河套灌区沈乌灌域GF-1/WFV遥感耕地提取

为提高基于遥感影像的灌区耕地自动快速提取,该文针对河套灌区沈乌灌域种植结构特点,利用实地调查结果、Googleearth和GF1-WFV遥感影像构建了研究区主要作物及土地利用类型的NDVI时间序列,并利用HANTS滤波法对NDVI时间序列进行了平滑处理。分别采用基于遥感与Google earth的目视解译、监督分类(支持向量机)、基于NDVI时间序列的决策树分类与监督分类相结合的方法、基于HANTS滤波法平滑处理后的NDVI时间序列决策树分类与监督分类相结合的方法对灌区耕地进行提取。利用基于Google earth与目视解译的10000个随机验证点以及正确率(用户精度)、完整率(生产者精度)和...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 23; pp. 188 - 195
Main Author 常布辉;王军涛;罗玉丽;王艳华;王艳明
Format Journal Article
LanguageChinese
Published 黄河水利科学研究院引黄灌溉工程技术研究中心,新乡,453003%沈乌灌域管理局,巴彦淖尔,015200 2017
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.23.024

Cover

More Information
Summary:为提高基于遥感影像的灌区耕地自动快速提取,该文针对河套灌区沈乌灌域种植结构特点,利用实地调查结果、Googleearth和GF1-WFV遥感影像构建了研究区主要作物及土地利用类型的NDVI时间序列,并利用HANTS滤波法对NDVI时间序列进行了平滑处理。分别采用基于遥感与Google earth的目视解译、监督分类(支持向量机)、基于NDVI时间序列的决策树分类与监督分类相结合的方法、基于HANTS滤波法平滑处理后的NDVI时间序列决策树分类与监督分类相结合的方法对灌区耕地进行提取。利用基于Google earth与目视解译的10000个随机验证点以及正确率(用户精度)、完整率(生产者精度)和整体精度(提取耕地面积与实际面积的比值)3个指标对提取结果进行了评价。验证结果表明:监督分类(支持向量机)提取结果的正确率、完整率和总体精度仅为84.82%、64.4%和75.68%;基于NDVI时间序列的决策树分类与监督分类相结合的方法提取精度分别为94.28%、84.21%和89.1%;基于HANTS滤波法平滑处理后的NDVI时间序列决策树分类与监督分类相结合的方法提取精度进一步提高,3个指标分别达到94.47%、87.32%和92.24%。在作物种类繁多的大型灌区,时空分辨率优异的GF1-WFV数据在耕地面积提取上具有很强的实用性;结合作物生长规律与遥感信息的联合方法能够有效提高耕地面积的提取精度。
Bibliography:cultivation; extraction; remote sensing; GF1-WFV, NDVI time series; supervised classification; Hetao Irrigation District
11-2047/S
In order to improve the automatic extraction of cultivated land in irrigation area in remote sensing images,according to the planting structure characteristics in Shenwu irrigation area,Hetao Irrigation District,the NDVI(normalized difference vegetation index)time series of main crops in the study area were constructed based on field survey results,Google earth and GF1-WFV remote sensing images.OIF index was used to select the best band combination.Furthermore,the harmonic analysis of time series(HANTS:An improved algorithm based on Fourier transform,which can flexibly deal with the problem of unequal intervals of data that constitute the time series)method was employed to smooth the NDVI time series.Visual interpretation based on remote sensing and Google earth,supervised classification(support vector machine),and the combination method of supervised classification and decision tre
ISSN:1002-6819
DOI:10.11975/j.issn.1002-6819.2017.23.024