Autophagy: assays and artifacts

Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pathology Vol. 221; no. 2; pp. 117 - 124
Main Authors Barth, Sandra, Glick, Danielle, Macleod, Kay F
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.06.2010
Wiley
Subjects
Online AccessGet full text
ISSN0022-3417
1096-9896
1096-9896
DOI10.1002/path.2694

Cover

Abstract Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure 'autophagic flux' has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
AbstractList Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure 'autophagic flux' has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Autophagy is a fundamental and phylogenetically conserved self‐degradation process that is characterized by the formation of double‐layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B‐II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over‐expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure ‘autophagic flux’ has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure 'autophagic flux' has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals.Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure 'autophagic flux' has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals.
Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure 'autophagic flux' has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals.
Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B-II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over-expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure ‘autophagic flux’ has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals.
Author Glick, Danielle
Macleod, Kay F
Barth, Sandra
AuthorAffiliation 1 Ben May Department for Cancer Research, Gordon Center for Integrative Sciences, University of Chicago, IL, USA
2 Committee on Cancer Biology, Gordon Center for Integrative Sciences, University of Chicago, IL, USA
AuthorAffiliation_xml – name: 1 Ben May Department for Cancer Research, Gordon Center for Integrative Sciences, University of Chicago, IL, USA
– name: 2 Committee on Cancer Biology, Gordon Center for Integrative Sciences, University of Chicago, IL, USA
Author_xml – sequence: 1
  fullname: Barth, Sandra
– sequence: 2
  fullname: Glick, Danielle
– sequence: 3
  fullname: Macleod, Kay F
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22689810$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20225337$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1vEzEQxS1URNPCgX-A5oIQh23t8fqLA1JUlRapgiJacbQmjjcxbHaD7VDy3-Mo2_IhEKc5zO89vXlzQPa6vvOEPGX0mFEKJyvMi2OQpn5ARowaWRlt5B4ZlR1UvGZqnxyk9JlSaowQj8g-lIXgXI3I0WSd-9UC55tXY0wJN2mM3WyMMYcGXU6PycMG2-SfDPOQ3Lw5uz69qC7fn789nVxWTtK6rqYKlVPIpagZSOnA61orA1o0HpjmwlPkxvNGa6U1cqaZAHQzNYXpjBrOD8nrne9qPV36mfNdjtjaVQxLjBvbY7C_b7qwsPP-m4Vyq9Z1MXgxGMT-69qnbJchOd-22Pl-nayqQVGmAf5Pcm5E6UkW8tmvoe7T3NVXgOcDgMlh20TsXEg_OZAlHKOFO9lxLvYpRd9YFzLm0G9vCa1l1G4fabePtNtHFsXLPxR3pn9jB_fb0PrNv0F7Nbm-GBTVThFS9t_vFRi_WKm4EvbTu3Nr9NUHAWCsKfzRjm-wtziP5cabj0AZL43WwEHxH_HYwt0
CODEN JPTLAS
CitedBy_id crossref_primary_10_1016_j_biochi_2022_10_004
crossref_primary_10_1016_j_peptides_2012_03_032
crossref_primary_10_1016_j_cej_2023_142554
crossref_primary_10_1002_jcsm_12537
crossref_primary_10_1016_j_cellsig_2025_111717
crossref_primary_10_1038_s41598_017_12069_0
crossref_primary_10_1016_j_ccr_2011_08_014
crossref_primary_10_1093_mutage_gev015
crossref_primary_10_4161_auto_27419
crossref_primary_10_1016_j_cmet_2017_06_005
crossref_primary_10_1002_jnr_23400
crossref_primary_10_3389_fphar_2021_739220
crossref_primary_10_1038_nmat3363
crossref_primary_10_1016_j_exger_2018_05_006
crossref_primary_10_1186_s13071_015_0974_3
crossref_primary_10_1111_nyas_13190
crossref_primary_10_3389_fcell_2024_1372573
crossref_primary_10_1016_j_chembiol_2019_07_002
crossref_primary_10_3389_fmicb_2019_01222
crossref_primary_10_1155_2016_1274603
crossref_primary_10_1172_jci_insight_90931
crossref_primary_10_1016_j_micinf_2014_05_001
crossref_primary_10_1111_jog_14418
crossref_primary_10_1074_jbc_M110_192369
crossref_primary_10_23876_j_krcp_22_247
crossref_primary_10_1016_j_ejca_2014_01_011
crossref_primary_10_1093_hmg_ddy354
crossref_primary_10_1007_s12035_023_03704_1
crossref_primary_10_1097_MPA_0b013e31825b9f2c
crossref_primary_10_7554_eLife_64977
crossref_primary_10_1124_jpet_116_232934
crossref_primary_10_3892_ijo_2012_1620
crossref_primary_10_1007_s00204_019_02573_9
crossref_primary_10_1016_j_phytochem_2014_08_012
crossref_primary_10_1007_s13105_013_0246_7
crossref_primary_10_1096_fj_201700576R
crossref_primary_10_1007_s00401_013_1152_3
crossref_primary_10_1016_j_taap_2018_03_005
crossref_primary_10_1093_jnen_nlw019
crossref_primary_10_1016_j_neulet_2015_01_007
crossref_primary_10_3892_mmr_2017_7788
crossref_primary_10_1007_s12031_012_9733_5
crossref_primary_10_1249_MSS_0000000000000237
crossref_primary_10_53394_akd_1037348
crossref_primary_10_1177_07482337211048582
crossref_primary_10_1371_journal_pone_0030688
crossref_primary_10_1007_s10741_017_9653_0
crossref_primary_10_1016_j_oraloncology_2011_07_027
crossref_primary_10_18632_oncotarget_24130
crossref_primary_10_1177_1087057110392996
crossref_primary_10_1016_j_cell_2021_06_022
crossref_primary_10_1007_s00204_017_2021_y
crossref_primary_10_1111_j_1476_5381_2012_02110_x
crossref_primary_10_3892_ijo_2013_1791
crossref_primary_10_1016_j_chemosphere_2023_138714
crossref_primary_10_1038_srep42194
crossref_primary_10_1016_j_pt_2017_05_009
crossref_primary_10_4167_jbv_2017_47_3_122
crossref_primary_10_1186_1471_2474_15_166
crossref_primary_10_3892_ijmm_2016_2838
crossref_primary_10_3892_mmr_2018_9683
crossref_primary_10_1172_JCI60580
crossref_primary_10_1007_s11033_013_2840_8
crossref_primary_10_1080_19768354_2017_1330763
crossref_primary_10_1074_jbc_M114_591065
crossref_primary_10_1111_odi_13045
crossref_primary_10_1080_15548627_2016_1173799
crossref_primary_10_3390_cells8030241
crossref_primary_10_1186_s12935_016_0288_3
crossref_primary_10_1186_s13041_016_0221_7
crossref_primary_10_1016_j_biomaterials_2016_06_031
crossref_primary_10_1016_j_acthis_2022_151978
crossref_primary_10_18632_oncotarget_2534
crossref_primary_10_1186_s12967_024_05966_2
crossref_primary_10_1097_JCMA_0000000000001098
crossref_primary_10_1186_s12935_021_02397_7
crossref_primary_10_1016_j_mvr_2019_103954
crossref_primary_10_1007_s00109_014_1214_6
crossref_primary_10_1038_s41598_019_51067_2
crossref_primary_10_1249_MSS_0000000000001256
crossref_primary_10_3390_ijms22105111
crossref_primary_10_1016_j_mce_2022_111773
crossref_primary_10_1186_1742_6405_9_16
crossref_primary_10_1016_j_brainres_2016_04_054
crossref_primary_10_3390_metabo13070789
crossref_primary_10_2174_0126673878297658240804192222
crossref_primary_10_1186_2040_7378_6_8
crossref_primary_10_1159_000366524
crossref_primary_10_1083_jcb_201611108
crossref_primary_10_3390_ijms25063192
crossref_primary_10_1016_j_yexmp_2022_104752
crossref_primary_10_1038_s41590_025_02090_1
crossref_primary_10_1111_fcp_12813
crossref_primary_10_1158_2159_8290_CD_17_0177
crossref_primary_10_1016_j_neurobiolaging_2014_01_027
crossref_primary_10_1155_2021_6631605
crossref_primary_10_1007_s10495_011_0589_x
crossref_primary_10_1093_abbs_gms010
crossref_primary_10_4161_auto_22397
crossref_primary_10_1016_j_jdermsci_2017_10_001
crossref_primary_10_18632_oncotarget_25234
crossref_primary_10_1210_en_2016_1479
crossref_primary_10_3892_or_2016_4668
crossref_primary_10_1007_s13273_020_00101_w
crossref_primary_10_1158_1541_7786_MCR_16_0132
crossref_primary_10_2174_1568009621666210601113144
crossref_primary_10_1093_toxsci_kft105
crossref_primary_10_1042_BJ20111252
crossref_primary_10_1016_j_ultsonch_2015_12_013
crossref_primary_10_1016_j_phymed_2022_154425
crossref_primary_10_1002_hep_29176
crossref_primary_10_1016_j_intimp_2024_113514
crossref_primary_10_1093_hmg_ddy343
crossref_primary_10_1016_j_neurobiolaging_2017_12_001
crossref_primary_10_1080_01635581_2021_1903947
crossref_primary_10_3892_mmr_2018_9356
crossref_primary_10_1002_cbin_10548
crossref_primary_10_1186_s12974_015_0336_2
crossref_primary_10_1016_j_jep_2020_112611
crossref_primary_10_1128_jvi_01045_23
crossref_primary_10_1194_jlr_M028563
crossref_primary_10_1371_journal_pone_0153449
crossref_primary_10_1142_S0192415X19500368
crossref_primary_10_1371_journal_pone_0143771
crossref_primary_10_1080_15548627_2020_1725401
crossref_primary_10_1016_j_bbamcr_2016_03_009
crossref_primary_10_1016_j_procbio_2019_09_006
crossref_primary_10_1016_j_virol_2017_04_007
crossref_primary_10_1142_S0192415X13500894
crossref_primary_10_1016_j_chemosphere_2017_08_076
crossref_primary_10_3390_v8060167
crossref_primary_10_1016_j_ejmech_2020_112630
crossref_primary_10_3389_fphar_2022_994625
crossref_primary_10_1016_j_procbio_2021_07_011
crossref_primary_10_1080_15548627_2024_2329476
crossref_primary_10_3389_fimmu_2018_00193
crossref_primary_10_3892_mmr_2015_4517
crossref_primary_10_1002_ange_202312897
crossref_primary_10_14348_molcells_2016_2198
crossref_primary_10_1165_rcmb_2011_0195OC
crossref_primary_10_1007_s13237_024_00505_2
crossref_primary_10_1038_cddis_2013_163
crossref_primary_10_1111_aji_12292
crossref_primary_10_1165_rcmb_2016_0118OC
crossref_primary_10_1002_cyto_a_23595
crossref_primary_10_1002_0471142956_cy0945s68
crossref_primary_10_1083_jcb_202210078
crossref_primary_10_3389_fmicb_2016_00879
crossref_primary_10_3390_biomedicines12030552
crossref_primary_10_1186_1743_422X_10_293
crossref_primary_10_1080_15548627_2017_1327942
crossref_primary_10_1126_scitranslmed_adl3438
crossref_primary_10_1016_j_jhep_2015_10_008
crossref_primary_10_1016_j_anireprosci_2014_01_001
crossref_primary_10_1016_j_jtcvs_2013_06_062
crossref_primary_10_1016_j_tox_2017_09_001
crossref_primary_10_1186_s13041_015_0119_9
crossref_primary_10_1002_jcp_24781
crossref_primary_10_1159_000439591
crossref_primary_10_1371_journal_pone_0065250
crossref_primary_10_1039_D4TB01342E
crossref_primary_10_1007_s10735_013_9483_x
crossref_primary_10_1074_jbc_M116_722587
crossref_primary_10_1186_s40659_023_00426_5
crossref_primary_10_1371_journal_pone_0064278
crossref_primary_10_1016_j_repbio_2019_06_006
crossref_primary_10_1038_srep45728
crossref_primary_10_1007_s10753_018_00952_5
crossref_primary_10_1111_cpr_12095
crossref_primary_10_1186_s12967_020_02302_2
crossref_primary_10_1128_AAC_01536_19
crossref_primary_10_1016_j_freeradbiomed_2014_12_007
crossref_primary_10_1007_s11010_014_2264_3
crossref_primary_10_1016_j_molonc_2016_05_001
crossref_primary_10_1111_bph_14170
crossref_primary_10_1111_cas_12208
crossref_primary_10_1016_j_bbadis_2012_11_001
crossref_primary_10_1111_jpi_12520
crossref_primary_10_1016_j_bbalip_2016_09_004
crossref_primary_10_2527_jas_2014_8743
crossref_primary_10_1172_jci_insight_98921
crossref_primary_10_1189_jlb_0711336
crossref_primary_10_18632_oncotarget_19710
crossref_primary_10_3389_fcimb_2022_847716
crossref_primary_10_1074_jbc_M110_170621
crossref_primary_10_1371_journal_pone_0130658
crossref_primary_10_1016_j_cellimm_2012_05_009
crossref_primary_10_1371_journal_pone_0181243
crossref_primary_10_1016_j_metabol_2015_05_006
crossref_primary_10_1080_09637486_2016_1236077
crossref_primary_10_1016_j_trac_2019_05_043
crossref_primary_10_1016_j_ajpath_2012_08_040
crossref_primary_10_1080_15548627_2016_1238551
crossref_primary_10_3390_cells9071703
crossref_primary_10_1016_j_cellsig_2016_03_005
crossref_primary_10_3390_ma14113019
crossref_primary_10_1152_ajpgi_00539_2010
crossref_primary_10_18632_oncotarget_26038
crossref_primary_10_1111_j_1750_3841_2011_02099_x
crossref_primary_10_1155_2012_167896
crossref_primary_10_1210_en_2013_1004
crossref_primary_10_1530_JME_17_0195
crossref_primary_10_3389_fendo_2024_1427679
crossref_primary_10_1152_japplphysiol_00952_2011
crossref_primary_10_1038_labinvest_2014_2
crossref_primary_10_1016_j_achaem_2013_05_003
crossref_primary_10_1155_2011_732798
crossref_primary_10_18632_oncotarget_17202
crossref_primary_10_1038_nmeth_3661
crossref_primary_10_1158_1535_7163_MCT_11_0979
crossref_primary_10_3892_etm_2017_4618
crossref_primary_10_1080_15548627_2016_1156822
crossref_primary_10_3390_metabo11120811
crossref_primary_10_1194_jlr_M016931
crossref_primary_10_1371_journal_ppat_1007541
crossref_primary_10_1007_s00702_023_02702_w
crossref_primary_10_1038_bjc_2013_601
crossref_primary_10_18632_aging_104065
crossref_primary_10_4049_jimmunol_2100050
crossref_primary_10_18632_oncotarget_8585
crossref_primary_10_1155_2022_8482149
crossref_primary_10_1016_j_celrep_2019_01_019
crossref_primary_10_3389_fphar_2016_00452
crossref_primary_10_1021_acs_analchem_6b03270
crossref_primary_10_21769_BioProtoc_3290
crossref_primary_10_1016_j_lfs_2019_01_035
crossref_primary_10_1016_j_apsb_2024_03_019
crossref_primary_10_4163_jnh_2013_46_4_307
crossref_primary_10_1016_j_biocel_2024_106693
crossref_primary_10_1007_s00204_017_2103_x
crossref_primary_10_1007_s00418_011_0902_3
crossref_primary_10_1371_journal_ppat_1007892
crossref_primary_10_1002_path_4958
crossref_primary_10_3892_ijmm_2025_5502
crossref_primary_10_1016_j_yexmp_2018_04_003
crossref_primary_10_1002_cyto_a_23665
crossref_primary_10_1039_C6TB01988A
crossref_primary_10_1111_jpi_12337
crossref_primary_10_1002_cyto_a_22452
crossref_primary_10_1021_acs_analchem_3c03653
crossref_primary_10_1038_s41419_021_03660_5
crossref_primary_10_1089_neu_2016_4764
crossref_primary_10_1016_j_jns_2016_10_025
crossref_primary_10_1073_pnas_2402117122
crossref_primary_10_7717_peerj_10415
crossref_primary_10_1016_j_neuroscience_2019_01_006
crossref_primary_10_1038_cddis_2013_317
crossref_primary_10_1155_2014_567148
crossref_primary_10_1016_j_jare_2024_12_036
crossref_primary_10_1007_s13238_014_0104_6
crossref_primary_10_1097_SHK_0000000000000111
crossref_primary_10_1016_j_bej_2014_06_027
crossref_primary_10_1038_ki_2013_216
crossref_primary_10_1002_tox_23377
crossref_primary_10_1016_j_ymeth_2011_11_006
crossref_primary_10_1002_jnr_23733
crossref_primary_10_1007_s12035_015_9377_x
crossref_primary_10_1111_j_1582_4934_2012_01652_x
crossref_primary_10_1002_anie_202301704
crossref_primary_10_1016_j_brainres_2012_10_056
crossref_primary_10_1016_j_biopha_2017_02_015
crossref_primary_10_1038_s41416_018_0050_9
crossref_primary_10_1093_humrep_dew048
crossref_primary_10_4103_0366_6999_235867
crossref_primary_10_1016_j_ymeth_2015_03_027
crossref_primary_10_1093_brain_awab214
crossref_primary_10_18632_oncotarget_14066
crossref_primary_10_1016_j_neulet_2017_09_056
crossref_primary_10_1111_iej_12782
crossref_primary_10_1371_journal_pone_0108602
crossref_primary_10_1080_27694127_2024_2371736
crossref_primary_10_1002_cyto_a_22312
crossref_primary_10_1111_gtc_12544
crossref_primary_10_1096_fj_201901830R
crossref_primary_10_1177_0748233719831122
crossref_primary_10_1016_j_bbagen_2016_06_012
crossref_primary_10_1161_CIRCULATIONAHA_112_091215
crossref_primary_10_1016_j_bbrc_2014_06_082
crossref_primary_10_1016_j_mce_2020_111114
crossref_primary_10_1128_JVI_02279_13
crossref_primary_10_1016_j_clineuro_2018_02_044
crossref_primary_10_1097_SLA_0b013e318269d0e2
crossref_primary_10_1039_D0BM00596G
crossref_primary_10_1016_j_canlet_2015_10_031
crossref_primary_10_1016_j_taap_2021_115782
crossref_primary_10_1080_15548627_2023_2236485
crossref_primary_10_1007_s00018_011_0667_9
crossref_primary_10_1097_CCM_0000000000001637
crossref_primary_10_1007_s00203_015_1167_3
crossref_primary_10_1111_jne_12900
crossref_primary_10_1155_2022_8371885
crossref_primary_10_3390_biomedicines8030047
crossref_primary_10_1097_MAJ_0b013e31821f978d
crossref_primary_10_1038_s41419_018_0642_6
crossref_primary_10_1016_j_fob_2014_03_008
crossref_primary_10_1002_mc_22757
crossref_primary_10_1186_1752_0509_5_169
crossref_primary_10_1074_jbc_RA117_000735
crossref_primary_10_1038_cddis_2013_209
crossref_primary_10_1074_jbc_M111_320135
crossref_primary_10_1007_s00418_012_1057_6
crossref_primary_10_1186_s12964_020_00587_w
crossref_primary_10_1093_biolre_ioae015
crossref_primary_10_17650_1726_9784_2017_16_2_66_73
crossref_primary_10_26508_lsa_202302348
crossref_primary_10_3390_ijms22010453
crossref_primary_10_1002_path_2697
crossref_primary_10_1038_s41392_022_01054_3
crossref_primary_10_1038_srep37276
crossref_primary_10_4161_15384047_2014_972776
crossref_primary_10_1186_s12967_016_0796_x
crossref_primary_10_1002_hep_24459
crossref_primary_10_1038_s41374_020_00491_4
crossref_primary_10_3390_cancers14112624
crossref_primary_10_3390_life11020162
crossref_primary_10_1016_j_bbrc_2021_05_024
crossref_primary_10_1016_j_phymed_2021_153912
crossref_primary_10_1073_pnas_1410932111
crossref_primary_10_3389_fncel_2017_00249
crossref_primary_10_3390_ijms24076019
crossref_primary_10_3390_pathogens10020110
crossref_primary_10_18632_oncotarget_5333
crossref_primary_10_1016_j_toxlet_2014_02_003
crossref_primary_10_1002_biot_201700674
crossref_primary_10_1007_s00424_018_2217_x
crossref_primary_10_1093_nar_gkz901
crossref_primary_10_1186_s13071_021_05066_w
crossref_primary_10_4103_jmau_jmau_78_22
crossref_primary_10_1007_s12020_020_02471_6
crossref_primary_10_1158_1078_0432_CCR_11_2465
crossref_primary_10_3390_cancers13071572
crossref_primary_10_1038_leu_2011_269
crossref_primary_10_1016_j_biopsych_2016_05_023
crossref_primary_10_1371_journal_pone_0122083
crossref_primary_10_1016_j_ejpb_2018_06_030
crossref_primary_10_1152_ajpcell_00270_2013
crossref_primary_10_18632_oncotarget_17256
crossref_primary_10_1016_j_jbc_2024_108029
crossref_primary_10_1152_ajpheart_00452_2017
crossref_primary_10_1021_acssensors_0c00809
crossref_primary_10_18632_oncotarget_8735
crossref_primary_10_3390_ijms17081293
crossref_primary_10_3390_toxins8070203
crossref_primary_10_1073_pnas_1304285110
crossref_primary_10_3389_fimmu_2024_1365521
crossref_primary_10_1096_fj_13_239863
crossref_primary_10_1172_JCI79990
crossref_primary_10_1096_fj_13_235382
crossref_primary_10_3390_md11093500
crossref_primary_10_1038_cddis_2014_217
crossref_primary_10_1007_s00705_016_2924_6
crossref_primary_10_2144_btn_2020_0071
crossref_primary_10_3389_fimmu_2022_833515
crossref_primary_10_1007_s10495_012_0738_x
crossref_primary_10_1038_cddis_2014_215
crossref_primary_10_3390_cancers12051185
crossref_primary_10_3390_cells12192345
crossref_primary_10_3389_fphys_2016_00527
crossref_primary_10_1016_j_bbadis_2018_10_013
crossref_primary_10_4161_auto_19496
crossref_primary_10_1016_j_isci_2022_105394
crossref_primary_10_1007_s00401_020_02254_3
crossref_primary_10_1007_s00418_010_0765_z
crossref_primary_10_1016_j_bbrc_2015_09_080
crossref_primary_10_1016_j_ejmech_2016_07_045
crossref_primary_10_1194_jlr_M059980
crossref_primary_10_1016_j_ecoenv_2019_109492
crossref_primary_10_1038_ncb2837
crossref_primary_10_1016_j_heliyon_2020_e05584
crossref_primary_10_1016_j_tranon_2018_08_014
crossref_primary_10_1155_2018_8023821
crossref_primary_10_3389_fmicb_2020_00736
crossref_primary_10_1152_ajpregu_00128_2019
crossref_primary_10_18632_oncotarget_11609
crossref_primary_10_3892_etm_2024_12435
crossref_primary_10_1002_anie_201410810
crossref_primary_10_1093_eep_dvx010
crossref_primary_10_1007_s00018_022_04585_8
crossref_primary_10_1371_journal_ppat_1003466
crossref_primary_10_1111_febs_14963
crossref_primary_10_1161_CIRCRESAHA_111_255950
crossref_primary_10_1038_s42255_024_00983_3
crossref_primary_10_1016_j_virusres_2016_10_013
crossref_primary_10_3892_ijmm_2019_4218
crossref_primary_10_1111_acel_12732
crossref_primary_10_1186_s12929_018_0438_0
crossref_primary_10_1158_0008_5472_CAN_12_2501
crossref_primary_10_1038_srep01275
crossref_primary_10_1080_15548627_2019_1658436
crossref_primary_10_1021_jacs_1c06167
crossref_primary_10_3390_cancers13174262
crossref_primary_10_1039_C6NR08188F
crossref_primary_10_1371_journal_pone_0020143
crossref_primary_10_1172_JCI64398
crossref_primary_10_3390_biom9120824
crossref_primary_10_1186_s12885_019_6033_2
crossref_primary_10_1111_1440_1681_13632
crossref_primary_10_1111_mmi_14864
crossref_primary_10_4161_auto_28145
crossref_primary_10_1093_carcin_bgac008
crossref_primary_10_1016_j_ejmech_2014_04_004
crossref_primary_10_1038_cddis_2016_247
crossref_primary_10_1371_journal_pone_0125322
crossref_primary_10_1016_j_pharmthera_2011_03_009
crossref_primary_10_1007_s11481_015_9633_x
crossref_primary_10_1002_ange_201410810
crossref_primary_10_1152_ajpgi_00122_2012
crossref_primary_10_1128_JVI_02627_10
crossref_primary_10_3389_fphar_2018_01269
crossref_primary_10_3389_fphar_2024_1518810
crossref_primary_10_1124_mol_111_076851
crossref_primary_10_1371_journal_pone_0158376
crossref_primary_10_1016_j_jns_2014_12_027
crossref_primary_10_1155_2020_8860968
crossref_primary_10_1038_s41598_017_13334_y
crossref_primary_10_3109_14767058_2012_733764
crossref_primary_10_1128_JVI_00237_20
crossref_primary_10_1053_j_gastro_2012_04_009
crossref_primary_10_1016_j_ejcb_2020_151145
crossref_primary_10_1038_s41419_021_03723_7
crossref_primary_10_1177_1535370220987524
crossref_primary_10_1016_j_tiv_2012_09_009
crossref_primary_10_1096_fj_14_267187
crossref_primary_10_1017_S0967199423000588
crossref_primary_10_1038_s41419_021_03518_w
crossref_primary_10_1186_s40170_016_0158_4
crossref_primary_10_1016_j_bcp_2015_03_017
crossref_primary_10_1038_bjc_2011_602
crossref_primary_10_3233_JAD_160278
crossref_primary_10_1016_j_clml_2013_05_019
crossref_primary_10_1021_acsami_7b17454
crossref_primary_10_1186_s13046_018_0737_z
crossref_primary_10_1371_journal_pone_0040957
crossref_primary_10_1096_fj_12_218214
crossref_primary_10_3389_fcell_2022_810327
crossref_primary_10_1007_s13105_011_0135_x
crossref_primary_10_1016_j_envpol_2017_12_102
crossref_primary_10_1177_0300060520971422
crossref_primary_10_1186_s12943_016_0558_7
crossref_primary_10_1007_s12035_020_02033_x
crossref_primary_10_7554_eLife_29123
crossref_primary_10_4161_auto_20441
crossref_primary_10_1016_j_ejphar_2023_175859
crossref_primary_10_4161_15548627_2014_984273
crossref_primary_10_1016_j_taap_2018_08_003
crossref_primary_10_3390_ijms252211901
crossref_primary_10_1007_s12975_021_00943_z
crossref_primary_10_1111_j_1471_4159_2010_07098_x
crossref_primary_10_1016_j_taap_2016_11_012
crossref_primary_10_1371_journal_ppat_1003797
crossref_primary_10_4161_15548627_2014_984277
crossref_primary_10_1530_REP_16_0072
crossref_primary_10_1016_j_ejps_2012_09_007
crossref_primary_10_3390_antiox11061129
crossref_primary_10_1186_1743_8977_9_20
crossref_primary_10_1186_s13059_015_0861_4
crossref_primary_10_1111_j_1471_4159_2011_07496_x
crossref_primary_10_1074_jbc_M113_525782
crossref_primary_10_1096_fj_202000520R
crossref_primary_10_3389_fphys_2018_00541
crossref_primary_10_1093_carcin_bgt124
crossref_primary_10_1128_MCB_01402_14
crossref_primary_10_18632_oncotarget_5036
crossref_primary_10_1016_j_nut_2019_05_009
crossref_primary_10_1016_j_msec_2021_111891
crossref_primary_10_1371_journal_pone_0137675
crossref_primary_10_1007_s00018_019_03331_x
crossref_primary_10_3389_fnmol_2022_850035
crossref_primary_10_1152_ajpendo_00270_2013
crossref_primary_10_1371_journal_pbio_2006926
crossref_primary_10_1021_acs_analchem_7b03576
crossref_primary_10_1038_s41419_017_0170_9
crossref_primary_10_1038_s41419_018_0816_2
crossref_primary_10_1002_jcb_30451
crossref_primary_10_1186_s12967_015_0726_3
crossref_primary_10_1007_s11626_022_00739_x
crossref_primary_10_1101_pdb_prot086512
crossref_primary_10_1016_j_fct_2022_112831
crossref_primary_10_1080_01635581_2015_989374
crossref_primary_10_3760_cma_j_issn_0366_6999_20130996
crossref_primary_10_1074_jbc_M116_717793
crossref_primary_10_1080_15548627_2018_1490851
crossref_primary_10_5009_gnl_2011_5_4_513
crossref_primary_10_1371_journal_pone_0081296
crossref_primary_10_1002_anie_202312897
crossref_primary_10_1080_03009734_2020_1785063
crossref_primary_10_1007_s12035_018_0923_1
crossref_primary_10_1016_j_bbrc_2019_08_103
crossref_primary_10_1016_j_bbrep_2019_01_004
crossref_primary_10_1038_s41416_022_01808_4
crossref_primary_10_18632_aging_102437
crossref_primary_10_1002_ange_202301704
crossref_primary_10_3892_or_2016_4753
crossref_primary_10_1016_j_lfs_2016_09_006
crossref_primary_10_1016_j_ajpath_2011_02_044
crossref_primary_10_1089_ars_2010_3768
crossref_primary_10_3892_ijo_2015_3125
crossref_primary_10_1016_j_bcp_2015_09_021
crossref_primary_10_1007_s00280_013_2363_y
crossref_primary_10_1093_toxsci_kfw011
crossref_primary_10_1080_27694127_2024_2326241
crossref_primary_10_1111_exd_12175
crossref_primary_10_1080_21505594_2021_2014680
crossref_primary_10_1002_arch_21780
crossref_primary_10_1007_s12031_015_0619_1
crossref_primary_10_1016_j_neulet_2014_09_026
crossref_primary_10_1155_2021_8832541
crossref_primary_10_1242_jcs_217760
crossref_primary_10_1016_j_exer_2015_06_016
crossref_primary_10_1186_s40001_024_02098_7
crossref_primary_10_1016_j_taap_2018_06_031
crossref_primary_10_1007_s00441_012_1475_8
crossref_primary_10_1083_jcb_201604032
crossref_primary_10_1002_jcp_26145
crossref_primary_10_1177_1178223419830981
crossref_primary_10_1016_j_actbio_2021_01_007
crossref_primary_10_1016_j_bbapap_2024_141061
crossref_primary_10_1038_s41419_021_04157_x
crossref_primary_10_1155_2012_317645
crossref_primary_10_1016_j_virol_2018_07_018
crossref_primary_10_18632_aging_205085
crossref_primary_10_3390_ijms21082943
crossref_primary_10_1016_j_smim_2014_10_001
crossref_primary_10_1113_JP271332
crossref_primary_10_1177_0022034514553815
crossref_primary_10_1371_journal_pone_0064619
crossref_primary_10_4161_auto_7_12_16991
crossref_primary_10_18632_oncotarget_5871
crossref_primary_10_1016_j_mito_2020_12_013
crossref_primary_10_1515_med_2021_0012
crossref_primary_10_1002_mc_22272
crossref_primary_10_18632_oncotarget_5632
crossref_primary_10_1016_j_ejphar_2019_04_019
crossref_primary_10_1016_j_jiec_2020_08_009
crossref_primary_10_15406_ppij_2021_09_00348
crossref_primary_10_2217_nnm_2019_0387
crossref_primary_10_1038_cddis_2012_26
crossref_primary_10_1007_s10735_011_9372_0
crossref_primary_10_1155_2013_350863
crossref_primary_10_3390_ijms241914576
crossref_primary_10_1021_cr300354g
crossref_primary_10_1080_15384101_2017_1315492
crossref_primary_10_1002_ptr_3583
crossref_primary_10_1080_15548627_2016_1174802
crossref_primary_10_1371_journal_pone_0074407
crossref_primary_10_1152_ajpregu_00005_2014
crossref_primary_10_1016_j_fct_2024_114510
crossref_primary_10_1158_0008_5472_CAN_10_3145
crossref_primary_10_1080_15548627_2024_2361580
crossref_primary_10_1016_j_ydbio_2013_12_006
crossref_primary_10_3390_ijms24065552
crossref_primary_10_1134_S0026893321030043
crossref_primary_10_5352_JLS_2011_21_3_400
crossref_primary_10_3390_cancers14133129
crossref_primary_10_1016_j_bcp_2017_11_021
crossref_primary_10_1016_j_bbrc_2011_10_124
crossref_primary_10_3109_09553002_2016_1150617
crossref_primary_10_1016_j_cellsig_2021_110150
crossref_primary_10_1155_2018_8602041
crossref_primary_10_3390_cells9051321
crossref_primary_10_3389_fphar_2023_1200782
crossref_primary_10_1097_CEJ_0000000000000505
crossref_primary_10_3892_ijmm_2018_3763
crossref_primary_10_1152_ajprenal_00304_2015
crossref_primary_10_1016_j_jmb_2019_01_022
crossref_primary_10_1002_tox_23930
crossref_primary_10_1113_JP271405
crossref_primary_10_1002_adma_201703704
crossref_primary_10_1016_j_biomaterials_2014_08_031
crossref_primary_10_1097_CAD_0000000000001460
crossref_primary_10_1111_j_1365_2184_2012_00810_x
crossref_primary_10_1016_j_brainres_2014_02_034
crossref_primary_10_1016_j_neuro_2019_07_001
crossref_primary_10_1186_s12885_017_3589_6
crossref_primary_10_3390_ijms22158333
crossref_primary_10_18632_oncotarget_11470
crossref_primary_10_1155_2022_6232902
crossref_primary_10_1016_j_ejcb_2012_09_002
crossref_primary_10_1093_rheumatology_keaa670
crossref_primary_10_1021_acs_jmedchem_6b01885
crossref_primary_10_5468_ogs_2017_60_3_241
crossref_primary_10_18632_oncotarget_26876
crossref_primary_10_1038_s41598_021_02371_3
crossref_primary_10_1093_cvr_cvz233
crossref_primary_10_1128_JVI_03775_13
crossref_primary_10_4137_BCBCR_S13693
crossref_primary_10_18632_aging_101167
crossref_primary_10_18632_aging_102014
crossref_primary_10_3389_fonc_2015_00082
crossref_primary_10_1161_CIRCRESAHA_116_303787
crossref_primary_10_1080_02713683_2017_1370117
crossref_primary_10_3892_ijo_2019_4868
crossref_primary_10_3390_nu8010047
crossref_primary_10_1016_j_taap_2016_03_017
crossref_primary_10_3390_ijms18020466
crossref_primary_10_1016_j_jbc_2022_101904
crossref_primary_10_1186_s13046_016_0417_9
crossref_primary_10_1007_s12035_016_9856_8
crossref_primary_10_1038_s41598_018_28590_9
crossref_primary_10_1007_s11357_016_9897_y
crossref_primary_10_1016_j_ibmb_2016_07_004
crossref_primary_10_2174_0929867325666181031144605
crossref_primary_10_3390_cancers11101470
crossref_primary_10_1089_ars_2014_6004
crossref_primary_10_1016_j_toxlet_2017_12_019
crossref_primary_10_1002_jbmr_2806
crossref_primary_10_1016_j_bbrc_2016_04_045
crossref_primary_10_1016_j_placenta_2019_11_003
crossref_primary_10_1002_biot_201200306
crossref_primary_10_4049_jimmunol_1200484
crossref_primary_10_1039_D3AN00651D
crossref_primary_10_1016_j_bbadis_2018_02_002
crossref_primary_10_1016_j_bbadis_2018_02_003
Cites_doi 10.1016/S0076-6879(08)03612-4
10.1016/j.cell.2007.05.021
10.1101/gad.1599207
10.1002/eji.200323730
10.4161/auto.6845
10.4161/auto.5.3.7491
10.1016/j.cell.2007.10.035
10.1074/jbc.M303800200
10.1093/emboj/19.21.5720
10.1016/S0076-6879(08)03601-X
10.1182/blood-2008-02-137398
10.1038/nature04724
10.4161/auto.5338
10.1038/nature03029
10.1016/S0076-6879(08)03613-6
10.4161/auto.4451
10.1007/978-1-59745-157-4_4
10.1038/nature04723
10.4161/auto.5.8.10274
10.1016/j.devcel.2008.08.012
10.1038/ncb1991
10.1074/jbc.M702824200
10.4161/auto.4600
10.1016/S0076-6879(08)04009-3
10.4161/auto.5.5.8823
10.1074/jbc.M800102200
10.4161/auto.5275
10.1038/nrm2708
10.4161/auto.5.4.7761
10.1016/S0076-6879(08)03607-0
10.4161/auto.4012
10.1158/0008-5472.CAN-08-1573
10.1038/nature08455
10.1083/jcb.111.3.941
10.1038/nature07006
10.1016/j.febslet.2007.06.040
10.1016/S0076-6879(08)03610-0
10.1007/978-1-59745-157-4_7
10.1007/978-1-59745-157-4_2
10.1016/j.cell.2006.05.034
10.4161/auto.4615
10.1242/jcs.114.20.3619
10.1128/MCB.01396-08
10.1074/jbc.274.21.15222
10.1016/S0076-6879(08)03606-9
10.4161/auto.4892
10.1038/onc.2008.117
10.1016/S0076-6879(08)03604-5
10.1016/S0076-6879(08)04016-0
10.1002/path.2697
10.1016/j.bbamcr.2009.03.002
10.1073/pnas.0708818104
10.1083/jcb.12.1.198
10.1182/blood-2008-04-151639
10.1083/jcb.200504035
10.1016/j.cell.2006.12.044
10.4161/auto.5179
10.1016/j.cell.2009.05.023
10.1016/S0021-9258(19)74245-8
10.1083/jcb.33.2.437
10.4161/auto.4846
10.1038/sj.emboj.7601689
10.1016/j.cell.2004.11.046
ContentType Journal Article
Copyright Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. 2010
Copyright_xml – notice: Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
– notice: Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
– notice: Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. 2010
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1002/path.2694
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
AGRICOLA

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1096-9896
EndPage 124
ExternalDocumentID PMC2989884
20225337
22689810
10_1002_path_2694
PATH2694
ark_67375_WNG_98PQ5229_9
US201301842327
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Cancer Institute
  funderid: RO1 CA131188
– fundername: Swiss National Foundation
  funderid: PBZHP3‐123296
– fundername: NCI NIH HHS
  grantid: R01 CA131188
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1KJ
1L6
1OB
1OC
1ZS
29L
31~
33P
3O-
3SF
3UE
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHMBA
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GSXLS
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M68
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
YQI
YQJ
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
BSCLL
AEUQT
AFPWT
RWI
WRC
WUP
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c6044-b7a7c7a36541266c2e84879285fe21835e0a39e3f88788a318152acd7b2bd0933
IEDL.DBID DR2
ISSN 0022-3417
1096-9896
IngestDate Thu Aug 21 18:04:47 EDT 2025
Thu Jul 10 17:57:25 EDT 2025
Fri Jul 11 06:11:33 EDT 2025
Sat May 31 02:11:28 EDT 2025
Mon Jul 21 09:16:58 EDT 2025
Tue Jul 01 04:21:07 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
Wed Jan 22 16:59:27 EST 2025
Sun Sep 21 06:19:28 EDT 2025
Thu Apr 03 09:45:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Assay
autophagic flux
Anatomic pathology
process
Flux
Artefact
Method
Technique
analysis
Autophagy
LC3
Mechanism
Language English
License CC BY 4.0
Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6044-b7a7c7a36541266c2e84879285fe21835e0a39e3f88788a318152acd7b2bd0933
Notes http://dx.doi.org/10.1002/path.2694
ark:/67375/WNG-98PQ5229-9
istex:F2F6068829E51881609754E92D2B759B976E281D
Swiss National Foundation - No. PBZHP3-123296
ArticleID:PATH2694
Supporting information: Teaching materials; Figures 1 - 2 as PowerPoint slides
No conflicts of interest were declared.
National Cancer Institute - No. RO1 CA131188
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://doi.org/10.1002/path.2694
PMID 20225337
PQID 733959556
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2989884
proquest_miscellaneous_742701822
proquest_miscellaneous_733959556
pubmed_primary_20225337
pascalfrancis_primary_22689810
crossref_citationtrail_10_1002_path_2694
crossref_primary_10_1002_path_2694
wiley_primary_10_1002_path_2694_PATH2694
istex_primary_ark_67375_WNG_98PQ5229_9
fao_agris_US201301842327
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2010
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: June 2010
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
– name: England
PublicationTitle The Journal of pathology
PublicationTitleAlternate J. Pathol
PublicationYear 2010
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24121-24145.
Perry CN, Kyoi S, Hariharan N, Takagi H, Sadoshima J, Gottlieb RA. Novel methods for measuring cardiac autophagy in vivo. Methods Enzymol 2009; 453: 325-342.
Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 2009; 452: 143-164.
Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C. p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 2009; 29: 2594-2608.
Eskelinen EL. Fine structure of the autophagosome. Methods Mol Biol 2008; 445: 11-28.
Komatsu M, Waguri S, Chiba T, Murata S, Iwata S, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441: 880-884.
Vazquez CL, Colombo MI. Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods Enzymol 2009; 452: 85-95.
Lum JJ, Bauer DE, Kong M, Harris MH, Li CY, Lindsten T, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005; 120: 237-249.
Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 2007; 3: 542-545.
Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 2007; 3: 323-328.
Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, et al. In search of an 'autophagometer'. Autophagy 2009; 5: 1-5.
Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009; 452: 181-197.
Zhang J, Randall MS, Loyd MR, Dorsey FC, Kundu M, Cleveland JL, et al. Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 2009; 114: 157-164.
Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll DM, Bornkamm GW, et al. Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 2003; 33: 1250-1259.
Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 2008; 27: 4860-4864.
Waguri S, Komatsu M. Biochemical and morphological detection of inclusion bodies in autophagy-deficient mice. Methods Enzymol 2009; 453: 181-196.
Dennis PB, Mercer CA. The GST-BHMT assay and related assays for autophagy. Methods Enzymol 2009; 452: 97-118.
Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 1967; 33: 437-449.
Tolkovsky AM. Mitophagy. Biochim Biophys Acta 2009; 1793: 1508-1515.
Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001; 114: 3619-3629.
Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008; 112: 1493-1502.
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131: 1149-1163.
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720-5728.
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441: 885-889.
Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC. Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 2008; 4: 849-950.
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; DOI: 10.1002/path.2697.
Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007; 128: 931-946.
Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007; 104: 19500-19505.
Sandoval H, Thiagarajan P, Dasgupta SK, Scumacker A, Prchal JT, Chen M, et al. Essential role for Nix in autophagic maturation of red cells. Nature 2008; 454: 232-235.
Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461: 654-659.
Tracy K, Macleod KF. Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. Autophagy 2007; 3: 616-619.
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is a HIF-1 dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283: 10892-10903.
Ueno T, Ishidoh K, Mineki R, Tanida I, Murayama K, Kadowaki M, et al. Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J Biol Chem 1999; 274: 15222-15229.
Miracco C, Cevenini G, Franchi A, Luzi P, Cosci E, Mourmouras V, et al. Beclin1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol 2009; ePub ahead of print; DOI: 10.1016/j.humpath.2009.09.004.
Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 1962; 12: 198-202.
Kimura S, Fujita N, Noda T, Yoshimori T. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 2009; 452: 1-12.
Egner R, Thumm M, Straub M, Simeon A, Schuller HJ, Wolf DH. Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae. J Biol Chem 1993; 268: 27269-27276.
Eskelinen EL. To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 2008; 4: 257-260.
Mizushima N, Kuma A. Autophagosomes in GFP-LC3 transgenic mice. Methods Mol Biol 2008; 445: 119-124.
Kuma A, Mizushima N. Chromosomal mapping of the GFP-LC3 transgene in GFP-LC3 mice. Autophagy 2008; 4: 61-62.
Kopitz J, Kisen GO, Gordon PB, Bohley P, Seglen PO. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 1990; 111: 941-953.
Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006; 126: 121-134.
Mercer CA, Kaliappan A, Dennis PB. Macroautophagy-dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization. Autophagy 2008; 4: 185-194.
Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009; 5: 1180-1185.
Li B, Li CY, Peng RQ, Wu XJ, Wang HY, Wan DS, et al. The expression of beclin1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy 2009; 5: 303-306.
Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kadowaki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007; 3: 553-560.
Mizushima N. Autophagy: process and function. Genes Dev 2007; 21: 2861-2873.
Ju JS, Miller SE, Jackson E, Cadwell K, Piwnica-Worms D, Weihl CC. Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy 2009; 5: 511-519.
Bauvy C, Meijer AJ, Codogno P. Assaying of autophagic protein degradation. Methods Enzymol 2009; 452: 47-61.
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432: 1032-1036.
Kadowaki M, Karim MR. Cytosolic LC3 ratio as a quantitative index of macroautophagy. Methods Enzymol 2009; 452: 199-213.
Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3: 452-460.
Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009; 11: 1433-1437.
Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170: 1101-1111.
He H, Dang Y, Dai F, Guo Z, Wu J, She X, et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003; 278: 29278-29287.
Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis and cancer. Cell 2009; 137: 1001-1004.
Proikas-Cezanne T, Ruckerbauer S, Stierhof YD, Berg C, Nordheim A. Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett 2007; 581: 3396-3404.
Klionsky DJ, Agostinis P, Agrawal DK, Bamber BA, Bassham DC, Bergamini E, et al. Guidelines for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4: 151-175.
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009; 10: 458-467.
Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin1. EMBO J 2007; 26: 2527-2539.
Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 2008; 15: 344-357.
Ding ZB, Shi YH, Zhou J, Qiu SJ, Xu Y, Dai Z, e
2007; 104
2005; 170
2007; 128
2007; 282
2010
2007; 581
2009
2009; 452
2008
2008; 15
2009; 453
1962; 12
2008; 445
2008; 4
1993; 268
2003; 278
2009; 114
2009; 137
2008; 283
2003; 33
2009; 29
2009; 11
2000; 19
2009; 10
2004; 432
2005; 120
1967; 33
2007; 130
2008; 27
2007; 131
1999; 274
2008; 68
2009; 5
2007; 3
2008; 454
2009; 461
2008; 112
2007; 21
2006; 126
1990; 111
2009; 1793
2006; 441
2001; 114
2007; 26
e_1_2_9_52_2
e_1_2_9_50_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
Miracco C (e_1_2_9_60_2) 2009
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_18_2
e_1_2_9_39_2
e_1_2_9_41_2
e_1_2_9_62_2
e_1_2_9_20_2
e_1_2_9_45_2
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_64_2
e_1_2_9_6_2
e_1_2_9_4_2
e_1_2_9_2_2
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_49_2
e_1_2_9_26_2
e_1_2_9_47_2
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_30_2
e_1_2_9_34_2
e_1_2_9_55_2
e_1_2_9_11_2
e_1_2_9_32_2
e_1_2_9_53_2
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_59_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_57_2
e_1_2_9_17_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_61_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_7_2
e_1_2_9_5_2
e_1_2_9_3_2
e_1_2_9_9_2
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_29_2
References_xml – reference: Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy 2007; 3: 542-545.
– reference: Klionsky DJ, Agostinis P, Agrawal DK, Bamber BA, Bassham DC, Bergamini E, et al. Guidelines for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4: 151-175.
– reference: Ueno T, Ishidoh K, Mineki R, Tanida I, Murayama K, Kadowaki M, et al. Autolysosomal membrane-associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy. J Biol Chem 1999; 274: 15222-15229.
– reference: Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 1962; 12: 198-202.
– reference: Egner R, Thumm M, Straub M, Simeon A, Schuller HJ, Wolf DH. Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae. J Biol Chem 1993; 268: 27269-27276.
– reference: Perry CN, Kyoi S, Hariharan N, Takagi H, Sadoshima J, Gottlieb RA. Novel methods for measuring cardiac autophagy in vivo. Methods Enzymol 2009; 453: 325-342.
– reference: Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3: 452-460.
– reference: Tolkovsky AM. Mitophagy. Biochim Biophys Acta 2009; 1793: 1508-1515.
– reference: Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al. Mitochondrial autophagy is a HIF-1 dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283: 10892-10903.
– reference: Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 1967; 33: 437-449.
– reference: Mizushima N. Autophagy: process and function. Genes Dev 2007; 21: 2861-2873.
– reference: Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 2008; 15: 344-357.
– reference: Tracy K, Macleod KF. Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. Autophagy 2007; 3: 616-619.
– reference: Mercer CA, Kaliappan A, Dennis PB. Macroautophagy-dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization. Autophagy 2008; 4: 185-194.
– reference: Li B, Li CY, Peng RQ, Wu XJ, Wang HY, Wan DS, et al. The expression of beclin1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy 2009; 5: 303-306.
– reference: Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, et al. In search of an 'autophagometer'. Autophagy 2009; 5: 1-5.
– reference: Bauvy C, Meijer AJ, Codogno P. Assaying of autophagic protein degradation. Methods Enzymol 2009; 452: 47-61.
– reference: Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 2001; 114: 3619-3629.
– reference: Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24121-24145.
– reference: Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 2008; 112: 1493-1502.
– reference: Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 2009; 461: 654-659.
– reference: Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131: 1149-1163.
– reference: Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432: 1032-1036.
– reference: Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009; 5: 1180-1185.
– reference: Kuma A, Mizushima N. Chromosomal mapping of the GFP-LC3 transgene in GFP-LC3 mice. Autophagy 2008; 4: 61-62.
– reference: Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009; 10: 458-467.
– reference: Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; DOI: 10.1002/path.2697.
– reference: Lum JJ, Bauer DE, Kong M, Harris MH, Li CY, Lindsten T, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005; 120: 237-249.
– reference: Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C. p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 2009; 29: 2594-2608.
– reference: Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007; 128: 931-946.
– reference: He H, Dang Y, Dai F, Guo Z, Wu J, She X, et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003; 278: 29278-29287.
– reference: Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441: 885-889.
– reference: Zhang J, Randall MS, Loyd MR, Dorsey FC, Kundu M, Cleveland JL, et al. Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 2009; 114: 157-164.
– reference: Ju JS, Miller SE, Jackson E, Cadwell K, Piwnica-Worms D, Weihl CC. Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy 2009; 5: 511-519.
– reference: Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin1. EMBO J 2007; 26: 2527-2539.
– reference: Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll DM, Bornkamm GW, et al. Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 2003; 33: 1250-1259.
– reference: Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kadowaki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007; 3: 553-560.
– reference: Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis and cancer. Cell 2009; 137: 1001-1004.
– reference: Ding ZB, Shi YH, Zhou J, Qiu SJ, Xu Y, Dai Z, et al. Association of autophagy defects with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res 2008; 68: 9167-9175.
– reference: Sandoval H, Thiagarajan P, Dasgupta SK, Scumacker A, Prchal JT, Chen M, et al. Essential role for Nix in autophagic maturation of red cells. Nature 2008; 454: 232-235.
– reference: Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 2007; 3: 323-328.
– reference: Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 2009; 452: 181-197.
– reference: Kopitz J, Kisen GO, Gordon PB, Bohley P, Seglen PO. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell Biol 1990; 111: 941-953.
– reference: Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC. Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 2008; 4: 849-950.
– reference: Eskelinen EL. To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells. Autophagy 2008; 4: 257-260.
– reference: Miracco C, Cevenini G, Franchi A, Luzi P, Cosci E, Mourmouras V, et al. Beclin1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol 2009; ePub ahead of print; DOI: 10.1016/j.humpath.2009.09.004.
– reference: Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006; 126: 121-134.
– reference: Komatsu M, Waguri S, Chiba T, Murata S, Iwata S, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441: 880-884.
– reference: Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009; 11: 1433-1437.
– reference: Vazquez CL, Colombo MI. Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Methods Enzymol 2009; 452: 85-95.
– reference: Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170: 1101-1111.
– reference: Proikas-Cezanne T, Ruckerbauer S, Stierhof YD, Berg C, Nordheim A. Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett 2007; 581: 3396-3404.
– reference: Kimura S, Fujita N, Noda T, Yoshimori T. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 2009; 452: 1-12.
– reference: Eskelinen EL. Fine structure of the autophagosome. Methods Mol Biol 2008; 445: 11-28.
– reference: Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediated membrane tethering and hemifusion. Cell 2007; 130: 165-178.
– reference: Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 2009; 452: 143-164.
– reference: Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 2007; 104: 19500-19505.
– reference: Dennis PB, Mercer CA. The GST-BHMT assay and related assays for autophagy. Methods Enzymol 2009; 452: 97-118.
– reference: Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720-5728.
– reference: Waguri S, Komatsu M. Biochemical and morphological detection of inclusion bodies in autophagy-deficient mice. Methods Enzymol 2009; 453: 181-196.
– reference: Mizushima N, Kuma A. Autophagosomes in GFP-LC3 transgenic mice. Methods Mol Biol 2008; 445: 119-124.
– reference: Kadowaki M, Karim MR. Cytosolic LC3 ratio as a quantitative index of macroautophagy. Methods Enzymol 2009; 452: 199-213.
– reference: Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 2008; 27: 4860-4864.
– volume: 3
  start-page: 553
  year: 2007
  end-page: 560
  article-title: Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4‐II‐E cells
  publication-title: Autophagy
– volume: 131
  start-page: 1149
  year: 2007
  end-page: 1163
  article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy‐deficient mice
  publication-title: Cell
– volume: 453
  start-page: 181
  year: 2009
  end-page: 196
  article-title: Biochemical and morphological detection of inclusion bodies in autophagy‐deficient mice
  publication-title: Methods Enzymol
– volume: 3
  start-page: 323
  year: 2007
  end-page: 328
  article-title: LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization
  publication-title: Autophagy
– start-page: 77
  year: 2008
  end-page: 88
– volume: 4
  start-page: 61
  year: 2008
  end-page: 62
  article-title: Chromosomal mapping of the transgene in GFP–LC3 mice
  publication-title: Autophagy
– volume: 170
  start-page: 1101
  year: 2005
  end-page: 1111
  article-title: Lithium induces autophagy by inhibiting inositol monophosphatase
  publication-title: J Cell Biol
– volume: 581
  start-page: 3396
  year: 2007
  end-page: 3404
  article-title: Human WIPI‐1 puncta‐formation: a novel assay to assess mammalian autophagy
  publication-title: FEBS Lett
– volume: 4
  start-page: 257
  year: 2008
  end-page: 260
  article-title: To be or not to be? Examples of incorrect identification of autophagic compartments in conventional transmission electron microscopy of mammalian cells
  publication-title: Autophagy
– volume: 452
  start-page: 1
  year: 2009
  end-page: 12
  article-title: Monitoring autophagy in mammalian cultured cells through the dynamics of LC3
  publication-title: Methods Enzymol
– volume: 282
  start-page: 24121
  year: 2007
  end-page: 24145
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J Biol Chem
– volume: 128
  start-page: 931
  year: 2007
  end-page: 946
  article-title: Autophagy gene‐dependent clearance of apoptotic cells during embryonic development
  publication-title: Cell
– volume: 15
  start-page: 344
  year: 2008
  end-page: 357
  article-title: The role of autophagy in mammalian development: cell makeover rather than cell death
  publication-title: Dev Cell
– volume: 3
  start-page: 542
  year: 2007
  end-page: 545
  article-title: How to interpret LC3 immunoblotting
  publication-title: Autophagy
– volume: 130
  start-page: 165
  year: 2007
  end-page: 178
  article-title: Atg8, a ubiquitin‐like protein required for autophagosome formation, mediated membrane tethering and hemifusion
  publication-title: Cell
– volume: 432
  start-page: 1032
  year: 2004
  end-page: 1036
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
– volume: 5
  start-page: 511
  year: 2009
  end-page: 519
  article-title: Quantitation of selective autophagic protein aggregate degradation and using luciferase reporters
  publication-title: Autophagy
– volume: 5
  start-page: 1180
  year: 2009
  end-page: 1185
  article-title: 3D tomography reveals connections between the phagophore and endoplasmic reticulum
  publication-title: Autophagy
– volume: 126
  start-page: 121
  year: 2006
  end-page: 134
  article-title: DRAM, a p53‐induced modulator of autophagy, is critical for apoptosis
  publication-title: Cell
– volume: 68
  start-page: 9167
  year: 2008
  end-page: 9175
  article-title: Association of autophagy defects with a malignant phenotype and poor prognosis of hepatocellular carcinoma
  publication-title: Cancer Res
– volume: 445
  start-page: 119
  year: 2008
  end-page: 124
  article-title: Autophagosomes in transgenic mice
  publication-title: Methods Mol Biol
– volume: 10
  start-page: 458
  year: 2009
  end-page: 467
  article-title: Dynamics and diversity in autophagy mechanisms: lessons from yeast
  publication-title: Nat Rev Mol Cell Biol
– volume: 453
  start-page: 325
  year: 2009
  end-page: 342
  article-title: Novel methods for measuring cardiac autophagy
  publication-title: Methods Enzymol
– year: 2010
  article-title: Autophagy: cellular and molecular mechanisms
  publication-title: J Pathol
– volume: 3
  start-page: 452
  year: 2007
  end-page: 460
  article-title: Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent‐tagged LC3
  publication-title: Autophagy
– volume: 5
  start-page: 1
  year: 2009
  end-page: 5
  article-title: In search of an ‘autophagometer’
  publication-title: Autophagy
– volume: 278
  start-page: 29278
  year: 2003
  end-page: 29287
  article-title: Post‐translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B
  publication-title: J Biol Chem
– volume: 12
  start-page: 198
  year: 1962
  end-page: 202
  article-title: Cytoplasmic components in hepatic cell lysosomes
  publication-title: J Cell Biol
– volume: 452
  start-page: 181
  year: 2009
  end-page: 197
  article-title: Monitoring autophagic degradation of p62/SQSTM1
  publication-title: Methods Enzymol
– volume: 137
  start-page: 1001
  year: 2009
  end-page: 1004
  article-title: p62 at the crossroads of autophagy, apoptosis and cancer
  publication-title: Cell
– volume: 461
  start-page: 654
  year: 2009
  end-page: 659
  article-title: Discovery of Atg5/Atg7‐independent alternative macroautophagy
  publication-title: Nature
– year: 2009
  article-title: and autophagic gene expression in cutaneous melanocytic lesions
  publication-title: Hum Pathol
– volume: 454
  start-page: 232
  year: 2008
  end-page: 235
  article-title: Essential role for Nix in autophagic maturation of red cells
  publication-title: Nature
– volume: 4
  start-page: 849
  year: 2008
  end-page: 950
  article-title: Does bafilomycin A1 block the fusion of autophagosomes with lysosomes?
  publication-title: Autophagy
– volume: 441
  start-page: 880
  year: 2006
  end-page: 884
  article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice
  publication-title: Nature
– volume: 1793
  start-page: 1508
  year: 2009
  end-page: 1515
  article-title: Mitophagy
  publication-title: Biochim Biophys Acta
– volume: 4
  start-page: 151
  year: 2008
  end-page: 175
  article-title: Guidelines for monitoring autophagy in higher eukaryotes
  publication-title: Autophagy
– volume: 33
  start-page: 437
  year: 1967
  end-page: 449
  article-title: Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes
  publication-title: J Cell Biol
– volume: 21
  start-page: 2861
  year: 2007
  end-page: 2873
  article-title: Autophagy: process and function
  publication-title: Genes Dev
– volume: 120
  start-page: 237
  year: 2005
  end-page: 249
  article-title: Growth factor regulation of autophagy and cell survival in the absence of apoptosis
  publication-title: Cell
– volume: 33
  start-page: 1250
  year: 2003
  end-page: 1259
  article-title: Major histocompatibility complex class II‐restricted presentation of a cytosolic antigen by autophagy
  publication-title: Eur J Immunol
– volume: 104
  start-page: 19500
  year: 2007
  end-page: 19505
  article-title: NIX is required for programmed mitochondrial clearance during reticulocyte maturation
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 303
  year: 2009
  end-page: 306
  article-title: The expression of beclin1 is associated with favorable prognosis in stage IIIB colon cancers
  publication-title: Autophagy
– volume: 445
  start-page: 11
  year: 2008
  end-page: 28
  article-title: Fine structure of the autophagosome
  publication-title: Methods Mol Biol
– volume: 283
  start-page: 10892
  year: 2008
  end-page: 10903
  article-title: Mitochondrial autophagy is a HIF‐1 dependent adaptive metabolic response to hypoxia
  publication-title: J Biol Chem
– volume: 114
  start-page: 157
  year: 2009
  end-page: 164
  article-title: Mitochondrial clearance is regulated by Atg7‐dependent and ‐independent mechanisms during reticulocyte maturation
  publication-title: Blood
– volume: 27
  start-page: 4860
  year: 2008
  end-page: 4864
  article-title: E2F1 regulates autophagy and the transcription of autophagy genes
  publication-title: Oncogene
– volume: 19
  start-page: 5720
  year: 2000
  end-page: 5728
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J
– volume: 452
  start-page: 97
  year: 2009
  end-page: 118
  article-title: The GST–BHMT assay and related assays for autophagy
  publication-title: Methods Enzymol
– volume: 441
  start-page: 885
  year: 2006
  end-page: 889
  article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
  publication-title: Nature
– volume: 452
  start-page: 143
  year: 2009
  end-page: 164
  article-title: Monitoring autophagy by electron microscopy in mammalian cells
  publication-title: Methods Enzymol
– volume: 112
  start-page: 1493
  year: 2008
  end-page: 1502
  article-title: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
  publication-title: Blood
– volume: 3
  start-page: 616
  year: 2007
  end-page: 619
  article-title: Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3
  publication-title: Autophagy
– volume: 111
  start-page: 941
  year: 1990
  end-page: 953
  article-title: Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes
  publication-title: J Cell Biol
– volume: 452
  start-page: 47
  year: 2009
  end-page: 61
  article-title: Assaying of autophagic protein degradation
  publication-title: Methods Enzymol
– volume: 26
  start-page: 2527
  year: 2007
  end-page: 2539
  article-title: Functional and physical interaction between Bcl‐XL and a BH3‐like domain in Beclin1
  publication-title: EMBO J
– volume: 268
  start-page: 27269
  year: 1993
  end-page: 27276
  article-title: Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast
  publication-title: J Biol Chem
– volume: 274
  start-page: 15222
  year: 1999
  end-page: 15229
  article-title: Autolysosomal membrane‐associated betaine homocysteine methyltransferase. Limited degradation fragment of a sequestered cytosolic enzyme monitoring autophagy
  publication-title: J Biol Chem
– volume: 11
  start-page: 1433
  year: 2009
  end-page: 1437
  article-title: A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
  publication-title: Nat Cell Biol
– volume: 114
  start-page: 3619
  year: 2001
  end-page: 3629
  article-title: A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation
  publication-title: J Cell Sci
– volume: 452
  start-page: 85
  year: 2009
  end-page: 95
  article-title: Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ‐BSA
  publication-title: Methods Enzymol
– volume: 4
  start-page: 185
  year: 2008
  end-page: 194
  article-title: Macroautophagy‐dependent, intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization
  publication-title: Autophagy
– volume: 452
  start-page: 199
  year: 2009
  end-page: 213
  article-title: Cytosolic LC3 ratio as a quantitative index of macroautophagy
  publication-title: Methods Enzymol
– volume: 29
  start-page: 2594
  year: 2009
  end-page: 2608
  article-title: p65/RelA modulates BECN1 transcription and autophagy
  publication-title: Mol Cell Biol
– ident: e_1_2_9_22_2
  doi: 10.1016/S0076-6879(08)03612-4
– ident: e_1_2_9_18_2
  doi: 10.1016/j.cell.2007.05.021
– ident: e_1_2_9_16_2
  doi: 10.1101/gad.1599207
– ident: e_1_2_9_45_2
  doi: 10.1002/eji.200323730
– ident: e_1_2_9_21_2
  doi: 10.4161/auto.6845
– ident: e_1_2_9_59_2
  doi: 10.4161/auto.5.3.7491
– ident: e_1_2_9_24_2
  doi: 10.1016/j.cell.2007.10.035
– ident: e_1_2_9_15_2
  doi: 10.1074/jbc.M303800200
– ident: e_1_2_9_12_2
  doi: 10.1093/emboj/19.21.5720
– ident: e_1_2_9_20_2
  doi: 10.1016/S0076-6879(08)03601-X
– ident: e_1_2_9_30_2
  doi: 10.1182/blood-2008-02-137398
– ident: e_1_2_9_50_2
  doi: 10.1038/nature04724
– ident: e_1_2_9_6_2
  doi: 10.4161/auto.5338
– ident: e_1_2_9_48_2
  doi: 10.1038/nature03029
– ident: e_1_2_9_36_2
  doi: 10.1016/S0076-6879(08)03613-6
– ident: e_1_2_9_38_2
  doi: 10.4161/auto.4451
– ident: e_1_2_9_14_2
  doi: 10.1007/978-1-59745-157-4_4
– ident: e_1_2_9_51_2
  doi: 10.1038/nature04723
– ident: e_1_2_9_8_2
  doi: 10.4161/auto.5.8.10274
– ident: e_1_2_9_49_2
  doi: 10.1016/j.devcel.2008.08.012
– ident: e_1_2_9_7_2
  doi: 10.1038/ncb1991
– ident: e_1_2_9_23_2
  doi: 10.1074/jbc.M702824200
– ident: e_1_2_9_19_2
  doi: 10.4161/auto.4600
– ident: e_1_2_9_25_2
  doi: 10.1016/S0076-6879(08)04009-3
– ident: e_1_2_9_11_2
  doi: 10.4161/auto.5.5.8823
– ident: e_1_2_9_31_2
  doi: 10.1074/jbc.M800102200
– ident: e_1_2_9_42_2
  doi: 10.4161/auto.5275
– ident: e_1_2_9_17_2
  doi: 10.1038/nrm2708
– ident: e_1_2_9_47_2
  doi: 10.4161/auto.5.4.7761
– ident: e_1_2_9_43_2
  doi: 10.1016/S0076-6879(08)03607-0
– ident: e_1_2_9_37_2
  doi: 10.4161/auto.4012
– ident: e_1_2_9_58_2
  doi: 10.1158/0008-5472.CAN-08-1573
– ident: e_1_2_9_33_2
  doi: 10.1038/nature08455
– ident: e_1_2_9_44_2
  doi: 10.1083/jcb.111.3.941
– ident: e_1_2_9_29_2
  doi: 10.1038/nature07006
– ident: e_1_2_9_39_2
  doi: 10.1016/j.febslet.2007.06.040
– ident: e_1_2_9_10_2
  doi: 10.1016/S0076-6879(08)03610-0
– ident: e_1_2_9_53_2
  doi: 10.1007/978-1-59745-157-4_7
– ident: e_1_2_9_5_2
  doi: 10.1007/978-1-59745-157-4_2
– ident: e_1_2_9_61_2
  doi: 10.1016/j.cell.2006.05.034
– ident: e_1_2_9_13_2
  doi: 10.4161/auto.4615
– ident: e_1_2_9_56_2
  doi: 10.1242/jcs.114.20.3619
– ident: e_1_2_9_63_2
  doi: 10.1128/MCB.01396-08
– ident: e_1_2_9_41_2
  doi: 10.1074/jbc.274.21.15222
– ident: e_1_2_9_57_2
  doi: 10.1016/S0076-6879(08)03606-9
– ident: e_1_2_9_32_2
  doi: 10.4161/auto.4892
– ident: e_1_2_9_62_2
  doi: 10.1038/onc.2008.117
– ident: e_1_2_9_40_2
  doi: 10.1016/S0076-6879(08)03604-5
– ident: e_1_2_9_55_2
  doi: 10.1016/S0076-6879(08)04016-0
– ident: e_1_2_9_2_2
  doi: 10.1002/path.2697
– ident: e_1_2_9_27_2
  doi: 10.1016/j.bbamcr.2009.03.002
– ident: e_1_2_9_28_2
  doi: 10.1073/pnas.0708818104
– ident: e_1_2_9_3_2
  doi: 10.1083/jcb.12.1.198
– ident: e_1_2_9_34_2
  doi: 10.1182/blood-2008-04-151639
– ident: e_1_2_9_35_2
  doi: 10.1083/jcb.200504035
– ident: e_1_2_9_52_2
  doi: 10.1016/j.cell.2006.12.044
– ident: e_1_2_9_9_2
  doi: 10.4161/auto.5179
– ident: e_1_2_9_26_2
  doi: 10.1016/j.cell.2009.05.023
– ident: e_1_2_9_46_2
  doi: 10.1016/S0021-9258(19)74245-8
– year: 2009
  ident: e_1_2_9_60_2
  article-title: Beclin1 and LC3 autophagic gene expression in cutaneous melanocytic lesions
  publication-title: Hum Pathol
– ident: e_1_2_9_4_2
  doi: 10.1083/jcb.33.2.437
– ident: e_1_2_9_54_2
  doi: 10.4161/auto.4846
– ident: e_1_2_9_64_2
  doi: 10.1038/sj.emboj.7601689
– ident: e_1_2_9_65_2
  doi: 10.1016/j.cell.2004.11.046
SSID ssj0009955
Score 2.5421212
SecondaryResourceType review_article
Snippet Autophagy is a fundamental and phylogenetically conserved self-degradation process that is characterized by the formation of double-layered vesicles...
Autophagy is a fundamental and phylogenetically conserved self‐degradation process that is characterized by the formation of double‐layered vesicles...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms analysis
Animals
autophagic flux
autophagy
Autophagy - physiology
Biological and medical sciences
Biomarkers
Flow Cytometry - methods
Humans
Investigative techniques, diagnostic techniques (general aspects)
LC3
Lysosomes - metabolism
mechanism
Medical sciences
method
Microscopy, Electron
Microscopy, Fluorescence
Microtubule-Associated Proteins - metabolism
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Phagosomes - physiology
Phagosomes - ultrastructure
process
technique
Title Autophagy: assays and artifacts
URI https://api.istex.fr/ark:/67375/WNG-98PQ5229-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpath.2694
https://www.ncbi.nlm.nih.gov/pubmed/20225337
https://www.proquest.com/docview/733959556
https://www.proquest.com/docview/742701822
https://pubmed.ncbi.nlm.nih.gov/PMC2989884
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NPSBe-A0LGyNCCO0lXerYsQ1PFTAqJKYBq9gDkuU49oaG0mlpJba_nrukSSkMhHiLlHPks8_nz7nzdwDPsiELWhQ6CU7LhHvuE9yGiiQvXc7xjBt0aLIt9vPxhL87Ekdr8LK7C9PyQ_Q_3GhlNP6aFrgt6t0laShV7B3QPUz0v8MsJ9781x-X1FFaC9EzhfOh7FiFUrbbt1zZi64FO0WESoP7nTIkbY2DFNrqFlfBz9-zKH9Gt832tHcLvnSKtVkpp4P5rBi4y184H_9T89twcwFb41FrZ3dgzVd34fr7RWD-HjwZzYmhwB5fvIgRjtuLOrZVGZNd0tWJ-j5M9t4cvhoni9oLictTzpNCWumkzahMOO7hjnmFRxvNlAieUJXwqc20zwI6KaUsegYEAtaVsmBFSX9JHsB6Na38BsTCBTw1yZJCrNyx1OaMWY_NnPOIN9IIdrpZMG5BTE71Mb6ZllKZGVLYkMIRPO1Fz1o2jquENnAqjT1GL2kmnxjFZvEci9BRRvC8md--sT0_pcw2Kczn_bdGq4MPiEe10RFsrxhA3wDRqtKKOh13FmFwQVKUxVZ-Oq-NzDIt0Pjyv4hwJrFLjEXwsLWh5ffRXhGBY0_linX1AkQHvvqm-nrS0IITl75SqP5OYzx_HiBzMDoc08OjfxfdhBs4kE0dnFRswfrsfO4fIxybFdvNuvsB1ZAtMg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5tQwJeGL-XAVuEENpLusyJYxvxUiFGga0a0Gp7QZbj2Ns0lE5rK7H99dwlTUphIMRbpZ4jn322P9-dvwN4kewwr3iuIm-ViFKXugiPoTzKCpuleMf1ylfZFv2sN0w_HPGjJXjdvIWp-SFahxutjGq_pgVODuntOWsolezt0EPMZbhRxecIEn2ek0cpxXnLFZ7uiIZXKGbbbdOF02jZmxFiVBre75QjacY4TL6ub3EdAP09j_JnfFsdULur8LVRrc5LOetMJ3nHXv3C-vi_ut-FOzPkGnZrU7sHS668Dzf3Z7H5B7DZnRJJgTm-fBUiIjeX49CURUimSa8nxg9huPt28KYXzcovRDaL0zTKhRFWmIQqheMxbpmTeLtRTHLvCFhxF5tEucTjPiWlwc0BsYCxhchZXpCj5BGslKPSrUHIrceLkygoyppaFpuMMeOwmbUOIUccwFYzDdrOuMmpRMY3XbMqM00Ka1I4gOet6HlNyHGd0BrOpTbHuFHq4RdG4Vm8yiJ6FAG8rCa4bWwuzii5TXB92H-nlTz4hJBUaRXAxoIFtA0QsEolqdNhYxIa1yQFWkzpRtOxFkmiOFpf9heRlAnsEmMBPK6NaP59NFgE4dhTsWBerQAxgi_-U56eVMzgRKcvJaq_VVnPnwdIH3QHPfqx_u-im3CrN9jf03vv-x-fwO06jYLcUU9hZXIxdc8QnU3yjWoR_gCY6TFN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ5p4gfG58LFFCKG9pMscO47ZUwWU8lUVWLU9IFmOYw80lE5rK7H99btLmpTCQIi3Sj1HPvvs-9l3_h3A02SPeSVyFXmrZMQddxG6oTxKC5tyPON65atsi0HaH_G3R-JoBfabtzA1P0R74UYro9qvaYGfFn53QRpKFXs79A5zFa7xFN0kIaJPC-4opYRoqcL5nmxohWK22zZdckar3owRotLo_qAUSTPBUfJ1eYur8OfvaZQ_w9vKP_VuwpdGszot5aQzm-Yde_EL6eN_qr4BN-a4NezWhnYLVlx5G9Y_zCPzd2C7OyOKAnN8_jxEPG7OJ6Epi5AMk95OTO7CqPfq4EU_mhdfiGwacx7l0kgrTUJ1wtGJW-YyPNsolgnvCFYJF5tEucTjLpVlBrcGRALGFjJneUHXJPdgrRyXbhNCYT0em2RBMVZuWWxSxozDZtY6BBxxADvNLGg7ZyanAhnfdc2pzDQprEnhAJ60oqc1HcdVQps4ldoc4zapR58ZBWfxIIvYUQbwrJrftrE5O6HUNin04eC1VtnwIwJSpVUAW0sG0DZAuJqpjDodNhahcUVSmMWUbjybaJkkSqDxpX8R4UxilxgL4H5tQ4vvo70iBMeeyiXragWID3z5n_Lb14oXnMj0swzV36mM588DpIfdgz79ePDvotuwPnzZ0-_fDN49hOt1DgXdRT2CtenZzD1GaDbNt6oleAndZC_8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy%3A+assays+and+artifacts&rft.jtitle=The+Journal+of+pathology&rft.au=Barth%2C+Sandra&rft.au=Glick%2C+Danielle&rft.au=Macleod%2C+Kay+F&rft.date=2010-06-01&rft.issn=0022-3417&rft.eissn=1096-9896&rft.volume=221&rft.issue=2&rft.spage=117&rft.epage=124&rft_id=info:doi/10.1002%2Fpath.2694&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_path_2694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3417&client=summon