120101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: M48
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJgEvE59aGVRGQrxAUOzEjvOAUIeYNkQnBFQqT5btOGNTSLumFey_5y51yoqqsZc8JPElOp_Pv_N9EfKiiG3inDARB90XAf6PI1WKJMoBGpQZM0ommI08PJFHo_TjWIy3SBduGxjYbDTtsJ_UaFa9-X1x-Q4W_Nu_sVpYRBZsPc6wEkEm85fTiwgbS6EDNnTZuEV2YPPKsbvDMFgA5wEwZa1Hk3OWREwoHlJrNlNe277aKv9ru9gVlPpvjOWdRT01l79MVV3ZwA7vkd2APOlgKSr3yZavH5Dbw-Bbf0g-DRbzCeBXX9A2ytAhrqbzdmJo409_hiylmk5K2iVUUostJujwy3FD8UiXVh6P35pHZHT44dv7oyj0WoicjNN5JJ2InU2NVC7hsXdxCUqc-1gakXGjfMljoYpUlJ6x3HnDnAWoUThrUphqmyePyXY9qf0eoSU3hqcuVhYoe6BToG_bcOsLKYpS9AjrWKhdKESO_TAq3UWcnWtku0a26yXbe-TVasx0WYbj2rcPcGZWb2IJ7fbGZHaqw4rUYNpKTKOVXrk0zVRuBQiuAoVXGiOY7ZGkm1fdMRX0KhA6u_bT2aZRvukkWzPdcB3rryhvKG4ci-CyRPWIWI0M6GeJav77xeed0GlQDejvMbWfLBoN1iIYo2BgZ_BXa9K4xpn1J_XZj7bIuEpSKRVQf72S2xtw_skNfmaf3MURy3Osp2R7Plv4Z4Ds5rbfnojA9Xh80G_XaZ_sjE4-D77_AQOjUB0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkBgviE9RPo3EG0SNndhxH7eJqYN2D7BJfbNsx9mKSlItqRD_PXeJE7WABuI1yTnJz-fz7-y7MyFv89gmzgkTcbB9EfD_OFKFSKIJUIMiY0bJBLOR52dyepF-XIjFHjnuc2EwrDLY_s6mt9Y6XBkHNMfr5XL8hXOWMAETHFYRZYm6RW6nAtgJZvEtjoaFFqREWbtniQIRSoTkmS7OCwvQgp_IGVYxyDDweWuCauv478xTWzz01yjKg025Nj--m9Vqa4o6uU_uBW5JD7vPf0D2fPmQ3JmH3fNHZHa4aSpgqD6nbRyhQ-ZMmxZ6WvvLbyEPqaRVQfuUSWrxEAk6_3xaU1y0pSuPC2z1Y3Jx8uH8eBqF0xQiJ-O0iaQTsbOpkcolPPYuLsBMcx9LIzJulC94LFSeisIzNnHeMGeBTOTOmhQ6006SJ2S_rEr_lNCCG8NTFysLLXtoJ8fda8Otz6XICzEirIdQu1BqHE-8WOk-puyrRtg1wq472Efk3SCz7gpt3Pj0EfbM8CQWyW4vVNeXOmiJBudVYqKs9MqlaaYmVoBqKjBphTGC2RFJ-n7VPahgOaGh5Y2vzv4k5esw-GvNdM11rH9T0BERg-SOjv_1jW96pdMw-HFHx5S-2tQa_EFwN8GFzuCrdrRxB5ndO-Xyqi0jrpJUSgWtvx_09h-Qf_afP_GaHEzP5zM9Oz379JzcxTvdStYLst9cb_xL4HaNfdWO3Z8ISkq1
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk4AXvhHlS0biDTLZTuw4jwUxDUQnBFQaT5btODAo6UQSIfjruUucapmmMR7b2k56dz7_zr77mZBnJXOp99ImAnxfAvifJbqSaVIANKhybrVKsRp5eaD2V9nbQ3kYaXKwFmZyft_nYSFBLMRxgiPLQK6Ky2RHScDdM7KzOni_-Iy3xwmeJlxqEatizu44WXl6gv7JAnQCYJ5Oj7za1cf29y-7Xp9Ye_ZuDJcYNT1lIaacfN_tWrfr_5widLzY37pJrkcISheDzdwil0J9m1xZxkP2O-Tdoms3AGRDSft0Q48Am7a9hmgTvvyI5Uo13VR0rKykDu-aoMsPbxqKe7t0HXAfrrlLVnuvP73aT-KlC4lXLGsT5SXzLrNK-1Sw4FkF3lwEpqzMhdWhEkzqMpNV4LzwwXLvAHOU3tkMdO6K9B6Z1Zs63Ce0EtaKzDPtYOQA45R4yG2FC6WSZSXnhI8KMT4ykuPFGGszpp59Mygmg2Iyg5jm5Pm2z_HAx3Fu65eo521L5NLuvwBdmDg1DcS4CutpVdA-y3JdOAkWrMHzVdZK7uYkHa3EjEIFBwsDHZ376PysXqGJPqIx3DTCMPMRrReNVyAbLk_1nMhtzwiDBnjzzyc-HU3YgI_Agx9bh03XGAgbISqFSDuHt5rY9kQy01_qo68927hOM6U0jP5iOwsuIPkH_9f8IbmGn4a9rUdk1v7swmNAe617Eqf5X9EkUA4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+multiclass+tissue+segmentation+of+clinical+brain+MRIs+with+lesions&rft.jtitle=NeuroImage+clinical&rft.au=Weiss%2C+David+A&rft.au=Saluja%2C+Rachit&rft.au=Xie%2C+Long&rft.au=Gee%2C+James+C&rft.date=2021-01-01&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=31&rft.spage=102769&rft_id=info:doi/10.1016%2Fj.nicl.2021.102769&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2Fcov200h.gif