Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells
The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vi...
Saved in:
Published in | Journal of medical virology Vol. 82; no. 5; pp. 817 - 824 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2010
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0146-6615 1096-9071 1096-9071 |
DOI | 10.1002/jmv.21663 |
Cover
Abstract | The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 μM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by ≥99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent. J. Med. Virol. 82: 817-824, 2010. |
---|---|
AbstractList | The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 µM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by ¥99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent. J. Med. Virol. 82: 817-824, 2010. The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre‐infection, post‐infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real‐time reverse transcriptase (RT)‐PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose‐dependent manner, with an effective concentration range of 5–20 µM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by ≥99.99%. The maximum inhibitory effect of chloroquine was observed within 1–3 hr post‐infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal‐mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent. J. Med. Virol. 82: 817–824, 2010. © 2010 Wiley‐Liss, Inc. The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 μM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by ≥99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent. J. Med. Virol. 82: 817-824, 2010. The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 microM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by >/=99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent.The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 microM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by >/=99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent. The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years is a major public health concern. Currently, there is no specific therapy available to treat CHIKV infection. In the present study, the in vitro prophylactic and therapeutic effects of chloroquine on CHIKV replication in Vero cells were investigated. Inhibitory effects were observed when chloroquine was administered pre-infection, post-infection, and concurrent with infection, suggesting that chloroquine has prophylactic and therapeutic potential. The inhibitory effects were confirmed by performing a plaque reduction neutralization test (PRNT), real-time reverse transcriptase (RT)-PCR analysis of viral RNA levels, and cell viability assays. Chloroquine diminished CHIKV infection in a dose-dependent manner, with an effective concentration range of 5-20 microM. Concurrent addition of drug with virus, or treatment of cells prior to infection drastically reduced virus infectivity and viral genome copy number by >/=99.99%. The maximum inhibitory effect of chloroquine was observed within 1-3 hr post-infection (hpi), and treatment was ineffective once the virus successfully passed through the early stages of infection. The mechanism of inhibition of virus activity by chloroquine involved impaired endosomal-mediated virus entry during early stages of virus replication, most likely through the prevention of endocytosis and/or endosomal acidification, based on a comparative evaluation using ammonium chloride, a known lysosomotropic agent. |
Author | Santhosh, S.R. Parida, Manmohan Khan, Mohsin Tiwari, Mugdha Lakshmana Rao, P.V. |
AuthorAffiliation | 1 Division of Virology, Defence Research & Development Establishment (DRDE), Gwalior, MP, India |
AuthorAffiliation_xml | – name: 1 Division of Virology, Defence Research & Development Establishment (DRDE), Gwalior, MP, India |
Author_xml | – sequence: 1 fullname: Khan, Mohsin – sequence: 2 fullname: Santhosh, S.R – sequence: 3 fullname: Tiwari, Mugdha – sequence: 4 fullname: Lakshmana Rao, P.V – sequence: 5 fullname: Parida, Manmohan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22575625$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20336760$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URKeFBS8A2SDEIq1_EnuyqVS1dAC1BQQFiY114zgzbhN7sJOBvD1OZ6b8CEQ2UZzvfPFx7h7asc5qhB4TfEAwpofX7eqAEs7ZPTQhuOBpgQXZQRNMMp5yTvJdtBfCNcZ4WlD6AO1SzBgXHE9QOA5Bh9Bq2yWuToxNVqbzLll6t1wMDajOqARslXQL7WGp-_FZ17VRoIYxoRaN8-5rb6xOYA7Ghi6umZvezns7QNT5Ptx6ddQq3TThIbpfQxP0o819H12dvfx48io9fzt7fXJ8niqOM5bWvM4pLSvIKKtLXCmBC0VEWQIQjVlGSlaxXNMKcBnXp5meZrgAVgoVI1qwfXS09i77stWVih09NHLpTQt-kA6M_P2NNQs5dysp4llmRRYFzzeCsaEOnWxNGCuA1a4PUmSUx28S9n-SjRcRo_PJr5u62832l0Tg2QaAoKCpPVhlwk-O5iLnNI_c4ZpT3oXgdS2V6aAzbuxiGkmwHIdDxuGQt8MREy_-SGylf2M39m-m0cO_Qfnm4tM2ka4TJnT6-10C_I3kgolcfr6cybPLL-_fnc5O5UXkn675GpyEuY8drz7QeJiYTCnLhGA_AKfO5E0 |
CODEN | JMVIDB |
CitedBy_id | crossref_primary_10_1007_s43440_022_00381_0 crossref_primary_10_2139_ssrn_3619438 crossref_primary_10_1093_jac_dku209 crossref_primary_10_1016_j_vaccine_2015_05_104 crossref_primary_10_1007_s43440_021_00216_4 crossref_primary_10_2174_1871526521666210729164054 crossref_primary_10_3390_microorganisms9040734 crossref_primary_10_3390_ph16081125 crossref_primary_10_1016_j_bcp_2019_113777 crossref_primary_10_1371_journal_pntd_0009916 crossref_primary_10_4110_in_2021_21_e7 crossref_primary_10_3390_molecules27165080 crossref_primary_10_2217_fvl_2021_0119 crossref_primary_10_1186_s12575_020_00141_5 crossref_primary_10_3390_v10050235 crossref_primary_10_2217_fvl_2023_0142 crossref_primary_10_3390_v7072792 crossref_primary_10_3389_fphar_2020_01167 crossref_primary_10_1016_j_azn_2025_01_003 crossref_primary_10_1016_j_virol_2020_09_004 crossref_primary_10_1016_j_antiviral_2010_10_009 crossref_primary_10_2147_JEP_S346006 crossref_primary_10_1080_07391102_2021_1965027 crossref_primary_10_1021_acsomega_1c00447 crossref_primary_10_5501_wjv_v14_i1_100489 crossref_primary_10_1093_infdis_jiu114 crossref_primary_10_1016_j_drudis_2022_04_008 crossref_primary_10_3389_fviro_2022_959586 crossref_primary_10_1016_j_jviromet_2016_04_011 crossref_primary_10_1016_j_compbiomed_2021_104222 crossref_primary_10_1016_j_clinmicnews_2025_02_001 crossref_primary_10_1111_zph_12469 crossref_primary_10_1080_07391102_2021_1904004 crossref_primary_10_1002_jmv_22019 crossref_primary_10_1016_j_antiviral_2015_03_005 crossref_primary_10_1016_j_berh_2020_101502 crossref_primary_10_1186_s12985_014_0215_y crossref_primary_10_2174_0929867328666210623165005 crossref_primary_10_3390_pharmaceutics10040255 crossref_primary_10_1016_j_ejmech_2018_02_054 crossref_primary_10_1016_j_virusres_2020_198073 crossref_primary_10_3390_microorganisms8121872 crossref_primary_10_1242_dmm_049804 crossref_primary_10_1089_ped_2020_1179 crossref_primary_10_1016_j_virs_2023_06_007 crossref_primary_10_3390_v11020175 crossref_primary_10_15252_emmm_202012476 crossref_primary_10_3390_v12070722 crossref_primary_10_3389_fcimb_2021_580532 crossref_primary_10_1016_j_antiviral_2017_12_012 crossref_primary_10_1186_s12985_017_0722_8 crossref_primary_10_1080_13543776_2020_1751817 crossref_primary_10_1016_j_rbr_2017_05_005 crossref_primary_10_3389_fmicb_2018_03257 crossref_primary_10_3390_v12091022 crossref_primary_10_1038_srep20122 crossref_primary_10_1080_14787210_2019_1595591 crossref_primary_10_1016_j_virusres_2019_197732 crossref_primary_10_1080_07391102_2022_2048080 crossref_primary_10_3390_ijms21144972 crossref_primary_10_1186_s43556_020_00017_w crossref_primary_10_1128_microbiolspec_EI10_0017_2016 crossref_primary_10_2139_ssrn_3570607 crossref_primary_10_3390_vaccines11061102 crossref_primary_10_1016_j_rbre_2017_06_004 crossref_primary_10_1371_journal_ppat_1008876 crossref_primary_10_1016_j_antiviral_2021_105127 crossref_primary_10_1016_j_ejphar_2020_173487 crossref_primary_10_1016_j_bmc_2018_01_002 crossref_primary_10_3389_fpubh_2020_618624 crossref_primary_10_1007_s10067_020_05202_4 crossref_primary_10_1016_j_ijbiomac_2020_08_166 crossref_primary_10_1007_s40011_011_0012_y crossref_primary_10_1016_j_actatropica_2018_09_003 crossref_primary_10_1016_j_virusres_2019_02_011 crossref_primary_10_17925_EE_2020_16_2_109 crossref_primary_10_1016_j_idc_2019_08_006 crossref_primary_10_1089_vbz_2014_1681 crossref_primary_10_1016_j_cll_2017_01_008 crossref_primary_10_1016_j_medidd_2021_100085 crossref_primary_10_1097_j_pbj_0000000000000132 crossref_primary_10_1155_2020_8827752 crossref_primary_10_1016_j_biochi_2020_05_013 crossref_primary_10_2174_0929867325666181105121146 crossref_primary_10_12688_f1000research_16498_1 crossref_primary_10_4103_jmgims_jmgims_36_20 crossref_primary_10_1093_jac_dkaa403 crossref_primary_10_2174_1381612826666200707121636 crossref_primary_10_7717_peerj_13090 crossref_primary_10_1016_S0140_6736_11_60281_X crossref_primary_10_3390_v11060578 crossref_primary_10_1371_journal_pone_0071047 crossref_primary_10_1007_s10822_022_00463_4 crossref_primary_10_1038_srep12727 crossref_primary_10_1002_adfm_202107826 crossref_primary_10_1016_j_ijbiomac_2024_129949 crossref_primary_10_3390_pathogens9070546 crossref_primary_10_1007_s00203_024_04135_9 crossref_primary_10_1016_j_antiviral_2013_01_002 crossref_primary_10_1155_2014_631642 crossref_primary_10_21673_anadoluklin_735826 crossref_primary_10_1128_AAC_02227_16 crossref_primary_10_1128_AAC_00649_20 crossref_primary_10_1021_acsinfecdis_4c00254 crossref_primary_10_1093_jac_dkx224 crossref_primary_10_1016_j_drudis_2013_05_002 crossref_primary_10_3390_microorganisms8010085 crossref_primary_10_1007_s11481_020_09923_w crossref_primary_10_1007_s11262_022_01892_x crossref_primary_10_3390_v13071307 crossref_primary_10_1038_srep31819 crossref_primary_10_1016_j_virol_2013_05_030 crossref_primary_10_3390_v10050268 crossref_primary_10_1099_jgv_0_000309 crossref_primary_10_1016_j_antiviral_2015_06_017 crossref_primary_10_1016_j_puhe_2023_09_018 crossref_primary_10_1021_acsinfecdis_0c00236 crossref_primary_10_3390_v12030272 crossref_primary_10_1016_j_bmcl_2019_126881 crossref_primary_10_3390_cells10061412 crossref_primary_10_3390_futurepharmacol4040048 crossref_primary_10_3390_v13010036 crossref_primary_10_1016_j_tmaid_2020_101735 crossref_primary_10_1080_17460441_2019_1629413 crossref_primary_10_1515_hsz_2017_0236 crossref_primary_10_1039_C6RA16640G crossref_primary_10_3390_ph13090228 crossref_primary_10_1016_j_meegid_2016_04_006 crossref_primary_10_1021_acsmedchemlett_9b00662 crossref_primary_10_3389_fphar_2021_660710 crossref_primary_10_1080_14787210_2020_1792291 crossref_primary_10_1021_acsomega_4c03417 crossref_primary_10_3389_fimmu_2023_1281667 crossref_primary_10_3389_fmicb_2021_695173 crossref_primary_10_1002_jhet_4672 crossref_primary_10_1016_j_ijantimicag_2020_105938 crossref_primary_10_1186_s12992_023_00906_z crossref_primary_10_3390_plants10081658 crossref_primary_10_1016_j_antiviral_2015_06_003 crossref_primary_10_1093_ofid_ofu097 crossref_primary_10_1016_j_microb_2024_100220 crossref_primary_10_3390_microorganisms8091365 crossref_primary_10_2217_fvl_2019_0090 crossref_primary_10_1128_AAC_01788_20 crossref_primary_10_1016_j_virusres_2024_199485 crossref_primary_10_1016_j_bmc_2017_06_049 crossref_primary_10_1016_j_biopha_2016_12_069 |
Cites_doi | 10.1093/emboj/17.16.4585 10.1016/S0140-6736(07)61779-6 10.1016/j.virusres.2008.02.004 10.1016/S1473-3099(06)70361-9 10.1016/S1473-3099(03)00806-5 10.1186/1743-422X-2-69 10.1056/NEJMp078013 10.1016/S1473-3099(07)70107-X 10.1371/journal.ppat.0030089 10.1089/vbz.2006.0648 10.1016/j.jcv.2007.04.015 10.1128/AAC.30.2.201 10.1016/S1473-3099(07)70091-9 10.1371/journal.pmed.0030263 10.1016/j.jcv.2005.03.005 10.1089/aid.1990.6.481 10.1016/j.bbrc.2008.09.040 10.1099/0022-1317-5-3-419 10.1128/jvi.52.3.857-864.1984 10.1016/j.bbrc.2004.08.085 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. 2015 INIST-CNRS (c) 2010 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: 2015 INIST-CNRS – notice: (c) 2010 Wiley-Liss, Inc. |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1002/jmv.21663 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Anti‐CHIKV Activity of Chloroquine |
EISSN | 1096-9071 |
EndPage | 824 |
ExternalDocumentID | PMC7166494 20336760 22575625 10_1002_jmv_21663 JMV21663 ark_67375_WNG_FNZQPDGD_M US201301823477 |
Genre | article Journal Article |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHMBA AI. AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS ECGQY EJD ELTNK EMOBN F00 F01 F04 F5P FBQ FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS UB1 V2E VH1 W8V W99 WBKPD WHG WIB WIH WIJ WIK WJL WNSPC WOHZO WQJ WXI WXSBR WYISQ X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~KM ~WT AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c6043-f6f522bda423fb0dc709c17bbaa1e0341b3d35e2da0bc1784e8409a3b7ca42e73 |
IEDL.DBID | DR2 |
ISSN | 0146-6615 1096-9071 |
IngestDate | Thu Aug 21 18:21:10 EDT 2025 Fri Sep 05 05:56:16 EDT 2025 Sun Aug 24 04:15:39 EDT 2025 Thu Apr 03 07:01:32 EDT 2025 Mon Jul 21 09:16:56 EDT 2025 Tue Jul 01 02:24:24 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Wed Aug 20 07:26:27 EDT 2025 Sun Sep 21 06:18:55 EDT 2025 Thu Apr 03 09:46:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Antimalarial Chloroquine Togaviridae virus inhibition In vitro Infection Virus Prevention Efficiency Viral disease Arbovirus disease Chikungunya virus Chikungunya Alphavirus Parasiticide Antirheumatic agent |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 (c) 2010 Wiley-Liss, Inc. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6043-f6f522bda423fb0dc709c17bbaa1e0341b3d35e2da0bc1784e8409a3b7ca42e73 |
Notes | http://dx.doi.org/10.1002/jmv.21663 ark:/67375/WNG-FNZQPDGD-M istex:1352817C8BCA46C7596BD6EDCAFEFC7CC56364AE ArticleID:JMV21663 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7166494 |
PMID | 20336760 |
PQID | 733333174 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7166494 proquest_miscellaneous_742684013 proquest_miscellaneous_733333174 pubmed_primary_20336760 pascalfrancis_primary_22575625 crossref_citationtrail_10_1002_jmv_21663 crossref_primary_10_1002_jmv_21663 wiley_primary_10_1002_jmv_21663_JMV21663 istex_primary_ark_67375_WNG_FNZQPDGD_M fao_agris_US201301823477 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2010 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: May 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
PublicationTitle | Journal of medical virology |
PublicationTitleAlternate | J. Med. Virol |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Finter NB. 1969. Dye uptake methods for assessing viral cytopathogenicity and their application to interferon assays. J Gen Virol 5: 419-427. Savarino A, Trani LD, Donatelli I, Cauda R, Cassone A. 2006. New insights into the antiviral effects of Chloroquine. Lancet Infect Dis 6: 67-69. Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M. 2007. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7: 319-327. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Bréhin AC, Cubito N, Desprès P, Kunst F, Rey FA, Zeller H, Brisse S. 2006. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3: e263. Cassell S, Edwards J, Brown DT. 1984. Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus. J Virol 52: 857-864. Kouroumalis EA, Koskinas J. 1986. Treatment of chronic active hepatitis B (CAH B) with Chloroquine: A preliminary report. Ann Acad Med Singapore 15: 149-152. Savarino A. 2005. Expanding the frontiers of existing antiviral drugs: Possible effects of HIV-1 protease inhibitors against SARS and avian influenza. J Clin Virol 34: 170-178. Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon N, Roux KL, Prevost MC, Fsihi H, Frenkiel MP, Blanchet F, Afonso PV, Ceccaldi PE, Ozden S, Gessain A, Schuffenecker I, Verhasselt B, Zamborlini A, Saïb A, Rey FA, Arenzana-Seisdedos F, Desprès P, Michault A, Albert ML, Schwartz O. 2007. Characterization of reemerging chikungunya virus. PLoS Pathog 3: e89. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2: 69. Santhosh SR, Dash PK, Parida MM, Khan M, Tiwari M, Lakshmana Rao PV. 2008. Comparative full genome analysis revealed A226V shift in 2007 Indian Chikungunya virus isolates. Virus Res 135: 36-41. Dash PK, Tiwari M, Santhosh SR, Parida M, Lakshmana Rao PV. 2008. RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells. Biochem Biophys Res Commun 376: 718-722. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. 2003. Effects of chloroquine on viral infections: An old drug against today's diseases? Lancet Infect Dis 3: 722-727. Santhosh SR, Parida MM, Dash PK, Pateriya A, Pattnaik B, Pradhan HK, Tripathi NK, Srivastava A, Gupta N, Saxena P, Lakshmana Rao PV. 2007. Development and evaluation of SYBR Green I based one step real time RT-PCR assay for detection and quantification of Chikungunya virus. J Clin Virol 39: 188-193. Mavalankar D, Shastri P, Raman P. 2007. Chikungunya epidemic in India: A major public-health disaster. Lancet Infect Dis 7: 306-307. Tsai WP, Nara PL, Kung HF, Oroszlan S. 1990. Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res Hum Retroviruses 6: 481-489. Dash PK, Parida MM, Santhosh SR, Verma SK, Tripathi NK, Ambuj S, Saxena P, Gupta N, Chaudhary M, Babu JP, Lakshmi V, Mamidi N, Subhalaxmi MV, Lakshmana Rao PV, Sekhar K. 2007. East Central South African genotype as the causative agent in reemergence of Chikungunya outbreak in India. Vector Borne Zoonotic Dis 7: 519-527. Charmot G, Coulaud JP. 1990. Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria). MedTrop 50: 103-108. Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. 2004. In vitro inhibition of severe acute respiratory syndrome coronavirus by Chloroquine. Biochem Biophys Res Commun 323: 264-268. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A. 2007. Infection with Chikungunya virus in Italy: An outbreak in a temperate region. Lancet 370: 1840-1846. Charell RN, de Lamballrie X, Raoult D. 2007. Chikungunya outbreaks-the globalization of vector borne diseases. N Engl J Med 356: 769-771. Gilbert BE, Knight V. 1986. Biochemistry and clinical application of ribavirin. Antimicrob Agents Chemother 30: 201-205. DeTulleo L, Kirchhausen T. 1998. The clathrin endocytic pathway in viral infection. EMBO J 17: 4585-4593. 2007; 356 2007; 39 1984; 52 1998; 17 2004; 323 1986; 30 2007; 370 1969; 5 1986; 15 1998 2003; 3 2007; 7 2006; 6 2006; 3 2008; 135 2007; 3 2005; 2 2008; 376 2005; 34 1990; 6 1990; 50 Charmot G (e_1_2_1_4_1) 1990; 50 Jupp PG (e_1_2_1_10_1) 1998 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_20_1 e_1_2_1_5_1 Kouroumalis EA (e_1_2_1_12_1) 1986; 15 e_1_2_1_6_1 Cassell S (e_1_2_1_2_1) 1984; 52 e_1_2_1_3_1 e_1_2_1_23_1 e_1_2_1_13_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_11_1 e_1_2_1_22_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_14_1 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 21503920 - J Med Virol. 2011 Jun;83(6):1058-9 |
References_xml | – reference: Dash PK, Parida MM, Santhosh SR, Verma SK, Tripathi NK, Ambuj S, Saxena P, Gupta N, Chaudhary M, Babu JP, Lakshmi V, Mamidi N, Subhalaxmi MV, Lakshmana Rao PV, Sekhar K. 2007. East Central South African genotype as the causative agent in reemergence of Chikungunya outbreak in India. Vector Borne Zoonotic Dis 7: 519-527. – reference: Santhosh SR, Parida MM, Dash PK, Pateriya A, Pattnaik B, Pradhan HK, Tripathi NK, Srivastava A, Gupta N, Saxena P, Lakshmana Rao PV. 2007. Development and evaluation of SYBR Green I based one step real time RT-PCR assay for detection and quantification of Chikungunya virus. J Clin Virol 39: 188-193. – reference: Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, Lavenir R, Pardigon N, Reynes JM, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel MP, Bréhin AC, Cubito N, Desprès P, Kunst F, Rey FA, Zeller H, Brisse S. 2006. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3: e263. – reference: Gilbert BE, Knight V. 1986. Biochemistry and clinical application of ribavirin. Antimicrob Agents Chemother 30: 201-205. – reference: Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. 2004. In vitro inhibition of severe acute respiratory syndrome coronavirus by Chloroquine. Biochem Biophys Res Commun 323: 264-268. – reference: Dash PK, Tiwari M, Santhosh SR, Parida M, Lakshmana Rao PV. 2008. RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells. Biochem Biophys Res Commun 376: 718-722. – reference: Mavalankar D, Shastri P, Raman P. 2007. Chikungunya epidemic in India: A major public-health disaster. Lancet Infect Dis 7: 306-307. – reference: DeTulleo L, Kirchhausen T. 1998. The clathrin endocytic pathway in viral infection. EMBO J 17: 4585-4593. – reference: Savarino A, Trani LD, Donatelli I, Cauda R, Cassone A. 2006. New insights into the antiviral effects of Chloroquine. Lancet Infect Dis 6: 67-69. – reference: Charmot G, Coulaud JP. 1990. Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria). MedTrop 50: 103-108. – reference: Cassell S, Edwards J, Brown DT. 1984. Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus. J Virol 52: 857-864. – reference: Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M. 2007. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7: 319-327. – reference: Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. 2003. Effects of chloroquine on viral infections: An old drug against today's diseases? Lancet Infect Dis 3: 722-727. – reference: Kouroumalis EA, Koskinas J. 1986. Treatment of chronic active hepatitis B (CAH B) with Chloroquine: A preliminary report. Ann Acad Med Singapore 15: 149-152. – reference: Santhosh SR, Dash PK, Parida MM, Khan M, Tiwari M, Lakshmana Rao PV. 2008. Comparative full genome analysis revealed A226V shift in 2007 Indian Chikungunya virus isolates. Virus Res 135: 36-41. – reference: Tsai WP, Nara PL, Kung HF, Oroszlan S. 1990. Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res Hum Retroviruses 6: 481-489. – reference: Finter NB. 1969. Dye uptake methods for assessing viral cytopathogenicity and their application to interferon assays. J Gen Virol 5: 419-427. – reference: Savarino A. 2005. Expanding the frontiers of existing antiviral drugs: Possible effects of HIV-1 protease inhibitors against SARS and avian influenza. J Clin Virol 34: 170-178. – reference: Charell RN, de Lamballrie X, Raoult D. 2007. Chikungunya outbreaks-the globalization of vector borne diseases. N Engl J Med 356: 769-771. – reference: Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D, Sol-Foulon N, Roux KL, Prevost MC, Fsihi H, Frenkiel MP, Blanchet F, Afonso PV, Ceccaldi PE, Ozden S, Gessain A, Schuffenecker I, Verhasselt B, Zamborlini A, Saïb A, Rey FA, Arenzana-Seisdedos F, Desprès P, Michault A, Albert ML, Schwartz O. 2007. Characterization of reemerging chikungunya virus. PLoS Pathog 3: e89. – reference: Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A. 2007. Infection with Chikungunya virus in Italy: An outbreak in a temperate region. Lancet 370: 1840-1846. – reference: Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. 2005. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2: 69. – volume: 15 start-page: 149 year: 1986 end-page: 152 article-title: Treatment of chronic active hepatitis B (CAH B) with Chloroquine: A preliminary report publication-title: Ann Acad Med Singapore – volume: 30 start-page: 201 year: 1986 end-page: 205 article-title: Biochemistry and clinical application of ribavirin publication-title: Antimicrob Agents Chemother – start-page: 137 year: 1998 end-page: 157 – volume: 2 start-page: 69 year: 2005 article-title: Chloroquine is a potent inhibitor of SARS coronavirus infection and spread publication-title: Virol J – volume: 3 start-page: e89 year: 2007 article-title: Characterization of reemerging chikungunya virus publication-title: PLoS Pathog – volume: 376 start-page: 718 year: 2008 end-page: 722 article-title: RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells publication-title: Biochem Biophys Res Commun – volume: 323 start-page: 264 year: 2004 end-page: 268 article-title: inhibition of severe acute respiratory syndrome coronavirus by Chloroquine publication-title: Biochem Biophys Res Commun – volume: 17 start-page: 4585 year: 1998 end-page: 4593 article-title: The clathrin endocytic pathway in viral infection publication-title: EMBO J – volume: 7 start-page: 319 year: 2007 end-page: 327 article-title: Chikungunya, an epidemic arbovirosis publication-title: Lancet Infect Dis – volume: 135 start-page: 36 year: 2008 end-page: 41 article-title: Comparative full genome analysis revealed A226V shift in 2007 Indian Chikungunya virus isolates publication-title: Virus Res – volume: 6 start-page: 481 year: 1990 end-page: 489 article-title: Inhibition of human immunodeficiency virus infectivity by chloroquine publication-title: AIDS Res Hum Retroviruses – volume: 356 start-page: 769 year: 2007 end-page: 771 article-title: Chikungunya outbreaks‐the globalization of vector borne diseases publication-title: N Engl J Med – volume: 7 start-page: 519 year: 2007 end-page: 527 article-title: East Central South African genotype as the causative agent in reemergence of Chikungunya outbreak in India publication-title: Vector Borne Zoonotic Dis – volume: 3 start-page: e263 year: 2006 article-title: Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak publication-title: PLoS Med – volume: 50 start-page: 103 year: 1990 end-page: 108 article-title: Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria) publication-title: MedTrop – volume: 5 start-page: 419 year: 1969 end-page: 427 article-title: Dye uptake methods for assessing viral cytopathogenicity and their application to interferon assays publication-title: J Gen Virol – volume: 39 start-page: 188 year: 2007 end-page: 193 article-title: Development and evaluation of SYBR Green I based one step real time RT‐PCR assay for detection and quantification of Chikungunya virus publication-title: J Clin Virol – volume: 370 start-page: 1840 year: 2007 end-page: 1846 article-title: Infection with Chikungunya virus in Italy: An outbreak in a temperate region publication-title: Lancet – volume: 7 start-page: 306 year: 2007 end-page: 307 article-title: Chikungunya epidemic in India: A major public‐health disaster publication-title: Lancet Infect Dis – volume: 6 start-page: 67 year: 2006 end-page: 69 article-title: New insights into the antiviral effects of Chloroquine publication-title: Lancet Infect Dis – volume: 34 start-page: 170 year: 2005 end-page: 178 article-title: Expanding the frontiers of existing antiviral drugs: Possible effects of HIV‐1 protease inhibitors against SARS and avian influenza publication-title: J Clin Virol – volume: 3 start-page: 722 year: 2003 end-page: 727 article-title: Effects of chloroquine on viral infections: An old drug against today's diseases? publication-title: Lancet Infect Dis – volume: 52 start-page: 857 year: 1984 end-page: 864 article-title: Effects of lysosomotropic weak bases on infection of BHK‐21 cells by Sindbis virus publication-title: J Virol – ident: e_1_2_1_7_1 doi: 10.1093/emboj/17.16.4585 – ident: e_1_2_1_15_1 doi: 10.1016/S0140-6736(07)61779-6 – ident: e_1_2_1_17_1 doi: 10.1016/j.virusres.2008.02.004 – ident: e_1_2_1_20_1 doi: 10.1016/S1473-3099(06)70361-9 – volume: 50 start-page: 103 year: 1990 ident: e_1_2_1_4_1 article-title: Treatment of Plasmodium falciparum malaria in Africa (except cerebral malaria) publication-title: MedTrop – ident: e_1_2_1_19_1 doi: 10.1016/S1473-3099(03)00806-5 – ident: e_1_2_1_24_1 doi: 10.1186/1743-422X-2-69 – ident: e_1_2_1_3_1 doi: 10.1056/NEJMp078013 – ident: e_1_2_1_14_1 doi: 10.1016/S1473-3099(07)70107-X – ident: e_1_2_1_22_1 doi: 10.1371/journal.ppat.0030089 – ident: e_1_2_1_5_1 doi: 10.1089/vbz.2006.0648 – ident: e_1_2_1_16_1 doi: 10.1016/j.jcv.2007.04.015 – ident: e_1_2_1_9_1 doi: 10.1128/AAC.30.2.201 – ident: e_1_2_1_13_1 doi: 10.1016/S1473-3099(07)70091-9 – ident: e_1_2_1_21_1 doi: 10.1371/journal.pmed.0030263 – ident: e_1_2_1_18_1 doi: 10.1016/j.jcv.2005.03.005 – volume: 15 start-page: 149 year: 1986 ident: e_1_2_1_12_1 article-title: Treatment of chronic active hepatitis B (CAH B) with Chloroquine: A preliminary report publication-title: Ann Acad Med Singapore – ident: e_1_2_1_23_1 doi: 10.1089/aid.1990.6.481 – ident: e_1_2_1_6_1 doi: 10.1016/j.bbrc.2008.09.040 – ident: e_1_2_1_8_1 doi: 10.1099/0022-1317-5-3-419 – start-page: 137 volume-title: The Arboviruses: Epidemiology and ecology year: 1998 ident: e_1_2_1_10_1 – volume: 52 start-page: 857 year: 1984 ident: e_1_2_1_2_1 article-title: Effects of lysosomotropic weak bases on infection of BHK‐21 cells by Sindbis virus publication-title: J Virol doi: 10.1128/jvi.52.3.857-864.1984 – ident: e_1_2_1_11_1 doi: 10.1016/j.bbrc.2004.08.085 – reference: 21503920 - J Med Virol. 2011 Jun;83(6):1058-9 |
SSID | ssj0008922 |
Score | 2.386205 |
Snippet | The resurgence of Chikungunya virus (CHIKV) in the form of unprecedented and explosive epidemics in India and the Indian Ocean islands after a gap of 32 years... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 817 |
SubjectTerms | Animals Antiviral Agents - pharmacology Biological and medical sciences Cell Survival Chikungunya Chikungunya virus - drug effects Chlorocebus aethiops chloroquine Chloroquine - pharmacology Fundamental and applied biological sciences. Psychology Human viral diseases Infectious diseases Medical sciences Microbiology Miscellaneous Reverse Transcriptase Polymerase Chain Reaction RNA, Viral - biosynthesis Vero Cells Viral diseases Viral Plaque Assay Virology virus inhibition Virus Internalization - drug effects Virus Replication - drug effects |
Title | Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells |
URI | https://api.istex.fr/ark:/67375/WNG-FNZQPDGD-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmv.21663 https://www.ncbi.nlm.nih.gov/pubmed/20336760 https://www.proquest.com/docview/733333174 https://www.proquest.com/docview/742684013 https://pubmed.ncbi.nlm.nih.gov/PMC7166494 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfGPiC-MN4Lj8lCCO1LOufpRnyaKN00qRWvwoSQLL-ylXbJ1LQT46_nzmnSFQZC5FOU3rnx-XyP-PwzIS8Q1E0ynfmGW-6DP5a-MjAguVEZZ1qmyuL3jsEwPRzFR8fJ8QZ51eyFqfEh2g9uODOcvcYJLlW1twIN_XZ20QkDcJhgf4MoRdz83vsVdFQ3q1cQwBL44IOSBlWIhXst55ovupHLEiJUFO53rJCUFQgpr0-3uC78_L2K8mp069xTf4t8bTpWV6VMOou56ugfv2A-_mfP75Dby7CV7td6dpds2OIeuTlYLszfJ9V-i_BJy5yOC3oxns9KCu8D4zh1O7GoLAy9st-LWoSvkPoSOfTptMS-Q2tUnsgxRK3wbDwBW7QoLiU0N1tUrl0LzeJyQ_WAjPpvPr4-9JfnOfg6xUX-PM0h2lNGQgiXK2Y0Z5kOuFJSBpaBO1WRiRIbGskUPO_GFrNPGSmugcXy6CHZLMrCbhMapkYDedAFolgpyFETyzMTSZUlLDWhR3abkRV6CXaOZ25MRQ3THAoQonBC9MjzlvS8Rvi4jmgb1EPIE7C8YvQhxPVeyMyimHOPvHQ60zLL2QSr5XgiPg8PRH_45d3b3kFPDDyys6ZULQOYVI55qEdoo2UCJjmKUha2XFSCR3hB8vgXktjh9gTwqo9qvVy1zyLE5WMe4Wsa2xIgxPj6L8X41EGNQzadxhn87a5TyD8LSBwNPrmbx_9O-oTcamoxWPCUbM5nC_sMQry52nFz-Sck706r |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxELbaIgEv3NDlKBZCqC-bek9nJV4qShpKE3G0UCEhy9e2IWEX5agov54Zb3bTQEGIPEWb8WQ9Hs_hsT8T8hRB3STTmW-45T74Y-krAwOSG5VxpmWqLK539Ppp9zDeO0qOVsjz-ixMhQ_RLLjhzHD2Gic4LkhvLVBDv3w9bYUBeMxVcsnV5zAkercAj2pnVQ0BbIEPXiipcYVYuNU0XfJGq7ksIUZF8X7HPZJyAmLKq_stLgpAf99HeT6-dQ6qc518rrtW7UsZtmZT1dI_fkF9_N--3yDX5pEr3a5U7SZZscUtcrk3r83fJpPtBuSTljkdFPR0MB2XFF4IhnLkDmNRWRh67sgXtYhgIfUZttAnoxI7D9yoPJYDCFzh2WAI5mhWnElgN55NHF8LbLHiMLlDDjsvD150_fmVDr5Osc6fpzkEfMpIiOJyxYzmLNMBV0rKwDLwqCoyUWJDI5mC5-3YYgIqI8U1NLE8ukvWirKw64SGqdFAHrSBKFYK0tTE8sxEUmUJS03okc16aIWe453jtRsjUSE1hwKEKJwQPfKkIf1WgXxcRLQO-iHkMRhfcfg-xJIvJGdRzLlHnjmlaRrL8RA3zPFEfOzvik7_09s3O7s7oueRjSWtahqAVeWYinqE1momYJ6jKGVhy9lE8Ag_kD_-hSR20D0BvOq9SjEX_FmE0HzMI3xJZRsCRBlf_qUYnDi0cUio0ziDv910GvlnAYm93gf35f6_kz4mV7oHvX2x_6r_-gG5Wm_NYMFDsjYdz-wjiPimasNN7J_gT1LJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED9tQ5r4whsWHsNCCO1LNufpRnyaKN0YtBqPwoSQLL-ylZZk6mNi_PWcnSZdYSBEPkXpnRufz7673PlngKcW1E1QlfmaGeajPRa-1DgguZYZo0qk0tjvHd1eut-PD46SoxV4Xu-FqfAhmg9udma49dpO8FOd7yxAQ79-O9sOAzSYq3AlTtFMWo_o3QI7qpVVKQRcCnw0QkkNK0TDnYZ1yRit5qJEF9VK97stkRQTlFJeHW9xmf_5exnlRffW2afOdfhS96wqSxluz6ZyW_34BfTxP7t-A67N_VayWynaTVgxxS1Y784z87dhsttAfJIyJ4OCnA2m45Lg--BAjtxWLCIKTS5s-CLG4lcIdW451MmotH3H1og4FgN0W_HZYIiL0aw4F9jceDZx7Rps1uYbJneg33n54cW-Pz_QwVepzfLnaY7untQCfbhcUq0YzVTApBQiMBTtqYx0lJhQCyrxeSs2NvwUkWQKWQyL7sJaURZmA0iYaoXkQQuJYikxSE0My3QkZJbQVIcebNUjy9Uc7dweujHiFU5zyFGI3AnRgycN6WkF8XEZ0QaqBxfHuPTy_vvQJnwxNItixjx45nSmYRbjoS2XYwn_1Nvjnd7nt4ftvTbverC5pFQNA66pzAaiHpBayzjOcitKUZhyNuEsshdGj38hiR1wT4Cveq_Sy0X7NLLAfNQDtqSxDYHFGF_-pRicOKxxDKfTOMO_3XIK-WcB8YPuR3dz_99JH8P6YbvD37zqvX4AV-u6DBo8hLXpeGYeobs3lZtuWv8EsmBReA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+in+vitro+prophylactic+and+therapeutic+efficacy+of+chloroquine+against+chikungunya+virus+in+vero+cells&rft.jtitle=Journal+of+medical+virology&rft.au=Khan%2C+Mohsin&rft.au=Santhosh%2C+S+R&rft.au=Tiwari%2C+Mugdha&rft.au=Lakshmana+Rao%2C+P.V.&rft.date=2010-05-01&rft.issn=0146-6615&rft.volume=82&rft.issue=5&rft.spage=817&rft.epage=824&rft_id=info:doi/10.1002%2Fjmv.21663&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-6615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-6615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-6615&client=summon |