A Case Study of the New York City 2012-2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives

Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Recently, Broniatowski and colleagues suggested Twitter's relevance at the city-level for New York City. Here, we look to dive deeper into the case of New...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical Internet research Vol. 16; no. 10; p. e236
Main Authors Nagar, Ruchit, Yuan, Qingyu, Freifeld, Clark C, Santillana, Mauricio, Nojima, Aaron, Chunara, Rumi, Brownstein, John S
Format Journal Article
LanguageEnglish
Published Canada Journal of Medical Internet Research 01.10.2014
Gunther Eysenbach MD MPH, Associate Professor
JMIR Publications Inc
JMIR Publications
Subjects
Online AccessGet full text
ISSN1438-8871
1439-4456
1438-8871
DOI10.2196/jmir.3416

Cover

Abstract Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Recently, Broniatowski and colleagues suggested Twitter's relevance at the city-level for New York City. Here, we look to dive deeper into the case of New York City by analyzing daily Twitter data from temporal and spatiotemporal perspectives. Also, through manual coding of all tweets, we look to gain qualitative insights that can help direct future automated searches. The intent of the study was first to validate the temporal predictive strength of daily Twitter data for influenza-like illness emergency department (ILI-ED) visits during the New York City 2012-2013 influenza season against other available and established datasets (Google search query, or GSQ), and second, to examine the spatial distribution and the spread of geocoded tweets as proxies for potential cases. From the Twitter Streaming API, 2972 tweets were collected in the New York City region matching the keywords "flu", "influenza", "gripe", and "high fever". The tweets were categorized according to the scheme developed by Lamb et al. A new fourth category was added as an evaluator guess for the probability of the subject(s) being sick to account for strength of confidence in the validity of the statement. Temporal correlations were made for tweets against daily ILI-ED visits and daily GSQ volume. The best models were used for linear regression for forecasting ILI visits. A weighted, retrospective Poisson model with SaTScan software (n=1484), and vector map were used for spatiotemporal analysis. Infection-related tweets (R=.763) correlated better than GSQ time series (R=.683) for the same keywords and had a lower mean average percent error (8.4 vs 11.8) for ILI-ED visit prediction in January, the most volatile month of flu. SaTScan identified primary outbreak cluster of high-probability infection tweets with a 2.74 relative risk ratio compared to medium-probability infection tweets at P=.001 in Northern Brooklyn, in a radius that includes Barclay's Center and the Atlantic Avenue Terminal. While others have looked at weekly regional tweets, this study is the first to stress test Twitter for daily city-level data for New York City. Extraction of personal testimonies of infection-related tweets suggests Twitter's strength both qualitatively and quantitatively for ILI-ED prediction compared to alternative daily datasets mixed with awareness-based data such as GSQ. Additionally, granular Twitter data provide important spatiotemporal insights. A tweet vector-map may be useful for visualization of city-level spread when local gold standard data are otherwise unavailable.
AbstractList Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Here, we look to dive deeper into the case of New York City by analyzing daily Twitter data from temporal and spatio-temporal perspectives. The intent of the study was first to validate the temporal predictive strength of daily Twitter data for influenza-like illness emergency department (ILI-ED) visits during the New York City 2012-2013 influenza season against other available and established data-sets (Google search query, or GSQ), and second, to examine the spatial distribution and the spread of geocoded tweets as proxies for potential cases. From the Twitter Streaming API, 2972 tweets were collected in the New York City region matching the keywords "flu", "influenza", "gripe", and "high fever". While others have looked at weekly regional tweets, this study is the first to stress test Twitter for daily city-level data for New York City.
Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Recently, Broniatowski and colleagues suggested Twitter's relevance at the city-level for New York City. Here, we look to dive deeper into the case of New York City by analyzing daily Twitter data from temporal and spatiotemporal perspectives. Also, through manual coding of all tweets, we look to gain qualitative insights that can help direct future automated searches. The intent of the study was first to validate the temporal predictive strength of daily Twitter data for influenza-like illness emergency department (ILI-ED) visits during the New York City 2012-2013 influenza season against other available and established datasets (Google search query, or GSQ), and second, to examine the spatial distribution and the spread of geocoded tweets as proxies for potential cases. From the Twitter Streaming API, 2972 tweets were collected in the New York City region matching the keywords "flu", "influenza", "gripe", and "high fever". The tweets were categorized according to the scheme developed by Lamb et al. A new fourth category was added as an evaluator guess for the probability of the subject(s) being sick to account for strength of confidence in the validity of the statement. Temporal correlations were made for tweets against daily ILI-ED visits and daily GSQ volume. The best models were used for linear regression for forecasting ILI visits. A weighted, retrospective Poisson model with SaTScan software (n=1484), and vector map were used for spatiotemporal analysis. Infection-related tweets (R=.763) correlated better than GSQ time series (R=.683) for the same keywords and had a lower mean average percent error (8.4 vs 11.8) for ILI-ED visit prediction in January, the most volatile month of flu. SaTScan identified primary outbreak cluster of high-probability infection tweets with a 2.74 relative risk ratio compared to medium-probability infection tweets at P=.001 in Northern Brooklyn, in a radius that includes Barclay's Center and the Atlantic Avenue Terminal. While others have looked at weekly regional tweets, this study is the first to stress test Twitter for daily city-level data for New York City. Extraction of personal testimonies of infection-related tweets suggests Twitter's strength both qualitatively and quantitatively for ILI-ED prediction compared to alternative daily datasets mixed with awareness-based data such as GSQ. Additionally, granular Twitter data provide important spatiotemporal insights. A tweet vector-map may be useful for visualization of city-level spread when local gold standard data are otherwise unavailable.
Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Recently, Broniatowski and colleagues suggested Twitter's relevance at the city-level for New York City. Here, we look to dive deeper into the case of New York City by analyzing daily Twitter data from temporal and spatiotemporal perspectives. Also, through manual coding of all tweets, we look to gain qualitative insights that can help direct future automated searches.BACKGROUNDTwitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Recently, Broniatowski and colleagues suggested Twitter's relevance at the city-level for New York City. Here, we look to dive deeper into the case of New York City by analyzing daily Twitter data from temporal and spatiotemporal perspectives. Also, through manual coding of all tweets, we look to gain qualitative insights that can help direct future automated searches.The intent of the study was first to validate the temporal predictive strength of daily Twitter data for influenza-like illness emergency department (ILI-ED) visits during the New York City 2012-2013 influenza season against other available and established datasets (Google search query, or GSQ), and second, to examine the spatial distribution and the spread of geocoded tweets as proxies for potential cases.OBJECTIVEThe intent of the study was first to validate the temporal predictive strength of daily Twitter data for influenza-like illness emergency department (ILI-ED) visits during the New York City 2012-2013 influenza season against other available and established datasets (Google search query, or GSQ), and second, to examine the spatial distribution and the spread of geocoded tweets as proxies for potential cases.From the Twitter Streaming API, 2972 tweets were collected in the New York City region matching the keywords "flu", "influenza", "gripe", and "high fever". The tweets were categorized according to the scheme developed by Lamb et al. A new fourth category was added as an evaluator guess for the probability of the subject(s) being sick to account for strength of confidence in the validity of the statement. Temporal correlations were made for tweets against daily ILI-ED visits and daily GSQ volume. The best models were used for linear regression for forecasting ILI visits. A weighted, retrospective Poisson model with SaTScan software (n=1484), and vector map were used for spatiotemporal analysis.METHODSFrom the Twitter Streaming API, 2972 tweets were collected in the New York City region matching the keywords "flu", "influenza", "gripe", and "high fever". The tweets were categorized according to the scheme developed by Lamb et al. A new fourth category was added as an evaluator guess for the probability of the subject(s) being sick to account for strength of confidence in the validity of the statement. Temporal correlations were made for tweets against daily ILI-ED visits and daily GSQ volume. The best models were used for linear regression for forecasting ILI visits. A weighted, retrospective Poisson model with SaTScan software (n=1484), and vector map were used for spatiotemporal analysis.Infection-related tweets (R=.763) correlated better than GSQ time series (R=.683) for the same keywords and had a lower mean average percent error (8.4 vs 11.8) for ILI-ED visit prediction in January, the most volatile month of flu. SaTScan identified primary outbreak cluster of high-probability infection tweets with a 2.74 relative risk ratio compared to medium-probability infection tweets at P=.001 in Northern Brooklyn, in a radius that includes Barclay's Center and the Atlantic Avenue Terminal.RESULTSInfection-related tweets (R=.763) correlated better than GSQ time series (R=.683) for the same keywords and had a lower mean average percent error (8.4 vs 11.8) for ILI-ED visit prediction in January, the most volatile month of flu. SaTScan identified primary outbreak cluster of high-probability infection tweets with a 2.74 relative risk ratio compared to medium-probability infection tweets at P=.001 in Northern Brooklyn, in a radius that includes Barclay's Center and the Atlantic Avenue Terminal.While others have looked at weekly regional tweets, this study is the first to stress test Twitter for daily city-level data for New York City. Extraction of personal testimonies of infection-related tweets suggests Twitter's strength both qualitatively and quantitatively for ILI-ED prediction compared to alternative daily datasets mixed with awareness-based data such as GSQ. Additionally, granular Twitter data provide important spatiotemporal insights. A tweet vector-map may be useful for visualization of city-level spread when local gold standard data are otherwise unavailable.CONCLUSIONSWhile others have looked at weekly regional tweets, this study is the first to stress test Twitter for daily city-level data for New York City. Extraction of personal testimonies of infection-related tweets suggests Twitter's strength both qualitatively and quantitatively for ILI-ED prediction compared to alternative daily datasets mixed with awareness-based data such as GSQ. Additionally, granular Twitter data provide important spatiotemporal insights. A tweet vector-map may be useful for visualization of city-level spread when local gold standard data are otherwise unavailable.
Background Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Recently, Broniatowski and colleagues suggested Twitter’s relevance at the city-level for New York City. Here, we look to dive deeper into the case of New York City by analyzing daily Twitter data from temporal and spatiotemporal perspectives. Also, through manual coding of all tweets, we look to gain qualitative insights that can help direct future automated searches. Objective The intent of the study was first to validate the temporal predictive strength of daily Twitter data for influenza-like illness emergency department (ILI-ED) visits during the New York City 2012-2013 influenza season against other available and established datasets (Google search query, or GSQ), and second, to examine the spatial distribution and the spread of geocoded tweets as proxies for potential cases. Methods From the Twitter Streaming API, 2972 tweets were collected in the New York City region matching the keywords “flu”, “influenza”, “gripe”, and “high fever”. The tweets were categorized according to the scheme developed by Lamb et al. A new fourth category was added as an evaluator guess for the probability of the subject(s) being sick to account for strength of confidence in the validity of the statement. Temporal correlations were made for tweets against daily ILI-ED visits and daily GSQ volume. The best models were used for linear regression for forecasting ILI visits. A weighted, retrospective Poisson model with SaTScan software (n=1484), and vector map were used for spatiotemporal analysis. Results Infection-related tweets (R=.763) correlated better than GSQ time series (R=.683) for the same keywords and had a lower mean average percent error (8.4 vs 11.8) for ILI-ED visit prediction in January, the most volatile month of flu. SaTScan identified primary outbreak cluster of high-probability infection tweets with a 2.74 relative risk ratio compared to medium-probability infection tweets at P=.001 in Northern Brooklyn, in a radius that includes Barclay’s Center and the Atlantic Avenue Terminal. Conclusions While others have looked at weekly regional tweets, this study is the first to stress test Twitter for daily city-level data for New York City. Extraction of personal testimonies of infection-related tweets suggests Twitter’s strength both qualitatively and quantitatively for ILI-ED prediction compared to alternative daily datasets mixed with awareness-based data such as GSQ. Additionally, granular Twitter data provide important spatiotemporal insights. A tweet vector-map may be useful for visualization of city-level spread when local gold standard data are otherwise unavailable.
Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Recently, Broniatowski and colleagues suggested Twitter’s relevance at the city-level for New York City. Here, we look to dive deeper into the case of New York City by analyzing daily Twitter data from temporal and spatiotemporal perspectives. Also, through manual coding of all tweets, we look to gain qualitative insights that can help direct future automated searches. The intent of the study was first to validate the temporal predictive strength of daily Twitter data for influenza-like illness emergency department (ILI-ED) visits during the New York City 2012-2013 influenza season against other available and established datasets (Google search query, or GSQ), and second, to examine the spatial distribution and the spread of geocoded tweets as proxies for potential cases. From the Twitter Streaming API, 2972 tweets were collected in the New York City region matching the keywords “flu”, “influenza”, “gripe”, and “high fever”. The tweets were categorized according to the scheme developed by Lamb et al. A new fourth category was added as an evaluator guess for the probability of the subject(s) being sick to account for strength of confidence in the validity of the statement. Temporal correlations were made for tweets against daily ILI-ED visits and daily GSQ volume. The best models were used for linear regression for forecasting ILI visits. A weighted, retrospective Poisson model with SaTScan software (n=1484), and vector map were used for spatiotemporal analysis. Infection-related tweets (R=.763) correlated better than GSQ time series (R=.683) for the same keywords and had a lower mean average percent error (8.4 vs 11.8) for ILI-ED visit prediction in January, the most volatile month of flu. SaTScan identified primary outbreak cluster of high-probability infection tweets with a 2.74 relative risk ratio compared to medium-probability infection tweets at P=.001 in Northern Brooklyn, in a radius that includes Barclay’s Center and the Atlantic Avenue Terminal. While others have looked at weekly regional tweets, this study is the first to stress test Twitter for daily city-level data for New York City. Extraction of personal testimonies of infection-related tweets suggests Twitter’s strength both qualitatively and quantitatively for ILI-ED prediction compared to alternative daily datasets mixed with awareness-based data such as GSQ. Additionally, granular Twitter data provide important spatiotemporal insights. A tweet vector-map may be useful for visualization of city-level spread when local gold standard data are otherwise unavailable.
BackgroundTwitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Recently, Broniatowski and colleagues suggested Twitter’s relevance at the city-level for New York City. Here, we look to dive deeper into the case of New York City by analyzing daily Twitter data from temporal and spatiotemporal perspectives. Also, through manual coding of all tweets, we look to gain qualitative insights that can help direct future automated searches. ObjectiveThe intent of the study was first to validate the temporal predictive strength of daily Twitter data for influenza-like illness emergency department (ILI-ED) visits during the New York City 2012-2013 influenza season against other available and established datasets (Google search query, or GSQ), and second, to examine the spatial distribution and the spread of geocoded tweets as proxies for potential cases. MethodsFrom the Twitter Streaming API, 2972 tweets were collected in the New York City region matching the keywords “flu”, “influenza”, “gripe”, and “high fever”. The tweets were categorized according to the scheme developed by Lamb et al. A new fourth category was added as an evaluator guess for the probability of the subject(s) being sick to account for strength of confidence in the validity of the statement. Temporal correlations were made for tweets against daily ILI-ED visits and daily GSQ volume. The best models were used for linear regression for forecasting ILI visits. A weighted, retrospective Poisson model with SaTScan software (n=1484), and vector map were used for spatiotemporal analysis. ResultsInfection-related tweets (R=.763) correlated better than GSQ time series (R=.683) for the same keywords and had a lower mean average percent error (8.4 vs 11.8) for ILI-ED visit prediction in January, the most volatile month of flu. SaTScan identified primary outbreak cluster of high-probability infection tweets with a 2.74 relative risk ratio compared to medium-probability infection tweets at P=.001 in Northern Brooklyn, in a radius that includes Barclay’s Center and the Atlantic Avenue Terminal. ConclusionsWhile others have looked at weekly regional tweets, this study is the first to stress test Twitter for daily city-level data for New York City. Extraction of personal testimonies of infection-related tweets suggests Twitter’s strength both qualitatively and quantitatively for ILI-ED prediction compared to alternative daily datasets mixed with awareness-based data such as GSQ. Additionally, granular Twitter data provide important spatiotemporal insights. A tweet vector-map may be useful for visualization of city-level spread when local gold standard data are otherwise unavailable.
Audience Academic
Author Freifeld, Clark C
Nojima, Aaron
Brownstein, John S
Nagar, Ruchit
Yuan, Qingyu
Chunara, Rumi
Santillana, Mauricio
AuthorAffiliation 1 Children's Hospital Informatics Program Boston Children's Hospital Boston, MA United States
4 Boston University Biomedical Engineering Department Boston, MA United States
5 Harvard University School of Engineering and Applied Sciences Cambridge, MA United States
3 Management School University of Chinese Academy of Sciences Beijing China
6 Harvard University School of Public Health Boston, MA United States
7 Massachusetts Institute of Technology Cambridge, MA United States
2 Yale University New Haven, CT United States
8 Department of Pediatrics Harvard Medical School Boston, MA United States
AuthorAffiliation_xml – name: 5 Harvard University School of Engineering and Applied Sciences Cambridge, MA United States
– name: 7 Massachusetts Institute of Technology Cambridge, MA United States
– name: 2 Yale University New Haven, CT United States
– name: 6 Harvard University School of Public Health Boston, MA United States
– name: 8 Department of Pediatrics Harvard Medical School Boston, MA United States
– name: 1 Children's Hospital Informatics Program Boston Children's Hospital Boston, MA United States
– name: 4 Boston University Biomedical Engineering Department Boston, MA United States
– name: 3 Management School University of Chinese Academy of Sciences Beijing China
Author_xml – sequence: 1
  givenname: Ruchit
  surname: Nagar
  fullname: Nagar, Ruchit
– sequence: 2
  givenname: Qingyu
  surname: Yuan
  fullname: Yuan, Qingyu
– sequence: 3
  givenname: Clark C
  surname: Freifeld
  fullname: Freifeld, Clark C
– sequence: 4
  givenname: Mauricio
  surname: Santillana
  fullname: Santillana, Mauricio
– sequence: 5
  givenname: Aaron
  surname: Nojima
  fullname: Nojima, Aaron
– sequence: 6
  givenname: Rumi
  surname: Chunara
  fullname: Chunara, Rumi
– sequence: 7
  givenname: John S
  surname: Brownstein
  fullname: Brownstein, John S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25331122$$D View this record in MEDLINE/PubMed
BookMark eNqFk82O0zAQgCO0iP2BAy-ALHGBQ7uxndjJBWlV2KXSakFqJcTJcu1x65LEXdvZpbwCL43D_haQUKTEmnzzJTOaOcz2OtdBlr3E-Zjgmh2vW-vHtMDsSXaAC1qNqorjvUfn_ewwhHWek7yo8bNsn5SUYkzIQfbzBE1kADSLvd4iZ1BcAbqAa_TV-W9oYuMWkRyTUbpRNO1M00P3Q6IZyOA69MXGFXovbbNFZ-CU06DR_NrGCD6Fo0Sn3rVoDu3Gedkg2Wk028hoXbwLfQYfNqCivYLwPHtqZBPgxe3zKJuffphPPo7OP51NJyfnI8VyGkfS8JIqRmVNqdKGGCkXwEoNNaa4KjipU52U8VIvarrQkvOKEIKJlhRDrulRNr3RaifXYuNtK_1WOGnF74DzSyF9tKoBUVNuMDMFSMCFZrxSJdb5QgFnhixMnlzvblybftGCVtDFVNWOdPdNZ1di6a5EQcq6qgbBm1uBd5c9hChaGxQ0jezA9UFgzmlFWMX4_1GGS1Lygg7W13-ga9f7LjVVkBKTNBKsYA_UUqZabWdc-kU1SMUJZzUtGSlJosb_oNKlobUqDaKxKb6T8HYnITERvsel7EMQ09nFLvvqcf_uG3c3oAk4vgGUdyF4MELZOEzQ0E7bCJyLYQXEsAJiWIGHz99n3En_Zn8Bs_MDfQ
CitedBy_id crossref_primary_10_1093_infdis_jiw376
crossref_primary_10_1186_s13326_018_0186_9
crossref_primary_10_2196_publichealth_5018
crossref_primary_10_2139_ssrn_3849138
crossref_primary_10_2196_21266
crossref_primary_10_1007_s11869_023_01477_z
crossref_primary_10_1371_journal_pone_0187691
crossref_primary_10_2196_26953
crossref_primary_10_1371_journal_pone_0181233
crossref_primary_10_1038_srep25732
crossref_primary_10_1177_1460458214568037
crossref_primary_10_1136_injuryprev_2015_041789
crossref_primary_10_1016_j_measen_2023_100747
crossref_primary_10_1080_17538947_2022_2161652
crossref_primary_10_1016_j_annepidem_2021_08_022
crossref_primary_10_2196_23272
crossref_primary_10_3390_ijerph17176161
crossref_primary_10_1016_j_osnem_2021_100135
crossref_primary_10_1016_S0140_6736_16_30602_X
crossref_primary_10_1111_hir_12216
crossref_primary_10_1186_s12911_020_1046_y
crossref_primary_10_1016_j_puhe_2017_03_013
crossref_primary_10_2196_jmir_6240
crossref_primary_10_2196_publichealth_8627
crossref_primary_10_1057_s41599_021_00977_6
crossref_primary_10_2196_18281
crossref_primary_10_1016_j_ijmedinf_2019_103955
crossref_primary_10_2196_49139
crossref_primary_10_2196_jmir_5144
crossref_primary_10_1016_j_compenvurbsys_2018_05_007
crossref_primary_10_3390_healthcare9091110
crossref_primary_10_1109_ACCESS_2021_3110972
crossref_primary_10_1016_j_csda_2018_09_005
crossref_primary_10_1016_j_ipm_2018_04_011
crossref_primary_10_1371_journal_pone_0158539
crossref_primary_10_3389_fdata_2023_1124526
crossref_primary_10_1007_s10115_016_1007_z
crossref_primary_10_1080_21645515_2023_2281729
crossref_primary_10_1038_s41598_018_23075_1
crossref_primary_10_1177_02807270231171629
crossref_primary_10_1016_j_imu_2017_04_001
crossref_primary_10_2139_ssrn_4021690
crossref_primary_10_1371_journal_pone_0233126
crossref_primary_10_2196_10827
crossref_primary_10_1016_j_buildenv_2023_110123
crossref_primary_10_3390_info11060314
crossref_primary_10_2196_43685
crossref_primary_10_1016_j_vaccine_2020_07_054
crossref_primary_10_3390_ijerph16183348
crossref_primary_10_1186_s12889_019_7103_8
crossref_primary_10_3390_computation13040086
crossref_primary_10_2196_jmir_3863
crossref_primary_10_2196_13680
crossref_primary_10_1016_j_ijdrr_2022_103204
crossref_primary_10_1177_2053951716652914
crossref_primary_10_1016_j_heliyon_2021_e06200
crossref_primary_10_1007_s44197_024_00272_y
crossref_primary_10_2196_46087
crossref_primary_10_1016_j_yjbinx_2019_100060
crossref_primary_10_1371_journal_pone_0250890
crossref_primary_10_2217_cer_2018_0066
crossref_primary_10_1111_gec3_12404
crossref_primary_10_1093_jssam_smz023
crossref_primary_10_1080_10630732_2024_2364569
crossref_primary_10_2196_36215
crossref_primary_10_1371_journal_pone_0182008
crossref_primary_10_1016_j_elerap_2017_12_003
crossref_primary_10_1186_s43093_023_00284_3
crossref_primary_10_2196_publichealth_5901
crossref_primary_10_2196_publichealth_8218
crossref_primary_10_1371_journal_pone_0155417
crossref_primary_10_1371_journal_pone_0282101
crossref_primary_10_1016_j_amepre_2019_08_027
crossref_primary_10_1007_s42979_021_00625_5
crossref_primary_10_2196_jmir_4305
crossref_primary_10_1016_j_sciaf_2022_e01480
crossref_primary_10_1016_j_tranpol_2022_03_011
crossref_primary_10_1371_journal_pntd_0005295
crossref_primary_10_1371_journal_pcbi_1004513
crossref_primary_10_1016_j_ssmph_2021_100851
crossref_primary_10_1007_s43390_021_00433_0
crossref_primary_10_1126_sciadv_abd6989
crossref_primary_10_1145_3274414
crossref_primary_10_1007_s00484_021_02155_4
crossref_primary_10_3399_bjgp17X688921
crossref_primary_10_1080_09638237_2020_1739251
crossref_primary_10_2200_S00791ED1V01Y201707ICR060
crossref_primary_10_1016_j_compbiomed_2021_104482
crossref_primary_10_2196_publichealth_7344
crossref_primary_10_2196_publichealth_8950
crossref_primary_10_1371_journal_pone_0127754
crossref_primary_10_3389_fpubh_2016_00036
crossref_primary_10_1007_s10207_022_00599_2
crossref_primary_10_1371_journal_pcbi_1009087
crossref_primary_10_4018_IJUDH_2017010102
crossref_primary_10_1126_sciadv_abq0199
crossref_primary_10_3390_su10103414
crossref_primary_10_2196_publichealth_7181
Cites_doi 10.1038/nature07634
10.2196/jmir.2911
10.1371/journal.pone.0014118
10.2196/jmir.2121
10.5210/fm.v18i5.4366
10.1016/j.amepre.2011.02.006
10.1371/journal.pone.0069305
10.1002/sim.2607
10.2196/jmir.2705
10.1371/journal.pcbi.1003256
10.1371/journal.pone.0083672
10.4269/ajtmh.2012.11-0597
10.1038/494155a
10.1145/1871437.1871535
10.1086/630200
10.1371/journal.pone.0019467
10.1145/1964858.1964874
10.1126/science.1248506
10.2196/jmir.1157
10.1371/journal.pmed.0020059
10.1111/j.1475-4932.2012.00809.x
10.2196/jmir.2740
ContentType Journal Article
Copyright COPYRIGHT 2014 Journal of Medical Internet Research
2014. This work is licensed under http://creativecommons.org/licenses/by/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Ruchit Nagar, Qingyu Yuan, Clark C Freifeld, Mauricio Santillana, Aaron Nojima, Rumi Chunara, John S Brownstein. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 20.10.2014. 2014
Copyright_xml – notice: COPYRIGHT 2014 Journal of Medical Internet Research
– notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Ruchit Nagar, Qingyu Yuan, Clark C Freifeld, Mauricio Santillana, Aaron Nojima, Rumi Chunara, John S Brownstein. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 20.10.2014. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
3V.
7QJ
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
CNYFK
DWQXO
E3H
F2A
FYUFA
GHDGH
K9.
KB0
M0S
M1O
NAPCQ
PHGZM
PHGZT
PIMPY
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
7X8
7U9
H94
5PM
DOA
DOI 10.2196/jmir.3416
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
ProQuest Central (Corporate)
Applied Social Sciences Index & Abstracts (ASSIA)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Library Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
MEDLINE - Academic
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Applied Social Sciences Index and Abstracts (ASSIA)
ProQuest Central China
ProQuest Central
ProQuest Library Science
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Library & Information Science Collection
ProQuest Central (New)
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE
MEDLINE - Academic



Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Library & Information Science
Geography
Public Health
EISSN 1438-8871
ExternalDocumentID oai_doaj_org_article_937f16f4eae14d678c51d0bce76f2bf0
PMC4259880
A769356252
25331122
10_2196_jmir_3416
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations New York City
New York
United States--US
New York City New York
GeographicLocations_xml – name: New York City
– name: New York
– name: New York City New York
– name: United States--US
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: 5 R01 LM010812-05
– fundername: NLM NIH HHS
  grantid: R01 LM010812
GroupedDBID ---
.4I
.DC
29L
2WC
36B
53G
5GY
5VS
77K
7RV
7X7
8FI
8FJ
AAFWJ
AAKPC
AAWTL
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
CNYFK
CS3
DIK
DU5
DWQXO
E3Z
EAP
EBD
EBS
EJD
ELW
EMB
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
ICO
IEA
IHR
INH
ISN
ITC
KQ8
M1O
M48
NAPCQ
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
RNS
RPM
SJN
SV3
TR2
UKHRP
XSB
ACUHS
CGR
CUY
CVF
ECM
EIF
NPM
PPXIY
PRQQA
PMFND
3V.
7QJ
7XB
8FK
AZQEC
E3H
F2A
K9.
PKEHL
PQEST
PQUKI
PRINS
77I
7X8
PUEGO
7U9
H94
5PM
ID FETCH-LOGICAL-c603t-af753c63a933cdf2faabe65de9131847290203675db93bda77822212da31e0d3
IEDL.DBID 7X7
ISSN 1438-8871
1439-4456
IngestDate Wed Aug 27 01:31:48 EDT 2025
Thu Aug 21 18:01:57 EDT 2025
Thu Sep 04 23:29:35 EDT 2025
Fri Sep 05 11:11:29 EDT 2025
Fri Jul 25 23:00:27 EDT 2025
Tue Jun 17 22:20:52 EDT 2025
Tue Jun 10 21:19:47 EDT 2025
Fri Jun 27 05:55:23 EDT 2025
Mon Jul 21 06:07:13 EDT 2025
Tue Jul 01 02:05:33 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords New York City
influenza
medical informatics
social media, natural language processing
spatiotemporal
infodemiology
mHealth
Twitter
Google Flu Trends
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-af753c63a933cdf2faabe65de9131847290203675db93bda77822212da31e0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4206-418X
0000-0002-6281-219X
0000-0002-7542-8402
0000-0002-5346-7259
0000-0001-8568-5317
0000-0002-9461-8121
0000-0001-9787-4465
OpenAccessLink https://www.proquest.com/docview/2512887646?pq-origsite=%requestingapplication%
PMID 25331122
PQID 2512887646
PQPubID 2033121
ParticipantIDs doaj_primary_oai_doaj_org_article_937f16f4eae14d678c51d0bce76f2bf0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4259880
proquest_miscellaneous_1773826867
proquest_miscellaneous_1615257430
proquest_journals_2512887646
gale_infotracmisc_A769356252
gale_infotracacademiconefile_A769356252
gale_incontextgauss_ISN_A769356252
pubmed_primary_25331122
crossref_citationtrail_10_2196_jmir_3416
crossref_primary_10_2196_jmir_3416
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle Journal of medical Internet research
PublicationTitleAlternate J Med Internet Res
PublicationYear 2014
Publisher Journal of Medical Internet Research
Gunther Eysenbach MD MPH, Associate Professor
JMIR Publications Inc
JMIR Publications
Publisher_xml – name: Journal of Medical Internet Research
– name: Gunther Eysenbach MD MPH, Associate Professor
– name: JMIR Publications Inc
– name: JMIR Publications
References ref35
ref12
ref34
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
Lamb, A (ref33) 2013
ref18
Achrekar, H (ref15) 2012
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Paul, M (ref13) 2011
24146603 - PLoS Comput Biol. 2013;9(10):e1003256
24440770 - J Med Internet Res. 2014;16(1):e20
21124761 - PLoS One. 2010;5(11):e14118
17238340 - AMIA Annu Symp Proc. 2006;:244-8
24158773 - J Med Internet Res. 2013;15(10):e237
16795130 - Stat Med. 2007 Mar 30;26(7):1594-607
22232449 - Am J Trop Med Hyg. 2012 Jan;86(1):39-45
23894447 - PLoS One. 2013;8(7):e69305
15719066 - PLoS Med. 2005 Mar;2(3):e59
23154246 - J Med Internet Res. 2012;14(6):e156
21521589 - Am J Prev Med. 2011 May;40(5 Suppl 2):S154-8
19020500 - Nature. 2009 Feb 19;457(7232):1012-4
24626916 - Science. 2014 Mar 14;343(6176):1203-5
24349542 - PLoS One. 2013;8(12):e83672
19845471 - Clin Infect Dis. 2009 Nov 15;49(10):1557-64
21573238 - PLoS One. 2011;6(5):e19467
23407515 - Nature. 2013 Feb 14;494(7436):155-6
23896182 - J Med Internet Res. 2013;15(7):e147
19329408 - J Med Internet Res. 2009;11(1):e11
References_xml – ident: ref37
– ident: ref5
  doi: 10.1038/nature07634
– ident: ref39
  doi: 10.2196/jmir.2911
– ident: ref1
– ident: ref19
  doi: 10.1371/journal.pone.0014118
– ident: ref43
  doi: 10.2196/jmir.2121
– ident: ref42
  doi: 10.5210/fm.v18i5.4366
– start-page: 265
  year: 2011
  ident: ref13
  publication-title: Artificial Intelligence
– ident: ref2
  doi: 10.1016/j.amepre.2011.02.006
– ident: ref12
  doi: 10.1371/journal.pone.0069305
– ident: ref36
  doi: 10.1002/sim.2607
– ident: ref20
– ident: ref29
– ident: ref41
  doi: 10.2196/jmir.2705
– start-page: 789
  year: 2013
  ident: ref33
  publication-title: North American Chapter of the Association for Computational Linguistics (NAACL)
– start-page: 61
  year: 2012
  ident: ref15
  publication-title: HEALTHINF
– ident: ref25
– ident: ref27
– ident: ref9
– ident: ref32
– ident: ref17
  doi: 10.1371/journal.pcbi.1003256
– ident: ref24
  doi: 10.1371/journal.pone.0083672
– ident: ref34
– ident: ref11
  doi: 10.4269/ajtmh.2012.11-0597
– ident: ref16
  doi: 10.1038/494155a
– ident: ref30
– ident: ref14
  doi: 10.1145/1871437.1871535
– ident: ref4
– ident: ref38
– ident: ref6
– ident: ref8
  doi: 10.1086/630200
– ident: ref44
– ident: ref28
– ident: ref22
  doi: 10.1371/journal.pone.0019467
– ident: ref23
– ident: ref26
– ident: ref21
  doi: 10.1145/1964858.1964874
– ident: ref18
  doi: 10.1126/science.1248506
– ident: ref3
  doi: 10.2196/jmir.1157
– ident: ref35
  doi: 10.1371/journal.pmed.0020059
– ident: ref7
  doi: 10.1111/j.1475-4932.2012.00809.x
– ident: ref10
– ident: ref31
– ident: ref40
  doi: 10.2196/jmir.2740
– reference: 19329408 - J Med Internet Res. 2009;11(1):e11
– reference: 21521589 - Am J Prev Med. 2011 May;40(5 Suppl 2):S154-8
– reference: 23894447 - PLoS One. 2013;8(7):e69305
– reference: 23896182 - J Med Internet Res. 2013;15(7):e147
– reference: 23407515 - Nature. 2013 Feb 14;494(7436):155-6
– reference: 24158773 - J Med Internet Res. 2013;15(10):e237
– reference: 24349542 - PLoS One. 2013;8(12):e83672
– reference: 19845471 - Clin Infect Dis. 2009 Nov 15;49(10):1557-64
– reference: 24146603 - PLoS Comput Biol. 2013;9(10):e1003256
– reference: 16795130 - Stat Med. 2007 Mar 30;26(7):1594-607
– reference: 17238340 - AMIA Annu Symp Proc. 2006;:244-8
– reference: 15719066 - PLoS Med. 2005 Mar;2(3):e59
– reference: 21573238 - PLoS One. 2011;6(5):e19467
– reference: 23154246 - J Med Internet Res. 2012;14(6):e156
– reference: 19020500 - Nature. 2009 Feb 19;457(7232):1012-4
– reference: 22232449 - Am J Trop Med Hyg. 2012 Jan;86(1):39-45
– reference: 21124761 - PLoS One. 2010;5(11):e14118
– reference: 24626916 - Science. 2014 Mar 14;343(6176):1203-5
– reference: 24440770 - J Med Internet Res. 2014;16(1):e20
SSID ssj0020491
Score 2.4720998
Snippet Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Recently,...
Background Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales....
Background: Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales....
Twitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Here, we look to...
BackgroundTwitter has shown some usefulness in predicting influenza cases on a weekly basis in multiple countries and on different geographic scales. Recently,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e236
SubjectTerms Analysis
Blogging - statistics & numerical data
Case studies
Cities
Disease Outbreaks
Emergency services
Epidemics
Extraction
Geographic Mapping
Geography
Health surveillance
Humans
Infections
Influenza
Influenza, Human - epidemiology
Internet
Keywords
New York City - epidemiology
Original Paper
Prospective Studies
Public health
Queries
Retrospective Studies
Risk factors
Seasons
Social networks
Spatial analysis
Spatio-Temporal Analysis
Time series
Trends
Usefulness
Visits
Visualization
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHhAXBMursIsGhIBL2ThOnOZYCmVB2hVSi9ib5fixW9RNUJMKLX-BP81M4pZGILhwtSet4xnPfKPMfGbsWZzlOkcYMNQmz4dJgQnryHqDJz52TmqfWU7NySen8vhT8uEsPdu56otqwjp64G7jjjB8ei594rTjiUXXalJuo8K4TPq48G22jmFsk0yFVAtxL-94hPBEyqMvl4vVK_TXshd9WpL-313xTizq10nuBJ7pLXYzIEYYdyu9za65cp8dhn4DeA6hoYg2GMJJ3WfXT8I38zvsxxgmGKqAKgavoPKAkA_QtwGxNcEEUThgeI7RkLmgH6M7S75rmDmNUBw-L5oLeKMXyyt45ypqgLcw_7agHiAcbjRMV9UlzDuCqyXo0sKsLdJuNkMff7Vz1nfZfPp2PjkehisYhkZGohmislJhpNC5EMb62GtdOJlal3N0Bgki8_ZLZpbaIheF1VkLOHhsteAusuIe2yur0j1gkBnOfeq9x_wTA6LVMrapjvJREQntEz5gLzeaUSbQk9MtGUuFaQopUZESFSlxwJ5uRb92nBx_EnpN6t0KEI12O4DGpYJxqX8ZF_4TGYciooySKnHO9bqu1fvZqRrTJZKUPcYD9iII-QpXbHRobMD3Jm6tnuRBTxJPsulPb2xQBU9SK8KfGAhkgm_0ZDtNT1J1XOmqda0ItaPrTUT0F5ksE5hKjmQ2YPc7s97uTYyYH3E3LiDrGXxv8_oz5eKi5SJHl59jCHj4P3b7EbuBpp50pZIHbK9Zrd0hQr6meNye7p8q7lYu
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGkAAJIShfhQ0dCA1eMuI4H80DQqVQDaROSOvE3iwntteiLtnaVFD-Bf5p7hK3LGLaq31NHd-d73fxfTD2OkhSlSIM8FSepl6YocPa0zZHjQ-MiZVNNKfk5NFhfHAcfj2JTrbYOqzZbeDiSteO-kkdz2f7vy5WH1Dh31MYMwrQux9n0_k-nsbx3vmFR_2k6N7VNde4wW6ijQpI3kfh5n4hQFzMmzpD7Se0rFNdxP__o_qSrWrHUV4yTMP77J5DlNBvROAB2zJFh912zc0nqw7bdbkJsAcu-YiYAU6rO-zWyN2vd9jd5iseNMlJD9mfPgzQzAFFG66gtIBwEfBcBKr0BANE8ICmPUAl4IIeTv1Ofis4MgphPHyfVhP4pKazFeByKHlew_jnlPKHcLhSMJyXZzBuimPNQBUajuoA72o99O1fKujiERsPP48HB55r3-DlsS8qDxkdiTwWKhUi1zawSmUmjrRJOR4kIaL6-hY0iXSWikyrpAYrPNBKcONr8ZhtF2VhnjJIcs5tZK1F3xWNqVZxoCPlp73MF8qGvMverrkmc1fanDpszCS6OMRgSQyWxOAue7UhPW_qeVxF9JFYvyGgEtz1QDk_lU6jJeI6y2MbGmV4qNHm5xHXfpabJLZBZn38JxIcSUU2CoriOVXLxUJ-OTqUfWpASZ5n0GVvHJEtccW5ckkR-N5Ul6tFudOixFMgb0-v5VOulUgSdkUjEof4Ri830_RLiqwrTLlcSEL8eGyHwr-GJkkEuqG9OOmyJ43Ib_YmQH8BMTsuIGkpQ2vz2jPFdFLXMUdzkaL5eHb90p-zOyjEYRNAucO2q_nS7CIQrLIXtU7_BcJdXyA
  priority: 102
  providerName: Scholars Portal
Title A Case Study of the New York City 2012-2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives
URI https://www.ncbi.nlm.nih.gov/pubmed/25331122
https://www.proquest.com/docview/2512887646
https://www.proquest.com/docview/1615257430
https://www.proquest.com/docview/1773826867
https://pubmed.ncbi.nlm.nih.gov/PMC4259880
https://doaj.org/article/937f16f4eae14d678c51d0bce76f2bf0
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1438-8871
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1438-8871
  databaseCode: DOA
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1438-8871
  databaseCode: ABDBF
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1438-8871
  databaseCode: DIK
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1438-8871
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1438-8871
  databaseCode: RPM
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1438-8871
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020491
  issn: 1438-8871
  databaseCode: M1O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1438-8871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1438-8871
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1438-8871
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020491
  issn: 1438-8871
  databaseCode: M48
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgkwAJIShfha0yCAEv2eJ8OM0T6sqqgdQy0SL6ZjmxvRZ1yWhSofIv8E9zl7jtItBe8uBcW9fnu_udfR-EvPGiWMYAAxyZxrETJOCwdpVJQeI9rbk0kWKYnDwc8bNvwedpOLUHboUNq9zoxEpRqzzFM_JjtMMgEDzgH65-Otg1Cm9XbQuN22SfAVTBXR1Ndw4XoF9WVxMCueTHPy7nyyPQ2rxhg6pS_f8q5GsWqRktec38DB6SBxY30l7N6Efkls5a5K5tYT5bt8ihzUCgb6lNMcIlp1Z2W-TO0N6it8j9-qyO1ilIj8mfHu2DMaMYU7imuaEACiloP4r1nGgfcDoFA-7BVmc-fjl2Nfkt6VhLAOv0-7yc0Y9yvlhTmA6myCs6-TXHLCEYLiUdLPNLOqlLYC2ozBQdV2Hc5WbofJfwWTwhk8HppH_m2CYNTspdv3SAnaGfcl_Gvp8q4xkpE81DpWMG6iIA7F7ddUahSmI_UTKqIAnzlPSZdpX_lOxleaafExqljJnQGAMeKphMJbmnQunG3cT1pQlYm7zfcE2ktoA59tFYCHBkkMECGSyQwW3yekt6VVft-B_RCbJ-S4CFtquBfHkhrNwKQG-GcRNoqVmgwLKnIVNukuqIGy8xLvwSbhyBpTQyjNW5kKuiEJ_GI9HDNpPoX3pt8s4SmRxmnEqb-gD_G6tvNSgPGpQg62nz9WZ_CqtrCrGTjDZ5tX2Nn8T4uUznq0IgrgflHPjuDTRR5IOz2eVRmzyrt_x2bTzwCgCZwwSihjA0Fq_5JpvPqmrlYBRiMBIvbp76S3IPNnFQh0kekL1yudKHAPfKpFPJdIfsn5yOzr92qkMTeA7ZF3wG3b8gLFnp
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBgSQlBuhQ0M4vYSlqvTPCBUOqqWrRXSOtE3y4nttahLRpNqKn-B38J_5JzEbReB9rbX-DRxc65ffC6EvHbDSEQQBlgiiSLLjwGwtqROQONdpZjQoXSwOHkwZL0T_-s4GG-RP6taGEyrXNnE0lDLLMFv5Pvoh0EhmM8-nf-0cGoUnq6uRmhUYnGolhcA2fKP_QPg7xvX7X4ZdXqWmSpgJcz2CgueH3gJ8wRA-URqVwsRKxZIFTkg3z4Em-XhXBjIOPJiKcLShzquFJ6jbOnBbW-Qm75n-9iqPxxv8B0E207VvAjMANv_cTadfwAnwWour5wM8K_9v-QA68mZl7xd9x65a8JU2q7k6j7ZUmmD7JiJ6ZNlg-yZggf6lpqKJuQwNaaiQW4NzKF9g9ypPg3SquLpAfndph3wnRRTGJc00xRiUArGlmL7KNoBWEAhXnBBsxwPb45DVH4JeqwEYAP6fVpM6IGYzpYUtoMV-ZKOLqZYlASXC0G78-yMjqqOWzMqUkmPy6zxYnXp26a-NH9IRtfBvUdkO81S9YTQMHEcHWitARCDh5aCuTIQdtSKbU9o32mS9yuu8cT0S8exHTMOuAkZzJHBHBncJK_WpOdVk5D_EX1G1q8JsK93eSGbn3JjJjgEi9ph2ldCOb6EQCIJHGnHiQqZdmNtw5NQcDh27kgxNehULPKc94-HvI1TLRHOuk3yzhDpDHacCFNpAf8bm33VKHdrlGBakvrySj65MW053yhik7xcL-MvMV0vVdki5wgjwBeAklxBE4YeYNsWC5vkcSXy63fjAggBIAAbCGvKUHt59ZV0Oimbo4MPisAnPb166y_ITm80OOJH_eHhM3IbBNqvMjR3yXYxX6g9iDSL-Hmp35Twa7YnfwF4Z5FE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkAYSQlBuhQ0M4vYSmqvTPCBUWqqVsWrSOtE3y4nttahLRpNqKn-BX8S_45zEbReB9rbX-DR1cq5ffC6EvHbDSEQQBlgiiSLLjwGwtqVOQONdpZjQoXSwOPlwyPZP_K_jYLxF_qxqYTCtcmUTS0MtswS_kbfQD4NCMJ-1tEmLOOr1P53_tHCCFJ60rsZpVCJyoJYXAN_yj4Me8PqN6_a_jLr7lpkwYCXM9goL9hJ4CfMEwPpEalcLESsWSBU5IOs-BJ7lQV0YyDjyYinC0p86rhSeo2zpwW1vkJuh53uYTRaON1gPAm-namQEJoG1fpxN5x_AYbCa-yunBPzrCy45w3qi5iXP179H7pqQlXYqGbtPtlTaILfM9PTJskH2TPEDfUtNdRNymxqz0SA7h-YAv0HuVJ8JaVX99ID87tAu-FGK6YxLmmkK8SgFw0uxlRTtAkSgEDu4oGWOhzfHgSq_BD1WAnAC_T4tJrQnprMlhe1gdb6ko4spFijB5ULQ_jw7o6Oq-9aMilTS4zKDvFhdOtrUmuYPyeg6uPeIbKdZqp4QGiaOowOtNYBj8NZSMFcGwo7ase0J7TtN8n7FNZ6Y3uk4wmPGAUMhgzkymCODm-TVmvS8ahjyP6LPyPo1Afb4Li9k81NuTAaHwFE7TPtKKMeXEFQkgSPtOFEh026sbfgnFByOXTxS1IdTschzPjge8g5OuERo6zbJO0OkM9hxIkzVBTw3Nv6qUe7WKMHMJPXllXxyY-ZyvlHKJnm5XsZfYupeqrJFzhFSgF_wPfsKmjD0AOe2WdgkjyuRX78bFwAJgALYQFhThtrLq6-k00nZKB38UQT-6enVW39BdsCS8G-D4cEzchvk2a-SNXfJdjFfqD0IOov4eanelPBrNid_AV_flX8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Case+Study+of+the+New+York+City+2012-2013+Influenza+Season+With+Daily+Geocoded+Twitter+Data+From+Temporal+and+Spatiotemporal+Perspectives&rft.jtitle=Journal+of+medical+Internet+research&rft.au=Nagar%2C+Ruchit&rft.au=Yuan%2C+Qingyu&rft.au=Freifeld%2C+Clark+C&rft.au=Santillana%2C+Mauricio&rft.date=2014-10-01&rft.pub=Gunther+Eysenbach+MD+MPH%2C+Associate+Professor&rft.eissn=1438-8871&rft.volume=16&rft.issue=10&rft_id=info:doi/10.2196%2Fjmir.3416&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-8871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-8871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-8871&client=summon