Query-constraint-based mining of association rules for exploratory analysis of clinical datasets in the National Sleep Research Resource

Background Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 18; no. Suppl 2; pp. 58 - 100
Main Authors Abeysinghe, Rashmie, Cui, Licong
Format Journal Article
LanguageEnglish
Published London BioMed Central 23.07.2018
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-018-0633-7

Cover

Abstract Background Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics. Methods We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint. Results Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules. Conclusions QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems.
AbstractList Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics.BACKGROUNDAssociation Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics.We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint.METHODSWe introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint.Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules.RESULTSApplying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules.QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems.CONCLUSIONSQARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems.
Background Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics. Methods We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint. Results Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules. Conclusions QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems.
Abstract Background Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics. Methods We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint. Results Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules. Conclusions QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems.
Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics. We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint. Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules. QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems.
BackgroundAssociation Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics.MethodsWe introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint.ResultsApplying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules.ConclusionsQARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems.
ArticleNumber 58
Audience Academic
Author Abeysinghe, Rashmie
Cui, Licong
Author_xml – sequence: 1
  givenname: Rashmie
  surname: Abeysinghe
  fullname: Abeysinghe, Rashmie
  organization: Department of Computer Science
– sequence: 2
  givenname: Licong
  surname: Cui
  fullname: Cui, Licong
  email: licong.cui@uky.edu
  organization: Department of Computer Science, Institute for Biomedical Informatics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30066656$$D View this record in MEDLINE/PubMed
BookMark eNqNUttu1DAQjVARvcAH8IIs8cJLip3YTvKCVFVcKlUgbs_WxBlvXXntxU4K-wd8Ns7u0psAIT945DnnjGfOHBZ7PngsiqeMHjPWypeJVR1jJWVtSWVdl82D4oDxpiplx5u9W_F-cZjSJaWsaWvxqNivKZVSCnlQ_Pw4YVyXOvg0RrB-LHtIOJCl9dYvSDAEUgrawmiDJ3FymIgJkeCPlQsRxhDXBDy4dbJpRmuXiRocGWDMQmMi1pPxAsn7jUJOfHaIK_IJE0LUF3MQpqjxcfHQgEv4ZHcfFV_fvP5y-q48__D27PTkvNSS1mOpTc-YqJjRvTCmHhj0fWtQ8BZAInSdEKIXCKZi0HLDc6aWreYD5bQbKl4fFWdb3SHApVpFu4S4VgGs2jyEuFAQR6sdKg6Ma8YZYG1yLGCADjswQyNbhrTJWtVWa_IrWH8H564FGVWzRWprkcoWqdkiNZNebUmrqV_ioNHnwbs7P7mb8fZCLcKVklR2WSwLvNgJxPBtwjSqpU0anQOPYUqqoi0TvKroDH1-D3qZh51dmFEd5V3LaH2DWkDu2noTcl09i6oTwRvBarope_wHVD4DLm3eHzQ2v98hPLvd6HWHv5cvA9gWoGNIKaL5r-k19zjajpvVmtfX_ZO5MyvlKn6B8WYWfyf9AjqgDuo
CitedBy_id crossref_primary_10_1016_j_smrv_2021_101529
crossref_primary_10_1186_s12911_018_0624_8
crossref_primary_10_1016_j_imu_2023_101345
crossref_primary_10_3390_electronics13040759
crossref_primary_10_1109_TAI_2022_3171530
crossref_primary_10_1109_TBDATA_2022_3175428
Cites_doi 10.1109/JTEHM.2013.2290113
10.1080/02770900600567056
10.1016/S0735-1097(83)80084-9
10.14740/jocmr3352w
10.1016/j.jacc.2007.09.033
10.1038/nrg3208
10.1080/08039480310000824
10.1093/eurheartj/ehu342
10.1513/AnnalsATS.201604-317OC
10.1007/s12013-013-9791-5
10.1016/j.rmed.2013.11.006
10.1016/B978-0-12-273903-3.50015-8
10.4082/kjfm.2013.34.4.228
10.1111/j.1751-7176.2011.00508.x
10.1007/s11892-014-0473-5
10.1345/aph.1L015
10.1371/journal.pone.0005552
10.1007/s10741-011-9245-3
10.1155/2016/1958981
10.1145/360402.360421
10.1097/00004872-198710000-00009
10.1007/s40256-015-0128-1
10.1016/j.ijporl.2009.09.026
10.1016/S0278-5846(01)00150-6
10.1080/080370501753400610
10.1109/TKDE.2003.1245290
10.1097/00005344-198900133-00009
10.1056/NEJM199503093321003
10.2174/157489011001160111154536
10.1517/14656566.2013.808332
10.1016/S0140-6736(00)04067-8
10.1109/TITB.2006.864475
10.1016/j.sleep.2007.11.005
10.1016/j.amjhyper.2007.03.007
10.1097/MD.0000000000000590
10.7326/0003-4819-144-10-200605160-00125
10.1016/S0140-6736(85)91672-1
10.5665/sleep.5774
10.1097/00006842-197703000-00008
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12911-018-0633-7
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database (ProQuest)
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 100
ExternalDocumentID oai_doaj_org_article_4a14c141ae3f4a15ada9e9afd7681e07
10.1186/s12911-018-0633-7
PMC6069291
A547513091
30066656
10_1186_s12911_018_0633_7
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R24 HL114473
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADTOC
AHSBF
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c603t-cfb11521fcb5ff3d1abb8fe548aa6ea99555b5eaf21a84f4e54368c4d0409d243
IEDL.DBID DOA
ISSN 1472-6947
IngestDate Fri Oct 03 12:46:10 EDT 2025
Sun Oct 26 03:42:37 EDT 2025
Tue Sep 30 16:23:11 EDT 2025
Fri Sep 05 07:22:14 EDT 2025
Tue Oct 07 05:22:30 EDT 2025
Mon Oct 20 22:16:21 EDT 2025
Mon Oct 20 16:04:35 EDT 2025
Thu Apr 03 07:02:50 EDT 2025
Wed Oct 01 01:55:10 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Sat Sep 06 07:30:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 2
Keywords National sleep research resource
Exploratory data analysis
Query-constraint-based association rule mining
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-cfb11521fcb5ff3d1abb8fe548aa6ea99555b5eaf21a84f4e54368c4d0409d243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/4a14c141ae3f4a15ada9e9afd7681e07
PMID 30066656
PQID 2090498103
PQPubID 42572
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_4a14c141ae3f4a15ada9e9afd7681e07
unpaywall_primary_10_1186_s12911_018_0633_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6069291
proquest_miscellaneous_2081542201
proquest_journals_2090498103
gale_infotracmisc_A547513091
gale_infotracacademiconefile_A547513091
pubmed_primary_30066656
crossref_primary_10_1186_s12911_018_0633_7
crossref_citationtrail_10_1186_s12911_018_0633_7
springer_journals_10_1186_s12911_018_0633_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-23
PublicationDateYYYYMMDD 2018-07-23
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References P Fournier-Viger (633_CR13) 2012
MA Parikh (633_CR37) 2017; 14
DA Dean (633_CR4) 2016; 39
LC Stene (633_CR46) 2001; 357
633_CR44
C Ordonez (633_CR9) 2006; 10
SG Thompson (633_CR32) 1995; 332
633_CR43
X Wang (633_CR3) 2004
A Sogut (633_CR45) 2009; 73
CW Cheng (633_CR18) 2013; 1
A Agrawal (633_CR15) 2011
J Albishri (633_CR57) 2013; 17
S Araki (633_CR22) 2015; 73
FG Dunn (633_CR41) 1983; 1
J Han (633_CR29) 2011
AA Badar (633_CR33) 2014; 35
P Fournier-Viger (633_CR16) 2016
P Fournier-Viger (633_CR12) 2012
PB Jensen (633_CR2) 2012; 13
RL Mikkelsen (633_CR49) 2004; 58
JJ Strik (633_CR53) 2001; 25
B Ivanovic (633_CR48) 2015; 15
S Kotsiantis (633_CR11) 2006; 32
P Rossignol (633_CR20) 2013; 14
JM Yoon (633_CR36) 2013; 34
JL Izzo (633_CR25) 2011; 13
EK Chowdhury (633_CR26) 2015; 94
L Wilhelmsen (633_CR58) 1987; 5
A Ahmad (633_CR42) 2018; 10
B Chaudhry (633_CR1) 2006; 144
SU Amin (633_CR17) 2013; 2
D Hristovski (633_CR8) 2001; 2
D Sehra (633_CR28) 2015; 10
X Hu (633_CR14) 2010; 25
RH Becker (633_CR19) 1989; 13
PM Thulé (633_CR27) 2014; 14
L Zheng (633_CR39) 2014; 69
OA Minai (633_CR38) 2014; 108
GM Felker (633_CR21) 2012; 17
633_CR59
J Hipp (633_CR10) 2000; 2
R Abeysinghe (633_CR31) 2017
C Jesus (633_CR34) 2015; 27
M Koskenvuo (633_CR40) 1985; 325
633_CR6
X Xiong (633_CR23) 2016; 2016
633_CR5
M Kubat (633_CR30) 2003; 15
BL Salako (633_CR55) 2000; 29
BJ Shen (633_CR54) 2008; 51
R Agrawal (633_CR7) 1993
B Al-Shawwa (633_CR47) 2006; 43
A Hammerman (633_CR35) 2008; 42
F Rezaeitalab (633_CR52) 2014; 19
J Kim (633_CR51) 2007; 20
B Waeber (633_CR56) 2001; 10
F Valham (633_CR24) 2009; 10
A Grimsrud (633_CR50) 2009; 4
References_xml – volume-title: ACM SIGMOD Record
  year: 1993
  ident: 633_CR7
– volume: 17
  start-page: 171
  year: 2013
  ident: 633_CR57
  publication-title: Anesth Pain Intens Care
– volume: 1
  start-page: 400110
  year: 2013
  ident: 633_CR18
  publication-title: IEEE J Transl Eng Health Med
  doi: 10.1109/JTEHM.2013.2290113
– volume-title: 2004 Canadian Conference on Electrical and Computer Engineering
  year: 2004
  ident: 633_CR3
– volume: 43
  start-page: 231
  issue: 3
  year: 2006
  ident: 633_CR47
  publication-title: J Asthma
  doi: 10.1080/02770900600567056
– volume: 32
  start-page: 71
  issue: 1
  year: 2006
  ident: 633_CR11
  publication-title: GESTS Int Trans Comput Sci Eng
– volume: 1
  start-page: 528
  issue: 2
  year: 1983
  ident: 633_CR41
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(83)80084-9
– volume: 10
  start-page: 411
  issue: 5
  year: 2018
  ident: 633_CR42
  publication-title: J Clin Med Res
  doi: 10.14740/jocmr3352w
– volume: 51
  start-page: 113
  issue: 2
  year: 2008
  ident: 633_CR54
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2007.09.033
– volume: 13
  start-page: 395
  issue: 6
  year: 2012
  ident: 633_CR2
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3208
– ident: 633_CR5
– volume: 58
  start-page: 65
  issue: 1
  year: 2004
  ident: 633_CR49
  publication-title: Nord J Psychiatry
  doi: 10.1080/08039480310000824
– volume-title: Joint European conference on machine learning and knowledge discovery in databases.
  year: 2016
  ident: 633_CR16
– volume: 35
  start-page: 3426
  issue: 48
  year: 2014
  ident: 633_CR33
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehu342
– volume: 14
  start-page: 649
  issue: 5
  year: 2017
  ident: 633_CR37
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201604-317OC
– volume: 69
  start-page: 209
  issue: 2
  year: 2014
  ident: 633_CR39
  publication-title: Cell Biochem Biophys
  doi: 10.1007/s12013-013-9791-5
– volume: 108
  start-page: 482
  issue: 3
  year: 2014
  ident: 633_CR38
  publication-title: Respir Med
  doi: 10.1016/j.rmed.2013.11.006
– volume: 2
  start-page: 218
  issue: 1
  year: 2013
  ident: 633_CR17
  publication-title: Int J Adv Res Comput Eng Technol (IJARCET)
– ident: 633_CR43
  doi: 10.1016/B978-0-12-273903-3.50015-8
– volume-title: Canadian Conference on Artificial Intelligence.
  year: 2012
  ident: 633_CR12
– volume-title: 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW)
  year: 2011
  ident: 633_CR15
– volume: 34
  start-page: 228
  issue: 4
  year: 2013
  ident: 633_CR36
  publication-title: Korean J Fam Med
  doi: 10.4082/kjfm.2013.34.4.228
– volume: 29
  start-page: 47
  issue: 1
  year: 2000
  ident: 633_CR55
  publication-title: Afr J Med Med Sci
– volume-title: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2017
  ident: 633_CR31
– volume: 13
  start-page: 667
  issue: 9
  year: 2011
  ident: 633_CR25
  publication-title: J Clin Hypertens
  doi: 10.1111/j.1751-7176.2011.00508.x
– volume: 14
  start-page: 473
  issue: 4
  year: 2014
  ident: 633_CR27
  publication-title: Curr Diabetes Rep
  doi: 10.1007/s11892-014-0473-5
– volume-title: Data mining: concepts and techniques.
  year: 2011
  ident: 633_CR29
– volume: 42
  start-page: 1316
  issue: 9
  year: 2008
  ident: 633_CR35
  publication-title: Ann Pharmacother
  doi: 10.1345/aph.1L015
– volume: 4
  start-page: e5552
  issue: 5
  year: 2009
  ident: 633_CR50
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0005552
– volume: 17
  start-page: 305
  issue: 2
  year: 2012
  ident: 633_CR21
  publication-title: Heart Fail Rev
  doi: 10.1007/s10741-011-9245-3
– volume: 2016
  start-page: 1958981
  year: 2016
  ident: 633_CR23
  publication-title: J Diabetes Res
  doi: 10.1155/2016/1958981
– volume: 73
  start-page: 1885
  issue: 11
  year: 2015
  ident: 633_CR22
  publication-title: Japan J Clin Med
– volume: 2
  start-page: 58
  issue: 1
  year: 2000
  ident: 633_CR10
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/360402.360421
– volume: 5
  start-page: 561
  issue: 5
  year: 1987
  ident: 633_CR58
  publication-title: J Hypertens
  doi: 10.1097/00004872-198710000-00009
– volume: 27
  start-page: S423
  issue: Suppl 1
  year: 2015
  ident: 633_CR34
  publication-title: Psychiatr Danub
– volume: 15
  start-page: 403
  issue: 6
  year: 2015
  ident: 633_CR48
  publication-title: Am J Cardiovasc Drugs
  doi: 10.1007/s40256-015-0128-1
– volume: 73
  start-page: 1769
  issue: 12
  year: 2009
  ident: 633_CR45
  publication-title: Int J Pediatr Otorhinolaryngol
  doi: 10.1016/j.ijporl.2009.09.026
– volume: 2
  start-page: 1344
  issue: 2
  year: 2001
  ident: 633_CR8
  publication-title: Stud Health Technol Inform
– volume: 25
  start-page: 879
  issue: 4
  year: 2001
  ident: 633_CR53
  publication-title: Prog Neuro-Psychopharmacol Biol Psychiatry
  doi: 10.1016/S0278-5846(01)00150-6
– volume: 10
  start-page: 311
  issue: 5-6
  year: 2001
  ident: 633_CR56
  publication-title: Blood Press
  doi: 10.1080/080370501753400610
– volume: 15
  start-page: 1522
  issue: 6
  year: 2003
  ident: 633_CR30
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2003.1245290
– volume: 25
  start-page: 207
  issue: 2
  year: 2010
  ident: 633_CR14
  publication-title: Int J Intell Syst
– ident: 633_CR59
– volume: 13
  start-page: S35
  year: 1989
  ident: 633_CR19
  publication-title: J Cardiovasc Pharmacol
  doi: 10.1097/00005344-198900133-00009
– volume: 332
  start-page: 635
  issue: 10
  year: 1995
  ident: 633_CR32
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199503093321003
– volume: 10
  start-page: 4
  issue: 1
  year: 2015
  ident: 633_CR28
  publication-title: Recent Patents Cardiovasc Drug Discov
  doi: 10.2174/157489011001160111154536
– volume: 14
  start-page: 1641
  issue: 12
  year: 2013
  ident: 633_CR20
  publication-title: Expert Opin Pharmacother
  doi: 10.1517/14656566.2013.808332
– volume: 357
  start-page: 607
  issue: 9256
  year: 2001
  ident: 633_CR46
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(00)04067-8
– volume: 10
  start-page: 334
  issue: 2
  year: 2006
  ident: 633_CR9
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2006.864475
– volume: 10
  start-page: 112
  issue: 1
  year: 2009
  ident: 633_CR24
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2007.11.005
– volume: 20
  start-page: 819
  issue: 8
  year: 2007
  ident: 633_CR51
  publication-title: Am J Hypertens
  doi: 10.1016/j.amjhyper.2007.03.007
– volume: 19
  start-page: 205
  issue: 3
  year: 2014
  ident: 633_CR52
  publication-title: J Res Med Sci: Off J Isfahan Univ Med Sci
– volume: 94
  start-page: e590
  issue: 9
  year: 2015
  ident: 633_CR26
  publication-title: Medicine
  doi: 10.1097/MD.0000000000000590
– volume: 144
  start-page: 742
  issue: 10
  year: 2006
  ident: 633_CR1
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-144-10-200605160-00125
– volume: 325
  start-page: 893
  issue: 8434
  year: 1985
  ident: 633_CR40
  publication-title: Lancet
  doi: 10.1016/S0140-6736(85)91672-1
– ident: 633_CR6
– volume: 39
  start-page: 1151
  issue: 5
  year: 2016
  ident: 633_CR4
  publication-title: Sleep
  doi: 10.5665/sleep.5774
– ident: 633_CR44
  doi: 10.1097/00006842-197703000-00008
– volume-title: International Symposium on Methodologies for Intelligent Systems.
  year: 2012
  ident: 633_CR13
SSID ssj0017835
Score 2.2622201
Snippet Background Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential...
Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among...
BackgroundAssociation Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships...
Abstract Background Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 58
SubjectTerms Algorithms
Angina pectoris
Anxiety
Asthma
Chronic fatigue syndrome
Chronic obstructive pulmonary disease
Clinical trials
Data analysis
Data mining
Data Mining - methods
Data processing
Datasets
Datasets as Topic
Diabetes
Exploratory data analysis
Gender
Genetic transformation
Health Informatics
Heart attacks
Humans
Hypertension
Hypotheses
Information Systems and Communication Service
Innovations
Knowledge discovery
Management
Management of Computing and Information Systems
Medical records
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
National sleep research resource
Patients
Physiology
Queries
Query-constraint-based association rule mining
Semantics
Sleep
Sleep disorders
Stroke
Technology application
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bi9UwEA7rWfDyIN6trhJBEFyCbZO06YPIruyyCHvwtrBvIU1SXajt8VyQ_Qf-bGd60p6twvGllCYNSWcy801nMkPIS1HmyqrYsApkPxNOpqwwGVyEE9Iq4bjF886n0-zkTHw4l-c7ZNqfhcGwyl4mdoLatRb_kYORXgCYVUnM381-Mqwahd7VvoSGCaUV3Nsuxdg1sptiZqwJ2T08mn78PPgV8D9H8G0mKnuzAG3XnStTDFQ1Z_lIO3VJ_P8V1Vd01d9xlIMz9Ra5sWpm5vKXqesr-ur4DrkdgCY9WHPGXbLjm3vk-mlwpd8nvz-t_PySWcSHWCZiyVChOfqjqxhB24qaDeXofFX7BQWAS30XtNf55qkJGU2wd3_EkmLM6cIvF_SioYAuaci8XdMvtfcz2of60d5x8ICcHR99fX_CQlkGZrOYL5mtygS1fmVLWVXcJaYsVeXB9DEm86YopJSl9KZKE6NEJaCFZ8oKB_KicKngD8mkaRv_mFCRmDRPvTBcxQLGUkbmxnFXxkZawK4RiXtyaBtyluM3qXVnu6hMrymogYIaKajziLweXpmtE3Zs63yINB46Yq7t7kE7_6bD1tXCJMImMFXPK7iXxpnCF6ZyYKklPoZBXiGHaJQIMDlrwsEGWCLm1tIHUuQSoEKRRGRv1BN2sh039zymgyRZ6A3fR-TF0IxvYnRc49sV9lGAhFPAchF5tGbJYUkcQSWA9ojkI2YdrXnc0lx87_KMg20L4BnG3O_ZejOtLZ90f-D8_xPgyfYlPyU3025z5izle2SynK_8MwCBy_J52Nl_AIoxWvY
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_nCX48iN9WT4kgCB452yZp0weRUzwOYQXRhXsL03zoQe2u2110_wP_bCfdtnvV43zxZVk2k5BkZjK_2UlmCHkmylwZFQPzePYzYWXKCsjwQ1ghjRKWm_DeefIhO56K9yfyZIf05a26DWzOde1CPanpojr4-X39GhX-VavwKnvZoM1qX4cphgaXs_wSuYyGqgiVHCZiG1QIf3J0gc1zu41MU5vB_-9z-oyh-vMS5RBJvU6uruo5rH9AVZ0xVkc3yY0OZdLDjVjcIjuuvk2uTLo4-h3y6-PKLdbMBHAYakQsWbBmln5ry0XQmaewZRtdrCrXUES31LU39trAPIUunUmg7t9X0nDhtHHLhp7WFKEl7dJuV_RT5dyc9vf8aB81uEumR-8-vz1mXU0GZrKYL5nxZRJMvjel9J7bBMpSeYd-D0DmoCiklKV04NMElPACW3imjLB4WBQ2Ffwe2a1ntXtAqEggzVMngKtY4FgKZA6W2zIGaRC4RiTu2aFNl7A87EmlW8dFZXrDQY0c1IGDOo_Ii6HLfJOt4yLiN4HHA2FItN3-MFt80Z3eagGJMAlO1XGP3yVYKFwB3qKblrgYB3keJEQHAcXJGeheNeASQ2ItfShFLhEnFElE9kaUqMZm3NzLmO61QKcoxKJQScwj8nRoDj3D1bjazVaBRiEMThHIReT-RiSHJfGAKBGxRyQfCetozeOW-vRrm2QcHVtEzjjmfi_W22ldsKX7g-T_mwEP_wcDHpFraavCOUv5HtldLlbuMeLEZfmk1f7fisBk0w
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature Link
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEA66gpcH8b7VVSIIgkuwbZI2fVwXl0VYQXRh38I0F1yoPYdzYdl_4M92kpN2T1VWfCmHZhKSzkzmmzOZCSFvRFsro3JgHvd-JqwsWQMVPoQV0ihhuQn5ziefq-NT8elMnqVi0SEXZjt-X6jq_RLtUcz8UgyNKWf1TXILbVQV47LV4RgwCH9gpKDlX7tNzE6szv_nHrxlhH4_IDlGSe-RO-t-DpcX0HVbhujoAbmfECQ92LD8Ibnh-kfk9kmKkT8mP7-s3eKSmQD8wv0PKxYslaU_4lUQdOYpXLGELtadW1JErtTF03gx6E4hlSoJ1EPuJA2HSZdutaTnPUXYSFNJ7Y5-7Zyb0-EMHx0iAk_I6dHHb4fHLN23wEyV8xUzvi2COfemld5zW0DbKu_QpwGoHDSNlLKVDnxZgBJeYAuvlBEWN4LGloI_JTv9rHe7hIoCyrp0ArjKBY6lQNZguW1zkAZBaUbygR3apGLk4Zt0OjolqtIbDmrkoA4c1HVG3o1d5ptKHNcRfwg8HglDEe34AmVLJ53UAgphCpyq4x5_S7DQuAa8RRescDkO8jZIiA6qjpMzkDIWcImhaJY-kKKWiAGaIiN7E0pUUTNtHmRMpy1iqcu8Qe9MFTnPyOuxOfQMx956N1sHGoUQt0SQlpFnG5Ecl8QDWkQ0npF6IqyTNU9b-vPvsYA4Oq2IinHM_UGsr6Z1zSfdHyX_3wx4_l9jvyB3y6irNSv5HtlZLdbuJYK9VfsqqvkvRulM6g
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Za9wwEBbpBno89D7cpkWFQqHBG9uSbPlxWxpCIaFXIH0yso42rNe7rG1K-gv6szuSj6zTklLoy2JWIyON5_gGzYwQekHzhEseCN-A7fepYpGfihh-qKJMcqqItPXOh0fxwTF9d8JOttDHvhYmX0h7qOxKcZS9ZWYh5tPNSvTCmW94kPO9lTKt1vN4rwLH5UrEuA9el_jJFbQdM8DnE7R9fPR-9sWVGSWRH6c06Y43_zhv5KBcH__frfWGu7qYSjmcp95A15pyJc6-i6LYcFn7t1DVb7bNVJlPmzqfyh8X-kD-X27cRjc7hItnrUjeQVu6vIuuHnZn-PfQzw-NXp_50gJTez9F7VtPqvDCXVWBlwaLc5HB66bQFYaVYe2yBV1SABZdKxVL3dd2YpvsWum6wqclBliLu5bfBf5UaL3CfY4h7k8s7qPj_bef3xz43X0QvowDUvvS5KGFG0bmzBiiQpHn3GiIuYSItUhTxljOtDBRKDg1FEZIzCVVYKhSFVHyAE3KZakfIUxDESWRpoLwgMK7uGCJUETlgWASQLOHgl4IMtk1S7c8KTIXNPE4azmcAYczy-Es8dCrYcqq7RRyGfFrK1kDoW3y7f5Yrr9mnc3IqAipDGGpmhh4ZkKJVKfCKAgRQx3AS15aucysfFgREF1FBWzRNvXKZowmDDBKGnpoZ0QJJkSOh3vJzjoTVmVRkEL0yMOAeOj5MGxn2rS8Ui8bS8MBgkcAIj30sFWEYUvEolmIFjyUjFRktOfxSHn6zTU4h6AaUDu8c7dXpvNlXcLS3UHf_v4BHv8T9RN0PXK6lPgR2UGTet3opwBG6_xZZ11-AYP6hcA
  priority: 102
  providerName: Unpaywall
Title Query-constraint-based mining of association rules for exploratory analysis of clinical datasets in the National Sleep Research Resource
URI https://link.springer.com/article/10.1186/s12911-018-0633-7
https://www.ncbi.nlm.nih.gov/pubmed/30066656
https://www.proquest.com/docview/2090498103
https://www.proquest.com/docview/2081542201
https://pubmed.ncbi.nlm.nih.gov/PMC6069291
https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-018-0633-7
https://doaj.org/article/4a14c141ae3f4a15ada9e9afd7681e07
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCO)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: M48
  dateStart: 20010401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1472-6947
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017835
  issn: 1472-6947
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA66gpcH8W51HSIIgkvZtkna9HFm2HERZlhXB0ZfQpoLLtTOMBdk_4E_25M27U4Vdl98Ce3ktDQ5J-d8mXMJQu9okXHFIxla0P0h1SwJc5lCQzVlilNNlMt3ns7S0zn9tGCLvaO-XExYUx64mbhjKmOqYhpLQyxcM6llbnJpNeDk2DR55BHP282U9x-4_zO8DzPm6fEGrFqdP8ZDMMkkzHpWqC7W_69K3rNJf8dLdk7TB-jerlrJy1-yLPfs0uQReugBJR42A3mMbpnqCbo79S7zp-j3551ZX4bK4UB3HMQ2dIZL45_1yRB4abG84hBe70qzwQBksamD82ofPJa-comjblMpsYst3ZjtBl9UGFAk9hW2S_ylNGaF25A-3DoInqH55OTr-DT0xy-EKo3INlS2iJ11t6pg1hIdy6Lg1sAWR8rUyDxnjBXMSJvEklNLoYekXFENeiHXCSXP0UG1rMxLhIF9SZYYKgmPKLyLS5ZJTXQRSaYAowYoatkhlK9N7uakFPUehaei4aAADgrHQZEF6EP3yKopzHEd8cjxuCN0NbXrH0DShJc0cZOkBei9kxDhVj58nJI-gQGG6GpoiSGjGQNIkMcBOuxRwopV_e5WxoTXGBuRRDls1ngckQC97brdky4KrjLLnaPhgHgTwGwBetGIZDck4sAjgPMAZT1h7Y2531Nd_KjricMeFkAyvPOoFeurz7pmSo86yb-ZAa_-BwNeo_tJvYSzMCGH6GC73pk3AAm3xQDdzhYZtHzycYDujE5mZ-dwN07Hg1ovQDulHNrz0Xfon8_Oht_-AMpzZaA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgcEG8CBYwEQqKySGI7cQ4IlUe1pd1KiFbam-v4AZVCdtnsqtp_wK_hNzLOJtkGpOXUSxTFjmVnxjPfZMYzCL1geSq0CBVxIPsJMzwmmUrgwgzjWjBDtT_vPDxKBifs84iPNtDv9iyMD6tsZWItqM1Y-3_kYKRnAGZFFNJ3k5_EV43y3tW2hMaSLQ7s4hxMturt_keg78s43vt0_GFAmqoCRCchnRHt8sgrLadz7hw1kcpz4Swgd6USq7KMc55zq1wcKcEcgxaaCM0MsHtmYkZh3CvoKqMgS2D_pKPOwIv8X5TGcxqJ5E0FurQ-tSYIAAFK0p7uq0sE_KsILmjCv6M0O1ftDbQ1Lydqca6K4oI23LuFbjYwFu8u-e422rDlHXRt2Djq76JfX-Z2uiDao09fhGJGvLo0-EddjwKPHVYrvsDTeWErDPAZ2zoksPb8Y9XkS_G92wOc2Ee0VnZW4bMSA3bFTV7vAn8trJ3gNpAQt26Je-jkUshzH22W49I-RJhFKk5jyxQVIYOxhOKpMtTkoeIakHGAwpYcUjcZ0f03KWRtGYlELikogYLSU1CmAXrdvTJZpgNZ1_m9p3HX0Wfyrh-Mp99kIxgkUxHTEUzVUgf3XBmV2Uw5A3ZgZEMY5JXnEOnlDUxOq-bYBCzRZ-6Su5ylHIBIFgVou9cT5ITuN7c8Jhs5VcnVrgrQ867Zv-lj70o7nvs-AnB2DEgxQA-WLNktiXrICiZBgNIes_bW3G8pz77XWczBcgZoDmPutGy9mtaaT7rTcf7_CfBo_ZKfoa3B8fBQHu4fHTxG1-N6o6Ykpttoczad2ycAN2f503qPY3R62ULlD7kvknk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagSKU8IG4CBYyEhERlNYntxHksC6tytAJBpb5Zjg-olGZXm6xQ_wE_m3HipA2gIl6iVXzIzsx4vtkZzyD0gpW50CJWxMHZT5jhKSlUBg9mGNeCGar9feeDw2z_iL0_5sehzmkzRLsPLsn-ToPP0lS3u0vjehEX2W4DWqq7DyYIqFhK8qvoGgPl5ksYzLLZ6Ebwf2sEV-Zfh02UUZez_8-T-YJq-j1scvSd3kDX1_VSnf1QVXVBPc1voZsBV-K9nhFuoyu2voM2D4Ln_C76-XltV2dEezjoq0K0xOsvg0-7AhF44bA6JxRerSvbYMCz2HYxep0rHquQwMT3Hm5UYh9i2ti2wSc1BjCJQ6LtCn-prF3iIbIPD36Ce-ho_vbrbJ-EKgxEZzFtiXZl4pW80yV3jppElaVwFiwdpTKrioJzXnKrXJoowRyDFpoJzQwcD4VJGb2PNupFbR8izBKV5qllioqYwVxC8VwZaspYcQ1QNULxQA6pQ4py_00q2ZkqIpM9BSVQUHoKyjxCr8Yhyz4_x2WdX3sajx19au3uxWL1TQZJlUwlTCewVEsd_ObKqMIWyhkwzBIbwyQvPYdIfwDA4rQK9xhgiz6VltzjLOeADIokQtuTniC4eto88JgMB0cj07gAm00kMY3Q87HZj_TBcLVdrH0fAcA3BegWoQc9S45boh5DAkaPUD5h1smepy31yfcurTiYsoCVYc6dga3Pl3XJJ90ZOf_fBHj0X3M_Q5uf3szlx3eHHx6jrbQT25ykdBtttKu1fQJosC2fdhL_CyTtWCA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Za9wwEBbpBno89D7cpkWFQqHBG9uSbPlxWxpCIaFXIH0yso42rNe7rG1K-gv6szuSj6zTklLoy2JWIyON5_gGzYwQekHzhEseCN-A7fepYpGfihh-qKJMcqqItPXOh0fxwTF9d8JOttDHvhYmX0h7qOxKcZS9ZWYh5tPNSvTCmW94kPO9lTKt1vN4rwLH5UrEuA9el_jJFbQdM8DnE7R9fPR-9sWVGSWRH6c06Y43_zhv5KBcH__frfWGu7qYSjmcp95A15pyJc6-i6LYcFn7t1DVb7bNVJlPmzqfyh8X-kD-X27cRjc7hItnrUjeQVu6vIuuHnZn-PfQzw-NXp_50gJTez9F7VtPqvDCXVWBlwaLc5HB66bQFYaVYe2yBV1SABZdKxVL3dd2YpvsWum6wqclBliLu5bfBf5UaL3CfY4h7k8s7qPj_bef3xz43X0QvowDUvvS5KGFG0bmzBiiQpHn3GiIuYSItUhTxljOtDBRKDg1FEZIzCVVYKhSFVHyAE3KZakfIUxDESWRpoLwgMK7uGCJUETlgWASQLOHgl4IMtk1S7c8KTIXNPE4azmcAYczy-Es8dCrYcqq7RRyGfFrK1kDoW3y7f5Yrr9mnc3IqAipDGGpmhh4ZkKJVKfCKAgRQx3AS15aucysfFgREF1FBWzRNvXKZowmDDBKGnpoZ0QJJkSOh3vJzjoTVmVRkEL0yMOAeOj5MGxn2rS8Ui8bS8MBgkcAIj30sFWEYUvEolmIFjyUjFRktOfxSHn6zTU4h6AaUDu8c7dXpvNlXcLS3UHf_v4BHv8T9RN0PXK6lPgR2UGTet3opwBG6_xZZ11-AYP6hcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Query-constraint-based+mining+of+association+rules+for+exploratory+analysis+of+clinical+datasets+in+the+National+Sleep+Research+Resource&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Rashmie+Abeysinghe&rft.au=Licong+Cui&rft.date=2018-07-23&rft.pub=BMC&rft.eissn=1472-6947&rft.volume=18&rft.issue=S2&rft.spage=89&rft.epage=100&rft_id=info:doi/10.1186%2Fs12911-018-0633-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a14c141ae3f4a15ada9e9afd7681e07
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon