Artificial intelligence for direct-to-physician reporting of ambulatory electrocardiography

Developments in ambulatory electrocardiogram (ECG) technology have led to vast amounts of ECG data that currently need to be interpreted by human technicians. Here we tested an artificial intelligence (AI) algorithm for direct-to-physician reporting of ambulatory ECGs. Beat-by-beat annotation of 14,...

Full description

Saved in:
Bibliographic Details
Published inNature medicine Vol. 31; no. 3; pp. 925 - 931
Main Authors Johnson, L. S., Zadrozniak, P., Jasina, G., Grotek-Cuprjak, A., Andrade, J. G., Svennberg, E., Diederichsen, S. Z., McIntyre, W. F., Stavrakis, S., Benezet-Mazuecos, J., Krisai, P., Iakobishvili, Z., Laish-Farkash, A., Bhavnani, S., Ljungström, E., Bacevicius, J., van Vreeswijk, N. L., Rienstra, M., Spittler, R., Marx, J. A., Oraii, A., Miracle Blanco, A., Lozano, A., Mustafina, I., Zafeiropoulos, S., Bennett, R., Bisson, J., Linz, D., Kogan, Y., Glazer, E., Marincheva, G., Rahkovich, M., Shaked, E., Ruwald, M. H., Haugan, K., Węcławski, J., Radoslovich, G., Jamal, S., Brandes, A., Matusik, P. T., Manninger, M., Meyre, P. B., Blum, S., Persson, A., Måneheim, A., Hammarlund, P., Fedorowski, A., Wodaje, T., Lewinter, C., Juknevicius, V., Jakaite, R., Shen, C., Glotzer, T., Platonov, P., Engström, G., Benz, A. P., Healey, J. S.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.03.2025
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1078-8956
1546-170X
1546-170X
DOI10.1038/s41591-025-03516-x

Cover

Abstract Developments in ambulatory electrocardiogram (ECG) technology have led to vast amounts of ECG data that currently need to be interpreted by human technicians. Here we tested an artificial intelligence (AI) algorithm for direct-to-physician reporting of ambulatory ECGs. Beat-by-beat annotation of 14,606 individual ambulatory ECG recordings (mean duration = 14 ± 10 days) was performed by certified ECG technicians ( n  = 167) and an ensemble AI model, called DeepRhythmAI. To compare the performance of the AI model and the technicians, a random sample of 5,235 rhythm events identified by the AI model or by technicians, of which 2,236 events were identified as critical arrhythmias, was selected for annotation by one of 17 cardiologist consensus panels. The mean sensitivity of the AI model for the identification of critical arrhythmias was 98.6% (95% confidence interval (CI) = 97.7–99.4), as compared to 80.3% (95% CI = 77.3–83.3%) for the technicians. False-negative findings were observed in 3.2/1,000 patients for the AI model versus 44.3/1,000 patients for the technicians. Accordingly, the relative risk of a missed diagnosis was 14.1 (95% CI = 10.4–19.0) times higher for the technicians. However, a higher false-positive event rate was observed for the AI model (12 (interquartile range (IQR) = 6–74)/1,000 patient days) as compared to the technicians (5 (IQR = 2–153)/1,000 patient days). We conclude that the DeepRhythmAI model has excellent negative predictive value for critical arrhythmias, substantially reducing false-negative findings, but at a modest cost of increased false-positive findings. AI-only analysis to facilitate direct-to-physician reporting could potentially reduce costs and improve access to care and outcomes in patients who need ambulatory ECG monitoring. In a large-scale analysis of ambulatory electrocardiographic recordings, a deep learning algorithm had a substantially higher sensitivity for the detection of critical arrhythmias as compared to technicians, opening a path toward artificial intelligence-assisted direct-to-physician reporting of ambulatory electrocardiography results.
AbstractList Developments in ambulatory electrocardiogram (ECG) technology have led to vast amounts of ECG data that currently need to be interpreted by human technicians. Here we tested an artificial intelligence (AI) algorithm for direct-to-physician reporting of ambulatory ECGs. Beat-by-beat annotation of 14,606 individual ambulatory ECG recordings (mean duration = 14 ± 10 days) was performed by certified ECG technicians (n = 167) and an ensemble AI model, called DeepRhythmAI. To compare the performance of the AI model and the technicians, a random sample of 5,235 rhythm events identified by the AI model or by technicians, of which 2,236 events were identified as critical arrhythmias, was selected for annotation by one of 17 cardiologist consensus panels. The mean sensitivity of the AI model for the identification of critical arrhythmias was 98.6% (95% confidence interval (CI) = 97.7-99.4), as compared to 80.3% (95% CI = 77.3-83.3%) for the technicians. False-negative findings were observed in 3.2/1,000 patients for the AI model versus 44.3/1,000 patients for the technicians. Accordingly, the relative risk of a missed diagnosis was 14.1 (95% CI = 10.4-19.0) times higher for the technicians. However, a higher false-positive event rate was observed for the AI model (12 (interquartile range (IQR) = 6-74)/1,000 patient days) as compared to the technicians (5 (IQR = 2-153)/1,000 patient days). We conclude that the DeepRhythmAI model has excellent negative predictive value for critical arrhythmias, substantially reducing false-negative findings, but at a modest cost of increased false-positive findings. AI-only analysis to facilitate direct-to-physician reporting could potentially reduce costs and improve access to care and outcomes in patients who need ambulatory ECG monitoring.
Developments in ambulatory electrocardiogram (ECG) technology have led to vast amounts of ECG data that currently need to be interpreted by human technicians. Here we tested an artificial intelligence (AI) algorithm for direct-to-physician reporting of ambulatory ECGs. Beat-by-beat annotation of 14,606 individual ambulatory ECG recordings (mean duration = 14 ± 10 days) was performed by certified ECG technicians (n = 167) and an ensemble AI model, called DeepRhythmAI. To compare the performance of the AI model and the technicians, a random sample of 5,235 rhythm events identified by the AI model or by technicians, of which 2,236 events were identified as critical arrhythmias, was selected for annotation by one of 17 cardiologist consensus panels. The mean sensitivity of the AI model for the identification of critical arrhythmias was 98.6% (95% confidence interval (CI) = 97.7-99.4), as compared to 80.3% (95% CI = 77.3-83.3%) for the technicians. False-negative findings were observed in 3.2/1,000 patients for the AI model versus 44.3/1,000 patients for the technicians. Accordingly, the relative risk of a missed diagnosis was 14.1 (95% CI = 10.4-19.0) times higher for the technicians. However, a higher false-positive event rate was observed for the AI model (12 (interquartile range (IQR) = 6-74)/1,000 patient days) as compared to the technicians (5 (IQR = 2-153)/1,000 patient days). We conclude that the DeepRhythmAI model has excellent negative predictive value for critical arrhythmias, substantially reducing false-negative findings, but at a modest cost of increased false-positive findings. AI-only analysis to facilitate direct-to-physician reporting could potentially reduce costs and improve access to care and outcomes in patients who need ambulatory ECG monitoring.Developments in ambulatory electrocardiogram (ECG) technology have led to vast amounts of ECG data that currently need to be interpreted by human technicians. Here we tested an artificial intelligence (AI) algorithm for direct-to-physician reporting of ambulatory ECGs. Beat-by-beat annotation of 14,606 individual ambulatory ECG recordings (mean duration = 14 ± 10 days) was performed by certified ECG technicians (n = 167) and an ensemble AI model, called DeepRhythmAI. To compare the performance of the AI model and the technicians, a random sample of 5,235 rhythm events identified by the AI model or by technicians, of which 2,236 events were identified as critical arrhythmias, was selected for annotation by one of 17 cardiologist consensus panels. The mean sensitivity of the AI model for the identification of critical arrhythmias was 98.6% (95% confidence interval (CI) = 97.7-99.4), as compared to 80.3% (95% CI = 77.3-83.3%) for the technicians. False-negative findings were observed in 3.2/1,000 patients for the AI model versus 44.3/1,000 patients for the technicians. Accordingly, the relative risk of a missed diagnosis was 14.1 (95% CI = 10.4-19.0) times higher for the technicians. However, a higher false-positive event rate was observed for the AI model (12 (interquartile range (IQR) = 6-74)/1,000 patient days) as compared to the technicians (5 (IQR = 2-153)/1,000 patient days). We conclude that the DeepRhythmAI model has excellent negative predictive value for critical arrhythmias, substantially reducing false-negative findings, but at a modest cost of increased false-positive findings. AI-only analysis to facilitate direct-to-physician reporting could potentially reduce costs and improve access to care and outcomes in patients who need ambulatory ECG monitoring.
Developments in ambulatory electrocardiogram (ECG) technology have led to vast amounts of ECG data that currently need to be interpreted by human technicians. Here we tested an artificial intelligence (AI) algorithm for direct-to-physician reporting of ambulatory ECGs. Beat-by-beat annotation of 14,606 individual ambulatory ECG recordings (mean duration = 14 ± 10 days) was performed by certified ECG technicians (n = 167) and an ensemble AI model, called DeepRhythmAI. To compare the performance of the AI model and the technicians, a random sample of 5,235 rhythm events identified by the AI model or by technicians, of which 2,236 events were identified as critical arrhythmias, was selected for annotation by one of 17 cardiologist consensus panels. The mean sensitivity of the AI model for the identification of critical arrhythmias was 98.6% (95% confidence interval (CI) = 97.7–99.4), as compared to 80.3% (95% CI = 77.3–83.3%) for the technicians. False-negative findings were observed in 3.2/1,000 patients for the AI model versus 44.3/1,000 patients for the technicians. Accordingly, the relative risk of a missed diagnosis was 14.1 (95% CI = 10.4–19.0) times higher for the technicians. However, a higher false-positive event rate was observed for the AI model (12 (interquartile range (IQR) = 6–74)/1,000 patient days) as compared to the technicians (5 (IQR = 2–153)/1,000 patient days). We conclude that the DeepRhythmAI model has excellent negative predictive value for critical arrhythmias, substantially reducing false-negative findings, but at a modest cost of increased false-positive findings. AI-only analysis to facilitate direct-to-physician reporting could potentially reduce costs and improve access to care and outcomes in patients who need ambulatory ECG monitoring. In a large-scale analysis of ambulatory electrocardiographic recordings, a deep learning algorithm had a substantially higher sensitivity for the detection of critical arrhythmias as compared to technicians, opening a path toward artificial intelligence-assisted direct-to-physician reporting of ambulatory electrocardiography results.
Developments in ambulatory electrocardiogram (ECG) technology have led to vast amounts of ECG data that currently need to be interpreted by human technicians. Here we tested an artificial intelligence (AI) algorithm for direct-to-physician reporting of ambulatory ECGs. Beat-by-beat annotation of 14,606 individual ambulatory ECG recordings (mean duration = 14 ± 10 days) was performed by certified ECG technicians ( n  = 167) and an ensemble AI model, called DeepRhythmAI. To compare the performance of the AI model and the technicians, a random sample of 5,235 rhythm events identified by the AI model or by technicians, of which 2,236 events were identified as critical arrhythmias, was selected for annotation by one of 17 cardiologist consensus panels. The mean sensitivity of the AI model for the identification of critical arrhythmias was 98.6% (95% confidence interval (CI) = 97.7–99.4), as compared to 80.3% (95% CI = 77.3–83.3%) for the technicians. False-negative findings were observed in 3.2/1,000 patients for the AI model versus 44.3/1,000 patients for the technicians. Accordingly, the relative risk of a missed diagnosis was 14.1 (95% CI = 10.4–19.0) times higher for the technicians. However, a higher false-positive event rate was observed for the AI model (12 (interquartile range (IQR) = 6–74)/1,000 patient days) as compared to the technicians (5 (IQR = 2–153)/1,000 patient days). We conclude that the DeepRhythmAI model has excellent negative predictive value for critical arrhythmias, substantially reducing false-negative findings, but at a modest cost of increased false-positive findings. AI-only analysis to facilitate direct-to-physician reporting could potentially reduce costs and improve access to care and outcomes in patients who need ambulatory ECG monitoring. In a large-scale analysis of ambulatory electrocardiographic recordings, a deep learning algorithm had a substantially higher sensitivity for the detection of critical arrhythmias as compared to technicians, opening a path toward artificial intelligence-assisted direct-to-physician reporting of ambulatory electrocardiography results.
Author Juknevicius, V.
Glotzer, T.
Rienstra, M.
Krisai, P.
Radoslovich, G.
Shen, C.
Laish-Farkash, A.
Diederichsen, S. Z.
Bisson, J.
Marx, J. A.
Węcławski, J.
Shaked, E.
Bennett, R.
Manninger, M.
Stavrakis, S.
Lozano, A.
Lewinter, C.
Bacevicius, J.
Grotek-Cuprjak, A.
Ruwald, M. H.
Persson, A.
van Vreeswijk, N. L.
Engström, G.
Spittler, R.
McIntyre, W. F.
Kogan, Y.
Jasina, G.
Platonov, P.
Haugan, K.
Iakobishvili, Z.
Zadrozniak, P.
Linz, D.
Healey, J. S.
Glazer, E.
Benezet-Mazuecos, J.
Ljungström, E.
Mustafina, I.
Bhavnani, S.
Blum, S.
Andrade, J. G.
Brandes, A.
Zafeiropoulos, S.
Matusik, P. T.
Meyre, P. B.
Hammarlund, P.
Marincheva, G.
Johnson, L. S.
Wodaje, T.
Svennberg, E.
Rahkovich, M.
Fedorowski, A.
Måneheim, A.
Benz, A. P.
Oraii, A.
Miracle Blanco, A.
Jamal, S.
Jakaite, R.
Author_xml – sequence: 1
  givenname: L. S.
  orcidid: 0000-0002-2249-8220
  surname: Johnson
  fullname: Johnson, L. S.
  email: linda.johnson@med.lu.se
  organization: Department of Clinical Sciences, Malmö, Lund University, Population Health Research Institute, McMaster University
– sequence: 2
  givenname: P.
  surname: Zadrozniak
  fullname: Zadrozniak, P.
  organization: Medicalgorithmics S.A
– sequence: 3
  givenname: G.
  surname: Jasina
  fullname: Jasina, G.
  organization: Medicalgorithmics S.A
– sequence: 4
  givenname: A.
  surname: Grotek-Cuprjak
  fullname: Grotek-Cuprjak, A.
  organization: Medicalgorithmics S.A
– sequence: 5
  givenname: J. G.
  orcidid: 0000-0002-8493-5123
  surname: Andrade
  fullname: Andrade, J. G.
  organization: Vancouver General Hospital, University of British Columbia
– sequence: 6
  givenname: E.
  surname: Svennberg
  fullname: Svennberg, E.
  organization: Karolinska Institutet, Department of Medicine Huddinge, Karolinska University Hospital
– sequence: 7
  givenname: S. Z.
  orcidid: 0000-0002-9687-0857
  surname: Diederichsen
  fullname: Diederichsen, S. Z.
  organization: Department of Cardiology, Copenhagen University Hospital—Rigshospitalet
– sequence: 8
  givenname: W. F.
  orcidid: 0000-0001-6082-7542
  surname: McIntyre
  fullname: McIntyre, W. F.
  organization: Population Health Research Institute, McMaster University, Department of Medicine, McMaster University
– sequence: 9
  givenname: S.
  surname: Stavrakis
  fullname: Stavrakis, S.
  organization: University of Oklahoma Health Sciences Center
– sequence: 10
  givenname: J.
  orcidid: 0000-0003-3912-8901
  surname: Benezet-Mazuecos
  fullname: Benezet-Mazuecos, J.
  organization: Cardiology Department Hospital Universitario La Luz
– sequence: 11
  givenname: P.
  surname: Krisai
  fullname: Krisai, P.
  organization: Department of Cardiology and Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel
– sequence: 12
  givenname: Z.
  surname: Iakobishvili
  fullname: Iakobishvili, Z.
  organization: Department of Cardiology, Assuta Ashdod University Hospital, Ben-Gurion University of the Negev, Department of Cardiology, Clalit Health Services
– sequence: 13
  givenname: A.
  surname: Laish-Farkash
  fullname: Laish-Farkash, A.
  organization: Department of Cardiology, Assuta Ashdod University Hospital, Ben-Gurion University of the Negev
– sequence: 14
  givenname: S.
  surname: Bhavnani
  fullname: Bhavnani, S.
  organization: Division of Cardiology, Scripps Clinic
– sequence: 15
  givenname: E.
  surname: Ljungström
  fullname: Ljungström, E.
  organization: Arrhythmia Clinic, Skåne University Hospital
– sequence: 16
  givenname: J.
  surname: Bacevicius
  fullname: Bacevicius, J.
  organization: Clinic of Heart and Vessel Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University
– sequence: 17
  givenname: N. L.
  orcidid: 0009-0002-1626-3959
  surname: van Vreeswijk
  fullname: van Vreeswijk, N. L.
  organization: Department of Cardiology, University of Groningen, University Medical Center Groningen
– sequence: 18
  givenname: M.
  orcidid: 0000-0002-2581-070X
  surname: Rienstra
  fullname: Rienstra, M.
  organization: Department of Cardiology, University of Groningen, University Medical Center Groningen
– sequence: 19
  givenname: R.
  orcidid: 0000-0001-9941-6302
  surname: Spittler
  fullname: Spittler, R.
  organization: Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg-University Mainz
– sequence: 20
  givenname: J. A.
  surname: Marx
  fullname: Marx, J. A.
  organization: Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg-University Mainz
– sequence: 21
  givenname: A.
  orcidid: 0000-0002-2422-2930
  surname: Oraii
  fullname: Oraii, A.
  organization: Population Health Research Institute, McMaster University
– sequence: 22
  givenname: A.
  surname: Miracle Blanco
  fullname: Miracle Blanco, A.
  organization: Cardiology Department Hospital Universitario La Luz
– sequence: 23
  givenname: A.
  surname: Lozano
  fullname: Lozano, A.
  organization: Cardiology Department Hospital Universitario La Luz
– sequence: 24
  givenname: I.
  surname: Mustafina
  fullname: Mustafina, I.
  organization: University of Oklahoma Health Sciences Center, Department of Internal Diseases, Bashkir State Medical University
– sequence: 25
  givenname: S.
  surname: Zafeiropoulos
  fullname: Zafeiropoulos, S.
  organization: Feinstein Institutes for Medical Research at Northwell Health, Department of Cardiology, University Hospital of Zurich
– sequence: 26
  givenname: R.
  surname: Bennett
  fullname: Bennett, R.
  organization: Vancouver General Hospital, University of British Columbia
– sequence: 27
  givenname: J.
  surname: Bisson
  fullname: Bisson, J.
  organization: Department of Cardiology, Centre hospitalier de l’Université de Montréal—Université de Montréal
– sequence: 28
  givenname: D.
  surname: Linz
  fullname: Linz, D.
  organization: Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen
– sequence: 29
  givenname: Y.
  surname: Kogan
  fullname: Kogan, Y.
  organization: Department of Cardiology, Assuta Ashdod University Hospital, Ben-Gurion University of the Negev
– sequence: 30
  givenname: E.
  surname: Glazer
  fullname: Glazer, E.
  organization: Department of Cardiology, Assuta Ashdod University Hospital, Ben-Gurion University of the Negev
– sequence: 31
  givenname: G.
  surname: Marincheva
  fullname: Marincheva, G.
  organization: Department of Cardiology, Assuta Ashdod University Hospital, Ben-Gurion University of the Negev
– sequence: 32
  givenname: M.
  surname: Rahkovich
  fullname: Rahkovich, M.
  organization: Department of Cardiology, Assuta Ashdod University Hospital, Ben-Gurion University of the Negev
– sequence: 33
  givenname: E.
  surname: Shaked
  fullname: Shaked, E.
  organization: Department of Cardiology, Assuta Ashdod University Hospital, Ben-Gurion University of the Negev
– sequence: 34
  givenname: M. H.
  orcidid: 0000-0002-1541-309X
  surname: Ruwald
  fullname: Ruwald, M. H.
  organization: Department of Cardiology, Gentofte Hospital
– sequence: 35
  givenname: K.
  surname: Haugan
  fullname: Haugan, K.
  organization: Department of Cardiology, Zealand University Hospital
– sequence: 36
  givenname: J.
  surname: Węcławski
  fullname: Węcławski, J.
  organization: Medicalgorithmics S.A
– sequence: 37
  givenname: G.
  surname: Radoslovich
  fullname: Radoslovich, G.
  organization: Hackensack University Medical Center
– sequence: 38
  givenname: S.
  surname: Jamal
  fullname: Jamal, S.
  organization: Hackensack University Medical Center, Hackensack Meridian School of Medicine
– sequence: 39
  givenname: A.
  orcidid: 0000-0001-9145-6887
  surname: Brandes
  fullname: Brandes, A.
  organization: Department of Cardiology, Esbjerg Hospital—University Hospital of Southern Denmark, Department of Regional Health Research, University of Southern Denmark
– sequence: 40
  givenname: P. T.
  orcidid: 0000-0001-5788-575X
  surname: Matusik
  fullname: Matusik, P. T.
  organization: Department of Electrocardiology, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, St. John Paul II Hospital
– sequence: 41
  givenname: M.
  orcidid: 0000-0002-0545-4373
  surname: Manninger
  fullname: Manninger, M.
  organization: Division of Cardiology, Department of Medicine, Medical University of Graz
– sequence: 42
  givenname: P. B.
  surname: Meyre
  fullname: Meyre, P. B.
  organization: Department of Cardiology and Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel
– sequence: 43
  givenname: S.
  surname: Blum
  fullname: Blum, S.
  organization: Department of Cardiology and Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel
– sequence: 44
  givenname: A.
  orcidid: 0000-0001-7506-3899
  surname: Persson
  fullname: Persson, A.
  organization: Department of Clinical Sciences, Malmö, Lund University, Department of Clinical Physiology, Skåne University Hospital
– sequence: 45
  givenname: A.
  surname: Måneheim
  fullname: Måneheim, A.
  organization: Department of Clinical Sciences, Malmö, Lund University, Department of Clinical Physiology, Skåne University Hospital
– sequence: 46
  givenname: P.
  surname: Hammarlund
  fullname: Hammarlund, P.
  organization: Department of Cardiology, Helsingborg Hospital
– sequence: 47
  givenname: A.
  orcidid: 0000-0002-5352-6327
  surname: Fedorowski
  fullname: Fedorowski, A.
  organization: Department of Clinical Sciences, Malmö, Lund University, Karolinska Institutet, Department of Cardiology, Karolinska University Hospital
– sequence: 48
  givenname: T.
  surname: Wodaje
  fullname: Wodaje, T.
  organization: Karolinska Institutet, Department of Cardiology, Karolinska University Hospital
– sequence: 49
  givenname: C.
  surname: Lewinter
  fullname: Lewinter, C.
  organization: Karolinska Institutet, Department of Cardiology, Karolinska University Hospital, University of Glasgow, University of Glasgow, Institute of Wellbeing
– sequence: 50
  givenname: V.
  orcidid: 0000-0001-9126-8560
  surname: Juknevicius
  fullname: Juknevicius, V.
  organization: Clinic of Heart and Vessel Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University
– sequence: 51
  givenname: R.
  orcidid: 0000-0003-3595-4683
  surname: Jakaite
  fullname: Jakaite, R.
  organization: Clinic of Heart and Vessel Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University
– sequence: 52
  givenname: C.
  orcidid: 0000-0003-4652-0899
  surname: Shen
  fullname: Shen, C.
  organization: Division of Cardiology, Scripps Clinic
– sequence: 53
  givenname: T.
  orcidid: 0000-0001-5286-2612
  surname: Glotzer
  fullname: Glotzer, T.
  organization: Hackensack University Medical Center, Hackensack Meridian School of Medicine
– sequence: 54
  givenname: P.
  surname: Platonov
  fullname: Platonov, P.
  organization: Arrhythmia Clinic, Skåne University Hospital, Department of Clinical Sciences, Lund University
– sequence: 55
  givenname: G.
  surname: Engström
  fullname: Engström, G.
  organization: Department of Clinical Sciences, Malmö, Lund University
– sequence: 56
  givenname: A. P.
  orcidid: 0000-0003-2555-1266
  surname: Benz
  fullname: Benz, A. P.
  organization: Population Health Research Institute, McMaster University, Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg-University Mainz
– sequence: 57
  givenname: J. S.
  surname: Healey
  fullname: Healey, J. S.
  organization: Population Health Research Institute, McMaster University, Department of Medicine, McMaster University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39930139$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:160974158$$DView record from Swedish Publication Index
BookMark eNqNkktv1DAUhSNURB_wB1igSGzYGPyIXytUVbykSmxAQmJhOc7NjIvHHuyk7fx7PJ2h0EpUrGI537n35JwcNwcxRWia5wS_JpipN6UjXBOEKUeYcSLQ9aPmiPBOICLxt4N6xlIhpbk4bI5LucAYM8z1k-aQac0wYfqo-X6aJz96521ofZwgBL-A6KAdU24Hn8FNaEpovdyULRTbDOtUJXHRprG1q34Odkp500KoaE7O5sGnRbZV8bR5PNpQ4Nn-edJ8ff_uy9lHdP75w6ez03PkBGYT6qXkI2WEDL0cMIyghh6TbuzAsnojqKMSi4HZ3lGmxqGn1b3VjisMkgBmJw3bzZ3j2m6ubAhmnf3K5o0h2GyjMruoTI3K3ERlrqsK7VTlCtZzfytJ1pv91Y96AqNxRxipvP0nv43EBpOhgM1uacK8FVYqeGcnn2IxrmOUMaWMJIKZjunR9AS0sdTJUQmGpRZ1x9vdjipdweAgTtmGu6vuvIl-aRbp0hCiKZWM1wmv9hNy-jlDmczKF1drtRHSXAwjgnekI0JX9OU99CLNOdamKiWVloorWqkXf1u69fL7F6qA2gEup1IyjMb56eajq0MfHq6A3pP-V2_7tkuF4wLyH9sPqH4BPZ3_cg
CitedBy_id crossref_primary_10_1038_s41746_025_01554_w
Cites_doi 10.1093/eurheartj/ehad376
10.1093/europace/euac088
10.1111/anec.13090
10.1038/36846
10.1093/eurheartj/ehaa575
10.1093/europace/euac038
10.1001/jama.2018.8102
10.1161/CIRCULATIONAHA.119.044407
10.2196/34058
10.1161/CIRCULATIONAHA.119.040267
10.1016/j.jacc.2019.05.058
10.1093/europace/euae070
10.1038/s41591-024-02961-4
10.1161/CIRCULATIONAHA.121.058911
10.1056/NEJMoa0803545
10.1016/j.ijcard.2012.09.171
10.1161/JAHA.122.026196
10.1037/h0043158
10.33963/KP.a2021.0182
10.1038/s41569-020-00503-2
10.1038/s41591-021-01614-0
10.1016/j.amjmed.2013.10.003
10.1056/NEJMoa2310234
10.1016/S1470-2045(23)00298-X
10.1016/S0140-6736(21)01637-8
10.1038/s44222-023-00096-8
10.1056/NEJMoa1105575
10.1002/mar.4220090503
10.1001/jama.2017.17488
10.1038/s41591-024-02850-w
10.1080/12460125.2020.1768680
10.1056/NEJMp1606181
10.1038/s41591-018-0268-3
10.1016/j.jelectrocard.2019.07.013
10.1136/bmjgh-2022-009316
10.1016/j.ahj.2019.07.016
10.1016/S2589-7500(20)30107-2
10.1007/s00428-023-03518-5
10.1016/S0140-6736(19)31721-0
10.1109/CVPR.2018.00474
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group Mar 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group Mar 2025
– notice: The Author(s) 2025 2025
CorporateAuthor Kardiovaskulär forskning - epidemiologi
Electrocardiology Research Group - CIEL
Institutionen för kliniska vetenskaper, Lund
Sektion II
Lunds universitet
Profile areas and other strong research environments
Section II
Department of Clinical Sciences, Malmö
Lund University
Kardiovaskulär forskning - hypertoni
Kardiologi
Department of Clinical Sciences, Lund
Strategiska forskningsområden (SFO)
EpiHealth: Epidemiology for Health
EXODIAB: Excellence of Diabetes Research in Sweden
Faculty of Medicine
Strategic research areas (SRA)
Medicinska fakulteten
Cardiology
Cardiovascular Research - Epidemiology
Profilområden och andra starka forskningsmiljöer
Institutionen för kliniska vetenskaper, Malmö
Cardiovascular Research - Hypertension
CorporateAuthor_xml – name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Kardiovaskulär forskning - epidemiologi
– name: Strategiska forskningsområden (SFO)
– name: Cardiovascular Research - Hypertension
– name: Kardiovaskulär forskning - hypertoni
– name: Sektion II
– name: Kardiologi
– name: Section II
– name: Electrocardiology Research Group - CIEL
– name: EpiHealth: Epidemiology for Health
– name: Institutionen för kliniska vetenskaper, Malmö
– name: Cardiology
– name: Institutionen för kliniska vetenskaper, Lund
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Department of Clinical Sciences, Lund
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: EXODIAB: Excellence of Diabetes Research in Sweden
– name: Profile areas and other strong research environments
– name: Cardiovascular Research - Epidemiology
– name: Department of Clinical Sciences, Malmö
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ADTOC
UNPAY
DOI 10.1038/s41591-025-03516-x
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 931
ExternalDocumentID 10.1038/s41591-025-03516-x
oai_swepub_ki_se_904131
oai_portal_research_lu_se_publications_c4323388_7163_439f_b1e9_a2c7f8630796
PMC11922735
39930139
10_1038_s41591_025_03516_x
Genre Journal Article
GrantInformation_xml – fundername: The Swedish Heart and Lung Foundation, grant 2021-0343 The Swedish Research Council, grant 2022-00903 The Swedish Society for Medical Research
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AARCD
AAYOK
AAYZH
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AETEA
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C6C
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
ACMFV
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
8FD
AGSTI
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ADTPV
AFFHD
AGCHP
AOWAS
D8T
D95
PJZUB
PPXIY
PQGLB
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c603t-b775f2311db7d0efe8db014f4ea3b7d62c2706d3abc238fdb2993a9c580e71e03
IEDL.DBID C6C
ISSN 1078-8956
1546-170X
IngestDate Sun Oct 26 04:17:25 EDT 2025
Mon Oct 20 03:26:23 EDT 2025
Thu Oct 30 03:18:06 EDT 2025
Tue Sep 30 17:04:08 EDT 2025
Thu Oct 02 16:04:06 EDT 2025
Mon Oct 06 18:07:12 EDT 2025
Thu May 08 05:29:32 EDT 2025
Wed Oct 01 06:40:29 EDT 2025
Thu Apr 24 22:55:27 EDT 2025
Thu Mar 20 02:10:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-b775f2311db7d0efe8db014f4ea3b7d62c2706d3abc238fdb2993a9c580e71e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2249-8220
0000-0001-9941-6302
0000-0002-9687-0857
0000-0001-5286-2612
0000-0001-6082-7542
0000-0003-2555-1266
0009-0002-1626-3959
0000-0002-8493-5123
0000-0002-2581-070X
0000-0002-0545-4373
0000-0002-5352-6327
0000-0001-5788-575X
0000-0001-9126-8560
0000-0003-3595-4683
0000-0001-9145-6887
0000-0001-7506-3899
0000-0003-3912-8901
0000-0003-4652-0899
0000-0002-1541-309X
0000-0002-2422-2930
OpenAccessLink https://doi.org/10.1038%2Fs41591-025-03516-x
PMID 39930139
PQID 3178978582
PQPubID 33975
PageCount 7
ParticipantIDs unpaywall_primary_10_1038_s41591_025_03516_x
swepub_primary_oai_swepub_ki_se_904131
swepub_primary_oai_portal_research_lu_se_publications_c4323388_7163_439f_b1e9_a2c7f8630796
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11922735
proquest_miscellaneous_3165414169
proquest_journals_3178978582
pubmed_primary_39930139
crossref_citationtrail_10_1038_s41591_025_03516_x
crossref_primary_10_1038_s41591_025_03516_x
springer_journals_10_1038_s41591_025_03516_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2025
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References SZ Diederichsen (3516_CR3) 2020; 141
K Lång (3516_CR20) 2023; 24
P Rajpurkar (3516_CR22) 2022; 28
JS Healey (3516_CR10) 2012; 366
CS Lin (3516_CR26) 2024; 30
E Svennberg (3516_CR13) 2022; 24
H Zhu (3516_CR30) 2020; 2
L Fiorina (3516_CR37) 2022; 11
JS Healey (3516_CR1) 2024; 390
Z Obermeyer (3516_CR19) 2016; 375
F Yu (3516_CR23) 2024; 30
G Phillips-Wren (3516_CR17) 2020; 29
RB Schnabel (3516_CR9) 2019; 140
KC Siontis (3516_CR29) 2021; 18
ZI Attia (3516_CR28) 2019; 394
AH Song (3516_CR25) 2023; 1
AY Hannun (3516_CR31) 2019; 25
3516_CR39
E Svennberg (3516_CR2) 2021; 398
GA Miller (3516_CR18) 1956; 63
C Eloy (3516_CR24) 2023; 482
AR Chapman (3516_CR33) 2017; 318
B Mathieu (3516_CR14) 2022; 7
M Than (3516_CR34) 2013; 166
MTH Lowry (3516_CR32) 2023; 44
SR Steinhubl (3516_CR4) 2018; 320
JA Reiffel (3516_CR6) 2020; 219
Y Sandoval (3516_CR35) 2019; 74
M Carrington (3516_CR7) 2022; 24
3516_CR40
M Hahn (3516_CR15) 1992; 9
3516_CR42
M Dziubinski (3516_CR5) 2022; 80
A Brandes (3516_CR12) 2022; 146
3516_CR41
M Tahri Sqalli (3516_CR38) 2022; 9
J-P Collet (3516_CR36) 2020; 42
PM Barrett (3516_CR8) 2014; 127
D Linz (3516_CR11) 2024; 26
SJ Luck (3516_CR16) 1997; 390
LS Johnson (3516_CR27) 2023; 28
FJ Gilbert (3516_CR21) 2008; 359
B Young (3516_CR43) 2019; 57
References_xml – volume: 44
  start-page: 2846
  year: 2023
  ident: 3516_CR32
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehad376
– ident: 3516_CR40
– volume: 24
  start-page: 1721
  year: 2022
  ident: 3516_CR7
  publication-title: Europace
  doi: 10.1093/europace/euac088
– volume: 28
  year: 2023
  ident: 3516_CR27
  publication-title: Ann. Noninvasive Electrocardiol.
  doi: 10.1111/anec.13090
– volume: 390
  start-page: 279
  year: 1997
  ident: 3516_CR16
  publication-title: Nature
  doi: 10.1038/36846
– volume: 42
  start-page: 1289
  year: 2020
  ident: 3516_CR36
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa575
– volume: 24
  start-page: 979
  year: 2022
  ident: 3516_CR13
  publication-title: Europace
  doi: 10.1093/europace/euac038
– volume: 320
  start-page: 146
  year: 2018
  ident: 3516_CR4
  publication-title: JAMA
  doi: 10.1001/jama.2018.8102
– volume: 141
  start-page: 1510
  year: 2020
  ident: 3516_CR3
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.044407
– volume: 9
  start-page: e34058
  year: 2022
  ident: 3516_CR38
  publication-title: JMIR Hum. Factors
  doi: 10.2196/34058
– volume: 140
  start-page: 1834
  year: 2019
  ident: 3516_CR9
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.040267
– volume: 74
  start-page: 271
  year: 2019
  ident: 3516_CR35
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2019.05.058
– volume: 26
  start-page: euae070
  year: 2024
  ident: 3516_CR11
  publication-title: Europace
  doi: 10.1093/europace/euae070
– volume: 30
  start-page: 1461
  year: 2024
  ident: 3516_CR26
  publication-title: Nat. Med.
  doi: 10.1038/s41591-024-02961-4
– volume: 146
  start-page: 1461
  year: 2022
  ident: 3516_CR12
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.058911
– volume: 359
  start-page: 1675
  year: 2008
  ident: 3516_CR21
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0803545
– volume: 166
  start-page: 752
  year: 2013
  ident: 3516_CR34
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2012.09.171
– volume: 11
  year: 2022
  ident: 3516_CR37
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.122.026196
– volume: 63
  start-page: 81
  year: 1956
  ident: 3516_CR18
  publication-title: Psychol. Rev.
  doi: 10.1037/h0043158
– volume: 80
  start-page: 49
  year: 2022
  ident: 3516_CR5
  publication-title: Kardiol. Pol.
  doi: 10.33963/KP.a2021.0182
– volume: 18
  start-page: 465
  year: 2021
  ident: 3516_CR29
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-020-00503-2
– ident: 3516_CR41
– volume: 28
  start-page: 31
  year: 2022
  ident: 3516_CR22
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01614-0
– volume: 127
  start-page: 95
  year: 2014
  ident: 3516_CR8
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2013.10.003
– volume: 390
  start-page: 107
  year: 2024
  ident: 3516_CR1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2310234
– volume: 24
  start-page: 936
  year: 2023
  ident: 3516_CR20
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(23)00298-X
– volume: 398
  start-page: 1498
  year: 2021
  ident: 3516_CR2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01637-8
– volume: 1
  start-page: 930
  year: 2023
  ident: 3516_CR25
  publication-title: Nat. Rev. Bioeng.
  doi: 10.1038/s44222-023-00096-8
– volume: 366
  start-page: 120
  year: 2012
  ident: 3516_CR10
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1105575
– ident: 3516_CR39
– volume: 9
  start-page: 365
  year: 1992
  ident: 3516_CR15
  publication-title: Psychol. Market.
  doi: 10.1002/mar.4220090503
– volume: 318
  start-page: 1913
  year: 2017
  ident: 3516_CR33
  publication-title: JAMA
  doi: 10.1001/jama.2017.17488
– volume: 30
  start-page: 837
  year: 2024
  ident: 3516_CR23
  publication-title: Nat. Med.
  doi: 10.1038/s41591-024-02850-w
– volume: 29
  start-page: 213
  year: 2020
  ident: 3516_CR17
  publication-title: J. Decis. Syst.
  doi: 10.1080/12460125.2020.1768680
– volume: 375
  start-page: 1216
  year: 2016
  ident: 3516_CR19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1606181
– volume: 25
  start-page: 65
  year: 2019
  ident: 3516_CR31
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– volume: 57
  start-page: S1
  year: 2019
  ident: 3516_CR43
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2019.07.013
– volume: 7
  start-page: e009316
  year: 2022
  ident: 3516_CR14
  publication-title: BMJ Glob. Health
  doi: 10.1136/bmjgh-2022-009316
– volume: 219
  start-page: 128
  year: 2020
  ident: 3516_CR6
  publication-title: Am. Heart J.
  doi: 10.1016/j.ahj.2019.07.016
– volume: 2
  start-page: e348
  year: 2020
  ident: 3516_CR30
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30107-2
– volume: 482
  start-page: 595
  year: 2023
  ident: 3516_CR24
  publication-title: Virchows Arch.
  doi: 10.1007/s00428-023-03518-5
– volume: 394
  start-page: 861
  year: 2019
  ident: 3516_CR28
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)31721-0
– ident: 3516_CR42
  doi: 10.1109/CVPR.2018.00474
SSID ssj0003059
Score 2.5076792
Snippet Developments in ambulatory electrocardiogram (ECG) technology have led to vast amounts of ECG data that currently need to be interpreted by human technicians....
SourceID unpaywall
swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 925
SubjectTerms 692/699/75/29
692/700/139
Aged
Algorithms
Annotations
Arrhythmia
Arrhythmias, Cardiac - diagnosis
Arrhythmias, Cardiac - physiopathology
Artificial Intelligence
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cardiac arrhythmia
Cardiology and Cardiovascular Disease
Clinical Medicine
Confidence intervals
Deep learning
EKG
Electrocardiography
Electrocardiography, Ambulatory - methods
Female
Health care access
Humans
Infectious Diseases
Kardiologi och kardiovaskulära sjukdomar
Klinisk medicin
Machine learning
Male
Medical and Health Sciences
Medicin och hälsovetenskap
Metabolic Diseases
Middle Aged
Molecular Medicine
Neurosciences
Patients
Physicians
Sensitivity
Technicians
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJ74e-BhjBAYKEuIFPOI4cezHCTFNSJt4oFKBB8t2bK1aSaq11Sh_PefYDS2bpvEaX_yVc-5n3_l3CL3hxNQ1twqUVztciFpgzojFBc2Edhl1QvkD_eMTdjQsPo_KUaTJ8XdhNvz3lH-YgYHxsTl5ib3Pi2HAi1usBNw9QFvDky8H30JQIcdcdKlaARIwTKpsFG_IXF3JphW6BC0vR0j2btKeUvQ-urtopmp5oSaTNZN0-DDkNpp1TIY-EuVsfzHX--b3PzyPNxvtI_QgItP0IKjSY3TLNtvodshVudxGd46jF_4J-uFlAvNEOl6j9EwBAKfBRuJ5i_tDkzQ4JmBgaetS9VP7lGHt-TKNOXhMFxMbqLN30PDw09ePRzgmacCGZXSOdVWVDkAiqXVVZ9ZZXmvYdrnCKgpPWG7yKmM1VdoAOnC1BvtHlTAlz2xFbEafokHTNvYZSjssUXgKs1wVWhEFWNWY2hVa5JrmZYLI6qNJExnMfSKNiew86ZTLMH8S5k928yd_Jehd_8408HdcK7230gUZ1_JMAsLisNcueZ6g130xrELvWlGNbRdepsunTphI0G5Qnb45DwE90E4Q31CqXsAzfG-WNOPTjumbAP4GfAkjf7_Sv7_9um4Y34OObjbR7edkJJE6lZOFnFk5XTsdlqagOaWcS9hFUwlY1UlNrJAqN5XjDOyBYAl6e0Xl8dHZ2NcpMoBGBDrdL5AbzP3z_xN_ge7lYZ3gjOyhwfx8YV8CPpzrV_HH8Ael61zv
  priority: 102
  providerName: Unpaywall
Title Artificial intelligence for direct-to-physician reporting of ambulatory electrocardiography
URI https://link.springer.com/article/10.1038/s41591-025-03516-x
https://www.ncbi.nlm.nih.gov/pubmed/39930139
https://www.proquest.com/docview/3178978582
https://www.proquest.com/docview/3165414169
https://pubmed.ncbi.nlm.nih.gov/PMC11922735
http://kipublications.ki.se/Default.aspx?queryparsed=id:160974158
https://doi.org/10.1038/s41591-025-03516-x
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1546-170X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1546-170X
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9Nm4DxgGB8LDCmICFemLU4zof92FVUE9IqHqg04MGyHVurKGm1toL-95zjNLQqmuAxjuPYvrPvZ5_9O4C3nJqq4lah8mpHMlEJwgtqScYSoV3CnFB-Q_9qWFyOso_X-fUenK3vwmz57xvq7jmaGH86J82J93oVBBHjAUfF9PEK-kW_m3dRc0U4YcgJR9jfXpHBUs53y9g2QzvYcveIZOcn7ThFH8KDZT1Tq59qMtmwSYPH8KgFk3EvSP8J7Nn6CO6F8JKrI7h_1TrOn8I3nyeQRcTjDRbOGDFrHMwaWUxJt88RB18CViWeulj90D7K1_R2Fbdhc0xzjDWwXT-D0eDD5_4laeMqEFMkbEF0WeYOcR2tdFkl1lleaVwpucwqhilFatIyKSqmtEGD7iqNJospYXKe2JLahD2H_Xpa22OIG_OfedaxVGVaUYXw0pjKZVqkmqV5BHTdzdK0pOM-9sVENs5vxmUQjUTRyEY08lcE77tvZoFy487cJ2vpyXb4zSWCIo7L45ynEbzpXuPA8d4QVdvp0udpQqDTQkTwIgi7-51HbR4bR8C31KDL4Em5t9_U45uGnJsiZEZIiC0_W2vMn3rd1YyvQau2f9EswWTL-3QjJ0s5t3K2saErTcZSxjiXuPBlEuGlk5paIVVqSscLnMJFEcG7vxTeJn0f-zJFgmiGYqU7lf6Hvn_5f218BYdpGIIkoSewv7hd2tcI6Rb6FA56g4uL4WkzovFpNPzU-_IbzQJHvA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NQ7DxgGB8LDAgSIgXZi2O82E_ooqpwLqnTZrgwbIdW6soSbW2gv73nOM0tCqa4DV2HNt3zv3OZ_8O4C2npqq4Vai82pFMVILwglqSsURolzAnlN_QH50Xw8vs81V-tQPHq7swG_H7lrp7hibGn85Jc-KjXgVBxHiHo0fnmfIHxaD_76LminDCkBOOsL-7IoOtnGy3sWmGtrDl9hHJPk7ac4reh71FPVXLn2oyWbNJpw_hQQcm4w9B-o9gx9YHcDekl1wewL1RFzh_DN98nUAWEY_XWDhjxKxxMGtk3pB-nyMOsQTsSty4WP3QPstXc7OMu7Q5pj3GGtiun8Dl6ceLwZB0eRWIKRI2J7osc4e4jla6rBLrLK80ekous4rhkyI1aZkUFVPaoEF3lUaTxZQwOU9sSW3CnsJu3dT2EOLW_GeedSxVmVZUIbw0pnKZFqlmaR4BXU2zNB3puM99MZFt8JtxGUQjUTSyFY38FcH7_p1poNy4tfbRSnqyW34ziaCIo3uc8zSCN30xLhwfDVG1bRa-TpsCnRYigmdB2P3nPGrz2DgCvqEGfQVPyr1ZUo-vW3JuipAZISGO_HilMX_6ddswvgat2vxE64LJjvfpWk4WcmbldG1DV5qMpYxxLtHxZRLhpZOaWiFVakrHC_yFiyKCd39pvHv0fezbFAmiGYqd7lX6H-b--f-N8TXsDS9GZ_Ls0_mXF7CfhuVIEnoEu_ObhX2J8G6uX7Wr-jfX4Ud_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NITZ4QDAYBAYECfEChiROHPsRDarxYxMPTJrgwbIdW6soabW2Yv3vOdtpaLVpgtfEcezc2fed7_IdwAuem6bhVqHyakdK0QjCWW5JSTOhXUadUP5A__CIHRyXn06qkw1gy39hQtJ-oLQM2_QyO-ztFA2Nz9EpKuJjX4ycv5k07hpc5zVlIUjL9vsdGHVYxFxDTjg6AN3PMhnll_SzbpAuoMyLyZJ9xLRnF70F2_N2oha_1Wi0Yp0Gd-B2ByvTd3Eid2HDtjtwIxaaXOzA1mEXQr8HP3ybSBuRDlf4OFNEr2k0cGQ2Jv2JRxqjCjiUdOxS9Uv7el_js0XaFdAxIaE18l7fh-PBh2_7B6SrsEAMy-iM6LquHCK8vNF1k1lneaPRZ3KlVRSvsMIUdcYaqrRB0-4ajcaLKmEqntk6txndhc123NqHkAYgUHr-sUKVWuUKgaYxjSu1KDQtqgTy5WeWpqMf91UwRjKEwSmXUTQSRSODaOR5Aq_6ZyaRfOPK1ntL6cluIU4lwiOOjnLFiwSe97dxCfm4iGrteO7bhGLoORMJPIjC7l_n8ZtHyQnwNTXoG3h67vU77fA00HTnCJ4RHOLMXy815u-4rprG96hV668IzpjsGKBO5Wgup1ZOVo52pSlpQSnnEl1gKhFoOqlzK6QqTO04w81csAReXtJ5d-nn0PcpMsQ1OQ66V-l_-PaP_m-Oz2Dr6_uB_PLx6PNjuFnE1UiyfA82Z2dz-wRx3kw_DYv6D8ZITQI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJ74e-BhjBAYKEuIFPOI4cezHCTFNSJt4oFKBB8t2bK1aSaq11Sh_PefYDS2bpvEaX_yVc-5n3_l3CL3hxNQ1twqUVztciFpgzojFBc2Edhl1QvkD_eMTdjQsPo_KUaTJ8XdhNvz3lH-YgYHxsTl5ib3Pi2HAi1usBNw9QFvDky8H30JQIcdcdKlaARIwTKpsFG_IXF3JphW6BC0vR0j2btKeUvQ-urtopmp5oSaTNZN0-DDkNpp1TIY-EuVsfzHX--b3PzyPNxvtI_QgItP0IKjSY3TLNtvodshVudxGd46jF_4J-uFlAvNEOl6j9EwBAKfBRuJ5i_tDkzQ4JmBgaetS9VP7lGHt-TKNOXhMFxMbqLN30PDw09ePRzgmacCGZXSOdVWVDkAiqXVVZ9ZZXmvYdrnCKgpPWG7yKmM1VdoAOnC1BvtHlTAlz2xFbEafokHTNvYZSjssUXgKs1wVWhEFWNWY2hVa5JrmZYLI6qNJExnMfSKNiew86ZTLMH8S5k928yd_Jehd_8408HdcK7230gUZ1_JMAsLisNcueZ6g130xrELvWlGNbRdepsunTphI0G5Qnb45DwE90E4Q31CqXsAzfG-WNOPTjumbAP4GfAkjf7_Sv7_9um4Y34OObjbR7edkJJE6lZOFnFk5XTsdlqagOaWcS9hFUwlY1UlNrJAqN5XjDOyBYAl6e0Xl8dHZ2NcpMoBGBDrdL5AbzP3z_xN_ge7lYZ3gjOyhwfx8YV8CPpzrV_HH8Ael61zv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+for+direct-to-physician+reporting+of+ambulatory+electrocardiography&rft.jtitle=Nature+medicine&rft.au=Johnson%2C+L.+S.&rft.au=Zadrozniak%2C+P.&rft.au=Jasina%2C+G.&rft.au=Grotek-Cuprjak%2C+A.&rft.date=2025-03-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1078-8956&rft.eissn=1546-170X&rft.volume=31&rft.issue=3&rft.spage=925&rft.epage=931&rft_id=info:doi/10.1038%2Fs41591-025-03516-x&rft_id=info%3Apmid%2F39930139&rft.externalDocID=PMC11922735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon