Query-constraint-based mining of association rules for exploratory analysis of clinical datasets in the National Sleep Research Resource
Background Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield...
Saved in:
| Published in | BMC medical informatics and decision making Vol. 18; no. Suppl 2; pp. 58 - 100 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
23.07.2018
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1472-6947 1472-6947 |
| DOI | 10.1186/s12911-018-0633-7 |
Cover
| Abstract | Background
Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics.
Methods
We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint.
Results
Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules.
Conclusions
QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems. |
|---|---|
| AbstractList | Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics.BACKGROUNDAssociation Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics.We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint.METHODSWe introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint.Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules.RESULTSApplying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules.QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems.CONCLUSIONSQARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems. Background Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics. Methods We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint. Results Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules. Conclusions QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems. Abstract Background Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics. Methods We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint. Results Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules. Conclusions QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems. Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics. We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint. Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules. QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems. BackgroundAssociation Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics.MethodsWe introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint.ResultsApplying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules.ConclusionsQARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems. |
| ArticleNumber | 58 |
| Audience | Academic |
| Author | Abeysinghe, Rashmie Cui, Licong |
| Author_xml | – sequence: 1 givenname: Rashmie surname: Abeysinghe fullname: Abeysinghe, Rashmie organization: Department of Computer Science – sequence: 2 givenname: Licong surname: Cui fullname: Cui, Licong email: licong.cui@uky.edu organization: Department of Computer Science, Institute for Biomedical Informatics |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30066656$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUttu1DAQjVARvcAH8IIs8cJLip3YTvKCVFVcKlUgbs_WxBlvXXntxU4K-wd8Ns7u0psAIT945DnnjGfOHBZ7PngsiqeMHjPWypeJVR1jJWVtSWVdl82D4oDxpiplx5u9W_F-cZjSJaWsaWvxqNivKZVSCnlQ_Pw4YVyXOvg0RrB-LHtIOJCl9dYvSDAEUgrawmiDJ3FymIgJkeCPlQsRxhDXBDy4dbJpRmuXiRocGWDMQmMi1pPxAsn7jUJOfHaIK_IJE0LUF3MQpqjxcfHQgEv4ZHcfFV_fvP5y-q48__D27PTkvNSS1mOpTc-YqJjRvTCmHhj0fWtQ8BZAInSdEKIXCKZi0HLDc6aWreYD5bQbKl4fFWdb3SHApVpFu4S4VgGs2jyEuFAQR6sdKg6Ma8YZYG1yLGCADjswQyNbhrTJWtVWa_IrWH8H564FGVWzRWprkcoWqdkiNZNebUmrqV_ioNHnwbs7P7mb8fZCLcKVklR2WSwLvNgJxPBtwjSqpU0anQOPYUqqoi0TvKroDH1-D3qZh51dmFEd5V3LaH2DWkDu2noTcl09i6oTwRvBarope_wHVD4DLm3eHzQ2v98hPLvd6HWHv5cvA9gWoGNIKaL5r-k19zjajpvVmtfX_ZO5MyvlKn6B8WYWfyf9AjqgDuo |
| CitedBy_id | crossref_primary_10_1016_j_smrv_2021_101529 crossref_primary_10_1186_s12911_018_0624_8 crossref_primary_10_1016_j_imu_2023_101345 crossref_primary_10_3390_electronics13040759 crossref_primary_10_1109_TAI_2022_3171530 crossref_primary_10_1109_TBDATA_2022_3175428 |
| Cites_doi | 10.1109/JTEHM.2013.2290113 10.1080/02770900600567056 10.1016/S0735-1097(83)80084-9 10.14740/jocmr3352w 10.1016/j.jacc.2007.09.033 10.1038/nrg3208 10.1080/08039480310000824 10.1093/eurheartj/ehu342 10.1513/AnnalsATS.201604-317OC 10.1007/s12013-013-9791-5 10.1016/j.rmed.2013.11.006 10.1016/B978-0-12-273903-3.50015-8 10.4082/kjfm.2013.34.4.228 10.1111/j.1751-7176.2011.00508.x 10.1007/s11892-014-0473-5 10.1345/aph.1L015 10.1371/journal.pone.0005552 10.1007/s10741-011-9245-3 10.1155/2016/1958981 10.1145/360402.360421 10.1097/00004872-198710000-00009 10.1007/s40256-015-0128-1 10.1016/j.ijporl.2009.09.026 10.1016/S0278-5846(01)00150-6 10.1080/080370501753400610 10.1109/TKDE.2003.1245290 10.1097/00005344-198900133-00009 10.1056/NEJM199503093321003 10.2174/157489011001160111154536 10.1517/14656566.2013.808332 10.1016/S0140-6736(00)04067-8 10.1109/TITB.2006.864475 10.1016/j.sleep.2007.11.005 10.1016/j.amjhyper.2007.03.007 10.1097/MD.0000000000000590 10.7326/0003-4819-144-10-200605160-00125 10.1016/S0140-6736(85)91672-1 10.5665/sleep.5774 10.1097/00006842-197703000-00008 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88C 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M0T M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12911-018-0633-7 |
| DatabaseName | Springer Nature Link CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database (ProQuest) Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1472-6947 |
| EndPage | 100 |
| ExternalDocumentID | oai_doaj_org_article_4a14c141ae3f4a15ada9e9afd7681e07 10.1186/s12911-018-0633-7 PMC6069291 A547513091 30066656 10_1186_s12911_018_0633_7 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R24 HL114473 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR ITC K6V K7- KQ8 LK8 M0T M1P M48 M7P M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADTOC AHSBF C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c603t-cfb11521fcb5ff3d1abb8fe548aa6ea99555b5eaf21a84f4e54368c4d0409d243 |
| IEDL.DBID | DOA |
| ISSN | 1472-6947 |
| IngestDate | Fri Oct 03 12:46:10 EDT 2025 Sun Oct 26 03:42:37 EDT 2025 Tue Sep 30 16:23:11 EDT 2025 Fri Sep 05 07:22:14 EDT 2025 Tue Oct 07 05:22:30 EDT 2025 Mon Oct 20 22:16:21 EDT 2025 Mon Oct 20 16:04:35 EDT 2025 Thu Apr 03 07:02:50 EDT 2025 Wed Oct 01 01:55:10 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Sat Sep 06 07:30:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 2 |
| Keywords | National sleep research resource Exploratory data analysis Query-constraint-based association rule mining |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c603t-cfb11521fcb5ff3d1abb8fe548aa6ea99555b5eaf21a84f4e54368c4d0409d243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/4a14c141ae3f4a15ada9e9afd7681e07 |
| PMID | 30066656 |
| PQID | 2090498103 |
| PQPubID | 42572 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4a14c141ae3f4a15ada9e9afd7681e07 unpaywall_primary_10_1186_s12911_018_0633_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6069291 proquest_miscellaneous_2081542201 proquest_journals_2090498103 gale_infotracmisc_A547513091 gale_infotracacademiconefile_A547513091 pubmed_primary_30066656 crossref_primary_10_1186_s12911_018_0633_7 crossref_citationtrail_10_1186_s12911_018_0633_7 springer_journals_10_1186_s12911_018_0633_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-23 |
| PublicationDateYYYYMMDD | 2018-07-23 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-23 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC medical informatics and decision making |
| PublicationTitleAbbrev | BMC Med Inform Decis Mak |
| PublicationTitleAlternate | BMC Med Inform Decis Mak |
| PublicationYear | 2018 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | P Fournier-Viger (633_CR13) 2012 MA Parikh (633_CR37) 2017; 14 DA Dean (633_CR4) 2016; 39 LC Stene (633_CR46) 2001; 357 633_CR44 C Ordonez (633_CR9) 2006; 10 SG Thompson (633_CR32) 1995; 332 633_CR43 X Wang (633_CR3) 2004 A Sogut (633_CR45) 2009; 73 CW Cheng (633_CR18) 2013; 1 A Agrawal (633_CR15) 2011 J Albishri (633_CR57) 2013; 17 S Araki (633_CR22) 2015; 73 FG Dunn (633_CR41) 1983; 1 J Han (633_CR29) 2011 AA Badar (633_CR33) 2014; 35 P Fournier-Viger (633_CR16) 2016 P Fournier-Viger (633_CR12) 2012 PB Jensen (633_CR2) 2012; 13 RL Mikkelsen (633_CR49) 2004; 58 JJ Strik (633_CR53) 2001; 25 B Ivanovic (633_CR48) 2015; 15 S Kotsiantis (633_CR11) 2006; 32 P Rossignol (633_CR20) 2013; 14 JM Yoon (633_CR36) 2013; 34 JL Izzo (633_CR25) 2011; 13 EK Chowdhury (633_CR26) 2015; 94 L Wilhelmsen (633_CR58) 1987; 5 A Ahmad (633_CR42) 2018; 10 B Chaudhry (633_CR1) 2006; 144 SU Amin (633_CR17) 2013; 2 D Hristovski (633_CR8) 2001; 2 D Sehra (633_CR28) 2015; 10 X Hu (633_CR14) 2010; 25 RH Becker (633_CR19) 1989; 13 PM Thulé (633_CR27) 2014; 14 L Zheng (633_CR39) 2014; 69 OA Minai (633_CR38) 2014; 108 GM Felker (633_CR21) 2012; 17 633_CR59 J Hipp (633_CR10) 2000; 2 R Abeysinghe (633_CR31) 2017 C Jesus (633_CR34) 2015; 27 M Koskenvuo (633_CR40) 1985; 325 633_CR6 X Xiong (633_CR23) 2016; 2016 633_CR5 M Kubat (633_CR30) 2003; 15 BL Salako (633_CR55) 2000; 29 BJ Shen (633_CR54) 2008; 51 R Agrawal (633_CR7) 1993 B Al-Shawwa (633_CR47) 2006; 43 A Hammerman (633_CR35) 2008; 42 F Rezaeitalab (633_CR52) 2014; 19 J Kim (633_CR51) 2007; 20 B Waeber (633_CR56) 2001; 10 F Valham (633_CR24) 2009; 10 A Grimsrud (633_CR50) 2009; 4 |
| References_xml | – volume-title: ACM SIGMOD Record year: 1993 ident: 633_CR7 – volume: 17 start-page: 171 year: 2013 ident: 633_CR57 publication-title: Anesth Pain Intens Care – volume: 1 start-page: 400110 year: 2013 ident: 633_CR18 publication-title: IEEE J Transl Eng Health Med doi: 10.1109/JTEHM.2013.2290113 – volume-title: 2004 Canadian Conference on Electrical and Computer Engineering year: 2004 ident: 633_CR3 – volume: 43 start-page: 231 issue: 3 year: 2006 ident: 633_CR47 publication-title: J Asthma doi: 10.1080/02770900600567056 – volume: 32 start-page: 71 issue: 1 year: 2006 ident: 633_CR11 publication-title: GESTS Int Trans Comput Sci Eng – volume: 1 start-page: 528 issue: 2 year: 1983 ident: 633_CR41 publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(83)80084-9 – volume: 10 start-page: 411 issue: 5 year: 2018 ident: 633_CR42 publication-title: J Clin Med Res doi: 10.14740/jocmr3352w – volume: 51 start-page: 113 issue: 2 year: 2008 ident: 633_CR54 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2007.09.033 – volume: 13 start-page: 395 issue: 6 year: 2012 ident: 633_CR2 publication-title: Nat Rev Genet doi: 10.1038/nrg3208 – ident: 633_CR5 – volume: 58 start-page: 65 issue: 1 year: 2004 ident: 633_CR49 publication-title: Nord J Psychiatry doi: 10.1080/08039480310000824 – volume-title: Joint European conference on machine learning and knowledge discovery in databases. year: 2016 ident: 633_CR16 – volume: 35 start-page: 3426 issue: 48 year: 2014 ident: 633_CR33 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehu342 – volume: 14 start-page: 649 issue: 5 year: 2017 ident: 633_CR37 publication-title: Ann Am Thorac Soc doi: 10.1513/AnnalsATS.201604-317OC – volume: 69 start-page: 209 issue: 2 year: 2014 ident: 633_CR39 publication-title: Cell Biochem Biophys doi: 10.1007/s12013-013-9791-5 – volume: 108 start-page: 482 issue: 3 year: 2014 ident: 633_CR38 publication-title: Respir Med doi: 10.1016/j.rmed.2013.11.006 – volume: 2 start-page: 218 issue: 1 year: 2013 ident: 633_CR17 publication-title: Int J Adv Res Comput Eng Technol (IJARCET) – ident: 633_CR43 doi: 10.1016/B978-0-12-273903-3.50015-8 – volume-title: Canadian Conference on Artificial Intelligence. year: 2012 ident: 633_CR12 – volume-title: 2011 IEEE 11th International Conference on Data Mining Workshops (ICDMW) year: 2011 ident: 633_CR15 – volume: 34 start-page: 228 issue: 4 year: 2013 ident: 633_CR36 publication-title: Korean J Fam Med doi: 10.4082/kjfm.2013.34.4.228 – volume: 29 start-page: 47 issue: 1 year: 2000 ident: 633_CR55 publication-title: Afr J Med Med Sci – volume-title: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2017 ident: 633_CR31 – volume: 13 start-page: 667 issue: 9 year: 2011 ident: 633_CR25 publication-title: J Clin Hypertens doi: 10.1111/j.1751-7176.2011.00508.x – volume: 14 start-page: 473 issue: 4 year: 2014 ident: 633_CR27 publication-title: Curr Diabetes Rep doi: 10.1007/s11892-014-0473-5 – volume-title: Data mining: concepts and techniques. year: 2011 ident: 633_CR29 – volume: 42 start-page: 1316 issue: 9 year: 2008 ident: 633_CR35 publication-title: Ann Pharmacother doi: 10.1345/aph.1L015 – volume: 4 start-page: e5552 issue: 5 year: 2009 ident: 633_CR50 publication-title: PLoS ONE doi: 10.1371/journal.pone.0005552 – volume: 17 start-page: 305 issue: 2 year: 2012 ident: 633_CR21 publication-title: Heart Fail Rev doi: 10.1007/s10741-011-9245-3 – volume: 2016 start-page: 1958981 year: 2016 ident: 633_CR23 publication-title: J Diabetes Res doi: 10.1155/2016/1958981 – volume: 73 start-page: 1885 issue: 11 year: 2015 ident: 633_CR22 publication-title: Japan J Clin Med – volume: 2 start-page: 58 issue: 1 year: 2000 ident: 633_CR10 publication-title: ACM SIGKDD Explor Newsl doi: 10.1145/360402.360421 – volume: 5 start-page: 561 issue: 5 year: 1987 ident: 633_CR58 publication-title: J Hypertens doi: 10.1097/00004872-198710000-00009 – volume: 27 start-page: S423 issue: Suppl 1 year: 2015 ident: 633_CR34 publication-title: Psychiatr Danub – volume: 15 start-page: 403 issue: 6 year: 2015 ident: 633_CR48 publication-title: Am J Cardiovasc Drugs doi: 10.1007/s40256-015-0128-1 – volume: 73 start-page: 1769 issue: 12 year: 2009 ident: 633_CR45 publication-title: Int J Pediatr Otorhinolaryngol doi: 10.1016/j.ijporl.2009.09.026 – volume: 2 start-page: 1344 issue: 2 year: 2001 ident: 633_CR8 publication-title: Stud Health Technol Inform – volume: 25 start-page: 879 issue: 4 year: 2001 ident: 633_CR53 publication-title: Prog Neuro-Psychopharmacol Biol Psychiatry doi: 10.1016/S0278-5846(01)00150-6 – volume: 10 start-page: 311 issue: 5-6 year: 2001 ident: 633_CR56 publication-title: Blood Press doi: 10.1080/080370501753400610 – volume: 15 start-page: 1522 issue: 6 year: 2003 ident: 633_CR30 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2003.1245290 – volume: 25 start-page: 207 issue: 2 year: 2010 ident: 633_CR14 publication-title: Int J Intell Syst – ident: 633_CR59 – volume: 13 start-page: S35 year: 1989 ident: 633_CR19 publication-title: J Cardiovasc Pharmacol doi: 10.1097/00005344-198900133-00009 – volume: 332 start-page: 635 issue: 10 year: 1995 ident: 633_CR32 publication-title: N Engl J Med doi: 10.1056/NEJM199503093321003 – volume: 10 start-page: 4 issue: 1 year: 2015 ident: 633_CR28 publication-title: Recent Patents Cardiovasc Drug Discov doi: 10.2174/157489011001160111154536 – volume: 14 start-page: 1641 issue: 12 year: 2013 ident: 633_CR20 publication-title: Expert Opin Pharmacother doi: 10.1517/14656566.2013.808332 – volume: 357 start-page: 607 issue: 9256 year: 2001 ident: 633_CR46 publication-title: The Lancet doi: 10.1016/S0140-6736(00)04067-8 – volume: 10 start-page: 334 issue: 2 year: 2006 ident: 633_CR9 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2006.864475 – volume: 10 start-page: 112 issue: 1 year: 2009 ident: 633_CR24 publication-title: Sleep Med doi: 10.1016/j.sleep.2007.11.005 – volume: 20 start-page: 819 issue: 8 year: 2007 ident: 633_CR51 publication-title: Am J Hypertens doi: 10.1016/j.amjhyper.2007.03.007 – volume: 19 start-page: 205 issue: 3 year: 2014 ident: 633_CR52 publication-title: J Res Med Sci: Off J Isfahan Univ Med Sci – volume: 94 start-page: e590 issue: 9 year: 2015 ident: 633_CR26 publication-title: Medicine doi: 10.1097/MD.0000000000000590 – volume: 144 start-page: 742 issue: 10 year: 2006 ident: 633_CR1 publication-title: Ann Intern Med doi: 10.7326/0003-4819-144-10-200605160-00125 – volume: 325 start-page: 893 issue: 8434 year: 1985 ident: 633_CR40 publication-title: Lancet doi: 10.1016/S0140-6736(85)91672-1 – ident: 633_CR6 – volume: 39 start-page: 1151 issue: 5 year: 2016 ident: 633_CR4 publication-title: Sleep doi: 10.5665/sleep.5774 – ident: 633_CR44 doi: 10.1097/00006842-197703000-00008 – volume-title: International Symposium on Methodologies for Intelligent Systems. year: 2012 ident: 633_CR13 |
| SSID | ssj0017835 |
| Score | 2.2622201 |
| Snippet | Background
Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential... Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among... BackgroundAssociation Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships... Abstract Background Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 58 |
| SubjectTerms | Algorithms Angina pectoris Anxiety Asthma Chronic fatigue syndrome Chronic obstructive pulmonary disease Clinical trials Data analysis Data mining Data Mining - methods Data processing Datasets Datasets as Topic Diabetes Exploratory data analysis Gender Genetic transformation Health Informatics Heart attacks Humans Hypertension Hypotheses Information Systems and Communication Service Innovations Knowledge discovery Management Management of Computing and Information Systems Medical records Medical research Medicine Medicine & Public Health Medicine, Experimental National sleep research resource Patients Physiology Queries Query-constraint-based association rule mining Semantics Sleep Sleep disorders Stroke Technology application |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bi9UwEA7rWfDyIN6trhJBEFyCbZO06YPIruyyCHvwtrBvIU1SXajt8VyQ_Qf-bGd60p6twvGllCYNSWcy801nMkPIS1HmyqrYsApkPxNOpqwwGVyEE9Iq4bjF886n0-zkTHw4l-c7ZNqfhcGwyl4mdoLatRb_kYORXgCYVUnM381-Mqwahd7VvoSGCaUV3Nsuxdg1sptiZqwJ2T08mn78PPgV8D9H8G0mKnuzAG3XnStTDFQ1Z_lIO3VJ_P8V1Vd01d9xlIMz9Ra5sWpm5vKXqesr-ur4DrkdgCY9WHPGXbLjm3vk-mlwpd8nvz-t_PySWcSHWCZiyVChOfqjqxhB24qaDeXofFX7BQWAS30XtNf55qkJGU2wd3_EkmLM6cIvF_SioYAuaci8XdMvtfcz2of60d5x8ICcHR99fX_CQlkGZrOYL5mtygS1fmVLWVXcJaYsVeXB9DEm86YopJSl9KZKE6NEJaCFZ8oKB_KicKngD8mkaRv_mFCRmDRPvTBcxQLGUkbmxnFXxkZawK4RiXtyaBtyluM3qXVnu6hMrymogYIaKajziLweXpmtE3Zs63yINB46Yq7t7kE7_6bD1tXCJMImMFXPK7iXxpnCF6ZyYKklPoZBXiGHaJQIMDlrwsEGWCLm1tIHUuQSoEKRRGRv1BN2sh039zymgyRZ6A3fR-TF0IxvYnRc49sV9lGAhFPAchF5tGbJYUkcQSWA9ojkI2YdrXnc0lx87_KMg20L4BnG3O_ZejOtLZ90f-D8_xPgyfYlPyU3025z5izle2SynK_8MwCBy_J52Nl_AIoxWvY priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_nCX48iN9WT4kgCB452yZp0weRUzwOYQXRhXsL03zoQe2u2110_wP_bCfdtnvV43zxZVk2k5BkZjK_2UlmCHkmylwZFQPzePYzYWXKCsjwQ1ghjRKWm_DeefIhO56K9yfyZIf05a26DWzOde1CPanpojr4-X39GhX-VavwKnvZoM1qX4cphgaXs_wSuYyGqgiVHCZiG1QIf3J0gc1zu41MU5vB_-9z-oyh-vMS5RBJvU6uruo5rH9AVZ0xVkc3yY0OZdLDjVjcIjuuvk2uTLo4-h3y6-PKLdbMBHAYakQsWbBmln5ry0XQmaewZRtdrCrXUES31LU39trAPIUunUmg7t9X0nDhtHHLhp7WFKEl7dJuV_RT5dyc9vf8aB81uEumR-8-vz1mXU0GZrKYL5nxZRJMvjel9J7bBMpSeYd-D0DmoCiklKV04NMElPACW3imjLB4WBQ2Ffwe2a1ntXtAqEggzVMngKtY4FgKZA6W2zIGaRC4RiTu2aFNl7A87EmlW8dFZXrDQY0c1IGDOo_Ii6HLfJOt4yLiN4HHA2FItN3-MFt80Z3eagGJMAlO1XGP3yVYKFwB3qKblrgYB3keJEQHAcXJGeheNeASQ2ItfShFLhEnFElE9kaUqMZm3NzLmO61QKcoxKJQScwj8nRoDj3D1bjazVaBRiEMThHIReT-RiSHJfGAKBGxRyQfCetozeOW-vRrm2QcHVtEzjjmfi_W22ldsKX7g-T_mwEP_wcDHpFraavCOUv5HtldLlbuMeLEZfmk1f7fisBk0w priority: 102 providerName: Scholars Portal – databaseName: Springer Nature Link dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEA66gpcH8b7VVSIIgkuwbZI2fVwXl0VYQXRh38I0F1yoPYdzYdl_4M92kpN2T1VWfCmHZhKSzkzmmzOZCSFvRFsro3JgHvd-JqwsWQMVPoQV0ihhuQn5ziefq-NT8elMnqVi0SEXZjt-X6jq_RLtUcz8UgyNKWf1TXILbVQV47LV4RgwCH9gpKDlX7tNzE6szv_nHrxlhH4_IDlGSe-RO-t-DpcX0HVbhujoAbmfECQ92LD8Ibnh-kfk9kmKkT8mP7-s3eKSmQD8wv0PKxYslaU_4lUQdOYpXLGELtadW1JErtTF03gx6E4hlSoJ1EPuJA2HSZdutaTnPUXYSFNJ7Y5-7Zyb0-EMHx0iAk_I6dHHb4fHLN23wEyV8xUzvi2COfemld5zW0DbKu_QpwGoHDSNlLKVDnxZgBJeYAuvlBEWN4LGloI_JTv9rHe7hIoCyrp0ArjKBY6lQNZguW1zkAZBaUbygR3apGLk4Zt0OjolqtIbDmrkoA4c1HVG3o1d5ptKHNcRfwg8HglDEe34AmVLJ53UAgphCpyq4x5_S7DQuAa8RRescDkO8jZIiA6qjpMzkDIWcImhaJY-kKKWiAGaIiN7E0pUUTNtHmRMpy1iqcu8Qe9MFTnPyOuxOfQMx956N1sHGoUQt0SQlpFnG5Ecl8QDWkQ0npF6IqyTNU9b-vPvsYA4Oq2IinHM_UGsr6Z1zSfdHyX_3wx4_l9jvyB3y6irNSv5HtlZLdbuJYK9VfsqqvkvRulM6g priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Za9wwEBbpBno89D7cpkWFQqHBG9uSbPlxWxpCIaFXIH0yso42rNe7rG1K-gv6szuSj6zTklLoy2JWIyON5_gGzYwQekHzhEseCN-A7fepYpGfihh-qKJMcqqItPXOh0fxwTF9d8JOttDHvhYmX0h7qOxKcZS9ZWYh5tPNSvTCmW94kPO9lTKt1vN4rwLH5UrEuA9el_jJFbQdM8DnE7R9fPR-9sWVGSWRH6c06Y43_zhv5KBcH__frfWGu7qYSjmcp95A15pyJc6-i6LYcFn7t1DVb7bNVJlPmzqfyh8X-kD-X27cRjc7hItnrUjeQVu6vIuuHnZn-PfQzw-NXp_50gJTez9F7VtPqvDCXVWBlwaLc5HB66bQFYaVYe2yBV1SABZdKxVL3dd2YpvsWum6wqclBliLu5bfBf5UaL3CfY4h7k8s7qPj_bef3xz43X0QvowDUvvS5KGFG0bmzBiiQpHn3GiIuYSItUhTxljOtDBRKDg1FEZIzCVVYKhSFVHyAE3KZakfIUxDESWRpoLwgMK7uGCJUETlgWASQLOHgl4IMtk1S7c8KTIXNPE4azmcAYczy-Es8dCrYcqq7RRyGfFrK1kDoW3y7f5Yrr9mnc3IqAipDGGpmhh4ZkKJVKfCKAgRQx3AS15aucysfFgREF1FBWzRNvXKZowmDDBKGnpoZ0QJJkSOh3vJzjoTVmVRkEL0yMOAeOj5MGxn2rS8Ui8bS8MBgkcAIj30sFWEYUvEolmIFjyUjFRktOfxSHn6zTU4h6AaUDu8c7dXpvNlXcLS3UHf_v4BHv8T9RN0PXK6lPgR2UGTet3opwBG6_xZZ11-AYP6hcA priority: 102 providerName: Unpaywall |
| Title | Query-constraint-based mining of association rules for exploratory analysis of clinical datasets in the National Sleep Research Resource |
| URI | https://link.springer.com/article/10.1186/s12911-018-0633-7 https://www.ncbi.nlm.nih.gov/pubmed/30066656 https://www.proquest.com/docview/2090498103 https://www.proquest.com/docview/2081542201 https://pubmed.ncbi.nlm.nih.gov/PMC6069291 https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-018-0633-7 https://doaj.org/article/4a14c141ae3f4a15ada9e9afd7681e07 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: KQ8 dateStart: 20010401 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCO) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1472-6947 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: M48 dateStart: 20010401 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1472-6947 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017835 issn: 1472-6947 databaseCode: C6C dateStart: 20010112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA66gpcH8W51HSIIgkvZtkna9HFm2HERZlhXB0ZfQpoLLtTOMBdk_4E_25M27U4Vdl98Ce3ktDQ5J-d8mXMJQu9okXHFIxla0P0h1SwJc5lCQzVlilNNlMt3ns7S0zn9tGCLvaO-XExYUx64mbhjKmOqYhpLQyxcM6llbnJpNeDk2DR55BHP282U9x-4_zO8DzPm6fEGrFqdP8ZDMMkkzHpWqC7W_69K3rNJf8dLdk7TB-jerlrJy1-yLPfs0uQReugBJR42A3mMbpnqCbo79S7zp-j3551ZX4bK4UB3HMQ2dIZL45_1yRB4abG84hBe70qzwQBksamD82ofPJa-comjblMpsYst3ZjtBl9UGFAk9hW2S_ylNGaF25A-3DoInqH55OTr-DT0xy-EKo3INlS2iJ11t6pg1hIdy6Lg1sAWR8rUyDxnjBXMSJvEklNLoYekXFENeiHXCSXP0UG1rMxLhIF9SZYYKgmPKLyLS5ZJTXQRSaYAowYoatkhlK9N7uakFPUehaei4aAADgrHQZEF6EP3yKopzHEd8cjxuCN0NbXrH0DShJc0cZOkBei9kxDhVj58nJI-gQGG6GpoiSGjGQNIkMcBOuxRwopV_e5WxoTXGBuRRDls1ngckQC97brdky4KrjLLnaPhgHgTwGwBetGIZDck4sAjgPMAZT1h7Y2531Nd_KjricMeFkAyvPOoFeurz7pmSo86yb-ZAa_-BwNeo_tJvYSzMCGH6GC73pk3AAm3xQDdzhYZtHzycYDujE5mZ-dwN07Hg1ovQDulHNrz0Xfon8_Oht_-AMpzZaA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSgcEG8CBYwEQqKySGI7cQ4IlUe1pd1KiFbam-v4AZVCdtnsqtp_wK_hNzLOJtkGpOXUSxTFjmVnxjPfZMYzCL1geSq0CBVxIPsJMzwmmUrgwgzjWjBDtT_vPDxKBifs84iPNtDv9iyMD6tsZWItqM1Y-3_kYKRnAGZFFNJ3k5_EV43y3tW2hMaSLQ7s4hxMturt_keg78s43vt0_GFAmqoCRCchnRHt8sgrLadz7hw1kcpz4Swgd6USq7KMc55zq1wcKcEcgxaaCM0MsHtmYkZh3CvoKqMgS2D_pKPOwIv8X5TGcxqJ5E0FurQ-tSYIAAFK0p7uq0sE_KsILmjCv6M0O1ftDbQ1Lydqca6K4oI23LuFbjYwFu8u-e422rDlHXRt2Djq76JfX-Z2uiDao09fhGJGvLo0-EddjwKPHVYrvsDTeWErDPAZ2zoksPb8Y9XkS_G92wOc2Ee0VnZW4bMSA3bFTV7vAn8trJ3gNpAQt26Je-jkUshzH22W49I-RJhFKk5jyxQVIYOxhOKpMtTkoeIakHGAwpYcUjcZ0f03KWRtGYlELikogYLSU1CmAXrdvTJZpgNZ1_m9p3HX0Wfyrh-Mp99kIxgkUxHTEUzVUgf3XBmV2Uw5A3ZgZEMY5JXnEOnlDUxOq-bYBCzRZ-6Su5ylHIBIFgVou9cT5ITuN7c8Jhs5VcnVrgrQ867Zv-lj70o7nvs-AnB2DEgxQA-WLNktiXrICiZBgNIes_bW3G8pz77XWczBcgZoDmPutGy9mtaaT7rTcf7_CfBo_ZKfoa3B8fBQHu4fHTxG1-N6o6Ykpttoczad2ycAN2f503qPY3R62ULlD7kvknk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagSKU8IG4CBYyEhERlNYntxHksC6tytAJBpb5Zjg-olGZXm6xQ_wE_m3HipA2gIl6iVXzIzsx4vtkZzyD0gpW50CJWxMHZT5jhKSlUBg9mGNeCGar9feeDw2z_iL0_5sehzmkzRLsPLsn-ToPP0lS3u0vjehEX2W4DWqq7DyYIqFhK8qvoGgPl5ksYzLLZ6Ebwf2sEV-Zfh02UUZez_8-T-YJq-j1scvSd3kDX1_VSnf1QVXVBPc1voZsBV-K9nhFuoyu2voM2D4Ln_C76-XltV2dEezjoq0K0xOsvg0-7AhF44bA6JxRerSvbYMCz2HYxep0rHquQwMT3Hm5UYh9i2ti2wSc1BjCJQ6LtCn-prF3iIbIPD36Ce-ho_vbrbJ-EKgxEZzFtiXZl4pW80yV3jppElaVwFiwdpTKrioJzXnKrXJoowRyDFpoJzQwcD4VJGb2PNupFbR8izBKV5qllioqYwVxC8VwZaspYcQ1QNULxQA6pQ4py_00q2ZkqIpM9BSVQUHoKyjxCr8Yhyz4_x2WdX3sajx19au3uxWL1TQZJlUwlTCewVEsd_ObKqMIWyhkwzBIbwyQvPYdIfwDA4rQK9xhgiz6VltzjLOeADIokQtuTniC4eto88JgMB0cj07gAm00kMY3Q87HZj_TBcLVdrH0fAcA3BegWoQc9S45boh5DAkaPUD5h1smepy31yfcurTiYsoCVYc6dga3Pl3XJJ90ZOf_fBHj0X3M_Q5uf3szlx3eHHx6jrbQT25ykdBtttKu1fQJosC2fdhL_CyTtWCA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Za9wwEBbpBno89D7cpkWFQqHBG9uSbPlxWxpCIaFXIH0yso42rNe7rG1K-gv6szuSj6zTklLoy2JWIyON5_gGzYwQekHzhEseCN-A7fepYpGfihh-qKJMcqqItPXOh0fxwTF9d8JOttDHvhYmX0h7qOxKcZS9ZWYh5tPNSvTCmW94kPO9lTKt1vN4rwLH5UrEuA9el_jJFbQdM8DnE7R9fPR-9sWVGSWRH6c06Y43_zhv5KBcH__frfWGu7qYSjmcp95A15pyJc6-i6LYcFn7t1DVb7bNVJlPmzqfyh8X-kD-X27cRjc7hItnrUjeQVu6vIuuHnZn-PfQzw-NXp_50gJTez9F7VtPqvDCXVWBlwaLc5HB66bQFYaVYe2yBV1SABZdKxVL3dd2YpvsWum6wqclBliLu5bfBf5UaL3CfY4h7k8s7qPj_bef3xz43X0QvowDUvvS5KGFG0bmzBiiQpHn3GiIuYSItUhTxljOtDBRKDg1FEZIzCVVYKhSFVHyAE3KZakfIUxDESWRpoLwgMK7uGCJUETlgWASQLOHgl4IMtk1S7c8KTIXNPE4azmcAYczy-Es8dCrYcqq7RRyGfFrK1kDoW3y7f5Yrr9mnc3IqAipDGGpmhh4ZkKJVKfCKAgRQx3AS15aucysfFgREF1FBWzRNvXKZowmDDBKGnpoZ0QJJkSOh3vJzjoTVmVRkEL0yMOAeOj5MGxn2rS8Ui8bS8MBgkcAIj30sFWEYUvEolmIFjyUjFRktOfxSHn6zTU4h6AaUDu8c7dXpvNlXcLS3UHf_v4BHv8T9RN0PXK6lPgR2UGTet3opwBG6_xZZ11-AYP6hcA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Query-constraint-based+mining+of+association+rules+for+exploratory+analysis+of+clinical+datasets+in+the+National+Sleep+Research+Resource&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Rashmie+Abeysinghe&rft.au=Licong+Cui&rft.date=2018-07-23&rft.pub=BMC&rft.eissn=1472-6947&rft.volume=18&rft.issue=S2&rft.spage=89&rft.epage=100&rft_id=info:doi/10.1186%2Fs12911-018-0633-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a14c141ae3f4a15ada9e9afd7681e07 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon |