Autophagy: assays and artifacts
Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in...
Saved in:
Published in | The Journal of pathology Vol. 221; no. 2; pp. 117 - 124 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.06.2010
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3417 1096-9896 1096-9896 |
DOI | 10.1002/path.2694 |
Cover
Abstract | Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure 'autophagic flux' has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
---|---|
AbstractList | Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure 'autophagic flux' has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Autophagy is a fundamental and phylogenetically conserved self‐degradation process that is characterized by the formation of double‐layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B‐II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over‐expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure ‘autophagic flux’ has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure 'autophagic flux' has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals.Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure 'autophagic flux' has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals. Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure 'autophagic flux' has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals. Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure ‘autophagic flux’ has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals. |
Author | Glick, Danielle Macleod, Kay F Barth, Sandra |
AuthorAffiliation | 1 Ben May Department for Cancer Research, Gordon Center for Integrative Sciences, University of Chicago, IL, USA 2 Committee on Cancer Biology, Gordon Center for Integrative Sciences, University of Chicago, IL, USA |
AuthorAffiliation_xml | – name: 1 Ben May Department for Cancer Research, Gordon Center for Integrative Sciences, University of Chicago, IL, USA – name: 2 Committee on Cancer Biology, Gordon Center for Integrative Sciences, University of Chicago, IL, USA |
Author_xml | – sequence: 1 fullname: Barth, Sandra – sequence: 2 fullname: Glick, Danielle – sequence: 3 fullname: Macleod, Kay F |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22689810$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20225337$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1vEzEQxS1URNPCgX-A5oIQh23t8fqLA1JUlRapgiJacbQmjjcxbHaD7VDy3-Mo2_IhEKc5zO89vXlzQPa6vvOEPGX0mFEKJyvMi2OQpn5ARowaWRlt5B4ZlR1UvGZqnxyk9JlSaowQj8g-lIXgXI3I0WSd-9UC55tXY0wJN2mM3WyMMYcGXU6PycMG2-SfDPOQ3Lw5uz69qC7fn789nVxWTtK6rqYKlVPIpagZSOnA61orA1o0HpjmwlPkxvNGa6U1cqaZAHQzNYXpjBrOD8nrne9qPV36mfNdjtjaVQxLjBvbY7C_b7qwsPP-m4Vyq9Z1MXgxGMT-69qnbJchOd-22Pl-nayqQVGmAf5Pcm5E6UkW8tmvoe7T3NVXgOcDgMlh20TsXEg_OZAlHKOFO9lxLvYpRd9YFzLm0G9vCa1l1G4fabePtNtHFsXLPxR3pn9jB_fb0PrNv0F7Nbm-GBTVThFS9t_vFRi_WKm4EvbTu3Nr9NUHAWCsKfzRjm-wtziP5cabj0AZL43WwEHxH_HYwt0 |
CODEN | JPTLAS |
CitedBy_id | crossref_primary_10_1016_j_biochi_2022_10_004 crossref_primary_10_1016_j_peptides_2012_03_032 crossref_primary_10_1016_j_cej_2023_142554 crossref_primary_10_1002_jcsm_12537 crossref_primary_10_1016_j_cellsig_2025_111717 crossref_primary_10_1038_s41598_017_12069_0 crossref_primary_10_1016_j_ccr_2011_08_014 crossref_primary_10_1093_mutage_gev015 crossref_primary_10_4161_auto_27419 crossref_primary_10_1016_j_cmet_2017_06_005 crossref_primary_10_1002_jnr_23400 crossref_primary_10_3389_fphar_2021_739220 crossref_primary_10_1038_nmat3363 crossref_primary_10_1016_j_exger_2018_05_006 crossref_primary_10_1186_s13071_015_0974_3 crossref_primary_10_1111_nyas_13190 crossref_primary_10_3389_fcell_2024_1372573 crossref_primary_10_1016_j_chembiol_2019_07_002 crossref_primary_10_3389_fmicb_2019_01222 crossref_primary_10_1155_2016_1274603 crossref_primary_10_1172_jci_insight_90931 crossref_primary_10_1016_j_micinf_2014_05_001 crossref_primary_10_1111_jog_14418 crossref_primary_10_1074_jbc_M110_192369 crossref_primary_10_23876_j_krcp_22_247 crossref_primary_10_1016_j_ejca_2014_01_011 crossref_primary_10_1093_hmg_ddy354 crossref_primary_10_1007_s12035_023_03704_1 crossref_primary_10_1097_MPA_0b013e31825b9f2c crossref_primary_10_7554_eLife_64977 crossref_primary_10_1124_jpet_116_232934 crossref_primary_10_3892_ijo_2012_1620 crossref_primary_10_1007_s00204_019_02573_9 crossref_primary_10_1016_j_phytochem_2014_08_012 crossref_primary_10_1007_s13105_013_0246_7 crossref_primary_10_1096_fj_201700576R crossref_primary_10_1007_s00401_013_1152_3 crossref_primary_10_1016_j_taap_2018_03_005 crossref_primary_10_1093_jnen_nlw019 crossref_primary_10_1016_j_neulet_2015_01_007 crossref_primary_10_3892_mmr_2017_7788 crossref_primary_10_1007_s12031_012_9733_5 crossref_primary_10_1249_MSS_0000000000000237 crossref_primary_10_53394_akd_1037348 crossref_primary_10_1177_07482337211048582 crossref_primary_10_1371_journal_pone_0030688 crossref_primary_10_1007_s10741_017_9653_0 crossref_primary_10_1016_j_oraloncology_2011_07_027 crossref_primary_10_18632_oncotarget_24130 crossref_primary_10_1177_1087057110392996 crossref_primary_10_1016_j_cell_2021_06_022 crossref_primary_10_1007_s00204_017_2021_y crossref_primary_10_1111_j_1476_5381_2012_02110_x crossref_primary_10_3892_ijo_2013_1791 crossref_primary_10_1016_j_chemosphere_2023_138714 crossref_primary_10_1038_srep42194 crossref_primary_10_1016_j_pt_2017_05_009 crossref_primary_10_4167_jbv_2017_47_3_122 crossref_primary_10_1186_1471_2474_15_166 crossref_primary_10_3892_ijmm_2016_2838 crossref_primary_10_3892_mmr_2018_9683 crossref_primary_10_1172_JCI60580 crossref_primary_10_1007_s11033_013_2840_8 crossref_primary_10_1080_19768354_2017_1330763 crossref_primary_10_1074_jbc_M114_591065 crossref_primary_10_1111_odi_13045 crossref_primary_10_1080_15548627_2016_1173799 crossref_primary_10_3390_cells8030241 crossref_primary_10_1186_s12935_016_0288_3 crossref_primary_10_1186_s13041_016_0221_7 crossref_primary_10_1016_j_biomaterials_2016_06_031 crossref_primary_10_1016_j_acthis_2022_151978 crossref_primary_10_18632_oncotarget_2534 crossref_primary_10_1186_s12967_024_05966_2 crossref_primary_10_1097_JCMA_0000000000001098 crossref_primary_10_1186_s12935_021_02397_7 crossref_primary_10_1016_j_mvr_2019_103954 crossref_primary_10_1007_s00109_014_1214_6 crossref_primary_10_1038_s41598_019_51067_2 crossref_primary_10_1249_MSS_0000000000001256 crossref_primary_10_3390_ijms22105111 crossref_primary_10_1016_j_mce_2022_111773 crossref_primary_10_1186_1742_6405_9_16 crossref_primary_10_1016_j_brainres_2016_04_054 crossref_primary_10_3390_metabo13070789 crossref_primary_10_2174_0126673878297658240804192222 crossref_primary_10_1186_2040_7378_6_8 crossref_primary_10_1159_000366524 crossref_primary_10_1083_jcb_201611108 crossref_primary_10_3390_ijms25063192 crossref_primary_10_1016_j_yexmp_2022_104752 crossref_primary_10_1038_s41590_025_02090_1 crossref_primary_10_1111_fcp_12813 crossref_primary_10_1158_2159_8290_CD_17_0177 crossref_primary_10_1016_j_neurobiolaging_2014_01_027 crossref_primary_10_1155_2021_6631605 crossref_primary_10_1007_s10495_011_0589_x crossref_primary_10_1093_abbs_gms010 crossref_primary_10_4161_auto_22397 crossref_primary_10_1016_j_jdermsci_2017_10_001 crossref_primary_10_18632_oncotarget_25234 crossref_primary_10_1210_en_2016_1479 crossref_primary_10_3892_or_2016_4668 crossref_primary_10_1007_s13273_020_00101_w crossref_primary_10_1158_1541_7786_MCR_16_0132 crossref_primary_10_2174_1568009621666210601113144 crossref_primary_10_1093_toxsci_kft105 crossref_primary_10_1042_BJ20111252 crossref_primary_10_1016_j_ultsonch_2015_12_013 crossref_primary_10_1016_j_phymed_2022_154425 crossref_primary_10_1002_hep_29176 crossref_primary_10_1016_j_intimp_2024_113514 crossref_primary_10_1093_hmg_ddy343 crossref_primary_10_1016_j_neurobiolaging_2017_12_001 crossref_primary_10_1080_01635581_2021_1903947 crossref_primary_10_3892_mmr_2018_9356 crossref_primary_10_1002_cbin_10548 crossref_primary_10_1186_s12974_015_0336_2 crossref_primary_10_1016_j_jep_2020_112611 crossref_primary_10_1128_jvi_01045_23 crossref_primary_10_1194_jlr_M028563 crossref_primary_10_1371_journal_pone_0153449 crossref_primary_10_1142_S0192415X19500368 crossref_primary_10_1371_journal_pone_0143771 crossref_primary_10_1080_15548627_2020_1725401 crossref_primary_10_1016_j_bbamcr_2016_03_009 crossref_primary_10_1016_j_procbio_2019_09_006 crossref_primary_10_1016_j_virol_2017_04_007 crossref_primary_10_1142_S0192415X13500894 crossref_primary_10_1016_j_chemosphere_2017_08_076 crossref_primary_10_3390_v8060167 crossref_primary_10_1016_j_ejmech_2020_112630 crossref_primary_10_3389_fphar_2022_994625 crossref_primary_10_1016_j_procbio_2021_07_011 crossref_primary_10_1080_15548627_2024_2329476 crossref_primary_10_3389_fimmu_2018_00193 crossref_primary_10_3892_mmr_2015_4517 crossref_primary_10_1002_ange_202312897 crossref_primary_10_14348_molcells_2016_2198 crossref_primary_10_1165_rcmb_2011_0195OC crossref_primary_10_1007_s13237_024_00505_2 crossref_primary_10_1038_cddis_2013_163 crossref_primary_10_1111_aji_12292 crossref_primary_10_1165_rcmb_2016_0118OC crossref_primary_10_1002_cyto_a_23595 crossref_primary_10_1002_0471142956_cy0945s68 crossref_primary_10_1083_jcb_202210078 crossref_primary_10_3389_fmicb_2016_00879 crossref_primary_10_3390_biomedicines12030552 crossref_primary_10_1186_1743_422X_10_293 crossref_primary_10_1080_15548627_2017_1327942 crossref_primary_10_1126_scitranslmed_adl3438 crossref_primary_10_1016_j_jhep_2015_10_008 crossref_primary_10_1016_j_anireprosci_2014_01_001 crossref_primary_10_1016_j_jtcvs_2013_06_062 crossref_primary_10_1016_j_tox_2017_09_001 crossref_primary_10_1186_s13041_015_0119_9 crossref_primary_10_1002_jcp_24781 crossref_primary_10_1159_000439591 crossref_primary_10_1371_journal_pone_0065250 crossref_primary_10_1039_D4TB01342E crossref_primary_10_1007_s10735_013_9483_x crossref_primary_10_1074_jbc_M116_722587 crossref_primary_10_1186_s40659_023_00426_5 crossref_primary_10_1371_journal_pone_0064278 crossref_primary_10_1016_j_repbio_2019_06_006 crossref_primary_10_1038_srep45728 crossref_primary_10_1007_s10753_018_00952_5 crossref_primary_10_1111_cpr_12095 crossref_primary_10_1186_s12967_020_02302_2 crossref_primary_10_1128_AAC_01536_19 crossref_primary_10_1016_j_freeradbiomed_2014_12_007 crossref_primary_10_1007_s11010_014_2264_3 crossref_primary_10_1016_j_molonc_2016_05_001 crossref_primary_10_1111_bph_14170 crossref_primary_10_1111_cas_12208 crossref_primary_10_1016_j_bbadis_2012_11_001 crossref_primary_10_1111_jpi_12520 crossref_primary_10_1016_j_bbalip_2016_09_004 crossref_primary_10_2527_jas_2014_8743 crossref_primary_10_1172_jci_insight_98921 crossref_primary_10_1189_jlb_0711336 crossref_primary_10_18632_oncotarget_19710 crossref_primary_10_3389_fcimb_2022_847716 crossref_primary_10_1074_jbc_M110_170621 crossref_primary_10_1371_journal_pone_0130658 crossref_primary_10_1016_j_cellimm_2012_05_009 crossref_primary_10_1371_journal_pone_0181243 crossref_primary_10_1016_j_metabol_2015_05_006 crossref_primary_10_1080_09637486_2016_1236077 crossref_primary_10_1016_j_trac_2019_05_043 crossref_primary_10_1016_j_ajpath_2012_08_040 crossref_primary_10_1080_15548627_2016_1238551 crossref_primary_10_3390_cells9071703 crossref_primary_10_1016_j_cellsig_2016_03_005 crossref_primary_10_3390_ma14113019 crossref_primary_10_1152_ajpgi_00539_2010 crossref_primary_10_18632_oncotarget_26038 crossref_primary_10_1111_j_1750_3841_2011_02099_x crossref_primary_10_1155_2012_167896 crossref_primary_10_1210_en_2013_1004 crossref_primary_10_1530_JME_17_0195 crossref_primary_10_3389_fendo_2024_1427679 crossref_primary_10_1152_japplphysiol_00952_2011 crossref_primary_10_1038_labinvest_2014_2 crossref_primary_10_1016_j_achaem_2013_05_003 crossref_primary_10_1155_2011_732798 crossref_primary_10_18632_oncotarget_17202 crossref_primary_10_1038_nmeth_3661 crossref_primary_10_1158_1535_7163_MCT_11_0979 crossref_primary_10_3892_etm_2017_4618 crossref_primary_10_1080_15548627_2016_1156822 crossref_primary_10_3390_metabo11120811 crossref_primary_10_1194_jlr_M016931 crossref_primary_10_1371_journal_ppat_1007541 crossref_primary_10_1007_s00702_023_02702_w crossref_primary_10_1038_bjc_2013_601 crossref_primary_10_18632_aging_104065 crossref_primary_10_4049_jimmunol_2100050 crossref_primary_10_18632_oncotarget_8585 crossref_primary_10_1155_2022_8482149 crossref_primary_10_1016_j_celrep_2019_01_019 crossref_primary_10_3389_fphar_2016_00452 crossref_primary_10_1021_acs_analchem_6b03270 crossref_primary_10_21769_BioProtoc_3290 crossref_primary_10_1016_j_lfs_2019_01_035 crossref_primary_10_1016_j_apsb_2024_03_019 crossref_primary_10_4163_jnh_2013_46_4_307 crossref_primary_10_1016_j_biocel_2024_106693 crossref_primary_10_1007_s00204_017_2103_x crossref_primary_10_1007_s00418_011_0902_3 crossref_primary_10_1371_journal_ppat_1007892 crossref_primary_10_1002_path_4958 crossref_primary_10_3892_ijmm_2025_5502 crossref_primary_10_1016_j_yexmp_2018_04_003 crossref_primary_10_1002_cyto_a_23665 crossref_primary_10_1039_C6TB01988A crossref_primary_10_1111_jpi_12337 crossref_primary_10_1002_cyto_a_22452 crossref_primary_10_1021_acs_analchem_3c03653 crossref_primary_10_1038_s41419_021_03660_5 crossref_primary_10_1089_neu_2016_4764 crossref_primary_10_1016_j_jns_2016_10_025 crossref_primary_10_1073_pnas_2402117122 crossref_primary_10_7717_peerj_10415 crossref_primary_10_1016_j_neuroscience_2019_01_006 crossref_primary_10_1038_cddis_2013_317 crossref_primary_10_1155_2014_567148 crossref_primary_10_1016_j_jare_2024_12_036 crossref_primary_10_1007_s13238_014_0104_6 crossref_primary_10_1097_SHK_0000000000000111 crossref_primary_10_1016_j_bej_2014_06_027 crossref_primary_10_1038_ki_2013_216 crossref_primary_10_1002_tox_23377 crossref_primary_10_1016_j_ymeth_2011_11_006 crossref_primary_10_1002_jnr_23733 crossref_primary_10_1007_s12035_015_9377_x crossref_primary_10_1111_j_1582_4934_2012_01652_x crossref_primary_10_1002_anie_202301704 crossref_primary_10_1016_j_brainres_2012_10_056 crossref_primary_10_1016_j_biopha_2017_02_015 crossref_primary_10_1038_s41416_018_0050_9 crossref_primary_10_1093_humrep_dew048 crossref_primary_10_4103_0366_6999_235867 crossref_primary_10_1016_j_ymeth_2015_03_027 crossref_primary_10_1093_brain_awab214 crossref_primary_10_18632_oncotarget_14066 crossref_primary_10_1016_j_neulet_2017_09_056 crossref_primary_10_1111_iej_12782 crossref_primary_10_1371_journal_pone_0108602 crossref_primary_10_1080_27694127_2024_2371736 crossref_primary_10_1002_cyto_a_22312 crossref_primary_10_1111_gtc_12544 crossref_primary_10_1096_fj_201901830R crossref_primary_10_1177_0748233719831122 crossref_primary_10_1016_j_bbagen_2016_06_012 crossref_primary_10_1161_CIRCULATIONAHA_112_091215 crossref_primary_10_1016_j_bbrc_2014_06_082 crossref_primary_10_1016_j_mce_2020_111114 crossref_primary_10_1128_JVI_02279_13 crossref_primary_10_1016_j_clineuro_2018_02_044 crossref_primary_10_1097_SLA_0b013e318269d0e2 crossref_primary_10_1039_D0BM00596G crossref_primary_10_1016_j_canlet_2015_10_031 crossref_primary_10_1016_j_taap_2021_115782 crossref_primary_10_1080_15548627_2023_2236485 crossref_primary_10_1007_s00018_011_0667_9 crossref_primary_10_1097_CCM_0000000000001637 crossref_primary_10_1007_s00203_015_1167_3 crossref_primary_10_1111_jne_12900 crossref_primary_10_1155_2022_8371885 crossref_primary_10_3390_biomedicines8030047 crossref_primary_10_1097_MAJ_0b013e31821f978d crossref_primary_10_1038_s41419_018_0642_6 crossref_primary_10_1016_j_fob_2014_03_008 crossref_primary_10_1002_mc_22757 crossref_primary_10_1186_1752_0509_5_169 crossref_primary_10_1074_jbc_RA117_000735 crossref_primary_10_1038_cddis_2013_209 crossref_primary_10_1074_jbc_M111_320135 crossref_primary_10_1007_s00418_012_1057_6 crossref_primary_10_1186_s12964_020_00587_w crossref_primary_10_1093_biolre_ioae015 crossref_primary_10_17650_1726_9784_2017_16_2_66_73 crossref_primary_10_26508_lsa_202302348 crossref_primary_10_3390_ijms22010453 crossref_primary_10_1002_path_2697 crossref_primary_10_1038_s41392_022_01054_3 crossref_primary_10_1038_srep37276 crossref_primary_10_4161_15384047_2014_972776 crossref_primary_10_1186_s12967_016_0796_x crossref_primary_10_1002_hep_24459 crossref_primary_10_1038_s41374_020_00491_4 crossref_primary_10_3390_cancers14112624 crossref_primary_10_3390_life11020162 crossref_primary_10_1016_j_bbrc_2021_05_024 crossref_primary_10_1016_j_phymed_2021_153912 crossref_primary_10_1073_pnas_1410932111 crossref_primary_10_3389_fncel_2017_00249 crossref_primary_10_3390_ijms24076019 crossref_primary_10_3390_pathogens10020110 crossref_primary_10_18632_oncotarget_5333 crossref_primary_10_1016_j_toxlet_2014_02_003 crossref_primary_10_1002_biot_201700674 crossref_primary_10_1007_s00424_018_2217_x crossref_primary_10_1093_nar_gkz901 crossref_primary_10_1186_s13071_021_05066_w crossref_primary_10_4103_jmau_jmau_78_22 crossref_primary_10_1007_s12020_020_02471_6 crossref_primary_10_1158_1078_0432_CCR_11_2465 crossref_primary_10_3390_cancers13071572 crossref_primary_10_1038_leu_2011_269 crossref_primary_10_1016_j_biopsych_2016_05_023 crossref_primary_10_1371_journal_pone_0122083 crossref_primary_10_1016_j_ejpb_2018_06_030 crossref_primary_10_1152_ajpcell_00270_2013 crossref_primary_10_18632_oncotarget_17256 crossref_primary_10_1016_j_jbc_2024_108029 crossref_primary_10_1152_ajpheart_00452_2017 crossref_primary_10_1021_acssensors_0c00809 crossref_primary_10_18632_oncotarget_8735 crossref_primary_10_3390_ijms17081293 crossref_primary_10_3390_toxins8070203 crossref_primary_10_1073_pnas_1304285110 crossref_primary_10_3389_fimmu_2024_1365521 crossref_primary_10_1096_fj_13_239863 crossref_primary_10_1172_JCI79990 crossref_primary_10_1096_fj_13_235382 crossref_primary_10_3390_md11093500 crossref_primary_10_1038_cddis_2014_217 crossref_primary_10_1007_s00705_016_2924_6 crossref_primary_10_2144_btn_2020_0071 crossref_primary_10_3389_fimmu_2022_833515 crossref_primary_10_1007_s10495_012_0738_x crossref_primary_10_1038_cddis_2014_215 crossref_primary_10_3390_cancers12051185 crossref_primary_10_3390_cells12192345 crossref_primary_10_3389_fphys_2016_00527 crossref_primary_10_1016_j_bbadis_2018_10_013 crossref_primary_10_4161_auto_19496 crossref_primary_10_1016_j_isci_2022_105394 crossref_primary_10_1007_s00401_020_02254_3 crossref_primary_10_1007_s00418_010_0765_z crossref_primary_10_1016_j_bbrc_2015_09_080 crossref_primary_10_1016_j_ejmech_2016_07_045 crossref_primary_10_1194_jlr_M059980 crossref_primary_10_1016_j_ecoenv_2019_109492 crossref_primary_10_1038_ncb2837 crossref_primary_10_1016_j_heliyon_2020_e05584 crossref_primary_10_1016_j_tranon_2018_08_014 crossref_primary_10_1155_2018_8023821 crossref_primary_10_3389_fmicb_2020_00736 crossref_primary_10_1152_ajpregu_00128_2019 crossref_primary_10_18632_oncotarget_11609 crossref_primary_10_3892_etm_2024_12435 crossref_primary_10_1002_anie_201410810 crossref_primary_10_1093_eep_dvx010 crossref_primary_10_1007_s00018_022_04585_8 crossref_primary_10_1371_journal_ppat_1003466 crossref_primary_10_1111_febs_14963 crossref_primary_10_1161_CIRCRESAHA_111_255950 crossref_primary_10_1038_s42255_024_00983_3 crossref_primary_10_1016_j_virusres_2016_10_013 crossref_primary_10_3892_ijmm_2019_4218 crossref_primary_10_1111_acel_12732 crossref_primary_10_1186_s12929_018_0438_0 crossref_primary_10_1158_0008_5472_CAN_12_2501 crossref_primary_10_1038_srep01275 crossref_primary_10_1080_15548627_2019_1658436 crossref_primary_10_1021_jacs_1c06167 crossref_primary_10_3390_cancers13174262 crossref_primary_10_1039_C6NR08188F crossref_primary_10_1371_journal_pone_0020143 crossref_primary_10_1172_JCI64398 crossref_primary_10_3390_biom9120824 crossref_primary_10_1186_s12885_019_6033_2 crossref_primary_10_1111_1440_1681_13632 crossref_primary_10_1111_mmi_14864 crossref_primary_10_4161_auto_28145 crossref_primary_10_1093_carcin_bgac008 crossref_primary_10_1016_j_ejmech_2014_04_004 crossref_primary_10_1038_cddis_2016_247 crossref_primary_10_1371_journal_pone_0125322 crossref_primary_10_1016_j_pharmthera_2011_03_009 crossref_primary_10_1007_s11481_015_9633_x crossref_primary_10_1002_ange_201410810 crossref_primary_10_1152_ajpgi_00122_2012 crossref_primary_10_1128_JVI_02627_10 crossref_primary_10_3389_fphar_2018_01269 crossref_primary_10_3389_fphar_2024_1518810 crossref_primary_10_1124_mol_111_076851 crossref_primary_10_1371_journal_pone_0158376 crossref_primary_10_1016_j_jns_2014_12_027 crossref_primary_10_1155_2020_8860968 crossref_primary_10_1038_s41598_017_13334_y crossref_primary_10_3109_14767058_2012_733764 crossref_primary_10_1128_JVI_00237_20 crossref_primary_10_1053_j_gastro_2012_04_009 crossref_primary_10_1016_j_ejcb_2020_151145 crossref_primary_10_1038_s41419_021_03723_7 crossref_primary_10_1177_1535370220987524 crossref_primary_10_1016_j_tiv_2012_09_009 crossref_primary_10_1096_fj_14_267187 crossref_primary_10_1017_S0967199423000588 crossref_primary_10_1038_s41419_021_03518_w crossref_primary_10_1186_s40170_016_0158_4 crossref_primary_10_1016_j_bcp_2015_03_017 crossref_primary_10_1038_bjc_2011_602 crossref_primary_10_3233_JAD_160278 crossref_primary_10_1016_j_clml_2013_05_019 crossref_primary_10_1021_acsami_7b17454 crossref_primary_10_1186_s13046_018_0737_z crossref_primary_10_1371_journal_pone_0040957 crossref_primary_10_1096_fj_12_218214 crossref_primary_10_3389_fcell_2022_810327 crossref_primary_10_1007_s13105_011_0135_x crossref_primary_10_1016_j_envpol_2017_12_102 crossref_primary_10_1177_0300060520971422 crossref_primary_10_1186_s12943_016_0558_7 crossref_primary_10_1007_s12035_020_02033_x crossref_primary_10_7554_eLife_29123 crossref_primary_10_4161_auto_20441 crossref_primary_10_1016_j_ejphar_2023_175859 crossref_primary_10_4161_15548627_2014_984273 crossref_primary_10_1016_j_taap_2018_08_003 crossref_primary_10_3390_ijms252211901 crossref_primary_10_1007_s12975_021_00943_z crossref_primary_10_1111_j_1471_4159_2010_07098_x crossref_primary_10_1016_j_taap_2016_11_012 crossref_primary_10_1371_journal_ppat_1003797 crossref_primary_10_4161_15548627_2014_984277 crossref_primary_10_1530_REP_16_0072 crossref_primary_10_1016_j_ejps_2012_09_007 crossref_primary_10_3390_antiox11061129 crossref_primary_10_1186_1743_8977_9_20 crossref_primary_10_1186_s13059_015_0861_4 crossref_primary_10_1111_j_1471_4159_2011_07496_x crossref_primary_10_1074_jbc_M113_525782 crossref_primary_10_1096_fj_202000520R crossref_primary_10_3389_fphys_2018_00541 crossref_primary_10_1093_carcin_bgt124 crossref_primary_10_1128_MCB_01402_14 crossref_primary_10_18632_oncotarget_5036 crossref_primary_10_1016_j_nut_2019_05_009 crossref_primary_10_1016_j_msec_2021_111891 crossref_primary_10_1371_journal_pone_0137675 crossref_primary_10_1007_s00018_019_03331_x crossref_primary_10_3389_fnmol_2022_850035 crossref_primary_10_1152_ajpendo_00270_2013 crossref_primary_10_1371_journal_pbio_2006926 crossref_primary_10_1021_acs_analchem_7b03576 crossref_primary_10_1038_s41419_017_0170_9 crossref_primary_10_1038_s41419_018_0816_2 crossref_primary_10_1002_jcb_30451 crossref_primary_10_1186_s12967_015_0726_3 crossref_primary_10_1007_s11626_022_00739_x crossref_primary_10_1101_pdb_prot086512 crossref_primary_10_1016_j_fct_2022_112831 crossref_primary_10_1080_01635581_2015_989374 crossref_primary_10_3760_cma_j_issn_0366_6999_20130996 crossref_primary_10_1074_jbc_M116_717793 crossref_primary_10_1080_15548627_2018_1490851 crossref_primary_10_5009_gnl_2011_5_4_513 crossref_primary_10_1371_journal_pone_0081296 crossref_primary_10_1002_anie_202312897 crossref_primary_10_1080_03009734_2020_1785063 crossref_primary_10_1007_s12035_018_0923_1 crossref_primary_10_1016_j_bbrc_2019_08_103 crossref_primary_10_1016_j_bbrep_2019_01_004 crossref_primary_10_1038_s41416_022_01808_4 crossref_primary_10_18632_aging_102437 crossref_primary_10_1002_ange_202301704 crossref_primary_10_3892_or_2016_4753 crossref_primary_10_1016_j_lfs_2016_09_006 crossref_primary_10_1016_j_ajpath_2011_02_044 crossref_primary_10_1089_ars_2010_3768 crossref_primary_10_3892_ijo_2015_3125 crossref_primary_10_1016_j_bcp_2015_09_021 crossref_primary_10_1007_s00280_013_2363_y crossref_primary_10_1093_toxsci_kfw011 crossref_primary_10_1080_27694127_2024_2326241 crossref_primary_10_1111_exd_12175 crossref_primary_10_1080_21505594_2021_2014680 crossref_primary_10_1002_arch_21780 crossref_primary_10_1007_s12031_015_0619_1 crossref_primary_10_1016_j_neulet_2014_09_026 crossref_primary_10_1155_2021_8832541 crossref_primary_10_1242_jcs_217760 crossref_primary_10_1016_j_exer_2015_06_016 crossref_primary_10_1186_s40001_024_02098_7 crossref_primary_10_1016_j_taap_2018_06_031 crossref_primary_10_1007_s00441_012_1475_8 crossref_primary_10_1083_jcb_201604032 crossref_primary_10_1002_jcp_26145 crossref_primary_10_1177_1178223419830981 crossref_primary_10_1016_j_actbio_2021_01_007 crossref_primary_10_1016_j_bbapap_2024_141061 crossref_primary_10_1038_s41419_021_04157_x crossref_primary_10_1155_2012_317645 crossref_primary_10_1016_j_virol_2018_07_018 crossref_primary_10_18632_aging_205085 crossref_primary_10_3390_ijms21082943 crossref_primary_10_1016_j_smim_2014_10_001 crossref_primary_10_1113_JP271332 crossref_primary_10_1177_0022034514553815 crossref_primary_10_1371_journal_pone_0064619 crossref_primary_10_4161_auto_7_12_16991 crossref_primary_10_18632_oncotarget_5871 crossref_primary_10_1016_j_mito_2020_12_013 crossref_primary_10_1515_med_2021_0012 crossref_primary_10_1002_mc_22272 crossref_primary_10_18632_oncotarget_5632 crossref_primary_10_1016_j_ejphar_2019_04_019 crossref_primary_10_1016_j_jiec_2020_08_009 crossref_primary_10_15406_ppij_2021_09_00348 crossref_primary_10_2217_nnm_2019_0387 crossref_primary_10_1038_cddis_2012_26 crossref_primary_10_1007_s10735_011_9372_0 crossref_primary_10_1155_2013_350863 crossref_primary_10_3390_ijms241914576 crossref_primary_10_1021_cr300354g crossref_primary_10_1080_15384101_2017_1315492 crossref_primary_10_1002_ptr_3583 crossref_primary_10_1080_15548627_2016_1174802 crossref_primary_10_1371_journal_pone_0074407 crossref_primary_10_1152_ajpregu_00005_2014 crossref_primary_10_1016_j_fct_2024_114510 crossref_primary_10_1158_0008_5472_CAN_10_3145 crossref_primary_10_1080_15548627_2024_2361580 crossref_primary_10_1016_j_ydbio_2013_12_006 crossref_primary_10_3390_ijms24065552 crossref_primary_10_1134_S0026893321030043 crossref_primary_10_5352_JLS_2011_21_3_400 crossref_primary_10_3390_cancers14133129 crossref_primary_10_1016_j_bcp_2017_11_021 crossref_primary_10_1016_j_bbrc_2011_10_124 crossref_primary_10_3109_09553002_2016_1150617 crossref_primary_10_1016_j_cellsig_2021_110150 crossref_primary_10_1155_2018_8602041 crossref_primary_10_3390_cells9051321 crossref_primary_10_3389_fphar_2023_1200782 crossref_primary_10_1097_CEJ_0000000000000505 crossref_primary_10_3892_ijmm_2018_3763 crossref_primary_10_1152_ajprenal_00304_2015 crossref_primary_10_1016_j_jmb_2019_01_022 crossref_primary_10_1002_tox_23930 crossref_primary_10_1113_JP271405 crossref_primary_10_1002_adma_201703704 crossref_primary_10_1016_j_biomaterials_2014_08_031 crossref_primary_10_1097_CAD_0000000000001460 crossref_primary_10_1111_j_1365_2184_2012_00810_x crossref_primary_10_1016_j_brainres_2014_02_034 crossref_primary_10_1016_j_neuro_2019_07_001 crossref_primary_10_1186_s12885_017_3589_6 crossref_primary_10_3390_ijms22158333 crossref_primary_10_18632_oncotarget_11470 crossref_primary_10_1155_2022_6232902 crossref_primary_10_1016_j_ejcb_2012_09_002 crossref_primary_10_1093_rheumatology_keaa670 crossref_primary_10_1021_acs_jmedchem_6b01885 crossref_primary_10_5468_ogs_2017_60_3_241 crossref_primary_10_18632_oncotarget_26876 crossref_primary_10_1038_s41598_021_02371_3 crossref_primary_10_1093_cvr_cvz233 crossref_primary_10_1128_JVI_03775_13 crossref_primary_10_4137_BCBCR_S13693 crossref_primary_10_18632_aging_101167 crossref_primary_10_18632_aging_102014 crossref_primary_10_3389_fonc_2015_00082 crossref_primary_10_1161_CIRCRESAHA_116_303787 crossref_primary_10_1080_02713683_2017_1370117 crossref_primary_10_3892_ijo_2019_4868 crossref_primary_10_3390_nu8010047 crossref_primary_10_1016_j_taap_2016_03_017 crossref_primary_10_3390_ijms18020466 crossref_primary_10_1016_j_jbc_2022_101904 crossref_primary_10_1186_s13046_016_0417_9 crossref_primary_10_1007_s12035_016_9856_8 crossref_primary_10_1038_s41598_018_28590_9 crossref_primary_10_1007_s11357_016_9897_y crossref_primary_10_1016_j_ibmb_2016_07_004 crossref_primary_10_2174_0929867325666181031144605 crossref_primary_10_3390_cancers11101470 crossref_primary_10_1089_ars_2014_6004 crossref_primary_10_1016_j_toxlet_2017_12_019 crossref_primary_10_1002_jbmr_2806 crossref_primary_10_1016_j_bbrc_2016_04_045 crossref_primary_10_1016_j_placenta_2019_11_003 crossref_primary_10_1002_biot_201200306 crossref_primary_10_4049_jimmunol_1200484 crossref_primary_10_1039_D3AN00651D crossref_primary_10_1016_j_bbadis_2018_02_002 crossref_primary_10_1016_j_bbadis_2018_02_003 |
Cites_doi | 10.1016/S0076-6879(08)03612-4 10.1016/j.cell.2007.05.021 10.1101/gad.1599207 10.1002/eji.200323730 10.4161/auto.6845 10.4161/auto.5.3.7491 10.1016/j.cell.2007.10.035 10.1074/jbc.M303800200 10.1093/emboj/19.21.5720 10.1016/S0076-6879(08)03601-X 10.1182/blood-2008-02-137398 10.1038/nature04724 10.4161/auto.5338 10.1038/nature03029 10.1016/S0076-6879(08)03613-6 10.4161/auto.4451 10.1007/978-1-59745-157-4_4 10.1038/nature04723 10.4161/auto.5.8.10274 10.1016/j.devcel.2008.08.012 10.1038/ncb1991 10.1074/jbc.M702824200 10.4161/auto.4600 10.1016/S0076-6879(08)04009-3 10.4161/auto.5.5.8823 10.1074/jbc.M800102200 10.4161/auto.5275 10.1038/nrm2708 10.4161/auto.5.4.7761 10.1016/S0076-6879(08)03607-0 10.4161/auto.4012 10.1158/0008-5472.CAN-08-1573 10.1038/nature08455 10.1083/jcb.111.3.941 10.1038/nature07006 10.1016/j.febslet.2007.06.040 10.1016/S0076-6879(08)03610-0 10.1007/978-1-59745-157-4_7 10.1007/978-1-59745-157-4_2 10.1016/j.cell.2006.05.034 10.4161/auto.4615 10.1242/jcs.114.20.3619 10.1128/MCB.01396-08 10.1074/jbc.274.21.15222 10.1016/S0076-6879(08)03606-9 10.4161/auto.4892 10.1038/onc.2008.117 10.1016/S0076-6879(08)03604-5 10.1016/S0076-6879(08)04016-0 10.1002/path.2697 10.1016/j.bbamcr.2009.03.002 10.1073/pnas.0708818104 10.1083/jcb.12.1.198 10.1182/blood-2008-04-151639 10.1083/jcb.200504035 10.1016/j.cell.2006.12.044 10.4161/auto.5179 10.1016/j.cell.2009.05.023 10.1016/S0021-9258(19)74245-8 10.1083/jcb.33.2.437 10.4161/auto.4846 10.1038/sj.emboj.7601689 10.1016/j.cell.2004.11.046 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. 2015 INIST-CNRS Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. 2010 |
Copyright_xml | – notice: Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS – notice: Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. – notice: Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. 2010 |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1002/path.2694 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1096-9896 |
EndPage | 124 |
ExternalDocumentID | PMC2989884 20225337 22689810 10_1002_path_2694 PATH2694 ark_67375_WNG_98PQ5229_9 US201301842327 |
Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Cancer Institute funderid: RO1 CA131188 – fundername: Swiss National Foundation funderid: PBZHP3‐123296 – fundername: NCI NIH HHS grantid: R01 CA131188 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1KJ 1L6 1OB 1OC 1ZS 29L 31~ 33P 3O- 3SF 3UE 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHMBA AI. AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN F00 F01 F04 F5P FBQ FEDTE FUBAC G-S G.N GNP GODZA GSXLS H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M68 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI UB1 V2E VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 YQI YQJ ZGI ZXP ZZTAW ~IA ~KM ~WT AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE BSCLL AEUQT AFPWT RWI WRC WUP AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c6044-b7a7c7a36541266c2e84879285fe21835e0a39e3f88788a318152acd7b2bd0933 |
IEDL.DBID | DR2 |
ISSN | 0022-3417 1096-9896 |
IngestDate | Thu Aug 21 18:04:47 EDT 2025 Thu Jul 10 17:57:25 EDT 2025 Fri Jul 11 06:11:33 EDT 2025 Sat May 31 02:11:28 EDT 2025 Mon Jul 21 09:16:58 EDT 2025 Tue Jul 01 04:21:07 EDT 2025 Thu Apr 24 23:08:48 EDT 2025 Wed Jan 22 16:59:27 EST 2025 Sun Sep 21 06:19:28 EDT 2025 Thu Apr 03 09:45:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Assay autophagic flux Anatomic pathology process Flux Artefact Method Technique analysis Autophagy LC3 Mechanism |
Language | English |
License | CC BY 4.0 Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6044-b7a7c7a36541266c2e84879285fe21835e0a39e3f88788a318152acd7b2bd0933 |
Notes | http://dx.doi.org/10.1002/path.2694 ark:/67375/WNG-98PQ5229-9 istex:F2F6068829E51881609754E92D2B759B976E281D Swiss National Foundation - No. PBZHP3-123296 ArticleID:PATH2694 Supporting information: Teaching materials; Figures 1 - 2 as PowerPoint slides No conflicts of interest were declared. National Cancer Institute - No. RO1 CA131188 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://doi.org/10.1002/path.2694 |
PMID | 20225337 |
PQID | 733959556 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2989884 proquest_miscellaneous_742701822 proquest_miscellaneous_733959556 pubmed_primary_20225337 pascalfrancis_primary_22689810 crossref_citationtrail_10_1002_path_2694 crossref_primary_10_1002_path_2694 wiley_primary_10_1002_path_2694_PATH2694 istex_primary_ark_67375_WNG_98PQ5229_9 fao_agris_US201301842327 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2010 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: June 2010 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester – name: England |
PublicationTitle | The Journal of pathology |
PublicationTitleAlternate | J. Pathol |
PublicationYear | 2010 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24121-24145. Perry CN, Kyoi S, Hariharan N, Takagi H, Sadoshima J, Gottlieb RA. Novel methods for measuring cardiac autophagy in vivo. Methods Enzymol 2009; 453: 325-342. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 2009; 452: 143-164. Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C. p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 2009; 29: 2594-2608. Eskelinen EL. Fine structure of the autophagosome. Methods Mol Biol 2008; 445: 11-28. Komatsu M, Waguri S, Chiba T, Murata S, Iwata S, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441: 880-884. Vazquez CL, Colombo MI. Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods Enzymol 2009; 452: 85-95. Lum JJ, Bauer DE, Kong M, Harris MH, Li CY, Lindsten T, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005; 120: 237-249. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 2007; 3: 542-545. Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 2007; 3: 323-328. Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, et al. In search of an 'autophagometer'. Autophagy 2009; 5: 1-5. Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009; 452: 181-197. Zhang J, Randall MS, Loyd MR, Dorsey FC, Kundu M, Cleveland JL, et al. Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 2009; 114: 157-164. Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll DM, Bornkamm GW, et al. Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 2003; 33: 1250-1259. Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 2008; 27: 4860-4864. Waguri S, Komatsu M. Biochemical and morphological detection of inclusion bodies in autophagy-deficient mice. Methods Enzymol 2009; 453: 181-196. Dennis PB, Mercer CA. The GST-BHMT assay and related assays for autophagy. Methods Enzymol 2009; 452: 97-118. Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 1967; 33: 437-449. Tolkovsky AM. Mitophagy. Biochim Biophys Acta 2009; 1793: 1508-1515. Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001; 114: 3619-3629. Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008; 112: 1493-1502. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131: 1149-1163. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720-5728. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441: 885-889. Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC. Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 2008; 4: 849-950. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; DOI: 10.1002/path.2697. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007; 128: 931-946. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007; 104: 19500-19505. Sandoval H, Thiagarajan P, Dasgupta SK, Scumacker A, Prchal JT, Chen M, et al. Essential role for Nix in autophagic maturation of red cells. Nature 2008; 454: 232-235. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461: 654-659. Tracy K, Macleod KF. Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. Autophagy 2007; 3: 616-619. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is a HIF-1 dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283: 10892-10903. Ueno T, Ishidoh K, Mineki R, Tanida I, Murayama K, Kadowaki M, et al. Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J Biol Chem 1999; 274: 15222-15229. Miracco C, Cevenini G, Franchi A, Luzi P, Cosci E, Mourmouras V, et al. Beclin1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol 2009; ePub ahead of print; DOI: 10.1016/j.humpath.2009.09.004. Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 1962; 12: 198-202. Kimura S, Fujita N, Noda T, Yoshimori T. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 2009; 452: 1-12. Egner R, Thumm M, Straub M, Simeon A, Schuller HJ, Wolf DH. Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae. J Biol Chem 1993; 268: 27269-27276. Eskelinen EL. To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 2008; 4: 257-260. Mizushima N, Kuma A. Autophagosomes in GFP-LC3 transgenic mice. Methods Mol Biol 2008; 445: 119-124. Kuma A, Mizushima N. Chromosomal mapping of the GFP-LC3 transgene in GFP-LC3 mice. Autophagy 2008; 4: 61-62. Kopitz J, Kisen GO, Gordon PB, Bohley P, Seglen PO. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 1990; 111: 941-953. Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006; 126: 121-134. Mercer CA, Kaliappan A, Dennis PB. Macroautophagy-dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization. Autophagy 2008; 4: 185-194. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009; 5: 1180-1185. Li B, Li CY, Peng RQ, Wu XJ, Wang HY, Wan DS, et al. The expression of beclin1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy 2009; 5: 303-306. Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kadowaki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007; 3: 553-560. Mizushima N. Autophagy: process and function. Genes Dev 2007; 21: 2861-2873. Ju JS, Miller SE, Jackson E, Cadwell K, Piwnica-Worms D, Weihl CC. Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy 2009; 5: 511-519. Bauvy C, Meijer AJ, Codogno P. Assaying of autophagic protein degradation. Methods Enzymol 2009; 452: 47-61. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432: 1032-1036. Kadowaki M, Karim MR. Cytosolic LC3 ratio as a quantitative index of macroautophagy. Methods Enzymol 2009; 452: 199-213. Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3: 452-460. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009; 11: 1433-1437. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170: 1101-1111. He H, Dang Y, Dai F, Guo Z, Wu J, She X, et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003; 278: 29278-29287. Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis and cancer. Cell 2009; 137: 1001-1004. Proikas-Cezanne T, Ruckerbauer S, Stierhof YD, Berg C, Nordheim A. Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett 2007; 581: 3396-3404. Klionsky DJ, Agostinis P, Agrawal DK, Bamber BA, Bassham DC, Bergamini E, et al. Guidelines for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4: 151-175. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009; 10: 458-467. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin1. EMBO J 2007; 26: 2527-2539. Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 2008; 15: 344-357. Ding ZB, Shi YH, Zhou J, Qiu SJ, Xu Y, Dai Z, e 2007; 104 2005; 170 2007; 128 2007; 282 2010 2007; 581 2009 2009; 452 2008 2008; 15 2009; 453 1962; 12 2008; 445 2008; 4 1993; 268 2003; 278 2009; 114 2009; 137 2008; 283 2003; 33 2009; 29 2009; 11 2000; 19 2009; 10 2004; 432 2005; 120 1967; 33 2007; 130 2008; 27 2007; 131 1999; 274 2008; 68 2009; 5 2007; 3 2008; 454 2009; 461 2008; 112 2007; 21 2006; 126 1990; 111 2009; 1793 2006; 441 2001; 114 2007; 26 e_1_2_9_52_2 e_1_2_9_50_2 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_56_2 Miracco C (e_1_2_9_60_2) 2009 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_54_2 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_58_2 e_1_2_9_18_2 e_1_2_9_39_2 e_1_2_9_41_2 e_1_2_9_62_2 e_1_2_9_20_2 e_1_2_9_45_2 e_1_2_9_22_2 e_1_2_9_43_2 e_1_2_9_64_2 e_1_2_9_6_2 e_1_2_9_4_2 e_1_2_9_2_2 e_1_2_9_8_2 e_1_2_9_24_2 e_1_2_9_49_2 e_1_2_9_26_2 e_1_2_9_47_2 e_1_2_9_28_2 e_1_2_9_51_2 e_1_2_9_30_2 e_1_2_9_34_2 e_1_2_9_55_2 e_1_2_9_11_2 e_1_2_9_32_2 e_1_2_9_53_2 e_1_2_9_13_2 e_1_2_9_38_2 e_1_2_9_59_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_57_2 e_1_2_9_17_2 e_1_2_9_19_2 e_1_2_9_40_2 e_1_2_9_63_2 e_1_2_9_61_2 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_65_2 e_1_2_9_7_2 e_1_2_9_5_2 e_1_2_9_3_2 e_1_2_9_9_2 e_1_2_9_25_2 e_1_2_9_48_2 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_29_2 |
References_xml | – reference: Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 2007; 3: 542-545. – reference: Klionsky DJ, Agostinis P, Agrawal DK, Bamber BA, Bassham DC, Bergamini E, et al. Guidelines for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4: 151-175. – reference: Ueno T, Ishidoh K, Mineki R, Tanida I, Murayama K, Kadowaki M, et al. Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J Biol Chem 1999; 274: 15222-15229. – reference: Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 1962; 12: 198-202. – reference: Egner R, Thumm M, Straub M, Simeon A, Schuller HJ, Wolf DH. Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae. J Biol Chem 1993; 268: 27269-27276. – reference: Perry CN, Kyoi S, Hariharan N, Takagi H, Sadoshima J, Gottlieb RA. Novel methods for measuring cardiac autophagy in vivo. Methods Enzymol 2009; 453: 325-342. – reference: Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3: 452-460. – reference: Tolkovsky AM. Mitophagy. Biochim Biophys Acta 2009; 1793: 1508-1515. – reference: Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is a HIF-1 dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283: 10892-10903. – reference: Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 1967; 33: 437-449. – reference: Mizushima N. Autophagy: process and function. Genes Dev 2007; 21: 2861-2873. – reference: Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 2008; 15: 344-357. – reference: Tracy K, Macleod KF. Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. Autophagy 2007; 3: 616-619. – reference: Mercer CA, Kaliappan A, Dennis PB. Macroautophagy-dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization. Autophagy 2008; 4: 185-194. – reference: Li B, Li CY, Peng RQ, Wu XJ, Wang HY, Wan DS, et al. The expression of beclin1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy 2009; 5: 303-306. – reference: Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, et al. In search of an 'autophagometer'. Autophagy 2009; 5: 1-5. – reference: Bauvy C, Meijer AJ, Codogno P. Assaying of autophagic protein degradation. Methods Enzymol 2009; 452: 47-61. – reference: Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001; 114: 3619-3629. – reference: Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24121-24145. – reference: Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008; 112: 1493-1502. – reference: Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461: 654-659. – reference: Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131: 1149-1163. – reference: Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432: 1032-1036. – reference: Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009; 5: 1180-1185. – reference: Kuma A, Mizushima N. Chromosomal mapping of the GFP-LC3 transgene in GFP-LC3 mice. Autophagy 2008; 4: 61-62. – reference: Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009; 10: 458-467. – reference: Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; DOI: 10.1002/path.2697. – reference: Lum JJ, Bauer DE, Kong M, Harris MH, Li CY, Lindsten T, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005; 120: 237-249. – reference: Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C. p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 2009; 29: 2594-2608. – reference: Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007; 128: 931-946. – reference: He H, Dang Y, Dai F, Guo Z, Wu J, She X, et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003; 278: 29278-29287. – reference: Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441: 885-889. – reference: Zhang J, Randall MS, Loyd MR, Dorsey FC, Kundu M, Cleveland JL, et al. Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 2009; 114: 157-164. – reference: Ju JS, Miller SE, Jackson E, Cadwell K, Piwnica-Worms D, Weihl CC. Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy 2009; 5: 511-519. – reference: Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin1. EMBO J 2007; 26: 2527-2539. – reference: Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll DM, Bornkamm GW, et al. Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 2003; 33: 1250-1259. – reference: Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kadowaki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007; 3: 553-560. – reference: Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis and cancer. Cell 2009; 137: 1001-1004. – reference: Ding ZB, Shi YH, Zhou J, Qiu SJ, Xu Y, Dai Z, et al. Association of autophagy defects with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res 2008; 68: 9167-9175. – reference: Sandoval H, Thiagarajan P, Dasgupta SK, Scumacker A, Prchal JT, Chen M, et al. Essential role for Nix in autophagic maturation of red cells. Nature 2008; 454: 232-235. – reference: Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 2007; 3: 323-328. – reference: Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009; 452: 181-197. – reference: Kopitz J, Kisen GO, Gordon PB, Bohley P, Seglen PO. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 1990; 111: 941-953. – reference: Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC. Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 2008; 4: 849-950. – reference: Eskelinen EL. To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 2008; 4: 257-260. – reference: Miracco C, Cevenini G, Franchi A, Luzi P, Cosci E, Mourmouras V, et al. Beclin1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol 2009; ePub ahead of print; DOI: 10.1016/j.humpath.2009.09.004. – reference: Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006; 126: 121-134. – reference: Komatsu M, Waguri S, Chiba T, Murata S, Iwata S, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441: 880-884. – reference: Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009; 11: 1433-1437. – reference: Vazquez CL, Colombo MI. Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods Enzymol 2009; 452: 85-95. – reference: Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170: 1101-1111. – reference: Proikas-Cezanne T, Ruckerbauer S, Stierhof YD, Berg C, Nordheim A. Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett 2007; 581: 3396-3404. – reference: Kimura S, Fujita N, Noda T, Yoshimori T. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 2009; 452: 1-12. – reference: Eskelinen EL. Fine structure of the autophagosome. Methods Mol Biol 2008; 445: 11-28. – reference: Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediated membrane tethering and hemifusion. Cell 2007; 130: 165-178. – reference: Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 2009; 452: 143-164. – reference: Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007; 104: 19500-19505. – reference: Dennis PB, Mercer CA. The GST-BHMT assay and related assays for autophagy. Methods Enzymol 2009; 452: 97-118. – reference: Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720-5728. – reference: Waguri S, Komatsu M. Biochemical and morphological detection of inclusion bodies in autophagy-deficient mice. Methods Enzymol 2009; 453: 181-196. – reference: Mizushima N, Kuma A. Autophagosomes in GFP-LC3 transgenic mice. Methods Mol Biol 2008; 445: 119-124. – reference: Kadowaki M, Karim MR. Cytosolic LC3 ratio as a quantitative index of macroautophagy. Methods Enzymol 2009; 452: 199-213. – reference: Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 2008; 27: 4860-4864. – volume: 3 start-page: 553 year: 2007 end-page: 560 article-title: Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4‐II‐E cells publication-title: Autophagy – volume: 131 start-page: 1149 year: 2007 end-page: 1163 article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy‐deficient mice publication-title: Cell – volume: 453 start-page: 181 year: 2009 end-page: 196 article-title: Biochemical and morphological detection of inclusion bodies in autophagy‐deficient mice publication-title: Methods Enzymol – volume: 3 start-page: 323 year: 2007 end-page: 328 article-title: LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization publication-title: Autophagy – start-page: 77 year: 2008 end-page: 88 – volume: 4 start-page: 61 year: 2008 end-page: 62 article-title: Chromosomal mapping of the transgene in GFP–LC3 mice publication-title: Autophagy – volume: 170 start-page: 1101 year: 2005 end-page: 1111 article-title: Lithium induces autophagy by inhibiting inositol monophosphatase publication-title: J Cell Biol – volume: 581 start-page: 3396 year: 2007 end-page: 3404 article-title: Human WIPI‐1 puncta‐formation: a novel assay to assess mammalian autophagy publication-title: FEBS Lett – volume: 4 start-page: 257 year: 2008 end-page: 260 article-title: To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells publication-title: Autophagy – volume: 452 start-page: 1 year: 2009 end-page: 12 article-title: Monitoring autophagy in mammalian cultured cells through the dynamics of LC3 publication-title: Methods Enzymol – volume: 282 start-page: 24121 year: 2007 end-page: 24145 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J Biol Chem – volume: 128 start-page: 931 year: 2007 end-page: 946 article-title: Autophagy gene‐dependent clearance of apoptotic cells during embryonic development publication-title: Cell – volume: 15 start-page: 344 year: 2008 end-page: 357 article-title: The role of autophagy in mammalian development: cell makeover rather than cell death publication-title: Dev Cell – volume: 3 start-page: 542 year: 2007 end-page: 545 article-title: How to interpret LC3 immunoblotting publication-title: Autophagy – volume: 130 start-page: 165 year: 2007 end-page: 178 article-title: Atg8, a ubiquitin‐like protein required for autophagosome formation, mediated membrane tethering and hemifusion publication-title: Cell – volume: 432 start-page: 1032 year: 2004 end-page: 1036 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature – volume: 5 start-page: 511 year: 2009 end-page: 519 article-title: Quantitation of selective autophagic protein aggregate degradation and using luciferase reporters publication-title: Autophagy – volume: 5 start-page: 1180 year: 2009 end-page: 1185 article-title: 3D tomography reveals connections between the phagophore and endoplasmic reticulum publication-title: Autophagy – volume: 126 start-page: 121 year: 2006 end-page: 134 article-title: DRAM, a p53‐induced modulator of autophagy, is critical for apoptosis publication-title: Cell – volume: 68 start-page: 9167 year: 2008 end-page: 9175 article-title: Association of autophagy defects with a malignant phenotype and poor prognosis of hepatocellular carcinoma publication-title: Cancer Res – volume: 445 start-page: 119 year: 2008 end-page: 124 article-title: Autophagosomes in transgenic mice publication-title: Methods Mol Biol – volume: 10 start-page: 458 year: 2009 end-page: 467 article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast publication-title: Nat Rev Mol Cell Biol – volume: 453 start-page: 325 year: 2009 end-page: 342 article-title: Novel methods for measuring cardiac autophagy publication-title: Methods Enzymol – year: 2010 article-title: Autophagy: cellular and molecular mechanisms publication-title: J Pathol – volume: 3 start-page: 452 year: 2007 end-page: 460 article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent‐tagged LC3 publication-title: Autophagy – volume: 5 start-page: 1 year: 2009 end-page: 5 article-title: In search of an ‘autophagometer’ publication-title: Autophagy – volume: 278 start-page: 29278 year: 2003 end-page: 29287 article-title: Post‐translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B publication-title: J Biol Chem – volume: 12 start-page: 198 year: 1962 end-page: 202 article-title: Cytoplasmic components in hepatic cell lysosomes publication-title: J Cell Biol – volume: 452 start-page: 181 year: 2009 end-page: 197 article-title: Monitoring autophagic degradation of p62/SQSTM1 publication-title: Methods Enzymol – volume: 137 start-page: 1001 year: 2009 end-page: 1004 article-title: p62 at the crossroads of autophagy, apoptosis and cancer publication-title: Cell – volume: 461 start-page: 654 year: 2009 end-page: 659 article-title: Discovery of Atg5/Atg7‐independent alternative macroautophagy publication-title: Nature – year: 2009 article-title: and autophagic gene expression in cutaneous melanocytic lesions publication-title: Hum Pathol – volume: 454 start-page: 232 year: 2008 end-page: 235 article-title: Essential role for Nix in autophagic maturation of red cells publication-title: Nature – volume: 4 start-page: 849 year: 2008 end-page: 950 article-title: Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? publication-title: Autophagy – volume: 441 start-page: 880 year: 2006 end-page: 884 article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice publication-title: Nature – volume: 1793 start-page: 1508 year: 2009 end-page: 1515 article-title: Mitophagy publication-title: Biochim Biophys Acta – volume: 4 start-page: 151 year: 2008 end-page: 175 article-title: Guidelines for monitoring autophagy in higher eukaryotes publication-title: Autophagy – volume: 33 start-page: 437 year: 1967 end-page: 449 article-title: Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes publication-title: J Cell Biol – volume: 21 start-page: 2861 year: 2007 end-page: 2873 article-title: Autophagy: process and function publication-title: Genes Dev – volume: 120 start-page: 237 year: 2005 end-page: 249 article-title: Growth factor regulation of autophagy and cell survival in the absence of apoptosis publication-title: Cell – volume: 33 start-page: 1250 year: 2003 end-page: 1259 article-title: Major histocompatibility complex class II‐restricted presentation of a cytosolic antigen by autophagy publication-title: Eur J Immunol – volume: 104 start-page: 19500 year: 2007 end-page: 19505 article-title: NIX is required for programmed mitochondrial clearance during reticulocyte maturation publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: 303 year: 2009 end-page: 306 article-title: The expression of beclin1 is associated with favorable prognosis in stage IIIB colon cancers publication-title: Autophagy – volume: 445 start-page: 11 year: 2008 end-page: 28 article-title: Fine structure of the autophagosome publication-title: Methods Mol Biol – volume: 283 start-page: 10892 year: 2008 end-page: 10903 article-title: Mitochondrial autophagy is a HIF‐1 dependent adaptive metabolic response to hypoxia publication-title: J Biol Chem – volume: 114 start-page: 157 year: 2009 end-page: 164 article-title: Mitochondrial clearance is regulated by Atg7‐dependent and ‐independent mechanisms during reticulocyte maturation publication-title: Blood – volume: 27 start-page: 4860 year: 2008 end-page: 4864 article-title: E2F1 regulates autophagy and the transcription of autophagy genes publication-title: Oncogene – volume: 19 start-page: 5720 year: 2000 end-page: 5728 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing publication-title: EMBO J – volume: 452 start-page: 97 year: 2009 end-page: 118 article-title: The GST–BHMT assay and related assays for autophagy publication-title: Methods Enzymol – volume: 441 start-page: 885 year: 2006 end-page: 889 article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice publication-title: Nature – volume: 452 start-page: 143 year: 2009 end-page: 164 article-title: Monitoring autophagy by electron microscopy in mammalian cells publication-title: Methods Enzymol – volume: 112 start-page: 1493 year: 2008 end-page: 1502 article-title: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation publication-title: Blood – volume: 3 start-page: 616 year: 2007 end-page: 619 article-title: Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3 publication-title: Autophagy – volume: 111 start-page: 941 year: 1990 end-page: 953 article-title: Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes publication-title: J Cell Biol – volume: 452 start-page: 47 year: 2009 end-page: 61 article-title: Assaying of autophagic protein degradation publication-title: Methods Enzymol – volume: 26 start-page: 2527 year: 2007 end-page: 2539 article-title: Functional and physical interaction between Bcl‐XL and a BH3‐like domain in Beclin1 publication-title: EMBO J – volume: 268 start-page: 27269 year: 1993 end-page: 27276 article-title: Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast publication-title: J Biol Chem – volume: 274 start-page: 15222 year: 1999 end-page: 15229 article-title: Autolysosomal membrane‐associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy publication-title: J Biol Chem – volume: 11 start-page: 1433 year: 2009 end-page: 1437 article-title: A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation publication-title: Nat Cell Biol – volume: 114 start-page: 3619 year: 2001 end-page: 3629 article-title: A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation publication-title: J Cell Sci – volume: 452 start-page: 85 year: 2009 end-page: 95 article-title: Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ‐BSA publication-title: Methods Enzymol – volume: 4 start-page: 185 year: 2008 end-page: 194 article-title: Macroautophagy‐dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization publication-title: Autophagy – volume: 452 start-page: 199 year: 2009 end-page: 213 article-title: Cytosolic LC3 ratio as a quantitative index of macroautophagy publication-title: Methods Enzymol – volume: 29 start-page: 2594 year: 2009 end-page: 2608 article-title: p65/RelA modulates BECN1 transcription and autophagy publication-title: Mol Cell Biol – ident: e_1_2_9_22_2 doi: 10.1016/S0076-6879(08)03612-4 – ident: e_1_2_9_18_2 doi: 10.1016/j.cell.2007.05.021 – ident: e_1_2_9_16_2 doi: 10.1101/gad.1599207 – ident: e_1_2_9_45_2 doi: 10.1002/eji.200323730 – ident: e_1_2_9_21_2 doi: 10.4161/auto.6845 – ident: e_1_2_9_59_2 doi: 10.4161/auto.5.3.7491 – ident: e_1_2_9_24_2 doi: 10.1016/j.cell.2007.10.035 – ident: e_1_2_9_15_2 doi: 10.1074/jbc.M303800200 – ident: e_1_2_9_12_2 doi: 10.1093/emboj/19.21.5720 – ident: e_1_2_9_20_2 doi: 10.1016/S0076-6879(08)03601-X – ident: e_1_2_9_30_2 doi: 10.1182/blood-2008-02-137398 – ident: e_1_2_9_50_2 doi: 10.1038/nature04724 – ident: e_1_2_9_6_2 doi: 10.4161/auto.5338 – ident: e_1_2_9_48_2 doi: 10.1038/nature03029 – ident: e_1_2_9_36_2 doi: 10.1016/S0076-6879(08)03613-6 – ident: e_1_2_9_38_2 doi: 10.4161/auto.4451 – ident: e_1_2_9_14_2 doi: 10.1007/978-1-59745-157-4_4 – ident: e_1_2_9_51_2 doi: 10.1038/nature04723 – ident: e_1_2_9_8_2 doi: 10.4161/auto.5.8.10274 – ident: e_1_2_9_49_2 doi: 10.1016/j.devcel.2008.08.012 – ident: e_1_2_9_7_2 doi: 10.1038/ncb1991 – ident: e_1_2_9_23_2 doi: 10.1074/jbc.M702824200 – ident: e_1_2_9_19_2 doi: 10.4161/auto.4600 – ident: e_1_2_9_25_2 doi: 10.1016/S0076-6879(08)04009-3 – ident: e_1_2_9_11_2 doi: 10.4161/auto.5.5.8823 – ident: e_1_2_9_31_2 doi: 10.1074/jbc.M800102200 – ident: e_1_2_9_42_2 doi: 10.4161/auto.5275 – ident: e_1_2_9_17_2 doi: 10.1038/nrm2708 – ident: e_1_2_9_47_2 doi: 10.4161/auto.5.4.7761 – ident: e_1_2_9_43_2 doi: 10.1016/S0076-6879(08)03607-0 – ident: e_1_2_9_37_2 doi: 10.4161/auto.4012 – ident: e_1_2_9_58_2 doi: 10.1158/0008-5472.CAN-08-1573 – ident: e_1_2_9_33_2 doi: 10.1038/nature08455 – ident: e_1_2_9_44_2 doi: 10.1083/jcb.111.3.941 – ident: e_1_2_9_29_2 doi: 10.1038/nature07006 – ident: e_1_2_9_39_2 doi: 10.1016/j.febslet.2007.06.040 – ident: e_1_2_9_10_2 doi: 10.1016/S0076-6879(08)03610-0 – ident: e_1_2_9_53_2 doi: 10.1007/978-1-59745-157-4_7 – ident: e_1_2_9_5_2 doi: 10.1007/978-1-59745-157-4_2 – ident: e_1_2_9_61_2 doi: 10.1016/j.cell.2006.05.034 – ident: e_1_2_9_13_2 doi: 10.4161/auto.4615 – ident: e_1_2_9_56_2 doi: 10.1242/jcs.114.20.3619 – ident: e_1_2_9_63_2 doi: 10.1128/MCB.01396-08 – ident: e_1_2_9_41_2 doi: 10.1074/jbc.274.21.15222 – ident: e_1_2_9_57_2 doi: 10.1016/S0076-6879(08)03606-9 – ident: e_1_2_9_32_2 doi: 10.4161/auto.4892 – ident: e_1_2_9_62_2 doi: 10.1038/onc.2008.117 – ident: e_1_2_9_40_2 doi: 10.1016/S0076-6879(08)03604-5 – ident: e_1_2_9_55_2 doi: 10.1016/S0076-6879(08)04016-0 – ident: e_1_2_9_2_2 doi: 10.1002/path.2697 – ident: e_1_2_9_27_2 doi: 10.1016/j.bbamcr.2009.03.002 – ident: e_1_2_9_28_2 doi: 10.1073/pnas.0708818104 – ident: e_1_2_9_3_2 doi: 10.1083/jcb.12.1.198 – ident: e_1_2_9_34_2 doi: 10.1182/blood-2008-04-151639 – ident: e_1_2_9_35_2 doi: 10.1083/jcb.200504035 – ident: e_1_2_9_52_2 doi: 10.1016/j.cell.2006.12.044 – ident: e_1_2_9_9_2 doi: 10.4161/auto.5179 – ident: e_1_2_9_26_2 doi: 10.1016/j.cell.2009.05.023 – ident: e_1_2_9_46_2 doi: 10.1016/S0021-9258(19)74245-8 – year: 2009 ident: e_1_2_9_60_2 article-title: Beclin1 and LC3 autophagic gene expression in cutaneous melanocytic lesions publication-title: Hum Pathol – ident: e_1_2_9_4_2 doi: 10.1083/jcb.33.2.437 – ident: e_1_2_9_54_2 doi: 10.4161/auto.4846 – ident: e_1_2_9_64_2 doi: 10.1038/sj.emboj.7601689 – ident: e_1_2_9_65_2 doi: 10.1016/j.cell.2004.11.046 |
SSID | ssj0009955 |
Score | 2.5421212 |
SecondaryResourceType | review_article |
Snippet | Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles... Autophagy is a fundamental and phylogenetically conserved self‐degradation process that is characterized by the formation of double‐layered vesicles... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117 |
SubjectTerms | analysis Animals autophagic flux autophagy Autophagy - physiology Biological and medical sciences Biomarkers Flow Cytometry - methods Humans Investigative techniques, diagnostic techniques (general aspects) LC3 Lysosomes - metabolism mechanism Medical sciences method Microscopy, Electron Microscopy, Fluorescence Microtubule-Associated Proteins - metabolism Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques Phagosomes - physiology Phagosomes - ultrastructure process technique |
Title | Autophagy: assays and artifacts |
URI | https://api.istex.fr/ark:/67375/WNG-98PQ5229-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpath.2694 https://www.ncbi.nlm.nih.gov/pubmed/20225337 https://www.proquest.com/docview/733959556 https://www.proquest.com/docview/742701822 https://pubmed.ncbi.nlm.nih.gov/PMC2989884 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NPSBe-A0LGyNCCO0lXerYsQ1PFTAqJKYBq9gDkuU49oaG0mlpJba_nrukSSkMhHiLlHPks8_nz7nzdwDPsiELWhQ6CU7LhHvuE9yGiiQvXc7xjBt0aLIt9vPxhL87Ekdr8LK7C9PyQ_Q_3GhlNP6aFrgt6t0laShV7B3QPUz0v8MsJ9781x-X1FFaC9EzhfOh7FiFUrbbt1zZi64FO0WESoP7nTIkbY2DFNrqFlfBz9-zKH9Gt832tHcLvnSKtVkpp4P5rBi4y184H_9T89twcwFb41FrZ3dgzVd34fr7RWD-HjwZzYmhwB5fvIgRjtuLOrZVGZNd0tWJ-j5M9t4cvhoni9oLictTzpNCWumkzahMOO7hjnmFRxvNlAieUJXwqc20zwI6KaUsegYEAtaVsmBFSX9JHsB6Na38BsTCBTw1yZJCrNyx1OaMWY_NnPOIN9IIdrpZMG5BTE71Mb6ZllKZGVLYkMIRPO1Fz1o2jquENnAqjT1GL2kmnxjFZvEci9BRRvC8md--sT0_pcw2Kczn_bdGq4MPiEe10RFsrxhA3wDRqtKKOh13FmFwQVKUxVZ-Oq-NzDIt0Pjyv4hwJrFLjEXwsLWh5ffRXhGBY0_linX1AkQHvvqm-nrS0IITl75SqP5OYzx_HiBzMDoc08OjfxfdhBs4kE0dnFRswfrsfO4fIxybFdvNuvsB1ZAtMg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5tQwJeGL-XAVuEENpLusyJYxvxUiFGga0a0Gp7QZbj2Ns0lE5rK7H99dwlTUphIMRbpZ4jn322P9-dvwN4kewwr3iuIm-ViFKXugiPoTzKCpuleMf1ylfZFv2sN0w_HPGjJXjdvIWp-SFahxutjGq_pgVODuntOWsolezt0EPMZbhRxecIEn2ek0cpxXnLFZ7uiIZXKGbbbdOF02jZmxFiVBre75QjacY4TL6ub3EdAP09j_JnfFsdULur8LVRrc5LOetMJ3nHXv3C-vi_ut-FOzPkGnZrU7sHS668Dzf3Z7H5B7DZnRJJgTm-fBUiIjeX49CURUimSa8nxg9huPt28KYXzcovRDaL0zTKhRFWmIQqheMxbpmTeLtRTHLvCFhxF5tEucTjPiWlwc0BsYCxhchZXpCj5BGslKPSrUHIrceLkygoyppaFpuMMeOwmbUOIUccwFYzDdrOuMmpRMY3XbMqM00Ka1I4gOet6HlNyHGd0BrOpTbHuFHq4RdG4Vm8yiJ6FAG8rCa4bWwuzii5TXB92H-nlTz4hJBUaRXAxoIFtA0QsEolqdNhYxIa1yQFWkzpRtOxFkmiOFpf9heRlAnsEmMBPK6NaP59NFgE4dhTsWBerQAxgi_-U56eVMzgRKcvJaq_VVnPnwdIH3QHPfqx_u-im3CrN9jf03vv-x-fwO06jYLcUU9hZXIxdc8QnU3yjWoR_gCY6TFN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ5p4gfG58LFFCKG9pMscO47ZUwWU8lUVWLU9IFmOYw80lE5rK7H99btLmpTCQIi3Sj1HPvvs-9l3_h3A02SPeSVyFXmrZMQddxG6oTxKC5tyPON65atsi0HaH_G3R-JoBfabtzA1P0R74UYro9qvaYGfFn53QRpKFXs79A5zFa7xFN0kIaJPC-4opYRoqcL5nmxohWK22zZdckar3owRotLo_qAUSTPBUfJ1eYur8OfvaZQ_w9vKP_VuwpdGszot5aQzm-Yde_EL6eN_qr4BN-a4NezWhnYLVlx5G9Y_zCPzd2C7OyOKAnN8_jxEPG7OJ6Epi5AMk95OTO7CqPfq4EU_mhdfiGwacx7l0kgrTUJ1wtGJW-YyPNsolgnvCFYJF5tEucTjLpVlBrcGRALGFjJneUHXJPdgrRyXbhNCYT0em2RBMVZuWWxSxozDZtY6BBxxADvNLGg7ZyanAhnfdc2pzDQprEnhAJ60oqc1HcdVQps4ldoc4zapR58ZBWfxIIvYUQbwrJrftrE5O6HUNin04eC1VtnwIwJSpVUAW0sG0DZAuJqpjDodNhahcUVSmMWUbjybaJkkSqDxpX8R4UxilxgL4H5tQ4vvo70iBMeeyiXragWID3z5n_Lb14oXnMj0swzV36mM588DpIfdgz79ePDvotuwPnzZ0-_fDN49hOt1DgXdRT2CtenZzD1GaDbNt6oleAndZC_8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy%3A+assays+and+artifacts&rft.jtitle=The+Journal+of+pathology&rft.au=Barth%2C+Sandra&rft.au=Glick%2C+Danielle&rft.au=Macleod%2C+Kay+F&rft.date=2010-06-01&rft.issn=0022-3417&rft.eissn=1096-9896&rft.volume=221&rft.issue=2&rft.spage=117&rft.epage=124&rft_id=info:doi/10.1002%2Fpath.2694&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_path_2694 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3417&client=summon |