Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder
Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potent...
Saved in:
| Published in | BMC neuroscience Vol. 18; no. 1; pp. 52 - 12 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
11.07.2017
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2202 1471-2202 |
| DOI | 10.1186/s12868-017-0373-0 |
Cover
| Abstract | Background
Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4–15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10–24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects.
Results
Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of
p
< 0.05 following Holm–Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range.
Conclusions
Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD. |
|---|---|
| AbstractList | Background
Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4–15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10–24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects.
Results
Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of
p
< 0.05 following Holm–Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range.
Conclusions
Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD. Abstract Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4–15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10–24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects. Results Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm–Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range. Conclusions Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD. Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4-15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10-24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects. Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm-Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range. Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD. Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4-15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10-24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects. Results Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm-Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range. Conclusions Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD. Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4-15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10-24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects.BACKGROUNDEmerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4-15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10-24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects.Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm-Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range.RESULTSPreliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm-Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range.Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD.CONCLUSIONSResults demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD. |
| ArticleNumber | 52 |
| Audience | Academic |
| Author | Desrosiers, Christian Hassan, Lama Tanougast, Camel Chaddad, Ahmad |
| Author_xml | – sequence: 1 givenname: Ahmad orcidid: 0000-0003-3402-9576 surname: Chaddad fullname: Chaddad, Ahmad email: ahmad8chaddad@gmail.com organization: Laboratory for Imagery, Vision and Artificial Intelligence, Ecole de Technologie Supérieure, Laboratory of Conception, Optimization and Modeling of Systems, University of Lorraine – sequence: 2 givenname: Christian surname: Desrosiers fullname: Desrosiers, Christian organization: Laboratory for Imagery, Vision and Artificial Intelligence, Ecole de Technologie Supérieure – sequence: 3 givenname: Lama surname: Hassan fullname: Hassan, Lama organization: Laboratory of Conception, Optimization and Modeling of Systems, University of Lorraine – sequence: 4 givenname: Camel surname: Tanougast fullname: Tanougast, Camel organization: Laboratory of Conception, Optimization and Modeling of Systems, University of Lorraine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28821235$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURNuBH8AGRWLDJsWvOM4GqaroQ6rEBthaN7Yz9ZDEwU6K5t9zpzOUmQoQshRH9neP7zn2aXY0hMFl2WtKzihV8n2iTElVEFoVhFe8IM-yEyoqWjBG2NHe_3F2mtKKIKgEe5EdM6UYZbw8yb5e-3EMBvpxTjkMNod-vbTQQR7B-tB7kzc4QfzmYsrbEPPpzuVpmu06D20O8-RTn6fRmSnOfW59CtG6-DJ73kKX3KvdvMi-XH78fHFd3H66urk4vy2MJHwqhJLgODTctLImvLElCGkNSGhEY6ykilU1oS0VpasELxlIw0gruSMlMNXyRXaz1bUBVnqMHjtd6wBePyyEuNQQJ286pwUeIYhSNZNEkJqp2rCa1iXjRBjJa9RiW615GGH9A7ruUZASvQlcbwPXmKPeBI6fRfZhWzTOTe-sccMUoTvo5HBn8Hd6Ge615NgJEyjwbicQw_fZpUn3PhnXdTC4MCdNa-xPIUgRffsEXYU5DpgvUqwUJbbEflNLQNd-aAOeazai-rykGwPkwezZHygc1uGd4zNrPa4fFLzZN_ro8NdTQqDaAiaGlKJrtfETTD5sfPvunxnSJ5X_k_vushKyw9LFvSz-WvQTjnv5bw |
| CitedBy_id | crossref_primary_10_1038_s41398_020_01015_w crossref_primary_10_1016_j_media_2020_101768 crossref_primary_10_1016_j_bbr_2020_112756 crossref_primary_10_1111_ejn_15837 crossref_primary_10_1016_j_neulet_2021_136083 crossref_primary_10_1016_j_pscychresns_2025_111970 crossref_primary_10_1093_cercor_bhz152 crossref_primary_10_3390_sym12121995 crossref_primary_10_30773_pi_2022_0336 crossref_primary_10_1016_j_bspc_2024_107466 crossref_primary_10_1007_s10554_020_01896_4 crossref_primary_10_1016_j_tins_2021_08_005 crossref_primary_10_1016_j_compbiomed_2023_107801 crossref_primary_10_1186_s13229_021_00428_8 crossref_primary_10_1016_j_jad_2021_12_065 crossref_primary_10_1162_netn_a_00281 crossref_primary_10_1002_jdn_10221 crossref_primary_10_1016_j_schres_2019_11_046 crossref_primary_10_1002_jmri_27349 crossref_primary_10_1177_1550059419842707 crossref_primary_10_7759_cureus_36870 crossref_primary_10_1016_j_pnpbp_2022_110560 crossref_primary_10_3389_fnins_2019_00435 crossref_primary_10_4236_jcc_2023_118011 crossref_primary_10_1093_schbul_sby007 crossref_primary_10_1097_WNR_0000000000001094 crossref_primary_10_3389_fonc_2018_00630 crossref_primary_10_3389_fpsyt_2023_1091730 crossref_primary_10_4018_IJEHMC_2019070105 crossref_primary_10_1109_ACCESS_2019_2936639 crossref_primary_10_1038_s41598_019_39809_8 crossref_primary_10_1016_j_nlm_2018_10_001 crossref_primary_10_1111_bph_15859 crossref_primary_10_3389_fnagi_2019_00323 crossref_primary_10_3389_fnins_2022_819069 crossref_primary_10_3389_fnins_2023_1277501 crossref_primary_10_3389_fnins_2021_685005 crossref_primary_10_3389_fnins_2021_682777 crossref_primary_10_1016_j_bionps_2020_100022 crossref_primary_10_1002_brb3_1970 crossref_primary_10_3390_diagnostics12010165 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1136_bmjopen_2020_047343 crossref_primary_10_1186_s12880_022_00892_5 crossref_primary_10_1186_s12989_020_0336_y crossref_primary_10_1002_14651858_CD011769_pub2 crossref_primary_10_2174_1567205017666200303105016 crossref_primary_10_3390_cancers11081148 crossref_primary_10_3390_ijms232113070 crossref_primary_10_3389_fninf_2022_949926 crossref_primary_10_1007_s11064_019_02903_4 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1007_s00330_024_11158_9 crossref_primary_10_1016_j_bbi_2021_06_012 crossref_primary_10_3389_fnins_2018_01000 crossref_primary_10_1002_med_21846 crossref_primary_10_1016_j_jad_2024_11_047 crossref_primary_10_3389_fnins_2018_01045 crossref_primary_10_1016_j_jneumeth_2022_109745 crossref_primary_10_1371_journal_pone_0282818 crossref_primary_10_1016_j_bbr_2024_115052 crossref_primary_10_1002_jmri_27689 crossref_primary_10_2196_14108 crossref_primary_10_1016_j_neurad_2023_09_002 crossref_primary_10_1016_j_tox_2022_153225 crossref_primary_10_3389_fninf_2020_575999 crossref_primary_10_3389_fneur_2018_00618 crossref_primary_10_1109_ACCESS_2021_3071118 crossref_primary_10_3390_diagnostics11112032 |
| Cites_doi | 10.1109/36.752194 10.1016/j.acra.2011.06.007 10.1007/s13139-013-0260-2 10.1212/WNL.35.6.866 10.3389/fnhum.2013.00733 10.3174/ajnr.A2232 10.1148/radiology.143.1.7063747 10.1038/srep45639 10.1212/WNL.59.2.184 10.1007/BF02172145 10.1016/j.rti.2004.02.007 10.1002/hbm.23449 10.1016/j.brainresbull.2003.06.001 10.1097/00004583-200003000-00017 10.1023/A:1026084430649 10.1023/A:1005592401947 10.1186/s11689-015-9117-6 10.1177/070674370304800803 10.1111/j.2517-6161.1995.tb02031.x 10.3389/fnhum.2013.00894 10.1038/mp.2013.78 10.1016/j.pscychresns.2006.02.005 10.1016/j.cortex.2015.02.008 10.1111/j.1365-2788.2012.01599.x 10.1523/JNEUROSCI.5413-09.2010 10.1007/s11548-014-0991-2 10.2307/1932409 10.1109/EMBC.2016.7591612 10.5589/m02-004 10.1109/TSMC.1973.4309314 10.1148/radiol.2015151169 10.1523/JNEUROSCI.1297-04.2004 10.1111/desc.12139 10.1016/j.jaac.2012.05.018 10.5772/50854 10.1016/j.imavis.2006.05.023 10.1001/jamapsychiatry.2016.3990 10.3174/ajnr.A2061 10.1109/ISBI.2016.7493197 10.1111/j.1467-7687.2007.00634.x 10.1002/hbm.1058 10.1017/S0033291706007215 10.1212/WNL.57.2.245 10.1109/PROC.1979.11328 10.1007/978-1-4939-3995-4_21 10.1212/WNL.53.9.2145 10.1016/j.neuroimage.2009.12.047 10.1093/brain/124.7.1317 10.1109/ISBI.2015.7163822 10.1023/A:1010933404324 10.1109/5254.708428 10.1007/s11065-015-9300-2 10.1016/S0149-7634(00)00011-7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2017 COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 |
| Copyright_xml | – notice: The Author(s) 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12868-017-0373-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1471-2202 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_4f6940889260409289c291952304c639 10.1186/s12868-017-0373-0 PMC6389224 A511286039 28821235 10_1186_s12868_017_0373_0 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABIVO ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPY ITC KQ8 LK8 M1P M2M M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FK AHSBF K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADTOC C1A CAG COF IPNFZ LGEZI LOTEE NADUK NXXTH RIG UNPAY |
| ID | FETCH-LOGICAL-c603t-486ae3ab3cf6903bd5a46dca6ab4bcd61827901f145e74352a6c20f63e05a28f3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2202 |
| IngestDate | Fri Oct 03 12:52:55 EDT 2025 Sun Oct 26 04:16:28 EDT 2025 Tue Sep 30 16:56:03 EDT 2025 Thu Sep 04 16:47:09 EDT 2025 Thu Oct 09 21:40:47 EDT 2025 Mon Oct 20 22:38:44 EDT 2025 Mon Oct 20 16:53:32 EDT 2025 Mon Jul 21 05:50:52 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 Wed Oct 01 03:07:19 EDT 2025 Sat Sep 06 07:21:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Autism spectrum disorder Hippocampus Radiomics |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c603t-486ae3ab3cf6903bd5a46dca6ab4bcd61827901f145e74352a6c20f63e05a28f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3402-9576 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12868-017-0373-0 |
| PMID | 28821235 |
| PQID | 1925453732 |
| PQPubID | 44779 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4f6940889260409289c291952304c639 unpaywall_primary_10_1186_s12868_017_0373_0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6389224 proquest_miscellaneous_1930482431 proquest_journals_1925453732 gale_infotracmisc_A511286039 gale_infotracacademiconefile_A511286039 pubmed_primary_28821235 crossref_citationtrail_10_1186_s12868_017_0373_0 crossref_primary_10_1186_s12868_017_0373_0 springer_journals_10_1186_s12868_017_0373_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-11 |
| PublicationDateYYYYMMDD | 2017-07-11 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | BMC series – open, inclusive and trusted |
| PublicationTitle | BMC neuroscience |
| PublicationTitleAbbrev | BMC Neurosci |
| PublicationTitleAlternate | BMC Neurosci |
| PublicationYear | 2017 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | RJ Gillies (373_CR20) 2015; 278 R Nicolson (373_CR54) 2006; 148 TE Nichols (373_CR45) 2002; 15 373_CR6 Y Benjamini (373_CR46) 1995; 57 K Dworzynski (373_CR48) 2012; 51 373_CR9 373_CR53 O Saitoh (373_CR12) 2001; 124 MS Oliveira de (373_CR51) 2011; 32 373_CR50 C Lord (373_CR31) 1994; 24 FJ Martinez-Murcia (373_CR60) 2016; 38 B Song (373_CR37) 2014; 9 H Abdi (373_CR40) 2010 J Piven (373_CR17) 1998; 28 C Cascio (373_CR58) 2013; 57 NJ Minshew (373_CR2) 1988; 18 EH Aylward (373_CR18) 1999; 53 MA Hearst (373_CR42) 1998; 13 LR Dice (373_CR33) 1945; 26 CC Dougherty (373_CR57) 2016; 26 N Hadjikhani (373_CR11) 1991; 2006 L Tidmarsh (373_CR3) 2003; 48 M Bauman (373_CR8) 1985; 35 A Chaddad (373_CR23) 2017; 7 JA Hanley (373_CR43) 1982; 143 SJMC Palmen (373_CR55) 2006; 36 T Zalla (373_CR28) 2013; 7 MK Rahim (373_CR38) 2014; 48 373_CR39 A Estes (373_CR1) 2015; 7 C Ecker (373_CR47) 2017; 74 RM Haralick (373_CR34) 1973; SMC-3 S Baron-Cohen (373_CR27) 2000; 24 DMU Sabino (373_CR36) 2004; 10 S Holm (373_CR41) 1979; 6 CM Schumann (373_CR16) 2004; 24 P Brambilla (373_CR56) 2003; 61 C Lord (373_CR32) 2000; 30 BF Sparks (373_CR13) 2002; 59 JD Lewis (373_CR15) 2008; 11 E Courchesne (373_CR14) 2001; 57 MC Stevens (373_CR4) 2000; 39 373_CR29 M Sikiö (373_CR52) 2011; 18 RM Haralick (373_CR26) 1979; 67 RK Lenroot (373_CR61) 2013; 7 A Martino Di (373_CR30) 2014; 19 Y Jiao (373_CR19) 2010; 50 MA García (373_CR35) 2007; 25 C Ecker (373_CR10) 2010; 30 LE Libero (373_CR59) 2015; 66 373_CR21 DA Clausi (373_CR24) 2002; 28 A Chaddad (373_CR22) 2011; 8 L Breiman (373_CR44) 2001; 45 SR Dager (373_CR7) 2007; 28 A Kassner (373_CR49) 2010; 31 L-K Soh (373_CR25) 1999; 37 R Bedford (373_CR5) 2014; 17 |
| References_xml | – volume: 37 start-page: 780 year: 1999 ident: 373_CR25 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/36.752194 – volume: 18 start-page: 1217 year: 2011 ident: 373_CR52 publication-title: Acad Radiol doi: 10.1016/j.acra.2011.06.007 – volume: 48 start-page: 1 year: 2014 ident: 373_CR38 publication-title: Nucl Med Mol Imaging doi: 10.1007/s13139-013-0260-2 – volume: 35 start-page: 866 year: 1985 ident: 373_CR8 publication-title: Neurology doi: 10.1212/WNL.35.6.866 – volume: 7 start-page: 733 year: 2013 ident: 373_CR61 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2013.00733 – volume: 32 start-page: 60 year: 2011 ident: 373_CR51 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2232 – volume: 143 start-page: 29 year: 1982 ident: 373_CR43 publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 7 start-page: 45639 year: 2017 ident: 373_CR23 publication-title: Sci Rep doi: 10.1038/srep45639 – volume: 59 start-page: 184 year: 2002 ident: 373_CR13 publication-title: Neurology doi: 10.1212/WNL.59.2.184 – volume: 24 start-page: 659 year: 1994 ident: 373_CR31 publication-title: J Autism Dev Disord doi: 10.1007/BF02172145 – volume: 10 start-page: 205 year: 2004 ident: 373_CR36 publication-title: Real Time Imaging doi: 10.1016/j.rti.2004.02.007 – volume: 38 start-page: 1208 issue: 3 year: 2016 ident: 373_CR60 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23449 – volume: 61 start-page: 557 year: 2003 ident: 373_CR56 publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2003.06.001 – volume: 39 start-page: 346 year: 2000 ident: 373_CR4 publication-title: J Am Acad Child Adolesc Psychiatry doi: 10.1097/00004583-200003000-00017 – volume: 28 start-page: 105 year: 1998 ident: 373_CR17 publication-title: J Autism Dev Disord doi: 10.1023/A:1026084430649 – volume: 30 start-page: 205 year: 2000 ident: 373_CR32 publication-title: J Autism Dev Disord doi: 10.1023/A:1005592401947 – volume: 7 start-page: 24 year: 2015 ident: 373_CR1 publication-title: J Neurodev Disord doi: 10.1186/s11689-015-9117-6 – volume: 48 start-page: 517 year: 2003 ident: 373_CR3 publication-title: Can J Psychiatry Rev Can Psychiatr doi: 10.1177/070674370304800803 – volume: 57 start-page: 289 year: 1995 ident: 373_CR46 publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 7 start-page: 894 year: 2013 ident: 373_CR28 publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2013.00894 – volume: 19 start-page: 659 year: 2014 ident: 373_CR30 publication-title: Mol Psychiatry doi: 10.1038/mp.2013.78 – volume: 148 start-page: 11 year: 2006 ident: 373_CR54 publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2006.02.005 – volume: 66 start-page: 46 year: 2015 ident: 373_CR59 publication-title: Cortex doi: 10.1016/j.cortex.2015.02.008 – volume: 57 start-page: 1037 year: 2013 ident: 373_CR58 publication-title: J Intellect Disabil Res doi: 10.1111/j.1365-2788.2012.01599.x – volume: 30 start-page: 10612 year: 2010 ident: 373_CR10 publication-title: J Neurosci Off J Soc Neurosci doi: 10.1523/JNEUROSCI.5413-09.2010 – volume: 9 start-page: 1021 year: 2014 ident: 373_CR37 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-014-0991-2 – volume: 26 start-page: 297 year: 1945 ident: 373_CR33 publication-title: Ecology doi: 10.2307/1932409 – ident: 373_CR21 doi: 10.1109/EMBC.2016.7591612 – volume: 28 start-page: 45 year: 2002 ident: 373_CR24 publication-title: Can J Remote Sens doi: 10.5589/m02-004 – volume: SMC-3 start-page: 610 year: 1973 ident: 373_CR34 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1973.4309314 – volume: 278 start-page: 563 year: 2015 ident: 373_CR20 publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 8 start-page: 39 year: 2011 ident: 373_CR22 publication-title: WSEAS Trans Biol Biomed – volume: 24 start-page: 6392 year: 2004 ident: 373_CR16 publication-title: J Neurosci Off J Soc Neurosci doi: 10.1523/JNEUROSCI.1297-04.2004 – volume: 17 start-page: 612 year: 2014 ident: 373_CR5 publication-title: Dev Sci doi: 10.1111/desc.12139 – volume: 6 start-page: 65 year: 1979 ident: 373_CR41 publication-title: Scand J Stat – volume: 51 start-page: 788 year: 2012 ident: 373_CR48 publication-title: J Am Acad Child Adolesc Psychiatry doi: 10.1016/j.jaac.2012.05.018 – ident: 373_CR53 – volume: 18 start-page: 561 year: 1988 ident: 373_CR2 publication-title: Curr Probl Pediatr – volume: 28 start-page: 672 year: 2007 ident: 373_CR7 publication-title: AJNR Am J Neuroradiol – ident: 373_CR9 doi: 10.5772/50854 – volume: 25 start-page: 1091 year: 2007 ident: 373_CR35 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2006.05.023 – ident: 373_CR29 – volume: 74 start-page: 329 year: 2017 ident: 373_CR47 publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2016.3990 – volume: 31 start-page: 809 year: 2010 ident: 373_CR49 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2061 – ident: 373_CR6 doi: 10.1109/ISBI.2016.7493197 – volume: 11 start-page: 135 year: 2008 ident: 373_CR15 publication-title: Dev Sci doi: 10.1111/j.1467-7687.2007.00634.x – volume: 15 start-page: 1 year: 2002 ident: 373_CR45 publication-title: Hum Brain Mapp doi: 10.1002/hbm.1058 – volume: 36 start-page: 827 year: 2006 ident: 373_CR55 publication-title: Psychol Med doi: 10.1017/S0033291706007215 – volume: 57 start-page: 245 year: 2001 ident: 373_CR14 publication-title: Neurology doi: 10.1212/WNL.57.2.245 – volume: 67 start-page: 786 year: 1979 ident: 373_CR26 publication-title: Proc IEEE doi: 10.1109/PROC.1979.11328 – ident: 373_CR50 doi: 10.1007/978-1-4939-3995-4_21 – volume: 2006 start-page: 1276 issue: 16 year: 1991 ident: 373_CR11 publication-title: Cereb Cortex – volume: 53 start-page: 2145 year: 1999 ident: 373_CR18 publication-title: Neurology doi: 10.1212/WNL.53.9.2145 – volume: 50 start-page: 589 year: 2010 ident: 373_CR19 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.047 – volume: 124 start-page: 1317 year: 2001 ident: 373_CR12 publication-title: Brain J Neurol. doi: 10.1093/brain/124.7.1317 – ident: 373_CR39 doi: 10.1109/ISBI.2015.7163822 – start-page: 935 volume-title: Normalizing data. Encyclopedia of research design year: 2010 ident: 373_CR40 – volume: 45 start-page: 5 year: 2001 ident: 373_CR44 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 13 start-page: 18 year: 1998 ident: 373_CR42 publication-title: IEEE Intell Syst Appl doi: 10.1109/5254.708428 – volume: 26 start-page: 25 year: 2016 ident: 373_CR57 publication-title: Neuropsychol Rev doi: 10.1007/s11065-015-9300-2 – volume: 24 start-page: 355 year: 2000 ident: 373_CR27 publication-title: Neurosci Biobehav Rev doi: 10.1016/S0149-7634(00)00011-7 |
| SSID | ssj0017842 |
| Score | 2.4659636 |
| Snippet | Background
Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical... Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates... Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical... Abstract Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 52 |
| SubjectTerms | Adolescent Age Amygdala Amygdala - physiopathology Anatomy Animal Models Area Under Curve Autism Autism spectrum disorder Autism Spectrum Disorder - diagnostic imaging Autism Spectrum Disorder - physiopathology Biological markers Biomarkers Biomarkers - analysis Biomedical and Life Sciences Biomedicine Care and treatment Child Child, Preschool Classification Developmental disabilities Diagnosis Disease Female Hippocampus Hippocampus (Brain) Hippocampus - physiopathology Humans Image Processing, Computer-Assisted - methods Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging Morphology Neurobiology Neuroengineering Neurosciences Pervasive developmental disorders Principal components analysis Psychiatry Radiomics Research Article Sensitivity and Specificity Studies Variance analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlhz4Ope86SYsKhUKDiNaWZfmYloalkJ6akpsYy3K7sOs16ywl_74zstasW9pcel3JIM1D881q5hNjbw00pnRaicbIQqiiVqLyWgtwudO1M94F2sWLL3p-qT5f5Vd7T31RTdhADzwI7lQ1ulRUi4PAG3MRzA9cWs7K8Gemw_BKp6805S6ZivcHhVFpvMOcGX3a4ymsqWirEDIrMiEnUSiQ9f95JO_FpN_rJcdL0wfs3rbt4OYnLJd7cen8EXsYASU_GzbymN3x7RN29yJemT9l3-aLrsOAteq2PYe25rC6-V7DEvgG6gX1JHNqwacqnU3PEcJyhIQ8sM7ydcMBDbNf8dCQudmueB3ZOp-xy_NPXz_ORXxMQTgts2uhjAafQZU5FKjMqjoHhcoADZWqXK0xzygQGzQzlXtEFXkK2qWy0ZmXOaSmyZ6zg3bd-peMEykcwa48y7WS4ErQqfG-bIhbHtWTMLkTrnWRaZwevFjakHEYbQd9WNSHJX1YmbD34yfdQLPxr8kfSGPjRGLIDj-g3dhoN_Y2u0nYO9K3JT_GxTmI7Qi4RWLEsmeERA2KDmceT2ai_7np8M5ibPT_3iJuRmiKq0VhvBmH6UuqaWv9ektzcCkmRQSXsBeDgY1bSjHxoS7mhBUT05vseTrSLn4EdnCCoIjLEnayM9K9Zf1dpCejHd-ugMP_oYAjdj8NDlmI2eyYHaAR-1cI8K6r18GXfwEvUERf priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-6FPbxMPbVzVs3NBgMVkQdWZaVhzHa0RIGDWOso29CluUukDhe0jD63-_Okb14Y92rJRtJ96HfWXc_AbzRttQjpyQvdZxxmRWS514pbl3qVOG0dw3t4tlEjc_lp4v0YgcmbS0MpVW2PrFx1MXC0T_yQ0QiuNknWSI-1D843RpFp6vtFRo2XK1QvG8oxm7BriBmrAHsHp9MPn_pzhUyLUU42xxqdbhC76womSvjMX6ax73dqSHx_9tVb-1Vf-ZRdoep9-DOuqrt9U87m23tV6cP4H4AmuxooxkPYcdXj-D2WThKfwzfxtO6xo1sXq9XzFYFs_Pry8LOLFvaYkq1yoxK8yl7Z7liCG0ZQkXWsNGyRcksKuxqzppCzeV6zorA4vkEzk9Pvn4c83DJAncqTq641Mr6xOaJKzFQTvIitRKFZJXNZe4KhfFHhpihHMrUI9pIhVVOxKVKfJxaoctkDwbVovLPgBFZHMGxNEmVjK0bWSW096OSOOdHTkQQt4trXGAgp4swZqaJRLQyG3kYlIcheZg4gnfdK_WGfuOmzscksa4jMWc3DxbLSxMM0UicpqTcLgzkMLYVNLARjpt-jjuEaxG8JXkbsm8cnLOhTAGnSExZ5ogQqsalw577vZ5ol67f3GqMCX5hZX5rcQSvu2Z6k3LdKr9YUx8cihaI7CJ4ulGwbkoCAyKqbo4g66leb879lmr6vWENJ2iKeC2Cg1ZJt4b17yU96PT4_wJ4fvOUX8Bd0ZhaxofDfRigevqXCOmu8lfBTn8BkplFeA priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA9ygh8P4udZPSWCIHgEu2mapo-reCzC-eTKvYVpmp4Lu91le4vcf-9MNi1bP_G1ScokM5P8ppn5lbHXBhpTOq1EY9JCqKJWovJaC3C507Uz3gXaxfPPejZXny7yi1jH3fXZ7v2VZNipg1sb_a7DnVRT4lUh0qzIBMbpN3Ni80IjnsvpcHVQGCXj9eVvh40OoMDT_-tufHAc_ZwqOdyX3mW3d-0Grr_DcnlwJJ3dZ_ciluTTvfIfsBu-fchuncfb8kfs62yx2eBZtdrsOg5tzWF1fVnDEvgW6gWVI3OqvqcEnW3HEb1yRIM8EM7ydcMBbbJb8VCLud2teB2JOh-z-dnHLx9mIv5HQTidZldCGQ0-gypzDcbCWVXnoFAPoKFSlas1hhgFwoJmonKPgCKXoJ1MG535NAdpmuwJO2rXrX_KOPHBEeLKs1yrFFwJWhrvy4Zo5UsnE5b2i2tdJBmnf10sbQg2jLZ7fVjUhyV92DRhb4chmz3Dxt86vyeNDR2JHDs8WG8vbfQ1q3CaitK3MFbD8FWSYCXKTd-_HSKyhL0hfVtyYRTOQaxEwCkSGZadEgg1uHTY82TUE13PjZt7i7HR9TuLJomoFKXFxXg1NNNISmdr_XpHfVAUIxG8Jex4b2DDlCTGPFTAnLBiZHqjOY9b2sW3QAxO6BMhWcJOeyM9EOvPS3o62PG_FfDsv979nN2RwfMKMZmcsCO0Vv8CQdxV9TI47Q8hPDuO priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9swEBYlCz0eeh9ut0WFQqGLso4sy8pjWrqEwi59aMr2SciyvJuu45gclO2v74wtm3h7UehbiEdEGs2MvolmPhPySplcja0ULFdhwkSSCZY6KZmxsZWZVc7WtIvHJ3I6Ex9O41NPKYS9MOnCtkSOw90G9KKO2vDBXhxWWd44u5KHa4ivEsuxEhZGScQge9-TMcDyAdmbnXycfKm7i5IR4zzk_lbzl-N651JN3_9zkN45pa5WUHbXqLfIjW1Zmctvpih2TqqjO-Rru8amQOViuN2kQ_v9Cv3jf1HCXXLb41k6aQzwHrnmyvvk-rG_sX9APk_nVQXn5aLarqkpM2oWl2eZKQxdmWyOLdEUfxuLhFZrCgiaAiKlNektXebUgF-sF7TuB11tFzTzZKEPyezo_ad3U-bf5cCsDKMNE0oaF5k0sjnk41GaxUaALRhpUpHaTEKakwA0yUcidgBqYm6k5WEuIxfGhqs8ekQG5bJ0TwhFTjpEfXEUSxEaOzaSK-fGOVLbjy0PSNjupLae6Bzft1HoOuFRUjf60qAvjfrSYUDedEOqhuXjT8Jv0Tw6QSTorr9Yrs6093ctYJkCS8ggX4QUmuPExjBv_A_eAioMyGs0Lo1hBDfU-G4IWCIScukJAmEFqgPJ_Z4kuL_tP27NU_vws9YA2wEZw2xBGS-7xzgSS-pKt9yiDExFcQCQAXncWHO3JA55FzZRByTp2Xlvzf0n5fy8JidHBAywMCAHrUfsTOv3Kj3onObvG_D0n6SfkZu89oyEjUb7ZADW6p4DkNykL3yI-AEhbmjr priority: 102 providerName: Unpaywall |
| Title | Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder |
| URI | https://link.springer.com/article/10.1186/s12868-017-0373-0 https://www.ncbi.nlm.nih.gov/pubmed/28821235 https://www.proquest.com/docview/1925453732 https://www.proquest.com/docview/1930482431 https://pubmed.ncbi.nlm.nih.gov/PMC6389224 https://bmcneurosci.biomedcentral.com/track/pdf/10.1186/s12868-017-0373-0 https://doaj.org/article/4f6940889260409289c291952304c639 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: KQ8 dateStart: 20001201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1471-2202 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: M48 dateStart: 20001201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (WRLC) customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017842 issn: 1471-2202 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGKnF5QNwJjMpISEhMgdRxHOcBoa7aVFVqNQFF5clyHGdUatPSroL-e85xk9DAuLy0VexUx-cSfye2v0PIC6lzmRjB_VwGsc_jjPupFcLXJjIiM9IaR7s4HIn-mA8m0eSAVOWtSgWur0ztsJ7UeDV7_f3r9h0E_FsX8FK8WcMzVuCWrNgPwjj0IYNvwUSVYCWHIf-5qBBLV0unA89jn7GAlYucV_5FY5pybP6_P7P3Jq1fN1TWq6q3yI1NsdTbb3o225u4zu6Q2yXipN2di9wlB7a4R64PyzX1--RTf7pcwow2X27WVBcZ1fPtRaZnmq50NsVDyxTP6OM2ntWaAsalgBmpo6Wli5xq8Nz1nLoTm6vNnGYlnecDMj47_djr-2W1Bd-IILz0uRTahjoNTQ4Zc5hmkeZgLS10ylOTCUhEYgAPeYdHFmBHxLQwLMhFaINIM5mHD8lhsSjsY0KRNQ5xWRRGggfaJFowaW2SI_l8YphHgkq5ypRU5FgRY6ZcSiKF2tlDgT0U2kMFHnlV37Lc8XD8rfMJWqzuiBTa7sJidaHKiFQchslxkxdkdOAsDAVLQG58S24At3nkJdpboeuBcEaX5xVgiEiZpboIVSWoDnoeNXpCgJpmc-UxqvJvBcAasCtIC8p4XjfjnbjprbCLDfYBUSQDiOeRRzsHq4fEIDPCY84eiRuu1xhzs6WYfnH04YhRAbh55Lhy0j2x_qzS49qP_22AJ_-tu6fkJnNRF_udzhE5BE-1zwDmXaZtci2exG3S6nYHHwbwfXI6On8PV3ui13avTtouvOFzzOB3azw6737-AW3ZUE8 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjF4QHwTGGAkEBJTtNRxHOdhQhts6tg6IbShvRnHcUalNg3Nqqn_HH8bd6kTGhDjaa-NU935zne_i--DkNdS5zIxgvu5DGKfxxn3UyuEr01kRGakNXXbxcGx6J_yT2fR2Qr52dTCYFplYxNrQ51NDH4j3wIkAs4-jEP2vvzh49QovF1tRmhoN1oh265bjLnCjkM7v4QQrto--AjyfsPY_t7Jh77vpgz4RgThhc-l0DbUaWhyiBTDNIs0Byq10ClPTSYAgMfgNPMejyy424hpYViQi9AGkWYyD-F_b5A1HvIEgr-13b3jz1_ae4xYcubuUntSbFXgDQQmj8V-AKz4Qccb1kMD_nYNS77xz7zN9vL2NlmfFaWeX-rRaMk_7t8ldxywpTsLTbxHVmxxn9wcuKv7B-Rrf1iW4DjH5ayiusioHs_PMz3SdKqzIdZGU2wFgNlC04oClKYATWnd_ZZOcqrhgFRjWheGTmdjmrmuoQ_J6bVs9yOyWkwK-4RQbE6H8C8KI8EDbRItmLQ2ybHHfWKYR4Jmc5VxHc9x8MZI1ZGPFGohDwXyUCgPFXjkXftKuWj3cdXiXZRYuxA7ddc_TKbnyh18xYFNjrlkEDhCLM2QsAToxo_xBuChR96ivBXaEyDOaFcWASxiZy61g4hYwtbByo3OSrADpvu40Rjl7FClfp8aj7xqH-ObmFtX2MkM1wApkgGS9MjjhYK1LDEIwLCa2iNxR_U6PHefFMPvdZdyhMKADz2y2SjpEln_3tLNVo__L4CnV7P8kqz3TwZH6ujg-PAZuQVQl2HeR09ukFVQVfsc4ORF-sKdWUq-XbeZ-AXUmYJq |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkAY8ID5HYICRkJCYoqWO4ziPo1CVj008MLQ36-I4o1KbRk0rtP-eu8SNGj7Fa21XZ9-d_bv47mfGXmoodWaVDEsdpaFMCxnmTqkQbGJVYbWzLe3i6ZmanssPF8mFf-e02Wa7b68ku5oGYmmq1sd1UXYurtVxg7uqoiSsNIziNA4xZr8u8XCjJwzGatxfI6RaCn-V-dthg8Oo5ez_dWfeOZp-Tpvs705vsRubqoar7zCf7xxPkzvstseV_KQzhLvsmqvusf1Tf3N-n32dzuoaz61FvWk4VAWHxdVlAXPgKyhmVJrMqRKfknVWDUckyxEZ8pZ8li9LDmifzYK3dZmrzYIXnrTzATufvPsynob-TYXQqiheh1IrcDHksS0xLo7zIgGJOgEFucxtoTDcSBEilCOZOAQXiQBlRVSq2EUJCF3GD9letazcI8aJG47QVxInSkZgM1BCO5eVRDGfWRGwaLu4xnrCcXr3Ym7awEMr0-nDoD4M6cNEAXvdD6k7to2_dX5DGus7ElF2-8NydWm83xmJ05SUyoVxG4ayggTLUG76Fm4RnQXsFenbkDujcBZ8VQJOkYixzAkBUo1Lhz0PBz3RDe2weWsxxm8DjUH4jAgVpcXFeNE300hKbavcckN9UBQtEMgF7KAzsH5KAuMfKmYOWDowvcGchy3V7FtLEk5IFOFZwI62Rroj1p-X9Ki3438r4PF__fdztv_57cR8en_28Qm7KVonTMPR6JDtoeG6p4jt1vmz1n9_AM2kQqA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9swEBYlCz0eeh9ut0WFQqGLso4sy8pjWrqEwi59aMr2SciyvJuu45gclO2v74wtm3h7UehbiEdEGs2MvolmPhPySplcja0ULFdhwkSSCZY6KZmxsZWZVc7WtIvHJ3I6Ex9O41NPKYS9MOnCtkSOw90G9KKO2vDBXhxWWd44u5KHa4ivEsuxEhZGScQge9-TMcDyAdmbnXycfKm7i5IR4zzk_lbzl-N651JN3_9zkN45pa5WUHbXqLfIjW1Zmctvpih2TqqjO-Rru8amQOViuN2kQ_v9Cv3jf1HCXXLb41k6aQzwHrnmyvvk-rG_sX9APk_nVQXn5aLarqkpM2oWl2eZKQxdmWyOLdEUfxuLhFZrCgiaAiKlNektXebUgF-sF7TuB11tFzTzZKEPyezo_ad3U-bf5cCsDKMNE0oaF5k0sjnk41GaxUaALRhpUpHaTEKakwA0yUcidgBqYm6k5WEuIxfGhqs8ekQG5bJ0TwhFTjpEfXEUSxEaOzaSK-fGOVLbjy0PSNjupLae6Bzft1HoOuFRUjf60qAvjfrSYUDedEOqhuXjT8Jv0Tw6QSTorr9Yrs6093ctYJkCS8ggX4QUmuPExjBv_A_eAioMyGs0Lo1hBDfU-G4IWCIScukJAmEFqgPJ_Z4kuL_tP27NU_vws9YA2wEZw2xBGS-7xzgSS-pKt9yiDExFcQCQAXncWHO3JA55FzZRByTp2Xlvzf0n5fy8JidHBAywMCAHrUfsTOv3Kj3onObvG_D0n6SfkZu89oyEjUb7ZADW6p4DkNykL3yI-AEhbmjr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hippocampus+and+amygdala+radiomic+biomarkers+for+the+study+of+autism+spectrum+disorder&rft.jtitle=BMC+neuroscience&rft.au=Chaddad%2C+Ahmad&rft.au=Desrosiers%2C+Christian&rft.au=Hassan%2C+Lama&rft.au=Tanougast%2C+Camel&rft.date=2017-07-11&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2202&rft.eissn=1471-2202&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12868-017-0373-0&rft.externalDocID=A511286039 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2202&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2202&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2202&client=summon |