An Explainable Machine-Learning Model for Compensatory Reserve Measurement: Methods for Feature Selection and the Effects of Subject Variability
Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient’s status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived from an arterial wave...
        Saved in:
      
    
          | Published in | Bioengineering (Basel) Vol. 10; no. 5; p. 612 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        19.05.2023
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2306-5354 2306-5354  | 
| DOI | 10.3390/bioengineering10050612 | 
Cover
| Abstract | Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient’s status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock. However, the deep-learning artificial neural networks developed for its estimation do not explain how specific arterial waveform elements lead to predicting CRM due to the large number of parameters needed to tune these models. Alternatively, we investigate how classical machine-learning models driven by specific features extracted from the arterial waveform can be used to estimate CRM. More than 50 features were extracted from human arterial blood pressure data sets collected during simulated hypovolemic shock resulting from exposure to progressive levels of lower body negative pressure. A bagged decision tree design using the ten most significant features was selected as optimal for CRM estimation. This resulted in an average root mean squared error in all test data of 0.171, similar to the error for a deep-learning CRM algorithm at 0.159. By separating the dataset into sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability was observed, and the key features identified for these sub-groups differed. This methodology could allow for the identification of unique features and machine-learning models to differentiate individuals with good compensatory mechanisms against hypovolemia from those that might be poor compensators, leading to improved triage of trauma patients and ultimately enhancing military and emergency medicine. | 
    
|---|---|
| AbstractList | Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient’s status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock. However, the deep-learning artificial neural networks developed for its estimation do not explain how specific arterial waveform elements lead to predicting CRM due to the large number of parameters needed to tune these models. Alternatively, we investigate how classical machine-learning models driven by specific features extracted from the arterial waveform can be used to estimate CRM. More than 50 features were extracted from human arterial blood pressure data sets collected during simulated hypovolemic shock resulting from exposure to progressive levels of lower body negative pressure. A bagged decision tree design using the ten most significant features was selected as optimal for CRM estimation. This resulted in an average root mean squared error in all test data of 0.171, similar to the error for a deep-learning CRM algorithm at 0.159. By separating the dataset into sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability was observed, and the key features identified for these sub-groups differed. This methodology could allow for the identification of unique features and machine-learning models to differentiate individuals with good compensatory mechanisms against hypovolemia from those that might be poor compensators, leading to improved triage of trauma patients and ultimately enhancing military and emergency medicine. Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient's status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement ( ) is a triaging tool derived from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock. However, the deep-learning artificial neural networks developed for its estimation do not explain how specific arterial waveform elements lead to predicting due to the large number of parameters needed to tune these models. Alternatively, we investigate how classical machine-learning models driven by specific features extracted from the arterial waveform can be used to estimate . More than 50 features were extracted from human arterial blood pressure data sets collected during simulated hypovolemic shock resulting from exposure to progressive levels of lower body negative pressure. A bagged decision tree design using the ten most significant features was selected as optimal for estimation. This resulted in an average root mean squared error in all test data of 0.171, similar to the error for a deep-learning algorithm at 0.159. By separating the dataset into sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability was observed, and the key features identified for these sub-groups differed. This methodology could allow for the identification of unique features and machine-learning models to differentiate individuals with good compensatory mechanisms against hypovolemia from those that might be poor compensators, leading to improved triage of trauma patients and ultimately enhancing military and emergency medicine. Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient's status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock. However, the deep-learning artificial neural networks developed for its estimation do not explain how specific arterial waveform elements lead to predicting CRM due to the large number of parameters needed to tune these models. Alternatively, we investigate how classical machine-learning models driven by specific features extracted from the arterial waveform can be used to estimate CRM. More than 50 features were extracted from human arterial blood pressure data sets collected during simulated hypovolemic shock resulting from exposure to progressive levels of lower body negative pressure. A bagged decision tree design using the ten most significant features was selected as optimal for CRM estimation. This resulted in an average root mean squared error in all test data of 0.171, similar to the error for a deep-learning CRM algorithm at 0.159. By separating the dataset into sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability was observed, and the key features identified for these sub-groups differed. This methodology could allow for the identification of unique features and machine-learning models to differentiate individuals with good compensatory mechanisms against hypovolemia from those that might be poor compensators, leading to improved triage of trauma patients and ultimately enhancing military and emergency medicine.Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient's status is often clouded by compensatory mechanisms that can mask injury severity. The compensatory reserve measurement (CRM) is a triaging tool derived from an arterial waveform that has been shown to allow for earlier detection of hemorrhagic shock. However, the deep-learning artificial neural networks developed for its estimation do not explain how specific arterial waveform elements lead to predicting CRM due to the large number of parameters needed to tune these models. Alternatively, we investigate how classical machine-learning models driven by specific features extracted from the arterial waveform can be used to estimate CRM. More than 50 features were extracted from human arterial blood pressure data sets collected during simulated hypovolemic shock resulting from exposure to progressive levels of lower body negative pressure. A bagged decision tree design using the ten most significant features was selected as optimal for CRM estimation. This resulted in an average root mean squared error in all test data of 0.171, similar to the error for a deep-learning CRM algorithm at 0.159. By separating the dataset into sub-groups based on the severity of simulated hypovolemic shock withstood, large subject variability was observed, and the key features identified for these sub-groups differed. This methodology could allow for the identification of unique features and machine-learning models to differentiate individuals with good compensatory mechanisms against hypovolemia from those that might be poor compensators, leading to improved triage of trauma patients and ultimately enhancing military and emergency medicine.  | 
    
| Audience | Academic | 
    
| Author | Convertino, Víctor A. Vega, Saul J. Snider, Eric J. Gonzalez, Jose M. Bedolla, Carlos N.  | 
    
| AuthorAffiliation | 4 Department of Biomedical Engineering, University of Texas Health, San Antonio, TX 78249, USA 3 Department of Emergency Medicine, University of Texas Health, San Antonio, TX 78229, USA 1 U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA 2 Department of Medicine, Uniformed Services University, Bethesda, MD 20814, USA  | 
    
| AuthorAffiliation_xml | – name: 2 Department of Medicine, Uniformed Services University, Bethesda, MD 20814, USA – name: 1 U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA – name: 4 Department of Biomedical Engineering, University of Texas Health, San Antonio, TX 78249, USA – name: 3 Department of Emergency Medicine, University of Texas Health, San Antonio, TX 78229, USA  | 
    
| Author_xml | – sequence: 1 givenname: Carlos N. surname: Bedolla fullname: Bedolla, Carlos N. – sequence: 2 givenname: Jose M. orcidid: 0000-0002-4325-409X surname: Gonzalez fullname: Gonzalez, Jose M. – sequence: 3 givenname: Saul J. surname: Vega fullname: Vega, Saul J. – sequence: 4 givenname: Víctor A. orcidid: 0000-0001-9246-0554 surname: Convertino fullname: Convertino, Víctor A. – sequence: 5 givenname: Eric J. orcidid: 0000-0002-0293-4937 surname: Snider fullname: Snider, Eric J.  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37237682$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2425582$$D View this record in Osti.gov  | 
    
| BookMark | eNqNkttuEzEQhleoiJbSV6gsuOEmxevDHhASiqoWKrVCosCt5fWOE0eOHezdQt6CR2bSlNJWlUC-WO_4n8_jf-Z5sRNigKI4LOkR5y1907kIYeYCQHJhVlIqaVWyJ8Ue47SaSC7Fzp39bnGQ84JSWnImWSWeFbu8ZryuGrZX_JoGcvJz5bULuvNALrSZI3hyDjoFhJOL2IMnNiZyHJcrCFkPMa3JZ8iQrlAPOo8JlhCGt_gzzGOfr9WnoAc8IJfgwQwuBqJDT4Y5kBNrMZJJtORy7Ba4J990crpz3g3rF8VTq32Gg5vvfvH19OTL8cfJ-acPZ8fT84mpKB8mYJuWcegrQztBmaWd7FrWilb2lWAAJbR9wxpdV9IIU1nRG9k1tC1rkKLjDd8vzrbcPuqFWiW31GmtonbqOhDTTOk0OONB1UjnmteIlMJo2jR1Y2suOmYbw4Ajq96yxrDS6x_a-1tgSdWmZerxlmHm-23mauyW0Bu0MWl_r5z7J8HN1SxeIZeVkvEWCS-3hJgHp7JxA5i5iSGgr4oJJmWzueb1zTUpfh8hD2rpsgHvdYA4ZsUahuOBhm58efVAuohjCtgKVJUtFzUT9V_VTKNBLtiI1ZkNVE1ruXGoYgJVR4-ocPWwdFgjWIfxewmHd-249eHPvKLg3VZgUsw5gVX4YL0ZLyQ7_2-7qwfp_9mn3x8uGYs | 
    
| CitedBy_id | crossref_primary_10_3389_frai_2024_1408029 crossref_primary_10_1097_SHK_0000000000002260 crossref_primary_10_3390_bioengineering11111075 crossref_primary_10_3390_bios14020061 crossref_primary_10_3390_bioengineering11080770 crossref_primary_10_3390_s24248204 crossref_primary_10_1016_j_bbe_2023_06_002  | 
    
| Cites_doi | 10.1038/s41578-022-00460-x 10.1152/physrev.00006.2018 10.1109/STA.2013.6783144 10.1123/jmpb.2017-0003 10.1016/j.ijhcs.2020.102551 10.3390/s20226413 10.3390/bios12121168 10.3390/s18082414 10.1109/EMBC48229.2022.9871661 10.1186/s12911-020-01332-6 10.1007/s13246-015-0333-x 10.1142/S0219720005001004 10.1088/0967-3334/37/12/2154 10.1016/j.bspc.2018.02.008 10.1093/milmed/usaa515 10.1111/trf.15632 10.1109/EMBC.2019.8857116 10.1097/TA.0b013e3182aa811a 10.1037/pag0000046 10.1007/11573036 10.1097/ALN.0000000000002300 10.3349/ymj.2010.51.3.345 10.1109/I2MTC.2013.6555424 10.1109/ICCSP.2014.6949996 10.1097/SHK.0000000000000559  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023  | 
    
| CorporateAuthor | Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States) | 
    
| CorporateAuthor_xml | – name: Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States) | 
    
| DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 OIOZB OTOTI 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/bioengineering10050612 | 
    
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database (Proquest) Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals)  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2306-5354 | 
    
| ExternalDocumentID | oai_doaj_org_article_7f0b3a37e9d54ca08878f734b2f8c2e3 10.3390/bioengineering10050612 PMC10215239 2425582 A750887624 37237682 10_3390_bioengineering10050612  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | United States United States--US  | 
    
| GeographicLocations_xml | – name: United States – name: United States--US  | 
    
| GrantInformation_xml | – fundername: United States Department of Defense grantid: IS220008 – fundername: Oak Ridge Associated Universities grantid: NA – fundername: US Army Medical Research and Development Command grantid: IS220008 – fundername: Congressionally Directed Medical Research Program grantid: DM180240  | 
    
| GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO OIOZB OTOTI 5PM ADTOC AFFHD IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c603t-ef8923ed6c0b402f0b5b929495d642ee1e9d828a765c4c6f4dc5b80917e54b383 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2306-5354 | 
    
| IngestDate | Fri Oct 03 12:30:19 EDT 2025 Wed Oct 29 11:32:41 EDT 2025 Tue Sep 30 17:14:00 EDT 2025 Mon Feb 24 02:30:13 EST 2025 Thu Oct 02 06:22:39 EDT 2025 Sun Jul 13 05:09:18 EDT 2025 Mon Oct 20 22:09:27 EDT 2025 Mon Oct 20 16:25:31 EDT 2025 Thu Jan 02 22:51:32 EST 2025 Thu Oct 16 04:24:32 EDT 2025 Thu Apr 24 23:11:47 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | compensatory mechanisms lower body negative pressure machine learning feature extraction signal processing personalized medicine  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c603t-ef8923ed6c0b402f0b5b929495d642ee1e9d828a765c4c6f4dc5b80917e54b383 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0014664 USDOE Office of Science (SC) These authors contributed equally to this work.  | 
    
| ORCID | 0000-0002-0293-4937 0000-0002-4325-409X 0000-0001-9246-0554 0000000202934937 0000000192460554 000000024325409X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2306-5354/10/5/612/pdf?version=1684472356 | 
    
| PMID | 37237682 | 
    
| PQID | 2819347247 | 
    
| PQPubID | 2055440 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7f0b3a37e9d54ca08878f734b2f8c2e3 unpaywall_primary_10_3390_bioengineering10050612 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10215239 osti_scitechconnect_2425582 proquest_miscellaneous_2820019238 proquest_journals_2819347247 gale_infotracmisc_A750887624 gale_infotracacademiconefile_A750887624 pubmed_primary_37237682 crossref_citationtrail_10_3390_bioengineering10050612 crossref_primary_10_3390_bioengineering10050612  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-05-19 | 
    
| PublicationDateYYYYMMDD | 2023-05-19 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-19 day: 19  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel – name: United States  | 
    
| PublicationTitle | Bioengineering (Basel) | 
    
| PublicationTitleAlternate | Bioengineering (Basel) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Ates (ref_3) 2022; 7 Hatib (ref_18) 2018; 129 Sun (ref_12) 2016; 37 ref_14 Folke (ref_17) 2021; Volume 11746 Goswami (ref_23) 2019; 99 ref_11 Kern (ref_27) 2019; 13 Convertino (ref_7) 2011; 11 Hayes (ref_29) 2015; 30 Jeong (ref_10) 2010; 51 ref_16 Convertino (ref_30) 2020; 60 Moulton (ref_13) 2013; 75 Shin (ref_15) 2021; 146 Convertino (ref_6) 2016; 45 Amin (ref_20) 2015; 38 Carius (ref_2) 2020; 187 ref_25 Castaneda (ref_4) 2018; 4 ref_24 Krishnan (ref_19) 2018; 43 ref_22 ref_21 ref_1 ref_28 Ding (ref_26) 2005; 3 ref_9 Looney (ref_8) 2018; 1 ref_5  | 
    
| References_xml | – volume: 7 start-page: 887 year: 2022 ident: ref_3 article-title: End-to-End Design of Wearable Sensors publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-022-00460-x – volume: 99 start-page: 807 year: 2019 ident: ref_23 article-title: Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation publication-title: Physiol. Rev. doi: 10.1152/physrev.00006.2018 – ident: ref_24 doi: 10.1109/STA.2013.6783144 – volume: Volume 11746 start-page: 644 year: 2021 ident: ref_17 article-title: Explainable AI for Medical Imaging: Explaining Pneumothorax Diagnoses with Bayesian Teaching publication-title: Proceedings of the Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III – volume: 4 start-page: 195 year: 2018 ident: ref_4 article-title: A Review on Wearable Photoplethysmography Sensors and Their Potential Future Applications in Health Care publication-title: Int. J. Biosens. Bioelectron. – volume: 13 start-page: 73 year: 2019 ident: ref_27 article-title: Tree-Based Machine Learning Methods for Survey Research publication-title: Surv. Res. Methods – volume: 1 start-page: 79 year: 2018 ident: ref_8 article-title: Estimating Resting Core Temperature Using Heart Rate publication-title: J. Meas. Phys. Behav. doi: 10.1123/jmpb.2017-0003 – volume: 146 start-page: 102551 year: 2021 ident: ref_15 article-title: The Effects of Explainability and Causability on Perception, Trust, and Acceptance: Implications for Explainable AI publication-title: Int. J. Hum.-Comput. Stud. doi: 10.1016/j.ijhcs.2020.102551 – ident: ref_22 doi: 10.3390/s20226413 – ident: ref_21 doi: 10.3390/bios12121168 – ident: ref_5 doi: 10.3390/s18082414 – ident: ref_1 – ident: ref_25 doi: 10.1109/EMBC48229.2022.9871661 – volume: 11 start-page: 1531 year: 2011 ident: ref_7 article-title: Physiology of Human Hemorrhage and Compensation publication-title: Compr. Physiol. – ident: ref_16 doi: 10.1186/s12911-020-01332-6 – volume: 38 start-page: 139 year: 2015 ident: ref_20 article-title: Feature Extraction and Classification for EEG Signals Using Wavelet Transform and Machine Learning Techniques publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-015-0333-x – volume: 3 start-page: 185 year: 2005 ident: ref_26 article-title: Minimum Redundancy Feature Selection from Microarray Gene Expression Data publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S0219720005001004 – volume: 37 start-page: 2154 year: 2016 ident: ref_12 article-title: Systolic Blood Pressure Estimation Using PPG and ECG during Physical Exercise publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/12/2154 – volume: 43 start-page: 41 year: 2018 ident: ref_19 article-title: Trends in Biomedical Signal Feature Extraction publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.02.008 – volume: 187 start-page: e28 year: 2020 ident: ref_2 article-title: Battlefield Vital Sign Monitoring in Role 1 Military Treatment Facilities: A Thematic Analysis of After-Action Reviews from the Prehospital Trauma Registry publication-title: Mil. Med. doi: 10.1093/milmed/usaa515 – volume: 60 start-page: S150 year: 2020 ident: ref_30 article-title: The Compensatory Reserve: Potential for Accurate Individualized Goal-Directed Whole Blood Resuscitation publication-title: Transfusion doi: 10.1111/trf.15632 – ident: ref_14 doi: 10.1109/EMBC.2019.8857116 – volume: 75 start-page: 1053 year: 2013 ident: ref_13 article-title: Running on Empty? The Compensatory Reserve Index publication-title: J. Trauma Acute Care Surg. doi: 10.1097/TA.0b013e3182aa811a – volume: 30 start-page: 911 year: 2015 ident: ref_29 article-title: Using Classification and Regression Trees (CART) and Random Forests to Analyze Attrition: Results from Two Simulations publication-title: Psychol. Aging doi: 10.1037/pag0000046 – ident: ref_28 doi: 10.1007/11573036 – volume: 129 start-page: 663 year: 2018 ident: ref_18 article-title: Machine-Learning Algorithm to Predict Hypotension Based on High-Fidelity Arterial Pressure Waveform Analysis publication-title: Anesthesiology doi: 10.1097/ALN.0000000000002300 – volume: 51 start-page: 345 year: 2010 ident: ref_10 article-title: Non-Invasive Estimation of Systolic Blood Pressure and Diastolic Blood Pressure Using Photoplethysmograph Components publication-title: Yonsei Med. J. doi: 10.3349/ymj.2010.51.3.345 – ident: ref_11 doi: 10.1109/I2MTC.2013.6555424 – ident: ref_9 doi: 10.1109/ICCSP.2014.6949996 – volume: 45 start-page: 580 year: 2016 ident: ref_6 article-title: The Compensatory Reserve for Early and Accurate Prediction of Hemodynamic Compromise: A Review of the Underlying Physiology publication-title: Shock doi: 10.1097/SHK.0000000000000559  | 
    
| SSID | ssj0001325264 | 
    
| Score | 2.2881181 | 
    
| Snippet | Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient’s status is often clouded by... Tracking vital signs accurately is critical for triaging a patient and ensuring timely therapeutic intervention. The patient's status is often clouded by...  | 
    
| SourceID | doaj unpaywall pubmedcentral osti proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 612 | 
    
| SubjectTerms | 60 APPLIED LIFE SCIENCES Algorithms Artificial intelligence Artificial neural networks Bioengineering Biotechnology & Applied Microbiology Blood pressure Caregivers Compensators compensatory mechanisms Computer simulation Decision trees Deep learning Emergency medical care Emergency medical services Engineering feature extraction Hemodynamics Hemorrhage Hypovolemia Learning algorithms Lower body negative pressure Machine learning Medical personnel Medical research Neural networks personalized medicine Physiology R&D Research & development Sensors Signal processing Variability Vital signs Waveforms  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXoAD4k3ogoyExCnaxI845rYgqgqpXKCoN8uvQKVVUnV3W_Vf9Ccz46TpRlQqB467dqLYM558nzP-hpD3gKBDoULIvWciFxZ4irMi5iFy7QsRra3xvPPht-rgSHw9lsc7pb4wJ6yXB-4nbqGawnHLVdRBCm9xUdSN4sKxpvYsJp3PotY7ZCrtrnAm4VXfHwnmwOsX7qSLNwp_JeqeVCWbvI2SaP8YmmcdrLHbcOff6ZP3t-2pvbywq9XOu2n_MXk0gEq67AfzhNyL7VPycEdq8Bm5WrYU8-2Gw1L0MCVRxnzQV_1FsSjaigKEpRgigNymz-8UM_POzqH_zV7iR_iBZafXqTdiSGig31NBHbAytW2gACtpL4y8pl1DITzhfg_9Ccy8Fwa_fE6O9r_8-HyQD9UYcl8VfJPHpgYwGEPlCwekE8wiHWArIFgBOEyMJVgI6JtVlfTCV40IXroa4IiKUjggwi_IrO3a-IpQuF8luWx0yS3EjKBrXWnXOC1YYcsmZEReW8X4QaocK2asDFAWtKa53ZoZWYzXnfZiHXde8QmNPvZGse30B7igGVzQ3OWCGfmALmMwJMBjejucbIDBoriWWaqEgismMjKf9ISl7CfNe-h0BsAPKvh6THXyG4OsUNbwrPNrXzRDoFkb_A7KhWJCZeTd2Iz3xeS5NnZb7MN6JF9n5GXvuuOAucK0KLx5PXHqyYxMW9qT30mGvEw1kbnOSDH6_z9O--v_Me175AEDxImpHKWek9nmbBvfAELcuLcpGPwBWGVn8w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB7q9kF9EO_GrjKC4FNoMpdcBJGttBShi6iVvg1zS1tYknUvSv-FP9lzJtlsg0V9TGYyZDJnTr5v5sx3CHkNCNoluXOxtUzEQgNPMVr42Hle2kR4rQs873wyzY5PxcczebZDppuzMBhWufGJwVG7xuIa-T5u-HCRM5G_n3-PMWsU7q5uUmjoLrWCexckxm6RXYbKWCOye3A4_fR5u-rCmQQI0B4V5sD3981l47fKfynqoWQpG_ylgph_77JHDcy9m_Don2GVt9f1XF_91LPZtX_W0X1yrwObdNJaxwOy4-uH5O41CcJH5NekphiH1x2ioichuNLHne7qOcVkaTMK0Jai6wDSG7blKUbsLX5A_e0a41u4wHTUy1AbsSUU0C8h0Q6MPtW1owA3aSuYvKRNRcFt4ToQ_QaMvRUMv3pMTo8Ov344jrssDbHNEr6KfVUASPQus4kBMlolRhrAXEC8HHAb71NfOqB1Os-kFTarhLPSFABTci-FAYL8hIzqpvbPCIX2MsllVaZcgy9xZVFmpalMKVii08pFRG5GRdlOwhwzacwUUBkcTXXzaEZkv39u3op4_POJAxz0vjaKcIcbzeJcdXNa5dBXrnkOHZTCavTXRZVzYVhVWOZ5RN6gySh0FfCaVncnHqCzKLqlJnlAxxkTERkPasIUt4PiPTQ6BaAIlX0thkDZlUK2KAt41_HGFlXngJZqO10i8qovxnYxqK72zRrrsBbhFxF52ppu32GeY7gUNl4MjHrwRYYl9eVFkCdPQ65kXkYk6e3_Pz_78793ZY_cYYAxMXgjLcdktFqs_QvAhCvzspvovwEtxmXO priority: 102 providerName: ProQuest  | 
    
| Title | An Explainable Machine-Learning Model for Compensatory Reserve Measurement: Methods for Feature Selection and the Effects of Subject Variability | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37237682 https://www.proquest.com/docview/2819347247 https://www.proquest.com/docview/2820019238 https://www.osti.gov/servlets/purl/2425582 https://pubmed.ncbi.nlm.nih.gov/PMC10215239 https://www.mdpi.com/2306-5354/10/5/612/pdf?version=1684472356 https://doaj.org/article/7f0b3a37e9d54ca08878f734b2f8c2e3  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: ABDBF dateStart: 20180301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: 8FG dateStart: 20140301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY-wA8cL-ElcpISDxlTeJLEl5QCysT0qoJGBpPkWM7o6JKql6Gxq_gJ3NO4nYLTOLyVLW2I9s9Pv4-5_g7hDwHBG2C2Bhf64j7XAFPyRW3vrEs1QG3SiV43_lwIg-O-bsTceIO3JYurBKo-LR20giPfcEEh7U9EAPYjAdzU7w6cydJoUw4jyMm5A7pSgFYvEO6x5Oj4ec6o5xr21wLZsDtB_m0shcqfyFqn8gwau1ItXD_1j13KlhnV2HP30Mor6_LuTr_pmazS_vT-DbJNiNrwlK-7q1X-Z7-_ovo4_8P_Q655aArHTa2dpdcs-U9cvOSoOF98mNYUozqc1ey6GEdqml9p-J6SjH12owCUKboiIBC1y_5Kcb_Lc6g_sWJ5Uv4gsmtl3VtRKpQQD_UaXugb1SVhgJ4pY388pJWBQUniKdK9BPw_0Z-_PwBOR7vf3x94LucD76WAVv5tkgAclojdZADtS2CXOSA4IDGGWBK1oY2NUASVSyF5loW3GiRJwB6Yit4DnT7IemUVWkfEwrPkzCDRRoyBZ7JpEkq07zIUx4FKiyMR8Tmf8-0E0THvByzDIgR2kt2tb14ZLBtN28kQf7YYoRmta2Nkt71D9XiNHMeIothrEyxGAYouFbo_ZMiZjyPikRHlnnkBRplho4HuqmVuz8Bg0UJr2wY11hbRtwjvVZNcBi6VbyLZp0BxEKdYI0BVXqVIfcUCfS1t7H2zLmzZYZvWxnYG4898mxbjM_FEL3SVmusEzV8IfHIo2ZxbAfMYgy-wocnrWXTmpF2STn9Uoudh3XmZZZ6JNiusL-c9if_3mSX3IgAxWJ4SJj2SGe1WNungDpXeZ_sJOO3fdIdjt6MxvA52p8cve_XZzh953Z-AiMphjM | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9lA4IN6ELmAkEKdoE9t5IVVoC622tLtC0KLegmM7pdIqWfZBtf-CX8RvY8bJZhtRAZceEztWnBmPv3FmviHkJSBo7UVau0ox4QoJfkomhXG14YnyhJEyxnzn4SgcnIgPp8HpBvm1yoXBsMqVTbSGWpcKz8h7-MOHi4iJ6O3ku4tVo_Dv6qqEhqxLK-gdSzFWJ3YcmuUFuHCznYP3IO9XjO3vHb8buHWVAVeFHp-7Jo8B5BgdKi8DZyr3siADzACOgwZsboxvEg1uiYzCQAkV5kKrIIthm41MIDJw8GDcG2RTcJGA87e5uzf6-Gl9ysNZAJCjSk3mPPF62Xlp1kyDPvKvhD5r7Yq2eECzRXRKWOtX4d8_wzi3FsVELi_keHxpj9y_Q27X4Jb2K228SzZMcY_cukR5eJ_87BcU4_7qpC06tMGcxq15Xs8oFmcbU4DSFE0VONk2DIBihOD0B_Rfn2m-gQssfz2zvRHLQgP9bAv7gLZRWWgK8JZWBM0zWuYUzCSeO9EvEtadDQtePiAn1yKvh6RTlIV5TCiMFwY8yBOfS7BdOomTMMnyLBHMk36uHRKspJKqmjIdK3eMU3CdUJrp1dJ0SK95blKRhvzziV0UetMbSb_tjXJ6ltY2JI1grlzyCCYYCCVxf4jziIuM5bFihjvkNapMiqYJXlPJOsMCJoskX2k_smg8ZMIh3VZPMCmq1byNSpcCCEMmYYUhV2qeoncaxPCu3ZUuprXBm6Xr5emQF00zjotBfIUpF9iHVR5F7JBHleo2E-YRhmfh4HFLqVtfpN1SnH-zdOi-rc3ME4d4jf7_52d_8vepPCdbg-PhUXp0MDrcJjcZ4FsMHPGTLunMpwvzFPDoPHtWL3pKvl63nfkNvIyiWA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELXKInF5QNwJXcBIIJ6iTWznhoTQQllaSiskaNU349hOqbRKlr1Q7V_wPXwdM04224gKeOljYseKM-PxGWfmDCHPAEGbIDHG15oJXyjwU3IlrG8sz3QgrFIp5jvv7cfbB-LDUXS0QX6tcmEwrHJlE52hNpXGM_IB_vDhImEiGRRNWMSnrdHryXcfK0jhn9ZVOY1aRXbt8hTct9mrnS2Q9XPGRu--vN32mwoDvo4DPvdtkQLAsSbWQQ6OVBHkUQ54AZwGA7jc2tBmBlwSlcSRFjouhNFRnsIWm9hI5ODcwbiXyOUEWdwxS330fn2-w1kEYKNOSuY8Cwb5SWXXHIMhMq_EIevsh65sQLs59CpY5ech3z8DOK8uyolanqrx-MzuOLpJbjSwlg5rPbxFNmx5m1w_Q3Z4h_wclhQj_pp0Lbrnwjit3zC8HlMsyzamAKIpGilwr10AAMXYwOkP6L8-zXwJF1j4euZ6I4qFBvrZlfQBPaOqNBSALa2pmWe0KigYSDxxoocKVpwLCF7eJQcXIq17pFdWpX1AKIwXRzwqspArsFomS7M4y4s8EyxQYWE8Eq2kInVDlo41O8YSnCaUpjxfmh4ZtM9NarqQfz7xBoXe9ka6b3ejmh7LxnrIBObKFU9ggpHQCneGtEi4yFmRama5R16gykg0SvCaWjW5FTBZpPeSw8Th8JgJj_Q7PcGY6E7zJiqdBPiFHMIag630XKJfGqXwrv2VLsrG1M3kemF65GnbjONi-F5pqwX2YbUvkXrkfq267YR5goFZOHjaUerOF-m2lCffHBF66Koy88wjQav___nZH_59Kk_IFbAu8uPO_u4mucYA2GLESJj1SW8-XdhHAETn-WO34in5etEm5jdau5_y | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZgegAO7EvogIyExCmdJF6ScEEDoqqQWiHBoHKyvKWMGCWjWYrKr-An817imTZQieU440Wx8_z8fc7z9wh5DgjaJblzsbUZj7kGnmI097HzrLQJ91oXeN_58EgeTPi7Y3EcDtyWIawSqPi0ddIIj2PBBIe1PRIj2IxHc1e9Og0nSaksOM8zJuRVsiMFYPEB2ZkcvR9_bjPKhbbdtWAG3H5kpo0_V_lLUftEpllvR2qF-7fuedDAOrsMe_4eQnltXc_12Tc9m13Yn_ZvEbUZWReW8nVvvTJ79vsvoo__P_Tb5GaArnTc2dodcsXXd8mNC4KG98iPcU0xqi9cyaKHbaimj4OK6wnF1GszCkCZoiMCCt1-5KcY_7c4hfrnJ5Yv4Qcmt162tRGpQgH90KbtgWejunYUwCvt5JeXtKkoOEE8VaKfgP938uNn98lk_-3HNwdxyPkQW5mwVeyrAiCnd9ImBqhtlRhhAMEBjXPAlLxPfemAJOpcCsutrLizwhQAenIvuAG6_YAM6qb2jwiF_iTMYFWmTINncmVRytJUpuRZotPKRURs3ruyQRAd83LMFBAjtBd1ub1EZLRtN-8kQf7Y4jWa1bY2Snq3fzSLExU8hMphrEyzHAYouNXo_YsqZ9xkVWEzzyLyAo1SoeOBx7Q63J-AwaKElxrnLdaWGY_IsFcTHIbtFe-iWSuAWKgTbDGgyq4Uck9RwLMON9augjtbKvzaysDeeB6RZ9ti7BdD9GrfrLFO1vGFIiIPu8WxHTDLMfgKOy96y6Y3I_2SevqlFTtP28zLrIxIsl1hfzntj_-9yS65ngGKxfCQtBySwWqx9k8Ada7M0-BafgLFhYFM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Explainable+Machine-Learning+Model+for+Compensatory+Reserve+Measurement%3A+Methods+for+Feature+Selection+and+the+Effects+of+Subject+Variability&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Bedolla%2C+Carlos+N&rft.au=Gonzalez%2C+Jose+M&rft.au=Vega%2C+Saul+J&rft.au=Convertino%2C+V%C3%ADctor+A&rft.date=2023-05-19&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=10&rft.issue=5&rft_id=info:doi/10.3390%2Fbioengineering10050612&rft_id=info%3Apmid%2F37237682&rft.externalDocID=37237682 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |