Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells

The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vi...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical virology Vol. 82; no. 5; pp. 817 - 824
Main Authors Khan, Mohsin, Santhosh, S.R, Tiwari, Mugdha, Lakshmana Rao, P.V, Parida, Manmohan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2010
Wiley
Subjects
Online AccessGet full text
ISSN0146-6615
1096-9071
1096-9071
DOI10.1002/jmv.21663

Cover

Abstract The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 μM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by ≥99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent. J. Med. Virol. 82: 817-824, 2010.
AbstractList The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 µM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by ‰¥99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent. J. Med. Virol. 82: 817-824, 2010.
The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre‐infection, post‐infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real‐time reverse transcriptase (RT)‐PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose‐dependent manner, with an effective concentration range of 5–20 µM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by ≥99.99%. The maximum inhibitory effect of chloroquine was observed within 1–3 hr post‐infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal‐mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent. J. Med. Virol. 82: 817–824, 2010. © 2010 Wiley‐Liss, Inc.
The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 μM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by ≥99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent. J. Med. Virol. 82: 817-824, 2010.
The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 microM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by >/=99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent.The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 microM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by >/=99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent.
The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 microM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by >/=99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent.
Author Santhosh, S.R.
Parida, Manmohan
Khan, Mohsin
Tiwari, Mugdha
Lakshmana Rao, P.V.
AuthorAffiliation 1 Division of Virology, Defence Research & Development Establishment (DRDE), Gwalior, MP, India
AuthorAffiliation_xml – name: 1 Division of Virology, Defence Research & Development Establishment (DRDE), Gwalior, MP, India
Author_xml – sequence: 1
  fullname: Khan, Mohsin
– sequence: 2
  fullname: Santhosh, S.R
– sequence: 3
  fullname: Tiwari, Mugdha
– sequence: 4
  fullname: Lakshmana Rao, P.V
– sequence: 5
  fullname: Parida, Manmohan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22575625$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20336760$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URKeFBS8A2SDEIq1_EnuyqVS1dAC1BQQFiY114zgzbhN7sJOBvD1OZ6b8CEQ2UZzvfPFx7h7asc5qhB4TfEAwpofX7eqAEs7ZPTQhuOBpgQXZQRNMMp5yTvJdtBfCNcZ4WlD6AO1SzBgXHE9QOA5Bh9Bq2yWuToxNVqbzLll6t1wMDajOqARslXQL7WGp-_FZ17VRoIYxoRaN8-5rb6xOYA7Ghi6umZvezns7QNT5Ptx6ddQq3TThIbpfQxP0o819H12dvfx48io9fzt7fXJ8niqOM5bWvM4pLSvIKKtLXCmBC0VEWQIQjVlGSlaxXNMKcBnXp5meZrgAVgoVI1qwfXS09i77stWVih09NHLpTQt-kA6M_P2NNQs5dysp4llmRRYFzzeCsaEOnWxNGCuA1a4PUmSUx28S9n-SjRcRo_PJr5u62832l0Tg2QaAoKCpPVhlwk-O5iLnNI_c4ZpT3oXgdS2V6aAzbuxiGkmwHIdDxuGQt8MREy_-SGylf2M39m-m0cO_Qfnm4tM2ka4TJnT6-10C_I3kgolcfr6cybPLL-_fnc5O5UXkn675GpyEuY8drz7QeJiYTCnLhGA_AKfO5E0
CODEN JMVIDB
CitedBy_id crossref_primary_10_1007_s43440_022_00381_0
crossref_primary_10_2139_ssrn_3619438
crossref_primary_10_1093_jac_dku209
crossref_primary_10_1016_j_vaccine_2015_05_104
crossref_primary_10_1007_s43440_021_00216_4
crossref_primary_10_2174_1871526521666210729164054
crossref_primary_10_3390_microorganisms9040734
crossref_primary_10_3390_ph16081125
crossref_primary_10_1016_j_bcp_2019_113777
crossref_primary_10_1371_journal_pntd_0009916
crossref_primary_10_4110_in_2021_21_e7
crossref_primary_10_3390_molecules27165080
crossref_primary_10_2217_fvl_2021_0119
crossref_primary_10_1186_s12575_020_00141_5
crossref_primary_10_3390_v10050235
crossref_primary_10_2217_fvl_2023_0142
crossref_primary_10_3390_v7072792
crossref_primary_10_3389_fphar_2020_01167
crossref_primary_10_1016_j_azn_2025_01_003
crossref_primary_10_1016_j_virol_2020_09_004
crossref_primary_10_1016_j_antiviral_2010_10_009
crossref_primary_10_2147_JEP_S346006
crossref_primary_10_1080_07391102_2021_1965027
crossref_primary_10_1021_acsomega_1c00447
crossref_primary_10_5501_wjv_v14_i1_100489
crossref_primary_10_1093_infdis_jiu114
crossref_primary_10_1016_j_drudis_2022_04_008
crossref_primary_10_3389_fviro_2022_959586
crossref_primary_10_1016_j_jviromet_2016_04_011
crossref_primary_10_1016_j_compbiomed_2021_104222
crossref_primary_10_1016_j_clinmicnews_2025_02_001
crossref_primary_10_1111_zph_12469
crossref_primary_10_1080_07391102_2021_1904004
crossref_primary_10_1002_jmv_22019
crossref_primary_10_1016_j_antiviral_2015_03_005
crossref_primary_10_1016_j_berh_2020_101502
crossref_primary_10_1186_s12985_014_0215_y
crossref_primary_10_2174_0929867328666210623165005
crossref_primary_10_3390_pharmaceutics10040255
crossref_primary_10_1016_j_ejmech_2018_02_054
crossref_primary_10_1016_j_virusres_2020_198073
crossref_primary_10_3390_microorganisms8121872
crossref_primary_10_1242_dmm_049804
crossref_primary_10_1089_ped_2020_1179
crossref_primary_10_1016_j_virs_2023_06_007
crossref_primary_10_3390_v11020175
crossref_primary_10_15252_emmm_202012476
crossref_primary_10_3390_v12070722
crossref_primary_10_3389_fcimb_2021_580532
crossref_primary_10_1016_j_antiviral_2017_12_012
crossref_primary_10_1186_s12985_017_0722_8
crossref_primary_10_1080_13543776_2020_1751817
crossref_primary_10_1016_j_rbr_2017_05_005
crossref_primary_10_3389_fmicb_2018_03257
crossref_primary_10_3390_v12091022
crossref_primary_10_1038_srep20122
crossref_primary_10_1080_14787210_2019_1595591
crossref_primary_10_1016_j_virusres_2019_197732
crossref_primary_10_1080_07391102_2022_2048080
crossref_primary_10_3390_ijms21144972
crossref_primary_10_1186_s43556_020_00017_w
crossref_primary_10_1128_microbiolspec_EI10_0017_2016
crossref_primary_10_2139_ssrn_3570607
crossref_primary_10_3390_vaccines11061102
crossref_primary_10_1016_j_rbre_2017_06_004
crossref_primary_10_1371_journal_ppat_1008876
crossref_primary_10_1016_j_antiviral_2021_105127
crossref_primary_10_1016_j_ejphar_2020_173487
crossref_primary_10_1016_j_bmc_2018_01_002
crossref_primary_10_3389_fpubh_2020_618624
crossref_primary_10_1007_s10067_020_05202_4
crossref_primary_10_1016_j_ijbiomac_2020_08_166
crossref_primary_10_1007_s40011_011_0012_y
crossref_primary_10_1016_j_actatropica_2018_09_003
crossref_primary_10_1016_j_virusres_2019_02_011
crossref_primary_10_17925_EE_2020_16_2_109
crossref_primary_10_1016_j_idc_2019_08_006
crossref_primary_10_1089_vbz_2014_1681
crossref_primary_10_1016_j_cll_2017_01_008
crossref_primary_10_1016_j_medidd_2021_100085
crossref_primary_10_1097_j_pbj_0000000000000132
crossref_primary_10_1155_2020_8827752
crossref_primary_10_1016_j_biochi_2020_05_013
crossref_primary_10_2174_0929867325666181105121146
crossref_primary_10_12688_f1000research_16498_1
crossref_primary_10_4103_jmgims_jmgims_36_20
crossref_primary_10_1093_jac_dkaa403
crossref_primary_10_2174_1381612826666200707121636
crossref_primary_10_7717_peerj_13090
crossref_primary_10_1016_S0140_6736_11_60281_X
crossref_primary_10_3390_v11060578
crossref_primary_10_1371_journal_pone_0071047
crossref_primary_10_1007_s10822_022_00463_4
crossref_primary_10_1038_srep12727
crossref_primary_10_1002_adfm_202107826
crossref_primary_10_1016_j_ijbiomac_2024_129949
crossref_primary_10_3390_pathogens9070546
crossref_primary_10_1007_s00203_024_04135_9
crossref_primary_10_1016_j_antiviral_2013_01_002
crossref_primary_10_1155_2014_631642
crossref_primary_10_21673_anadoluklin_735826
crossref_primary_10_1128_AAC_02227_16
crossref_primary_10_1128_AAC_00649_20
crossref_primary_10_1021_acsinfecdis_4c00254
crossref_primary_10_1093_jac_dkx224
crossref_primary_10_1016_j_drudis_2013_05_002
crossref_primary_10_3390_microorganisms8010085
crossref_primary_10_1007_s11481_020_09923_w
crossref_primary_10_1007_s11262_022_01892_x
crossref_primary_10_3390_v13071307
crossref_primary_10_1038_srep31819
crossref_primary_10_1016_j_virol_2013_05_030
crossref_primary_10_3390_v10050268
crossref_primary_10_1099_jgv_0_000309
crossref_primary_10_1016_j_antiviral_2015_06_017
crossref_primary_10_1016_j_puhe_2023_09_018
crossref_primary_10_1021_acsinfecdis_0c00236
crossref_primary_10_3390_v12030272
crossref_primary_10_1016_j_bmcl_2019_126881
crossref_primary_10_3390_cells10061412
crossref_primary_10_3390_futurepharmacol4040048
crossref_primary_10_3390_v13010036
crossref_primary_10_1016_j_tmaid_2020_101735
crossref_primary_10_1080_17460441_2019_1629413
crossref_primary_10_1515_hsz_2017_0236
crossref_primary_10_1039_C6RA16640G
crossref_primary_10_3390_ph13090228
crossref_primary_10_1016_j_meegid_2016_04_006
crossref_primary_10_1021_acsmedchemlett_9b00662
crossref_primary_10_3389_fphar_2021_660710
crossref_primary_10_1080_14787210_2020_1792291
crossref_primary_10_1021_acsomega_4c03417
crossref_primary_10_3389_fimmu_2023_1281667
crossref_primary_10_3389_fmicb_2021_695173
crossref_primary_10_1002_jhet_4672
crossref_primary_10_1016_j_ijantimicag_2020_105938
crossref_primary_10_1186_s12992_023_00906_z
crossref_primary_10_3390_plants10081658
crossref_primary_10_1016_j_antiviral_2015_06_003
crossref_primary_10_1093_ofid_ofu097
crossref_primary_10_1016_j_microb_2024_100220
crossref_primary_10_3390_microorganisms8091365
crossref_primary_10_2217_fvl_2019_0090
crossref_primary_10_1128_AAC_01788_20
crossref_primary_10_1016_j_virusres_2024_199485
crossref_primary_10_1016_j_bmc_2017_06_049
crossref_primary_10_1016_j_biopha_2016_12_069
Cites_doi 10.1093/emboj/17.16.4585
10.1016/S0140-6736(07)61779-6
10.1016/j.virusres.2008.02.004
10.1016/S1473-3099(06)70361-9
10.1016/S1473-3099(03)00806-5
10.1186/1743-422X-2-69
10.1056/NEJMp078013
10.1016/S1473-3099(07)70107-X
10.1371/journal.ppat.0030089
10.1089/vbz.2006.0648
10.1016/j.jcv.2007.04.015
10.1128/AAC.30.2.201
10.1016/S1473-3099(07)70091-9
10.1371/journal.pmed.0030263
10.1016/j.jcv.2005.03.005
10.1089/aid.1990.6.481
10.1016/j.bbrc.2008.09.040
10.1099/0022-1317-5-3-419
10.1128/jvi.52.3.857-864.1984
10.1016/j.bbrc.2004.08.085
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
2015 INIST-CNRS
(c) 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: 2015 INIST-CNRS
– notice: (c) 2010 Wiley-Liss, Inc.
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1002/jmv.21663
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Anti‐CHIKV Activity of Chloroquine
EISSN 1096-9071
EndPage 824
ExternalDocumentID PMC7166494
20336760
22575625
10_1002_jmv_21663
JMV21663
ark_67375_WNG_FNZQPDGD_M
US201301823477
Genre article
Journal Article
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHMBA
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
ECGQY
EJD
ELTNK
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WHG
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WXI
WXSBR
WYISQ
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c6043-f6f522bda423fb0dc709c17bbaa1e0341b3d35e2da0bc1784e8409a3b7ca42e73
IEDL.DBID DR2
ISSN 0146-6615
1096-9071
IngestDate Thu Aug 21 18:21:10 EDT 2025
Fri Sep 05 05:56:16 EDT 2025
Sun Aug 24 04:15:39 EDT 2025
Thu Apr 03 07:01:32 EDT 2025
Mon Jul 21 09:16:56 EDT 2025
Tue Jul 01 02:24:24 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
Wed Aug 20 07:26:27 EDT 2025
Sun Sep 21 06:18:55 EDT 2025
Thu Apr 03 09:46:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Antimalarial
Chloroquine
Togaviridae
virus inhibition
In vitro
Infection
Virus
Prevention
Efficiency
Viral disease
Arbovirus disease
Chikungunya virus
Chikungunya
Alphavirus
Parasiticide
Antirheumatic agent
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
(c) 2010 Wiley-Liss, Inc.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6043-f6f522bda423fb0dc709c17bbaa1e0341b3d35e2da0bc1784e8409a3b7ca42e73
Notes http://dx.doi.org/10.1002/jmv.21663
ark:/67375/WNG-FNZQPDGD-M
istex:1352817C8BCA46C7596BD6EDCAFEFC7CC56364AE
ArticleID:JMV21663
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7166494
PMID 20336760
PQID 733333174
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7166494
proquest_miscellaneous_742684013
proquest_miscellaneous_733333174
pubmed_primary_20336760
pascalfrancis_primary_22575625
crossref_citationtrail_10_1002_jmv_21663
crossref_primary_10_1002_jmv_21663
wiley_primary_10_1002_jmv_21663_JMV21663
istex_primary_ark_67375_WNG_FNZQPDGD_M
fao_agris_US201301823477
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2010
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: May 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Journal of medical virology
PublicationTitleAlternate J. Med. Virol
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Finter NB. 1969. Dye uptake methods for assessing viral cytopathogenicity and their application to interferon assays. J Gen Virol 5: 419-427.
Savarino A, Trani LD, Donatelli I, Cauda R, Cassone A. 2006. New insights into the antiviral effects of Chloroquine. Lancet Infect Dis 6: 67-69.
Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M. 2007. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7: 319-327.
Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Bréhin AC, Cubito N, Desprès P, Kunst F, Rey FA, Zeller H, Brisse S. 2006. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3: e263.
Cassell S, Edwards J, Brown DT. 1984. Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus. J Virol 52: 857-864.
Kouroumalis EA, Koskinas J. 1986. Treatment of chronic active hepatitis B (CAH B) with Chloroquine: A preliminary report. Ann Acad Med Singapore 15: 149-152.
Savarino A. 2005. Expanding the frontiers of existing antiviral drugs: Possible effects of HIV-1 protease inhibitors against SARS and avian influenza. J Clin Virol 34: 170-178.
Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon N, Roux KL, Prevost MC, Fsihi H, Frenkiel MP, Blanchet F, Afonso PV, Ceccaldi PE, Ozden S, Gessain A, Schuffenecker I, Verhasselt B, Zamborlini A, Saïb A, Rey FA, Arenzana-Seisdedos F, Desprès P, Michault A, Albert ML, Schwartz O. 2007. Characterization of reemerging chikungunya virus. PLoS Pathog 3: e89.
Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2: 69.
Santhosh SR, Dash PK, Parida MM, Khan M, Tiwari M, Lakshmana Rao PV. 2008. Comparative full genome analysis revealed A226V shift in 2007 Indian Chikungunya virus isolates. Virus Res 135: 36-41.
Dash PK, Tiwari M, Santhosh SR, Parida M, Lakshmana Rao PV. 2008. RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells. Biochem Biophys Res Commun 376: 718-722.
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. 2003. Effects of chloroquine on viral infections: An old drug against today's diseases? Lancet Infect Dis 3: 722-727.
Santhosh SR, Parida MM, Dash PK, Pateriya A, Pattnaik B, Pradhan HK, Tripathi NK, Srivastava A, Gupta N, Saxena P, Lakshmana Rao PV. 2007. Development and evaluation of SYBR Green I based one step real time RT-PCR assay for detection and quantification of Chikungunya virus. J Clin Virol 39: 188-193.
Mavalankar D, Shastri P, Raman P. 2007. Chikungunya epidemic in India: A major public-health disaster. Lancet Infect Dis 7: 306-307.
Tsai WP, Nara PL, Kung HF, Oroszlan S. 1990. Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res Hum Retroviruses 6: 481-489.
Dash PK, Parida MM, Santhosh SR, Verma SK, Tripathi NK, Ambuj S, Saxena P, Gupta N, Chaudhary M, Babu JP, Lakshmi V, Mamidi N, Subhalaxmi MV, Lakshmana Rao PV, Sekhar K. 2007. East Central South African genotype as the causative agent in reemergence of Chikungunya outbreak in India. Vector Borne Zoonotic Dis 7: 519-527.
Charmot G, Coulaud JP. 1990. Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria). MedTrop 50: 103-108.
Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. 2004. In vitro inhibition of severe acute respiratory syndrome coronavirus by Chloroquine. Biochem Biophys Res Commun 323: 264-268.
Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A. 2007. Infection with Chikungunya virus in Italy: An outbreak in a temperate region. Lancet 370: 1840-1846.
Charell RN, de Lamballrie X, Raoult D. 2007. Chikungunya outbreaks-the globalization of vector borne diseases. N Engl J Med 356: 769-771.
Gilbert BE, Knight V. 1986. Biochemistry and clinical application of ribavirin. Antimicrob Agents Chemother 30: 201-205.
DeTulleo L, Kirchhausen T. 1998. The clathrin endocytic pathway in viral infection. EMBO J 17: 4585-4593.
2007; 356
2007; 39
1984; 52
1998; 17
2004; 323
1986; 30
2007; 370
1969; 5
1986; 15
1998
2003; 3
2007; 7
2006; 6
2006; 3
2008; 135
2007; 3
2005; 2
2008; 376
2005; 34
1990; 6
1990; 50
Charmot G (e_1_2_1_4_1) 1990; 50
Jupp PG (e_1_2_1_10_1) 1998
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_20_1
e_1_2_1_5_1
Kouroumalis EA (e_1_2_1_12_1) 1986; 15
e_1_2_1_6_1
Cassell S (e_1_2_1_2_1) 1984; 52
e_1_2_1_3_1
e_1_2_1_23_1
e_1_2_1_13_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_11_1
e_1_2_1_22_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
21503920 - J Med Virol. 2011 Jun;83(6):1058-9
References_xml – reference: Dash PK, Parida MM, Santhosh SR, Verma SK, Tripathi NK, Ambuj S, Saxena P, Gupta N, Chaudhary M, Babu JP, Lakshmi V, Mamidi N, Subhalaxmi MV, Lakshmana Rao PV, Sekhar K. 2007. East Central South African genotype as the causative agent in reemergence of Chikungunya outbreak in India. Vector Borne Zoonotic Dis 7: 519-527.
– reference: Santhosh SR, Parida MM, Dash PK, Pateriya A, Pattnaik B, Pradhan HK, Tripathi NK, Srivastava A, Gupta N, Saxena P, Lakshmana Rao PV. 2007. Development and evaluation of SYBR Green I based one step real time RT-PCR assay for detection and quantification of Chikungunya virus. J Clin Virol 39: 188-193.
– reference: Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Bréhin AC, Cubito N, Desprès P, Kunst F, Rey FA, Zeller H, Brisse S. 2006. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3: e263.
– reference: Gilbert BE, Knight V. 1986. Biochemistry and clinical application of ribavirin. Antimicrob Agents Chemother 30: 201-205.
– reference: Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. 2004. In vitro inhibition of severe acute respiratory syndrome coronavirus by Chloroquine. Biochem Biophys Res Commun 323: 264-268.
– reference: Dash PK, Tiwari M, Santhosh SR, Parida M, Lakshmana Rao PV. 2008. RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells. Biochem Biophys Res Commun 376: 718-722.
– reference: Mavalankar D, Shastri P, Raman P. 2007. Chikungunya epidemic in India: A major public-health disaster. Lancet Infect Dis 7: 306-307.
– reference: DeTulleo L, Kirchhausen T. 1998. The clathrin endocytic pathway in viral infection. EMBO J 17: 4585-4593.
– reference: Savarino A, Trani LD, Donatelli I, Cauda R, Cassone A. 2006. New insights into the antiviral effects of Chloroquine. Lancet Infect Dis 6: 67-69.
– reference: Charmot G, Coulaud JP. 1990. Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria). MedTrop 50: 103-108.
– reference: Cassell S, Edwards J, Brown DT. 1984. Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus. J Virol 52: 857-864.
– reference: Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M. 2007. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7: 319-327.
– reference: Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. 2003. Effects of chloroquine on viral infections: An old drug against today's diseases? Lancet Infect Dis 3: 722-727.
– reference: Kouroumalis EA, Koskinas J. 1986. Treatment of chronic active hepatitis B (CAH B) with Chloroquine: A preliminary report. Ann Acad Med Singapore 15: 149-152.
– reference: Santhosh SR, Dash PK, Parida MM, Khan M, Tiwari M, Lakshmana Rao PV. 2008. Comparative full genome analysis revealed A226V shift in 2007 Indian Chikungunya virus isolates. Virus Res 135: 36-41.
– reference: Tsai WP, Nara PL, Kung HF, Oroszlan S. 1990. Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res Hum Retroviruses 6: 481-489.
– reference: Finter NB. 1969. Dye uptake methods for assessing viral cytopathogenicity and their application to interferon assays. J Gen Virol 5: 419-427.
– reference: Savarino A. 2005. Expanding the frontiers of existing antiviral drugs: Possible effects of HIV-1 protease inhibitors against SARS and avian influenza. J Clin Virol 34: 170-178.
– reference: Charell RN, de Lamballrie X, Raoult D. 2007. Chikungunya outbreaks-the globalization of vector borne diseases. N Engl J Med 356: 769-771.
– reference: Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon N, Roux KL, Prevost MC, Fsihi H, Frenkiel MP, Blanchet F, Afonso PV, Ceccaldi PE, Ozden S, Gessain A, Schuffenecker I, Verhasselt B, Zamborlini A, Saïb A, Rey FA, Arenzana-Seisdedos F, Desprès P, Michault A, Albert ML, Schwartz O. 2007. Characterization of reemerging chikungunya virus. PLoS Pathog 3: e89.
– reference: Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A. 2007. Infection with Chikungunya virus in Italy: An outbreak in a temperate region. Lancet 370: 1840-1846.
– reference: Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2: 69.
– volume: 15
  start-page: 149
  year: 1986
  end-page: 152
  article-title: Treatment of chronic active hepatitis B (CAH B) with Chloroquine: A preliminary report
  publication-title: Ann Acad Med Singapore
– volume: 30
  start-page: 201
  year: 1986
  end-page: 205
  article-title: Biochemistry and clinical application of ribavirin
  publication-title: Antimicrob Agents Chemother
– start-page: 137
  year: 1998
  end-page: 157
– volume: 2
  start-page: 69
  year: 2005
  article-title: Chloroquine is a potent inhibitor of SARS coronavirus infection and spread
  publication-title: Virol J
– volume: 3
  start-page: e89
  year: 2007
  article-title: Characterization of reemerging chikungunya virus
  publication-title: PLoS Pathog
– volume: 376
  start-page: 718
  year: 2008
  end-page: 722
  article-title: RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells
  publication-title: Biochem Biophys Res Commun
– volume: 323
  start-page: 264
  year: 2004
  end-page: 268
  article-title: inhibition of severe acute respiratory syndrome coronavirus by Chloroquine
  publication-title: Biochem Biophys Res Commun
– volume: 17
  start-page: 4585
  year: 1998
  end-page: 4593
  article-title: The clathrin endocytic pathway in viral infection
  publication-title: EMBO J
– volume: 7
  start-page: 319
  year: 2007
  end-page: 327
  article-title: Chikungunya, an epidemic arbovirosis
  publication-title: Lancet Infect Dis
– volume: 135
  start-page: 36
  year: 2008
  end-page: 41
  article-title: Comparative full genome analysis revealed A226V shift in 2007 Indian Chikungunya virus isolates
  publication-title: Virus Res
– volume: 6
  start-page: 481
  year: 1990
  end-page: 489
  article-title: Inhibition of human immunodeficiency virus infectivity by chloroquine
  publication-title: AIDS Res Hum Retroviruses
– volume: 356
  start-page: 769
  year: 2007
  end-page: 771
  article-title: Chikungunya outbreaks‐the globalization of vector borne diseases
  publication-title: N Engl J Med
– volume: 7
  start-page: 519
  year: 2007
  end-page: 527
  article-title: East Central South African genotype as the causative agent in reemergence of Chikungunya outbreak in India
  publication-title: Vector Borne Zoonotic Dis
– volume: 3
  start-page: e263
  year: 2006
  article-title: Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak
  publication-title: PLoS Med
– volume: 50
  start-page: 103
  year: 1990
  end-page: 108
  article-title: Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria)
  publication-title: MedTrop
– volume: 5
  start-page: 419
  year: 1969
  end-page: 427
  article-title: Dye uptake methods for assessing viral cytopathogenicity and their application to interferon assays
  publication-title: J Gen Virol
– volume: 39
  start-page: 188
  year: 2007
  end-page: 193
  article-title: Development and evaluation of SYBR Green I based one step real time RT‐PCR assay for detection and quantification of Chikungunya virus
  publication-title: J Clin Virol
– volume: 370
  start-page: 1840
  year: 2007
  end-page: 1846
  article-title: Infection with Chikungunya virus in Italy: An outbreak in a temperate region
  publication-title: Lancet
– volume: 7
  start-page: 306
  year: 2007
  end-page: 307
  article-title: Chikungunya epidemic in India: A major public‐health disaster
  publication-title: Lancet Infect Dis
– volume: 6
  start-page: 67
  year: 2006
  end-page: 69
  article-title: New insights into the antiviral effects of Chloroquine
  publication-title: Lancet Infect Dis
– volume: 34
  start-page: 170
  year: 2005
  end-page: 178
  article-title: Expanding the frontiers of existing antiviral drugs: Possible effects of HIV‐1 protease inhibitors against SARS and avian influenza
  publication-title: J Clin Virol
– volume: 3
  start-page: 722
  year: 2003
  end-page: 727
  article-title: Effects of chloroquine on viral infections: An old drug against today's diseases?
  publication-title: Lancet Infect Dis
– volume: 52
  start-page: 857
  year: 1984
  end-page: 864
  article-title: Effects of lysosomotropic weak bases on infection of BHK‐21 cells by Sindbis virus
  publication-title: J Virol
– ident: e_1_2_1_7_1
  doi: 10.1093/emboj/17.16.4585
– ident: e_1_2_1_15_1
  doi: 10.1016/S0140-6736(07)61779-6
– ident: e_1_2_1_17_1
  doi: 10.1016/j.virusres.2008.02.004
– ident: e_1_2_1_20_1
  doi: 10.1016/S1473-3099(06)70361-9
– volume: 50
  start-page: 103
  year: 1990
  ident: e_1_2_1_4_1
  article-title: Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria)
  publication-title: MedTrop
– ident: e_1_2_1_19_1
  doi: 10.1016/S1473-3099(03)00806-5
– ident: e_1_2_1_24_1
  doi: 10.1186/1743-422X-2-69
– ident: e_1_2_1_3_1
  doi: 10.1056/NEJMp078013
– ident: e_1_2_1_14_1
  doi: 10.1016/S1473-3099(07)70107-X
– ident: e_1_2_1_22_1
  doi: 10.1371/journal.ppat.0030089
– ident: e_1_2_1_5_1
  doi: 10.1089/vbz.2006.0648
– ident: e_1_2_1_16_1
  doi: 10.1016/j.jcv.2007.04.015
– ident: e_1_2_1_9_1
  doi: 10.1128/AAC.30.2.201
– ident: e_1_2_1_13_1
  doi: 10.1016/S1473-3099(07)70091-9
– ident: e_1_2_1_21_1
  doi: 10.1371/journal.pmed.0030263
– ident: e_1_2_1_18_1
  doi: 10.1016/j.jcv.2005.03.005
– volume: 15
  start-page: 149
  year: 1986
  ident: e_1_2_1_12_1
  article-title: Treatment of chronic active hepatitis B (CAH B) with Chloroquine: A preliminary report
  publication-title: Ann Acad Med Singapore
– ident: e_1_2_1_23_1
  doi: 10.1089/aid.1990.6.481
– ident: e_1_2_1_6_1
  doi: 10.1016/j.bbrc.2008.09.040
– ident: e_1_2_1_8_1
  doi: 10.1099/0022-1317-5-3-419
– start-page: 137
  volume-title: The Arboviruses: Epidemiology and ecology
  year: 1998
  ident: e_1_2_1_10_1
– volume: 52
  start-page: 857
  year: 1984
  ident: e_1_2_1_2_1
  article-title: Effects of lysosomotropic weak bases on infection of BHK‐21 cells by Sindbis virus
  publication-title: J Virol
  doi: 10.1128/jvi.52.3.857-864.1984
– ident: e_1_2_1_11_1
  doi: 10.1016/j.bbrc.2004.08.085
– reference: 21503920 - J Med Virol. 2011 Jun;83(6):1058-9
SSID ssj0008922
Score 2.386205
Snippet The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 817
SubjectTerms Animals
Antiviral Agents - pharmacology
Biological and medical sciences
Cell Survival
Chikungunya
Chikungunya virus - drug effects
Chlorocebus aethiops
chloroquine
Chloroquine - pharmacology
Fundamental and applied biological sciences. Psychology
Human viral diseases
Infectious diseases
Medical sciences
Microbiology
Miscellaneous
Reverse Transcriptase Polymerase Chain Reaction
RNA, Viral - biosynthesis
Vero Cells
Viral diseases
Viral Plaque Assay
Virology
virus inhibition
Virus Internalization - drug effects
Virus Replication - drug effects
Title Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells
URI https://api.istex.fr/ark:/67375/WNG-FNZQPDGD-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmv.21663
https://www.ncbi.nlm.nih.gov/pubmed/20336760
https://www.proquest.com/docview/733333174
https://www.proquest.com/docview/742684013
https://pubmed.ncbi.nlm.nih.gov/PMC7166494
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfGPiC-MN4Lj8lCCO1LOufpRnyaKN00qRWvwoSQLL-ylXbJ1LQT46_nzmnSFQZC5FOU3rnx-XyP-PwzIS8Q1E0ynfmGW-6DP5a-MjAguVEZZ1qmyuL3jsEwPRzFR8fJ8QZ51eyFqfEh2g9uODOcvcYJLlW1twIN_XZ20QkDcJhgf4MoRdz83vsVdFQ3q1cQwBL44IOSBlWIhXst55ovupHLEiJUFO53rJCUFQgpr0-3uC78_L2K8mp069xTf4t8bTpWV6VMOou56ugfv2A-_mfP75Dby7CV7td6dpds2OIeuTlYLszfJ9V-i_BJy5yOC3oxns9KCu8D4zh1O7GoLAy9st-LWoSvkPoSOfTptMS-Q2tUnsgxRK3wbDwBW7QoLiU0N1tUrl0LzeJyQ_WAjPpvPr4-9JfnOfg6xUX-PM0h2lNGQgiXK2Y0Z5kOuFJSBpaBO1WRiRIbGskUPO_GFrNPGSmugcXy6CHZLMrCbhMapkYDedAFolgpyFETyzMTSZUlLDWhR3abkRV6CXaOZ25MRQ3THAoQonBC9MjzlvS8Rvi4jmgb1EPIE7C8YvQhxPVeyMyimHOPvHQ60zLL2QSr5XgiPg8PRH_45d3b3kFPDDyys6ZULQOYVI55qEdoo2UCJjmKUha2XFSCR3hB8vgXktjh9gTwqo9qvVy1zyLE5WMe4Wsa2xIgxPj6L8X41EGNQzadxhn87a5TyD8LSBwNPrmbx_9O-oTcamoxWPCUbM5nC_sMQry52nFz-Sck706r
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxELbaIgEv3NDlKBZCqC-bek9nJV4qShpKE3G0UCEhy9e2IWEX5agov54Zb3bTQEGIPEWb8WQ9Hs_hsT8T8hRB3STTmW-45T74Y-krAwOSG5VxpmWqLK539Ppp9zDeO0qOVsjz-ixMhQ_RLLjhzHD2Gic4LkhvLVBDv3w9bYUBeMxVcsnV5zAkercAj2pnVQ0BbIEPXiipcYVYuNU0XfJGq7ksIUZF8X7HPZJyAmLKq_stLgpAf99HeT6-dQ6qc518rrtW7UsZtmZT1dI_fkF9_N--3yDX5pEr3a5U7SZZscUtcrk3r83fJpPtBuSTljkdFPR0MB2XFF4IhnLkDmNRWRh67sgXtYhgIfUZttAnoxI7D9yoPJYDCFzh2WAI5mhWnElgN55NHF8LbLHiMLlDDjsvD150_fmVDr5Osc6fpzkEfMpIiOJyxYzmLNMBV0rKwDLwqCoyUWJDI5mC5-3YYgIqI8U1NLE8ukvWirKw64SGqdFAHrSBKFYK0tTE8sxEUmUJS03okc16aIWe453jtRsjUSE1hwKEKJwQPfKkIf1WgXxcRLQO-iHkMRhfcfg-xJIvJGdRzLlHnjmlaRrL8RA3zPFEfOzvik7_09s3O7s7oueRjSWtahqAVeWYinqE1momYJ6jKGVhy9lE8Ag_kD_-hSR20D0BvOq9SjEX_FmE0HzMI3xJZRsCRBlf_qUYnDi0cUio0ziDv910GvlnAYm93gf35f6_kz4mV7oHvX2x_6r_-gG5Wm_NYMFDsjYdz-wjiPimasNN7J_gT1LJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED9tQ5r4whsWHsNCCO1LNufpRnyaKN0YtBqPwoSQLL-ylZZk6mNi_PWcnSZdYSBEPkXpnRufz7673PlngKcW1E1QlfmaGeajPRa-1DgguZYZo0qk0tjvHd1eut-PD46SoxV4Xu-FqfAhmg9udma49dpO8FOd7yxAQ79-O9sOAzSYq3AlTtFMWo_o3QI7qpVVKQRcCnw0QkkNK0TDnYZ1yRit5qJEF9VK97stkRQTlFJeHW9xmf_5exnlRffW2afOdfhS96wqSxluz6ZyW_34BfTxP7t-A67N_VayWynaTVgxxS1Y784z87dhsttAfJIyJ4OCnA2m45Lg--BAjtxWLCIKTS5s-CLG4lcIdW451MmotH3H1og4FgN0W_HZYIiL0aw4F9jceDZx7Rps1uYbJneg33n54cW-Pz_QwVepzfLnaY7untQCfbhcUq0YzVTApBQiMBTtqYx0lJhQCyrxeSs2NvwUkWQKWQyL7sJaURZmA0iYaoXkQQuJYikxSE0My3QkZJbQVIcebNUjy9Uc7dweujHiFU5zyFGI3AnRgycN6WkF8XEZ0QaqBxfHuPTy_vvQJnwxNItixjx45nSmYRbjoS2XYwn_1Nvjnd7nt4ftvTbverC5pFQNA66pzAaiHpBayzjOcitKUZhyNuEsshdGj38hiR1wT4Cveq_Sy0X7NLLAfNQDtqSxDYHFGF_-pRicOKxxDKfTOMO_3XIK-WcB8YPuR3dz_99JH8P6YbvD37zqvX4AV-u6DBo8hLXpeGYeobs3lZtuWv8EsmBReA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+in+vitro+prophylactic+and+therapeutic+efficacy+of+chloroquine+against+chikungunya+virus+in+vero+cells&rft.jtitle=Journal+of+medical+virology&rft.au=Khan%2C+Mohsin&rft.au=Santhosh%2C+S+R&rft.au=Tiwari%2C+Mugdha&rft.au=Lakshmana+Rao%2C+P.V.&rft.date=2010-05-01&rft.issn=0146-6615&rft.volume=82&rft.issue=5&rft.spage=817&rft.epage=824&rft_id=info:doi/10.1002%2Fjmv.21663&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-6615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-6615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-6615&client=summon