河套灌区沈乌灌域GF-1/WFV遥感耕地提取

为提高基于遥感影像的灌区耕地自动快速提取,该文针对河套灌区沈乌灌域种植结构特点,利用实地调查结果、Googleearth和GF1-WFV遥感影像构建了研究区主要作物及土地利用类型的NDVI时间序列,并利用HANTS滤波法对NDVI时间序列进行了平滑处理。分别采用基于遥感与Google earth的目视解译、监督分类(支持向量机)、基于NDVI时间序列的决策树分类与监督分类相结合的方法、基于HANTS滤波法平滑处理后的NDVI时间序列决策树分类与监督分类相结合的方法对灌区耕地进行提取。利用基于Google earth与目视解译的10000个随机验证点以及正确率(用户精度)、完整率(生产者精度)和...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 23; pp. 188 - 195
Main Author 常布辉;王军涛;罗玉丽;王艳华;王艳明
Format Journal Article
LanguageChinese
Published 黄河水利科学研究院引黄灌溉工程技术研究中心,新乡,453003%沈乌灌域管理局,巴彦淖尔,015200 2017
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.23.024

Cover

Abstract 为提高基于遥感影像的灌区耕地自动快速提取,该文针对河套灌区沈乌灌域种植结构特点,利用实地调查结果、Googleearth和GF1-WFV遥感影像构建了研究区主要作物及土地利用类型的NDVI时间序列,并利用HANTS滤波法对NDVI时间序列进行了平滑处理。分别采用基于遥感与Google earth的目视解译、监督分类(支持向量机)、基于NDVI时间序列的决策树分类与监督分类相结合的方法、基于HANTS滤波法平滑处理后的NDVI时间序列决策树分类与监督分类相结合的方法对灌区耕地进行提取。利用基于Google earth与目视解译的10000个随机验证点以及正确率(用户精度)、完整率(生产者精度)和整体精度(提取耕地面积与实际面积的比值)3个指标对提取结果进行了评价。验证结果表明:监督分类(支持向量机)提取结果的正确率、完整率和总体精度仅为84.82%、64.4%和75.68%;基于NDVI时间序列的决策树分类与监督分类相结合的方法提取精度分别为94.28%、84.21%和89.1%;基于HANTS滤波法平滑处理后的NDVI时间序列决策树分类与监督分类相结合的方法提取精度进一步提高,3个指标分别达到94.47%、87.32%和92.24%。在作物种类繁多的大型灌区,时空分辨率优异的GF1-WFV数据在耕地面积提取上具有很强的实用性;结合作物生长规律与遥感信息的联合方法能够有效提高耕地面积的提取精度。
AbstractList S127; 为提高基于遥感影像的灌区耕地自动快速提取,该文针对河套灌区沈乌灌域种植结构特点,利用实地调查结果、Google earth和GF1-WFV遥感影像构建了研究区主要作物及土地利用类型的NDVI时间序列,并利用HANTS滤波法对NDVI时间序列进行了平滑处理.分别采用基于遥感与Google earth的目视解译、监督分类(支持向量机)、基于NDVI时间序列的决策树分类与监督分类相结合的方法、基于HANTS滤波法平滑处理后的NDVI时间序列决策树分类与监督分类相结合的方法对灌区耕地进行提取.利用基于Google earth与目视解译的10000个随机验证点以及正确率(用户精度)、完整率(生产者精度)和整体精度(提取耕地面积与实际面积的比值)3个指标对提取结果进行了评价.验证结果表明:监督分类(支持向量机)提取结果的正确率、完整率和总体精度仅为84.82%、64.4%和75.68%;基于NDVI时间序列的决策树分类与监督分类相结合的方法提取精度分别为94.28%、84.21%和89.1%;基于HANTS滤波法平滑处理后的NDVI时间序列决策树分类与监督分类相结合的方法提取精度进一步提高,3个指标分别达到94.47%、87.32%和92.24%.在作物种类繁多的大型灌区,时空分辨率优异的GF1-WFV数据在耕地面积提取上具有很强的实用性;结合作物生长规律与遥感信息的联合方法能够有效提高耕地面积的提取精度.
为提高基于遥感影像的灌区耕地自动快速提取,该文针对河套灌区沈乌灌域种植结构特点,利用实地调查结果、Googleearth和GF1-WFV遥感影像构建了研究区主要作物及土地利用类型的NDVI时间序列,并利用HANTS滤波法对NDVI时间序列进行了平滑处理。分别采用基于遥感与Google earth的目视解译、监督分类(支持向量机)、基于NDVI时间序列的决策树分类与监督分类相结合的方法、基于HANTS滤波法平滑处理后的NDVI时间序列决策树分类与监督分类相结合的方法对灌区耕地进行提取。利用基于Google earth与目视解译的10000个随机验证点以及正确率(用户精度)、完整率(生产者精度)和整体精度(提取耕地面积与实际面积的比值)3个指标对提取结果进行了评价。验证结果表明:监督分类(支持向量机)提取结果的正确率、完整率和总体精度仅为84.82%、64.4%和75.68%;基于NDVI时间序列的决策树分类与监督分类相结合的方法提取精度分别为94.28%、84.21%和89.1%;基于HANTS滤波法平滑处理后的NDVI时间序列决策树分类与监督分类相结合的方法提取精度进一步提高,3个指标分别达到94.47%、87.32%和92.24%。在作物种类繁多的大型灌区,时空分辨率优异的GF1-WFV数据在耕地面积提取上具有很强的实用性;结合作物生长规律与遥感信息的联合方法能够有效提高耕地面积的提取精度。
Abstract_FL In order to improve the automatic extraction of cultivated land in irrigation area in remote sensing images, according to the planting structure characteristics in Shenwu irrigation area, Hetao Irrigation District, the NDVI (normalized difference vegetation index) time series of main crops in the study area were constructed based on field survey results, Google earth and GF1-WFV remote sensing images. OIF index was used to select the best band combination. Furthermore, the harmonic analysis of time series (HANTS: An improved algorithm based on Fourier transform, which can flexibly deal with the problem of unequal intervals of data that constitute the time series) method was employed to smooth the NDVI time series. Visual interpretation based on remote sensing and Google earth, supervised classification (support vector machine), and the combination method of supervised classification and decision tree classification based on NDVI time series (before and after smoothed by HANTS filtering method) were used to extract the cultivated land area of the irrigation area. The extraction errors of different methods were verified by visual interpretation and 100000000 random verification points whose attributes were given by the means of Google earth and visual interpretation. Moreover, 3 indices, i.e. accuracy (equivalent to the user precision in the confusion matrix), integrity rate (equivalent to the producer accuracy in the confusion matrix) and overall accuracy (ratio of extracted land area to actual area) were used to evaluate the results. The results demonstrated that the accuracy, integrity rate and overall accuracy of supervised classification (support vector machine) were only 84.82%, 64.4%and 75.68%, respectively; for the combination method of supervised classification with decision tree classification based on NDVI time series (unsmoothed), the 3 indices were 94.28%, 84.21% and 89.1%, respectively; the combination method of supervised classification with decision tree classification based on NDVI time series (smoothed) was further improved, and the 3 indices reached 94.47%, 87.32% and 92.24%, respectively. The GF1-WFV data can be used for extraction of cultivated land area, which has better spatial and temporal resolution, and has stronger ground identification ability in the irrigation area with more complex underlying surface. The NDVI time series based on the GF1-WFV data can describe the crop growth law in the study area completely, and can be used to extract the crop spatial information accurately and efficiently through the difference in the amplitude and the phase of the NDVI curve between different crops. It avoids the phenomenon of pixel-based traditional classification, for example, different objects have the same spectrum and the same objects have different spectrum, and overcomes the limitations of single image data. Compared to the results of supervised classification, the accuracy is greatly improved. After smoothing by HANTS method, the NDVI time series keep the basic shape of the original curve, and effectively eliminate the influence of outliers and noise, which more tally with the actual growth law of crops. Through the combination of supervised classification with decision tree classification based on NDVI time series (smoothed), the extraction precision of cultivated land is improved effectively. The method combining crop growth law and remote sensing information can improve the extraction accuracy of cultivated land area effectively.
Author 常布辉;王军涛;罗玉丽;王艳华;王艳明
AuthorAffiliation 黄河水利科学研究院引黄灌溉工程技术研究中心,新乡453003;沈乌灌域管理局,巴彦淖尔015200
AuthorAffiliation_xml – name: 黄河水利科学研究院引黄灌溉工程技术研究中心,新乡,453003%沈乌灌域管理局,巴彦淖尔,015200
Author_FL Luo Yuli
Wang Juntao
Chang Buhui
Wang Yanming
Wang Yanhua
Author_FL_xml – sequence: 1
  fullname: Chang Buhui
– sequence: 2
  fullname: Wang Juntao
– sequence: 3
  fullname: Luo Yuli
– sequence: 4
  fullname: Wang Yanhua
– sequence: 5
  fullname: Wang Yanming
Author_xml – sequence: 1
  fullname: 常布辉;王军涛;罗玉丽;王艳华;王艳明
BookMark eNo9jzFLw0AYhm-oYK39FSJOSb-7S-6SUYqtQsGl6BjuLpeYohdtEO1mwaFDoC7qImTqLnXS32Oi_gtTKk7fy8fD-_JsoYZJjUZoF4ONsc_dzshOsszYGIBYzMO-TQBzm1AbiNNAzf__JmpnWSLBxZQDOLiJSLV8KxfPX9O8zD-q5ezzPV_louj3LNw57Z38TBfVffF991i-vFbzh3L-tI02InGe6fbfbaFh72DYPbQGx_2j7v7AUgwcS1GQJBSRD1xwyWTkaaEpDSVhTFAiOPe4Zkq5bqSBiIiEMlQ-MBCKOqGjaQvtrWtvhImEiYNRej029WBgJrG6lStFQmvBmtxZk-osNfFVUrOX4-RCjCdBbQmUM7cmfwEIwWR5
ClassificationCodes S127
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.23.024
DatabaseName 维普中文科技期刊数据库
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Cultivated land extraction based on GF-1/WFV remote sensing in Shenwu irrigation area of Hetao Irrigation District
DocumentTitle_FL Cultivated land extraction based on GF-1/WFV remote sensing in Shenwu irrigation area of Hetao Irrigation District
EndPage 195
ExternalDocumentID nygcxb201723024
7000376572
GrantInformation_xml – fundername: 国家重点研发计划资助; 黄河水利科学研究院基本科研业务费专项
  funderid: (2017YFC0504503); (HKY-JBYW-2016-44)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c604-c30b2daf907a7b6bf8eae33db266a32a7787e6cc55fe02af2dbdc9060ac34d4e3
ISSN 1002-6819
IngestDate Thu May 29 04:08:34 EDT 2025
Wed Feb 14 10:01:24 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 23
Keywords NDVI time series
耕作
remote sensing
提取
监督分类
遥感
extraction
cultivation
河套灌区
supervised classification
Hetao Irrigation District
GF1-WFV
NDVI序列
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c604-c30b2daf907a7b6bf8eae33db266a32a7787e6cc55fe02af2dbdc9060ac34d4e3
Notes cultivation; extraction; remote sensing; GF1-WFV, NDVI time series; supervised classification; Hetao Irrigation District
11-2047/S
In order to improve the automatic extraction of cultivated land in irrigation area in remote sensing images,according to the planting structure characteristics in Shenwu irrigation area,Hetao Irrigation District,the NDVI(normalized difference vegetation index)time series of main crops in the study area were constructed based on field survey results,Google earth and GF1-WFV remote sensing images.OIF index was used to select the best band combination.Furthermore,the harmonic analysis of time series(HANTS:An improved algorithm based on Fourier transform,which can flexibly deal with the problem of unequal intervals of data that constitute the time series)method was employed to smooth the NDVI time series.Visual interpretation based on remote sensing and Google earth,supervised classification(support vector machine),and the combination method of supervised classification and decision tre
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201723024
chongqing_primary_7000376572
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 黄河水利科学研究院引黄灌溉工程技术研究中心,新乡,453003%沈乌灌域管理局,巴彦淖尔,015200
Publisher_xml – name: 黄河水利科学研究院引黄灌溉工程技术研究中心,新乡,453003%沈乌灌域管理局,巴彦淖尔,015200
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1805184
Snippet 为提高基于遥感影像的灌区耕地自动快速提取,该文针对河套灌区沈乌灌域种植结构特点,利用实地调查结果、Googleearth和GF1-WFV遥感影像构建了研究区主要作物及土地利用类型的NDVI时间序列,并利用HANTS滤波法对NDVI时间序列进行了平滑处理。分别采用基于遥感与Google...
S127; 为提高基于遥感影像的灌区耕地自动快速提取,该文针对河套灌区沈乌灌域种植结构特点,利用实地调查结果、Google earth和GF1-WFV遥感影像构建了研究区主要作物及土地利用类型的NDVI时间序列,并利用HANTS滤波法对NDVI时间序列进行了平滑处理.分别采用基于遥感与Google...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 188
SubjectTerms 耕作;提取;遥感;GF1-WFV;NDVI序列;监督分类;河套灌区
Title 河套灌区沈乌灌域GF-1/WFV遥感耕地提取
URI http://lib.cqvip.com/qk/90712X/201723/7000376572.html
https://d.wanfangdata.com.cn/periodical/nygcxb201723024
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0IpaCcEB8RSFgnrAx013vV7be9xtNlRIcCrQW2TvIz2lUFIJeqISBw6RygW4IOXUOyon-BskEuAvmPG6yQJVBUiRZc2MZ7weZzze9YwJua14oLVfVF5QxcbjJa88U8Sw54mMzwrMHiMwGvnefbH-gN_djDZbrS-NU0u7Q9PO906MK_kfrQIM9IpRsv-g2RlTAEAd9AslaBjKv9IxzQRNGU1DmkU0iWgsaSbBN6RqDSFQpomjUYpmnKaxRTVo4i787nQ9NGiPug9pFiMOeEEzxRGdKXsaIrLUwNG3KGjmWxlQEU0P1wIFUqI8ReMEIam0PKEEbqntbocmwrJKAHWsd0ur8FdXVIjy04yqmIap7XnmGKCQ1D6drdTYtHM8CLZJ3QUA_tJWIaoeNNVB4MlYYAv1rPlepA4AdUYcrbxQzhQ7K1-n23CzmYUNmx3U9wq65T-o7_z8c2WJZWSXFhTRnonAw4GyzcK2X4eC_5a8W9oEPyKS4CUsMikEWyCLSdpJu3OfNcBt-cyoBnihQTAPZmaYqkDM94RREOKNBLNzTPgVP7Kf9F2PzhB63N_V03qLyUS2tgf9J-Ai2Yi1QaUH_YZztXGBnHe7opWknuIXSWtv6xI5l_R3XGaY8jJh06OPk8N33_ZHk9Hn6dGrr59GWB-PcfKuwtT9sX84fTn-_uLN5P2H6cHrycHbK2Sjm22srXvuwg8vFz738tA3rNBV7EstjTCVKnUZhoUBJ1KHTEtYXEqR51FUlT7TFStMkce-8HUe8oKX4VWyMNgelNfIShGoXJeFyVkM_qvURgK9z7lmymhW8iWyPHv43uM6r0tvrqwlsuLGo-f-7k97g-f9_JnBAYRdO-PXT-dwg5xF0vpl3TJZGO7sljfBfR2aW24C_ASdznBv
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B2%B3%E5%A5%97%E7%81%8C%E5%8C%BA%E6%B2%88%E4%B9%8C%E7%81%8C%E5%9F%9FGF-1%2FWFV%E9%81%A5%E6%84%9F%E8%80%95%E5%9C%B0%E6%8F%90%E5%8F%96&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%B8%B8%E5%B8%83%E8%BE%89%3B%E7%8E%8B%E5%86%9B%E6%B6%9B%3B%E7%BD%97%E7%8E%89%E4%B8%BD%3B%E7%8E%8B%E8%89%B3%E5%8D%8E%3B%E7%8E%8B%E8%89%B3%E6%98%8E&rft.date=2017&rft.issn=1002-6819&rft.volume=33&rft.issue=23&rft.spage=188&rft.epage=195&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.23.024&rft.externalDocID=7000376572
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg