An Explainable Machine-Learning Model for Compensatory Reserve Measurement: Methods for Feature Selection and the Effects of Subject Variability

Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient’s status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived from an arterial wave...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 10; no. 5; p. 612
Main Authors Bedolla, Carlos N., Gonzalez, Jose M., Vega, Saul J., Convertino, Víctor A., Snider, Eric J.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.05.2023
MDPI
Subjects
Online AccessGet full text
ISSN2306-5354
2306-5354
DOI10.3390/bioengineering10050612

Cover

Abstract Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient’s status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock. However, the deep-learning artificial neural networks developed for its estimation do not explain how specific arterial waveform elements lead to predicting CRM due to the large number of parameters needed to tune these models. Alternatively, we investigate how classical machine-learning models driven by specific features extracted from the arterial waveform can be used to estimate CRM. More than 50 features were extracted from human arterial blood pressure data sets collected during simulated hypovolemic shock resulting from exposure to progressive levels of lower body negative pressure. A bagged decision tree design using the ten most significant features was selected as optimal for CRM estimation. This resulted in an average root mean squared error in all test data of 0.171, similar to the error for a deep-learning CRM algorithm at 0.159. By separating the dataset into sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability was observed, and the key features identified for these sub-groups differed. This methodology could allow for the identification of unique features and machine-learning models to differentiate individuals with good compensatory mechanisms against hypovolemia from those that might be poor compensators, leading to improved triage of trauma patients and ultimately enhancing military and emergency medicine.
AbstractList Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient’s status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock. However, the deep-learning artificial neural networks developed for its estimation do not explain how specific arterial waveform elements lead to predicting CRM due to the large number of parameters needed to tune these models. Alternatively, we investigate how classical machine-learning models driven by specific features extracted from the arterial waveform can be used to estimate CRM. More than 50 features were extracted from human arterial blood pressure data sets collected during simulated hypovolemic shock resulting from exposure to progressive levels of lower body negative pressure. A bagged decision tree design using the ten most significant features was selected as optimal for CRM estimation. This resulted in an average root mean squared error in all test data of 0.171, similar to the error for a deep-learning CRM algorithm at 0.159. By separating the dataset into sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability was observed, and the key features identified for these sub-groups differed. This methodology could allow for the identification of unique features and machine-learning models to differentiate individuals with good compensatory mechanisms against hypovolemia from those that might be poor compensators, leading to improved triage of trauma patients and ultimately enhancing military and emergency medicine.
Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient's status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement ( ) is a triaging tool derived from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock. However, the deep-learning artificial neural networks developed for its estimation do not explain how specific arterial waveform elements lead to predicting due to the large number of parameters needed to tune these models. Alternatively, we investigate how classical machine-learning models driven by specific features extracted from the arterial waveform can be used to estimate . More than 50 features were extracted from human arterial blood pressure data sets collected during simulated hypovolemic shock resulting from exposure to progressive levels of lower body negative pressure. A bagged decision tree design using the ten most significant features was selected as optimal for estimation. This resulted in an average root mean squared error in all test data of 0.171, similar to the error for a deep-learning algorithm at 0.159. By separating the dataset into sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability was observed, and the key features identified for these sub-groups differed. This methodology could allow for the identification of unique features and machine-learning models to differentiate individuals with good compensatory mechanisms against hypovolemia from those that might be poor compensators, leading to improved triage of trauma patients and ultimately enhancing military and emergency medicine.
Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient's status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock. However, the deep-learning artificial neural networks developed for its estimation do not explain how specific arterial waveform elements lead to predicting CRM due to the large number of parameters needed to tune these models. Alternatively, we investigate how classical machine-learning models driven by specific features extracted from the arterial waveform can be used to estimate CRM. More than 50 features were extracted from human arterial blood pressure data sets collected during simulated hypovolemic shock resulting from exposure to progressive levels of lower body negative pressure. A bagged decision tree design using the ten most significant features was selected as optimal for CRM estimation. This resulted in an average root mean squared error in all test data of 0.171, similar to the error for a deep-learning CRM algorithm at 0.159. By separating the dataset into sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability was observed, and the key features identified for these sub-groups differed. This methodology could allow for the identification of unique features and machine-learning models to differentiate individuals with good compensatory mechanisms against hypovolemia from those that might be poor compensators, leading to improved triage of trauma patients and ultimately enhancing military and emergency medicine.Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient's status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock. However, the deep-learning artificial neural networks developed for its estimation do not explain how specific arterial waveform elements lead to predicting CRM due to the large number of parameters needed to tune these models. Alternatively, we investigate how classical machine-learning models driven by specific features extracted from the arterial waveform can be used to estimate CRM. More than 50 features were extracted from human arterial blood pressure data sets collected during simulated hypovolemic shock resulting from exposure to progressive levels of lower body negative pressure. A bagged decision tree design using the ten most significant features was selected as optimal for CRM estimation. This resulted in an average root mean squared error in all test data of 0.171, similar to the error for a deep-learning CRM algorithm at 0.159. By separating the dataset into sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability was observed, and the key features identified for these sub-groups differed. This methodology could allow for the identification of unique features and machine-learning models to differentiate individuals with good compensatory mechanisms against hypovolemia from those that might be poor compensators, leading to improved triage of trauma patients and ultimately enhancing military and emergency medicine.
Audience Academic
Author Convertino, Víctor A.
Vega, Saul J.
Snider, Eric J.
Gonzalez, Jose M.
Bedolla, Carlos N.
AuthorAffiliation 4 Department of Biomedical Engineering, University of Texas Health, San Antonio, TX 78249, USA
3 Department of Emergency Medicine, University of Texas Health, San Antonio, TX 78229, USA
1 U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
2 Department of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
AuthorAffiliation_xml – name: 2 Department of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
– name: 1 U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
– name: 4 Department of Biomedical Engineering, University of Texas Health, San Antonio, TX 78249, USA
– name: 3 Department of Emergency Medicine, University of Texas Health, San Antonio, TX 78229, USA
Author_xml – sequence: 1
  givenname: Carlos N.
  surname: Bedolla
  fullname: Bedolla, Carlos N.
– sequence: 2
  givenname: Jose M.
  orcidid: 0000-0002-4325-409X
  surname: Gonzalez
  fullname: Gonzalez, Jose M.
– sequence: 3
  givenname: Saul J.
  surname: Vega
  fullname: Vega, Saul J.
– sequence: 4
  givenname: Víctor A.
  orcidid: 0000-0001-9246-0554
  surname: Convertino
  fullname: Convertino, Víctor A.
– sequence: 5
  givenname: Eric J.
  orcidid: 0000-0002-0293-4937
  surname: Snider
  fullname: Snider, Eric J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37237682$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2425582$$D View this record in Osti.gov
BookMark eNqNkttuEzEQhleoiJbSV6gsuOEmxevDHhASiqoWKrVCosCt5fWOE0eOHezdQt6CR2bSlNJWlUC-WO_4n8_jf-Z5sRNigKI4LOkR5y1907kIYeYCQHJhVlIqaVWyJ8Ue47SaSC7Fzp39bnGQ84JSWnImWSWeFbu8ZryuGrZX_JoGcvJz5bULuvNALrSZI3hyDjoFhJOL2IMnNiZyHJcrCFkPMa3JZ8iQrlAPOo8JlhCGt_gzzGOfr9WnoAc8IJfgwQwuBqJDT4Y5kBNrMZJJtORy7Ba4J990crpz3g3rF8VTq32Gg5vvfvH19OTL8cfJ-acPZ8fT84mpKB8mYJuWcegrQztBmaWd7FrWilb2lWAAJbR9wxpdV9IIU1nRG9k1tC1rkKLjDd8vzrbcPuqFWiW31GmtonbqOhDTTOk0OONB1UjnmteIlMJo2jR1Y2suOmYbw4Ajq96yxrDS6x_a-1tgSdWmZerxlmHm-23mauyW0Bu0MWl_r5z7J8HN1SxeIZeVkvEWCS-3hJgHp7JxA5i5iSGgr4oJJmWzueb1zTUpfh8hD2rpsgHvdYA4ZsUahuOBhm58efVAuohjCtgKVJUtFzUT9V_VTKNBLtiI1ZkNVE1ruXGoYgJVR4-ocPWwdFgjWIfxewmHd-249eHPvKLg3VZgUsw5gVX4YL0ZLyQ7_2-7qwfp_9mn3x8uGYs
CitedBy_id crossref_primary_10_3389_frai_2024_1408029
crossref_primary_10_1097_SHK_0000000000002260
crossref_primary_10_3390_bioengineering11111075
crossref_primary_10_3390_bios14020061
crossref_primary_10_3390_bioengineering11080770
crossref_primary_10_3390_s24248204
crossref_primary_10_1016_j_bbe_2023_06_002
Cites_doi 10.1038/s41578-022-00460-x
10.1152/physrev.00006.2018
10.1109/STA.2013.6783144
10.1123/jmpb.2017-0003
10.1016/j.ijhcs.2020.102551
10.3390/s20226413
10.3390/bios12121168
10.3390/s18082414
10.1109/EMBC48229.2022.9871661
10.1186/s12911-020-01332-6
10.1007/s13246-015-0333-x
10.1142/S0219720005001004
10.1088/0967-3334/37/12/2154
10.1016/j.bspc.2018.02.008
10.1093/milmed/usaa515
10.1111/trf.15632
10.1109/EMBC.2019.8857116
10.1097/TA.0b013e3182aa811a
10.1037/pag0000046
10.1007/11573036
10.1097/ALN.0000000000002300
10.3349/ymj.2010.51.3.345
10.1109/I2MTC.2013.6555424
10.1109/ICCSP.2014.6949996
10.1097/SHK.0000000000000559
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
CorporateAuthor Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
OIOZB
OTOTI
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/bioengineering10050612
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database (Proquest)
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_7f0b3a37e9d54ca08878f734b2f8c2e3
10.3390/bioengineering10050612
PMC10215239
2425582
A750887624
37237682
10_3390_bioengineering10050612
Genre Journal Article
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GrantInformation_xml – fundername: United States Department of Defense
  grantid: IS220008
– fundername: Oak Ridge Associated Universities
  grantid: NA
– fundername: US Army Medical Research and Development Command
  grantid: IS220008
– fundername: Congressionally Directed Medical Research Program
  grantid: DM180240
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
OIOZB
OTOTI
5PM
ADTOC
AFFHD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c603t-ef8923ed6c0b402f0b5b929495d642ee1e9d828a765c4c6f4dc5b80917e54b383
IEDL.DBID UNPAY
ISSN 2306-5354
IngestDate Fri Oct 03 12:30:19 EDT 2025
Wed Oct 29 11:32:41 EDT 2025
Tue Sep 30 17:14:00 EDT 2025
Mon Feb 24 02:30:13 EST 2025
Thu Oct 02 06:22:39 EDT 2025
Sun Jul 13 05:09:18 EDT 2025
Mon Oct 20 22:09:27 EDT 2025
Mon Oct 20 16:25:31 EDT 2025
Thu Jan 02 22:51:32 EST 2025
Thu Oct 16 04:24:32 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords compensatory mechanisms
lower body negative pressure
machine learning
feature extraction
signal processing
personalized medicine
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-ef8923ed6c0b402f0b5b929495d642ee1e9d828a765c4c6f4dc5b80917e54b383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0014664
USDOE Office of Science (SC)
These authors contributed equally to this work.
ORCID 0000-0002-0293-4937
0000-0002-4325-409X
0000-0001-9246-0554
0000000202934937
0000000192460554
000000024325409X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2306-5354/10/5/612/pdf?version=1684472356
PMID 37237682
PQID 2819347247
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_7f0b3a37e9d54ca08878f734b2f8c2e3
unpaywall_primary_10_3390_bioengineering10050612
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10215239
osti_scitechconnect_2425582
proquest_miscellaneous_2820019238
proquest_journals_2819347247
gale_infotracmisc_A750887624
gale_infotracacademiconefile_A750887624
pubmed_primary_37237682
crossref_citationtrail_10_3390_bioengineering10050612
crossref_primary_10_3390_bioengineering10050612
PublicationCentury 2000
PublicationDate 2023-05-19
PublicationDateYYYYMMDD 2023-05-19
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
– name: United States
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ates (ref_3) 2022; 7
Hatib (ref_18) 2018; 129
Sun (ref_12) 2016; 37
ref_14
Folke (ref_17) 2021; Volume 11746
Goswami (ref_23) 2019; 99
ref_11
Kern (ref_27) 2019; 13
Convertino (ref_7) 2011; 11
Hayes (ref_29) 2015; 30
Jeong (ref_10) 2010; 51
ref_16
Convertino (ref_30) 2020; 60
Moulton (ref_13) 2013; 75
Shin (ref_15) 2021; 146
Convertino (ref_6) 2016; 45
Amin (ref_20) 2015; 38
Carius (ref_2) 2020; 187
ref_25
Castaneda (ref_4) 2018; 4
ref_24
Krishnan (ref_19) 2018; 43
ref_22
ref_21
ref_1
ref_28
Ding (ref_26) 2005; 3
ref_9
Looney (ref_8) 2018; 1
ref_5
References_xml – volume: 7
  start-page: 887
  year: 2022
  ident: ref_3
  article-title: End-to-End Design of Wearable Sensors
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-022-00460-x
– volume: 99
  start-page: 807
  year: 2019
  ident: ref_23
  article-title: Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00006.2018
– ident: ref_24
  doi: 10.1109/STA.2013.6783144
– volume: Volume 11746
  start-page: 644
  year: 2021
  ident: ref_17
  article-title: Explainable AI for Medical Imaging: Explaining Pneumothorax Diagnoses with Bayesian Teaching
  publication-title: Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III
– volume: 4
  start-page: 195
  year: 2018
  ident: ref_4
  article-title: A Review on Wearable Photoplethysmography Sensors and Their Potential Future Applications in Health Care
  publication-title: Int. J. Biosens. Bioelectron.
– volume: 13
  start-page: 73
  year: 2019
  ident: ref_27
  article-title: Tree-Based Machine Learning Methods for Survey Research
  publication-title: Surv. Res. Methods
– volume: 1
  start-page: 79
  year: 2018
  ident: ref_8
  article-title: Estimating Resting Core Temperature Using Heart Rate
  publication-title: J. Meas. Phys. Behav.
  doi: 10.1123/jmpb.2017-0003
– volume: 146
  start-page: 102551
  year: 2021
  ident: ref_15
  article-title: The Effects of Explainability and Causability on Perception, Trust, and Acceptance: Implications for Explainable AI
  publication-title: Int. J. Hum.-Comput. Stud.
  doi: 10.1016/j.ijhcs.2020.102551
– ident: ref_22
  doi: 10.3390/s20226413
– ident: ref_21
  doi: 10.3390/bios12121168
– ident: ref_5
  doi: 10.3390/s18082414
– ident: ref_1
– ident: ref_25
  doi: 10.1109/EMBC48229.2022.9871661
– volume: 11
  start-page: 1531
  year: 2011
  ident: ref_7
  article-title: Physiology of Human Hemorrhage and Compensation
  publication-title: Compr. Physiol.
– ident: ref_16
  doi: 10.1186/s12911-020-01332-6
– volume: 38
  start-page: 139
  year: 2015
  ident: ref_20
  article-title: Feature Extraction and Classification for EEG Signals Using Wavelet Transform and Machine Learning Techniques
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-015-0333-x
– volume: 3
  start-page: 185
  year: 2005
  ident: ref_26
  article-title: Minimum Redundancy Feature Selection from Microarray Gene Expression Data
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720005001004
– volume: 37
  start-page: 2154
  year: 2016
  ident: ref_12
  article-title: Systolic Blood Pressure Estimation Using PPG and ECG during Physical Exercise
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/12/2154
– volume: 43
  start-page: 41
  year: 2018
  ident: ref_19
  article-title: Trends in Biomedical Signal Feature Extraction
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.02.008
– volume: 187
  start-page: e28
  year: 2020
  ident: ref_2
  article-title: Battlefield Vital Sign Monitoring in Role 1 Military Treatment Facilities: A Thematic Analysis of After-Action Reviews from the Prehospital Trauma Registry
  publication-title: Mil. Med.
  doi: 10.1093/milmed/usaa515
– volume: 60
  start-page: S150
  year: 2020
  ident: ref_30
  article-title: The Compensatory Reserve: Potential for Accurate Individualized Goal-Directed Whole Blood Resuscitation
  publication-title: Transfusion
  doi: 10.1111/trf.15632
– ident: ref_14
  doi: 10.1109/EMBC.2019.8857116
– volume: 75
  start-page: 1053
  year: 2013
  ident: ref_13
  article-title: Running on Empty? The Compensatory Reserve Index
  publication-title: J. Trauma Acute Care Surg.
  doi: 10.1097/TA.0b013e3182aa811a
– volume: 30
  start-page: 911
  year: 2015
  ident: ref_29
  article-title: Using Classification and Regression Trees (CART) and Random Forests to Analyze Attrition: Results from Two Simulations
  publication-title: Psychol. Aging
  doi: 10.1037/pag0000046
– ident: ref_28
  doi: 10.1007/11573036
– volume: 129
  start-page: 663
  year: 2018
  ident: ref_18
  article-title: Machine-Learning Algorithm to Predict Hypotension Based on High-Fidelity Arterial Pressure Waveform Analysis
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000002300
– volume: 51
  start-page: 345
  year: 2010
  ident: ref_10
  article-title: Non-Invasive Estimation of Systolic Blood Pressure and Diastolic Blood Pressure Using Photoplethysmograph Components
  publication-title: Yonsei Med. J.
  doi: 10.3349/ymj.2010.51.3.345
– ident: ref_11
  doi: 10.1109/I2MTC.2013.6555424
– ident: ref_9
  doi: 10.1109/ICCSP.2014.6949996
– volume: 45
  start-page: 580
  year: 2016
  ident: ref_6
  article-title: The Compensatory Reserve for Early and Accurate Prediction of Hemodynamic Compromise: A Review of the Underlying Physiology
  publication-title: Shock
  doi: 10.1097/SHK.0000000000000559
SSID ssj0001325264
Score 2.2881181
Snippet Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient’s status is often clouded by...
Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient's status is often clouded by...
SourceID doaj
unpaywall
pubmedcentral
osti
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 612
SubjectTerms 60 APPLIED LIFE SCIENCES
Algorithms
Artificial intelligence
Artificial neural networks
Bioengineering
Biotechnology & Applied Microbiology
Blood pressure
Caregivers
Compensators
compensatory mechanisms
Computer simulation
Decision trees
Deep learning
Emergency medical care
Emergency medical services
Engineering
feature extraction
Hemodynamics
Hemorrhage
Hypovolemia
Learning algorithms
Lower body negative pressure
Machine learning
Medical personnel
Medical research
Neural networks
personalized medicine
Physiology
R&D
Research & development
Sensors
Signal processing
Variability
Vital signs
Waveforms
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXoAD4k3ogoyExCnaxI845rYgqgqpXKCoN8uvQKVVUnV3W_Vf9Ccz46TpRlQqB467dqLYM558nzP-hpD3gKBDoULIvWciFxZ4irMi5iFy7QsRra3xvPPht-rgSHw9lsc7pb4wJ6yXB-4nbqGawnHLVdRBCm9xUdSN4sKxpvYsJp3PotY7ZCrtrnAm4VXfHwnmwOsX7qSLNwp_JeqeVCWbvI2SaP8YmmcdrLHbcOff6ZP3t-2pvbywq9XOu2n_MXk0gEq67AfzhNyL7VPycEdq8Bm5WrYU8-2Gw1L0MCVRxnzQV_1FsSjaigKEpRgigNymz-8UM_POzqH_zV7iR_iBZafXqTdiSGig31NBHbAytW2gACtpL4y8pl1DITzhfg_9Ccy8Fwa_fE6O9r_8-HyQD9UYcl8VfJPHpgYwGEPlCwekE8wiHWArIFgBOEyMJVgI6JtVlfTCV40IXroa4IiKUjggwi_IrO3a-IpQuF8luWx0yS3EjKBrXWnXOC1YYcsmZEReW8X4QaocK2asDFAWtKa53ZoZWYzXnfZiHXde8QmNPvZGse30B7igGVzQ3OWCGfmALmMwJMBjejucbIDBoriWWaqEgismMjKf9ISl7CfNe-h0BsAPKvh6THXyG4OsUNbwrPNrXzRDoFkb_A7KhWJCZeTd2Iz3xeS5NnZb7MN6JF9n5GXvuuOAucK0KLx5PXHqyYxMW9qT30mGvEw1kbnOSDH6_z9O--v_Me175AEDxImpHKWek9nmbBvfAELcuLcpGPwBWGVn8w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB7q9kF9EO_GrjKC4FNoMpdcBJGttBShi6iVvg1zS1tYknUvSv-FP9lzJtlsg0V9TGYyZDJnTr5v5sx3CHkNCNoluXOxtUzEQgNPMVr42Hle2kR4rQs873wyzY5PxcczebZDppuzMBhWufGJwVG7xuIa-T5u-HCRM5G_n3-PMWsU7q5uUmjoLrWCexckxm6RXYbKWCOye3A4_fR5u-rCmQQI0B4V5sD3981l47fKfynqoWQpG_ylgph_77JHDcy9m_Don2GVt9f1XF_91LPZtX_W0X1yrwObdNJaxwOy4-uH5O41CcJH5NekphiH1x2ioichuNLHne7qOcVkaTMK0Jai6wDSG7blKUbsLX5A_e0a41u4wHTUy1AbsSUU0C8h0Q6MPtW1owA3aSuYvKRNRcFt4ToQ_QaMvRUMv3pMTo8Ov344jrssDbHNEr6KfVUASPQus4kBMlolRhrAXEC8HHAb71NfOqB1Os-kFTarhLPSFABTci-FAYL8hIzqpvbPCIX2MsllVaZcgy9xZVFmpalMKVii08pFRG5GRdlOwhwzacwUUBkcTXXzaEZkv39u3op4_POJAxz0vjaKcIcbzeJcdXNa5dBXrnkOHZTCavTXRZVzYVhVWOZ5RN6gySh0FfCaVncnHqCzKLqlJnlAxxkTERkPasIUt4PiPTQ6BaAIlX0thkDZlUK2KAt41_HGFlXngJZqO10i8qovxnYxqK72zRrrsBbhFxF52ppu32GeY7gUNl4MjHrwRYYl9eVFkCdPQ65kXkYk6e3_Pz_78793ZY_cYYAxMXgjLcdktFqs_QvAhCvzspvovwEtxmXO
  priority: 102
  providerName: ProQuest
Title An Explainable Machine-Learning Model for Compensatory Reserve Measurement: Methods for Feature Selection and the Effects of Subject Variability
URI https://www.ncbi.nlm.nih.gov/pubmed/37237682
https://www.proquest.com/docview/2819347247
https://www.proquest.com/docview/2820019238
https://www.osti.gov/servlets/purl/2425582
https://pubmed.ncbi.nlm.nih.gov/PMC10215239
https://www.mdpi.com/2306-5354/10/5/612/pdf?version=1684472356
https://doaj.org/article/7f0b3a37e9d54ca08878f734b2f8c2e3
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: ABDBF
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: 8FG
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY-wA8cL-ElcpISDxlTeJLEl5QCysT0qoJGBpPkWM7o6JKql6Gxq_gJ3NO4nYLTOLyVLW2I9s9Pv4-5_g7hDwHBG2C2Bhf64j7XAFPyRW3vrEs1QG3SiV43_lwIg-O-bsTceIO3JYurBKo-LR20giPfcEEh7U9EAPYjAdzU7w6cydJoUw4jyMm5A7pSgFYvEO6x5Oj4ec6o5xr21wLZsDtB_m0shcqfyFqn8gwau1ItXD_1j13KlhnV2HP30Mor6_LuTr_pmazS_vT-DbJNiNrwlK-7q1X-Z7-_ovo4_8P_Q655aArHTa2dpdcs-U9cvOSoOF98mNYUozqc1ey6GEdqml9p-J6SjH12owCUKboiIBC1y_5Kcb_Lc6g_sWJ5Uv4gsmtl3VtRKpQQD_UaXugb1SVhgJ4pY388pJWBQUniKdK9BPw_0Z-_PwBOR7vf3x94LucD76WAVv5tkgAclojdZADtS2CXOSA4IDGGWBK1oY2NUASVSyF5loW3GiRJwB6Yit4DnT7IemUVWkfEwrPkzCDRRoyBZ7JpEkq07zIUx4FKiyMR8Tmf8-0E0THvByzDIgR2kt2tb14ZLBtN28kQf7YYoRmta2Nkt71D9XiNHMeIothrEyxGAYouFbo_ZMiZjyPikRHlnnkBRplho4HuqmVuz8Bg0UJr2wY11hbRtwjvVZNcBi6VbyLZp0BxEKdYI0BVXqVIfcUCfS1t7H2zLmzZYZvWxnYG4898mxbjM_FEL3SVmusEzV8IfHIo2ZxbAfMYgy-wocnrWXTmpF2STn9Uoudh3XmZZZ6JNiusL-c9if_3mSX3IgAxWJ4SJj2SGe1WNungDpXeZ_sJOO3fdIdjt6MxvA52p8cve_XZzh953Z-AiMphjM
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lA4IN6ELmAkEKdoE9t5IVVoC622tLtC0KLegmM7pdIqWfZBtf-CX8RvY8bJZhtRAZceEztWnBmPv3FmviHkJSBo7UVau0ox4QoJfkomhXG14YnyhJEyxnzn4SgcnIgPp8HpBvm1yoXBsMqVTbSGWpcKz8h7-MOHi4iJ6O3ku4tVo_Dv6qqEhqxLK-gdSzFWJ3YcmuUFuHCznYP3IO9XjO3vHb8buHWVAVeFHp-7Jo8B5BgdKi8DZyr3siADzACOgwZsboxvEg1uiYzCQAkV5kKrIIthm41MIDJw8GDcG2RTcJGA87e5uzf6-Gl9ysNZAJCjSk3mPPF62Xlp1kyDPvKvhD5r7Yq2eECzRXRKWOtX4d8_wzi3FsVELi_keHxpj9y_Q27X4Jb2K228SzZMcY_cukR5eJ_87BcU4_7qpC06tMGcxq15Xs8oFmcbU4DSFE0VONk2DIBihOD0B_Rfn2m-gQssfz2zvRHLQgP9bAv7gLZRWWgK8JZWBM0zWuYUzCSeO9EvEtadDQtePiAn1yKvh6RTlIV5TCiMFwY8yBOfS7BdOomTMMnyLBHMk36uHRKspJKqmjIdK3eMU3CdUJrp1dJ0SK95blKRhvzziV0UetMbSb_tjXJ6ltY2JI1grlzyCCYYCCVxf4jziIuM5bFihjvkNapMiqYJXlPJOsMCJoskX2k_smg8ZMIh3VZPMCmq1byNSpcCCEMmYYUhV2qeoncaxPCu3ZUuprXBm6Xr5emQF00zjotBfIUpF9iHVR5F7JBHleo2E-YRhmfh4HFLqVtfpN1SnH-zdOi-rc3ME4d4jf7_52d_8vepPCdbg-PhUXp0MDrcJjcZ4FsMHPGTLunMpwvzFPDoPHtWL3pKvl63nfkNvIyiWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELXKInF5QNwJXcBIIJ6iTWznhoTQQllaSiskaNU349hOqbRKlr1Q7V_wPXwdM04224gKeOljYseKM-PxGWfmDCHPAEGbIDHG15oJXyjwU3IlrG8sz3QgrFIp5jvv7cfbB-LDUXS0QX6tcmEwrHJlE52hNpXGM_IB_vDhImEiGRRNWMSnrdHryXcfK0jhn9ZVOY1aRXbt8hTct9mrnS2Q9XPGRu--vN32mwoDvo4DPvdtkQLAsSbWQQ6OVBHkUQ54AZwGA7jc2tBmBlwSlcSRFjouhNFRnsIWm9hI5ODcwbiXyOUEWdwxS330fn2-w1kEYKNOSuY8Cwb5SWXXHIMhMq_EIevsh65sQLs59CpY5ech3z8DOK8uyolanqrx-MzuOLpJbjSwlg5rPbxFNmx5m1w_Q3Z4h_wclhQj_pp0Lbrnwjit3zC8HlMsyzamAKIpGilwr10AAMXYwOkP6L8-zXwJF1j4euZ6I4qFBvrZlfQBPaOqNBSALa2pmWe0KigYSDxxoocKVpwLCF7eJQcXIq17pFdWpX1AKIwXRzwqspArsFomS7M4y4s8EyxQYWE8Eq2kInVDlo41O8YSnCaUpjxfmh4ZtM9NarqQfz7xBoXe9ka6b3ejmh7LxnrIBObKFU9ggpHQCneGtEi4yFmRama5R16gykg0SvCaWjW5FTBZpPeSw8Th8JgJj_Q7PcGY6E7zJiqdBPiFHMIag630XKJfGqXwrv2VLsrG1M3kemF65GnbjONi-F5pqwX2YbUvkXrkfq267YR5goFZOHjaUerOF-m2lCffHBF66Koy88wjQav___nZH_59Kk_IFbAu8uPO_u4mucYA2GLESJj1SW8-XdhHAETn-WO34in5etEm5jdau5_y
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZgegAO7EvogIyExCmdJF6ScEEDoqqQWiHBoHKyvKWMGCWjWYrKr-An817imTZQieU440Wx8_z8fc7z9wh5DgjaJblzsbUZj7kGnmI097HzrLQJ91oXeN_58EgeTPi7Y3EcDtyWIawSqPi0ddIIj2PBBIe1PRIj2IxHc1e9Og0nSaksOM8zJuRVsiMFYPEB2ZkcvR9_bjPKhbbdtWAG3H5kpo0_V_lLUftEpllvR2qF-7fuedDAOrsMe_4eQnltXc_12Tc9m13Yn_ZvEbUZWReW8nVvvTJ79vsvoo__P_Tb5GaArnTc2dodcsXXd8mNC4KG98iPcU0xqi9cyaKHbaimj4OK6wnF1GszCkCZoiMCCt1-5KcY_7c4hfrnJ5Yv4Qcmt162tRGpQgH90KbtgWejunYUwCvt5JeXtKkoOEE8VaKfgP938uNn98lk_-3HNwdxyPkQW5mwVeyrAiCnd9ImBqhtlRhhAMEBjXPAlLxPfemAJOpcCsutrLizwhQAenIvuAG6_YAM6qb2jwiF_iTMYFWmTINncmVRytJUpuRZotPKRURs3ruyQRAd83LMFBAjtBd1ub1EZLRtN-8kQf7Y4jWa1bY2Snq3fzSLExU8hMphrEyzHAYouNXo_YsqZ9xkVWEzzyLyAo1SoeOBx7Q63J-AwaKElxrnLdaWGY_IsFcTHIbtFe-iWSuAWKgTbDGgyq4Uck9RwLMON9augjtbKvzaysDeeB6RZ9ti7BdD9GrfrLFO1vGFIiIPu8WxHTDLMfgKOy96y6Y3I_2SevqlFTtP28zLrIxIsl1hfzntj_-9yS65ngGKxfCQtBySwWqx9k8Ada7M0-BafgLFhYFM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Explainable+Machine-Learning+Model+for+Compensatory+Reserve+Measurement%3A+Methods+for+Feature+Selection+and+the+Effects+of+Subject+Variability&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Bedolla%2C+Carlos+N&rft.au=Gonzalez%2C+Jose+M&rft.au=Vega%2C+Saul+J&rft.au=Convertino%2C+V%C3%ADctor+A&rft.date=2023-05-19&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=10&rft.issue=5&rft_id=info:doi/10.3390%2Fbioengineering10050612&rft_id=info%3Apmid%2F37237682&rft.externalDocID=37237682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon