Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder

Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potent...

Full description

Saved in:
Bibliographic Details
Published inBMC neuroscience Vol. 18; no. 1; pp. 52 - 12
Main Authors Chaddad, Ahmad, Desrosiers, Christian, Hassan, Lama, Tanougast, Camel
Format Journal Article
LanguageEnglish
Published London BioMed Central 11.07.2017
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2202
1471-2202
DOI10.1186/s12868-017-0373-0

Cover

Abstract Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4–15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10–24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects. Results Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p  < 0.05 following Holm–Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range. Conclusions Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD.
AbstractList Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4–15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10–24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects. Results Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p  < 0.05 following Holm–Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range. Conclusions Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD.
Abstract Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4–15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10–24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects. Results Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm–Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range. Conclusions Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD.
Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4-15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10-24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects. Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm-Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range. Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD.
Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4-15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10-24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects. Results Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm-Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range. Conclusions Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD.
Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4-15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10-24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects.BACKGROUNDEmerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4-15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10-24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects.Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm-Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range.RESULTSPreliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm-Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range.Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD.CONCLUSIONSResults demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD.
ArticleNumber 52
Audience Academic
Author Desrosiers, Christian
Hassan, Lama
Tanougast, Camel
Chaddad, Ahmad
Author_xml – sequence: 1
  givenname: Ahmad
  orcidid: 0000-0003-3402-9576
  surname: Chaddad
  fullname: Chaddad, Ahmad
  email: ahmad8chaddad@gmail.com
  organization: Laboratory for Imagery, Vision and Artificial Intelligence, Ecole de Technologie Supérieure, Laboratory of Conception, Optimization and Modeling of Systems, University of Lorraine
– sequence: 2
  givenname: Christian
  surname: Desrosiers
  fullname: Desrosiers, Christian
  organization: Laboratory for Imagery, Vision and Artificial Intelligence, Ecole de Technologie Supérieure
– sequence: 3
  givenname: Lama
  surname: Hassan
  fullname: Hassan, Lama
  organization: Laboratory of Conception, Optimization and Modeling of Systems, University of Lorraine
– sequence: 4
  givenname: Camel
  surname: Tanougast
  fullname: Tanougast, Camel
  organization: Laboratory of Conception, Optimization and Modeling of Systems, University of Lorraine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28821235$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURNuBH8AGRWLDJsWvOM4GqaroQ6rEBthaN7Yz9ZDEwU6K5t9zpzOUmQoQshRH9neP7zn2aXY0hMFl2WtKzihV8n2iTElVEFoVhFe8IM-yEyoqWjBG2NHe_3F2mtKKIKgEe5EdM6UYZbw8yb5e-3EMBvpxTjkMNod-vbTQQR7B-tB7kzc4QfzmYsrbEPPpzuVpmu06D20O8-RTn6fRmSnOfW59CtG6-DJ73kKX3KvdvMi-XH78fHFd3H66urk4vy2MJHwqhJLgODTctLImvLElCGkNSGhEY6ykilU1oS0VpasELxlIw0gruSMlMNXyRXaz1bUBVnqMHjtd6wBePyyEuNQQJ286pwUeIYhSNZNEkJqp2rCa1iXjRBjJa9RiW615GGH9A7ruUZASvQlcbwPXmKPeBI6fRfZhWzTOTe-sccMUoTvo5HBn8Hd6Ge615NgJEyjwbicQw_fZpUn3PhnXdTC4MCdNa-xPIUgRffsEXYU5DpgvUqwUJbbEflNLQNd-aAOeazai-rykGwPkwezZHygc1uGd4zNrPa4fFLzZN_ro8NdTQqDaAiaGlKJrtfETTD5sfPvunxnSJ5X_k_vushKyw9LFvSz-WvQTjnv5bw
CitedBy_id crossref_primary_10_1038_s41398_020_01015_w
crossref_primary_10_1016_j_media_2020_101768
crossref_primary_10_1016_j_bbr_2020_112756
crossref_primary_10_1111_ejn_15837
crossref_primary_10_1016_j_neulet_2021_136083
crossref_primary_10_1016_j_pscychresns_2025_111970
crossref_primary_10_1093_cercor_bhz152
crossref_primary_10_3390_sym12121995
crossref_primary_10_30773_pi_2022_0336
crossref_primary_10_1016_j_bspc_2024_107466
crossref_primary_10_1007_s10554_020_01896_4
crossref_primary_10_1016_j_tins_2021_08_005
crossref_primary_10_1016_j_compbiomed_2023_107801
crossref_primary_10_1186_s13229_021_00428_8
crossref_primary_10_1016_j_jad_2021_12_065
crossref_primary_10_1162_netn_a_00281
crossref_primary_10_1002_jdn_10221
crossref_primary_10_1016_j_schres_2019_11_046
crossref_primary_10_1002_jmri_27349
crossref_primary_10_1177_1550059419842707
crossref_primary_10_7759_cureus_36870
crossref_primary_10_1016_j_pnpbp_2022_110560
crossref_primary_10_3389_fnins_2019_00435
crossref_primary_10_4236_jcc_2023_118011
crossref_primary_10_1093_schbul_sby007
crossref_primary_10_1097_WNR_0000000000001094
crossref_primary_10_3389_fonc_2018_00630
crossref_primary_10_3389_fpsyt_2023_1091730
crossref_primary_10_4018_IJEHMC_2019070105
crossref_primary_10_1109_ACCESS_2019_2936639
crossref_primary_10_1038_s41598_019_39809_8
crossref_primary_10_1016_j_nlm_2018_10_001
crossref_primary_10_1111_bph_15859
crossref_primary_10_3389_fnagi_2019_00323
crossref_primary_10_3389_fnins_2022_819069
crossref_primary_10_3389_fnins_2023_1277501
crossref_primary_10_3389_fnins_2021_685005
crossref_primary_10_3389_fnins_2021_682777
crossref_primary_10_1016_j_bionps_2020_100022
crossref_primary_10_1002_brb3_1970
crossref_primary_10_3390_diagnostics12010165
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1136_bmjopen_2020_047343
crossref_primary_10_1186_s12880_022_00892_5
crossref_primary_10_1186_s12989_020_0336_y
crossref_primary_10_1002_14651858_CD011769_pub2
crossref_primary_10_2174_1567205017666200303105016
crossref_primary_10_3390_cancers11081148
crossref_primary_10_3390_ijms232113070
crossref_primary_10_3389_fninf_2022_949926
crossref_primary_10_1007_s11064_019_02903_4
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1007_s00330_024_11158_9
crossref_primary_10_1016_j_bbi_2021_06_012
crossref_primary_10_3389_fnins_2018_01000
crossref_primary_10_1002_med_21846
crossref_primary_10_1016_j_jad_2024_11_047
crossref_primary_10_3389_fnins_2018_01045
crossref_primary_10_1016_j_jneumeth_2022_109745
crossref_primary_10_1371_journal_pone_0282818
crossref_primary_10_1016_j_bbr_2024_115052
crossref_primary_10_1002_jmri_27689
crossref_primary_10_2196_14108
crossref_primary_10_1016_j_neurad_2023_09_002
crossref_primary_10_1016_j_tox_2022_153225
crossref_primary_10_3389_fninf_2020_575999
crossref_primary_10_3389_fneur_2018_00618
crossref_primary_10_1109_ACCESS_2021_3071118
crossref_primary_10_3390_diagnostics11112032
Cites_doi 10.1109/36.752194
10.1016/j.acra.2011.06.007
10.1007/s13139-013-0260-2
10.1212/WNL.35.6.866
10.3389/fnhum.2013.00733
10.3174/ajnr.A2232
10.1148/radiology.143.1.7063747
10.1038/srep45639
10.1212/WNL.59.2.184
10.1007/BF02172145
10.1016/j.rti.2004.02.007
10.1002/hbm.23449
10.1016/j.brainresbull.2003.06.001
10.1097/00004583-200003000-00017
10.1023/A:1026084430649
10.1023/A:1005592401947
10.1186/s11689-015-9117-6
10.1177/070674370304800803
10.1111/j.2517-6161.1995.tb02031.x
10.3389/fnhum.2013.00894
10.1038/mp.2013.78
10.1016/j.pscychresns.2006.02.005
10.1016/j.cortex.2015.02.008
10.1111/j.1365-2788.2012.01599.x
10.1523/JNEUROSCI.5413-09.2010
10.1007/s11548-014-0991-2
10.2307/1932409
10.1109/EMBC.2016.7591612
10.5589/m02-004
10.1109/TSMC.1973.4309314
10.1148/radiol.2015151169
10.1523/JNEUROSCI.1297-04.2004
10.1111/desc.12139
10.1016/j.jaac.2012.05.018
10.5772/50854
10.1016/j.imavis.2006.05.023
10.1001/jamapsychiatry.2016.3990
10.3174/ajnr.A2061
10.1109/ISBI.2016.7493197
10.1111/j.1467-7687.2007.00634.x
10.1002/hbm.1058
10.1017/S0033291706007215
10.1212/WNL.57.2.245
10.1109/PROC.1979.11328
10.1007/978-1-4939-3995-4_21
10.1212/WNL.53.9.2145
10.1016/j.neuroimage.2009.12.047
10.1093/brain/124.7.1317
10.1109/ISBI.2015.7163822
10.1023/A:1010933404324
10.1109/5254.708428
10.1007/s11065-015-9300-2
10.1016/S0149-7634(00)00011-7
ContentType Journal Article
Copyright The Author(s) 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
Copyright_xml – notice: The Author(s) 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12868-017-0373-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2202
EndPage 12
ExternalDocumentID oai_doaj_org_article_4f6940889260409289c291952304c639
10.1186/s12868-017-0373-0
PMC6389224
A511286039
28821235
10_1186_s12868_017_0373_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPY
ITC
KQ8
LK8
M1P
M2M
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FK
AHSBF
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADTOC
C1A
CAG
COF
IPNFZ
LGEZI
LOTEE
NADUK
NXXTH
RIG
UNPAY
ID FETCH-LOGICAL-c603t-486ae3ab3cf6903bd5a46dca6ab4bcd61827901f145e74352a6c20f63e05a28f3
IEDL.DBID M48
ISSN 1471-2202
IngestDate Fri Oct 03 12:52:55 EDT 2025
Sun Oct 26 04:16:28 EDT 2025
Tue Sep 30 16:56:03 EDT 2025
Thu Sep 04 16:47:09 EDT 2025
Thu Oct 09 21:40:47 EDT 2025
Mon Oct 20 22:38:44 EDT 2025
Mon Oct 20 16:53:32 EDT 2025
Mon Jul 21 05:50:52 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Wed Oct 01 03:07:19 EDT 2025
Sat Sep 06 07:21:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Autism spectrum disorder
Hippocampus
Radiomics
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-486ae3ab3cf6903bd5a46dca6ab4bcd61827901f145e74352a6c20f63e05a28f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3402-9576
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12868-017-0373-0
PMID 28821235
PQID 1925453732
PQPubID 44779
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_4f6940889260409289c291952304c639
unpaywall_primary_10_1186_s12868_017_0373_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6389224
proquest_miscellaneous_1930482431
proquest_journals_1925453732
gale_infotracmisc_A511286039
gale_infotracacademiconefile_A511286039
pubmed_primary_28821235
crossref_citationtrail_10_1186_s12868_017_0373_0
crossref_primary_10_1186_s12868_017_0373_0
springer_journals_10_1186_s12868_017_0373_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-11
PublicationDateYYYYMMDD 2017-07-11
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-11
  day: 11
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC neuroscience
PublicationTitleAbbrev BMC Neurosci
PublicationTitleAlternate BMC Neurosci
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References RJ Gillies (373_CR20) 2015; 278
R Nicolson (373_CR54) 2006; 148
TE Nichols (373_CR45) 2002; 15
373_CR6
Y Benjamini (373_CR46) 1995; 57
K Dworzynski (373_CR48) 2012; 51
373_CR9
373_CR53
O Saitoh (373_CR12) 2001; 124
MS Oliveira de (373_CR51) 2011; 32
373_CR50
C Lord (373_CR31) 1994; 24
FJ Martinez-Murcia (373_CR60) 2016; 38
B Song (373_CR37) 2014; 9
H Abdi (373_CR40) 2010
J Piven (373_CR17) 1998; 28
C Cascio (373_CR58) 2013; 57
NJ Minshew (373_CR2) 1988; 18
EH Aylward (373_CR18) 1999; 53
MA Hearst (373_CR42) 1998; 13
LR Dice (373_CR33) 1945; 26
CC Dougherty (373_CR57) 2016; 26
N Hadjikhani (373_CR11) 1991; 2006
L Tidmarsh (373_CR3) 2003; 48
M Bauman (373_CR8) 1985; 35
A Chaddad (373_CR23) 2017; 7
JA Hanley (373_CR43) 1982; 143
SJMC Palmen (373_CR55) 2006; 36
T Zalla (373_CR28) 2013; 7
MK Rahim (373_CR38) 2014; 48
373_CR39
A Estes (373_CR1) 2015; 7
C Ecker (373_CR47) 2017; 74
RM Haralick (373_CR34) 1973; SMC-3
S Baron-Cohen (373_CR27) 2000; 24
DMU Sabino (373_CR36) 2004; 10
S Holm (373_CR41) 1979; 6
CM Schumann (373_CR16) 2004; 24
P Brambilla (373_CR56) 2003; 61
C Lord (373_CR32) 2000; 30
BF Sparks (373_CR13) 2002; 59
JD Lewis (373_CR15) 2008; 11
E Courchesne (373_CR14) 2001; 57
MC Stevens (373_CR4) 2000; 39
373_CR29
M Sikiö (373_CR52) 2011; 18
RM Haralick (373_CR26) 1979; 67
RK Lenroot (373_CR61) 2013; 7
A Martino Di (373_CR30) 2014; 19
Y Jiao (373_CR19) 2010; 50
MA García (373_CR35) 2007; 25
C Ecker (373_CR10) 2010; 30
LE Libero (373_CR59) 2015; 66
373_CR21
DA Clausi (373_CR24) 2002; 28
A Chaddad (373_CR22) 2011; 8
L Breiman (373_CR44) 2001; 45
SR Dager (373_CR7) 2007; 28
A Kassner (373_CR49) 2010; 31
L-K Soh (373_CR25) 1999; 37
R Bedford (373_CR5) 2014; 17
References_xml – volume: 37
  start-page: 780
  year: 1999
  ident: 373_CR25
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/36.752194
– volume: 18
  start-page: 1217
  year: 2011
  ident: 373_CR52
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2011.06.007
– volume: 48
  start-page: 1
  year: 2014
  ident: 373_CR38
  publication-title: Nucl Med Mol Imaging
  doi: 10.1007/s13139-013-0260-2
– volume: 35
  start-page: 866
  year: 1985
  ident: 373_CR8
  publication-title: Neurology
  doi: 10.1212/WNL.35.6.866
– volume: 7
  start-page: 733
  year: 2013
  ident: 373_CR61
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00733
– volume: 32
  start-page: 60
  year: 2011
  ident: 373_CR51
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2232
– volume: 143
  start-page: 29
  year: 1982
  ident: 373_CR43
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 7
  start-page: 45639
  year: 2017
  ident: 373_CR23
  publication-title: Sci Rep
  doi: 10.1038/srep45639
– volume: 59
  start-page: 184
  year: 2002
  ident: 373_CR13
  publication-title: Neurology
  doi: 10.1212/WNL.59.2.184
– volume: 24
  start-page: 659
  year: 1994
  ident: 373_CR31
  publication-title: J Autism Dev Disord
  doi: 10.1007/BF02172145
– volume: 10
  start-page: 205
  year: 2004
  ident: 373_CR36
  publication-title: Real Time Imaging
  doi: 10.1016/j.rti.2004.02.007
– volume: 38
  start-page: 1208
  issue: 3
  year: 2016
  ident: 373_CR60
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23449
– volume: 61
  start-page: 557
  year: 2003
  ident: 373_CR56
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2003.06.001
– volume: 39
  start-page: 346
  year: 2000
  ident: 373_CR4
  publication-title: J Am Acad Child Adolesc Psychiatry
  doi: 10.1097/00004583-200003000-00017
– volume: 28
  start-page: 105
  year: 1998
  ident: 373_CR17
  publication-title: J Autism Dev Disord
  doi: 10.1023/A:1026084430649
– volume: 30
  start-page: 205
  year: 2000
  ident: 373_CR32
  publication-title: J Autism Dev Disord
  doi: 10.1023/A:1005592401947
– volume: 7
  start-page: 24
  year: 2015
  ident: 373_CR1
  publication-title: J Neurodev Disord
  doi: 10.1186/s11689-015-9117-6
– volume: 48
  start-page: 517
  year: 2003
  ident: 373_CR3
  publication-title: Can J Psychiatry Rev Can Psychiatr
  doi: 10.1177/070674370304800803
– volume: 57
  start-page: 289
  year: 1995
  ident: 373_CR46
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 7
  start-page: 894
  year: 2013
  ident: 373_CR28
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00894
– volume: 19
  start-page: 659
  year: 2014
  ident: 373_CR30
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 148
  start-page: 11
  year: 2006
  ident: 373_CR54
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2006.02.005
– volume: 66
  start-page: 46
  year: 2015
  ident: 373_CR59
  publication-title: Cortex
  doi: 10.1016/j.cortex.2015.02.008
– volume: 57
  start-page: 1037
  year: 2013
  ident: 373_CR58
  publication-title: J Intellect Disabil Res
  doi: 10.1111/j.1365-2788.2012.01599.x
– volume: 30
  start-page: 10612
  year: 2010
  ident: 373_CR10
  publication-title: J Neurosci Off J Soc Neurosci
  doi: 10.1523/JNEUROSCI.5413-09.2010
– volume: 9
  start-page: 1021
  year: 2014
  ident: 373_CR37
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-014-0991-2
– volume: 26
  start-page: 297
  year: 1945
  ident: 373_CR33
  publication-title: Ecology
  doi: 10.2307/1932409
– ident: 373_CR21
  doi: 10.1109/EMBC.2016.7591612
– volume: 28
  start-page: 45
  year: 2002
  ident: 373_CR24
  publication-title: Can J Remote Sens
  doi: 10.5589/m02-004
– volume: SMC-3
  start-page: 610
  year: 1973
  ident: 373_CR34
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– volume: 278
  start-page: 563
  year: 2015
  ident: 373_CR20
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 8
  start-page: 39
  year: 2011
  ident: 373_CR22
  publication-title: WSEAS Trans Biol Biomed
– volume: 24
  start-page: 6392
  year: 2004
  ident: 373_CR16
  publication-title: J Neurosci Off J Soc Neurosci
  doi: 10.1523/JNEUROSCI.1297-04.2004
– volume: 17
  start-page: 612
  year: 2014
  ident: 373_CR5
  publication-title: Dev Sci
  doi: 10.1111/desc.12139
– volume: 6
  start-page: 65
  year: 1979
  ident: 373_CR41
  publication-title: Scand J Stat
– volume: 51
  start-page: 788
  year: 2012
  ident: 373_CR48
  publication-title: J Am Acad Child Adolesc Psychiatry
  doi: 10.1016/j.jaac.2012.05.018
– ident: 373_CR53
– volume: 18
  start-page: 561
  year: 1988
  ident: 373_CR2
  publication-title: Curr Probl Pediatr
– volume: 28
  start-page: 672
  year: 2007
  ident: 373_CR7
  publication-title: AJNR Am J Neuroradiol
– ident: 373_CR9
  doi: 10.5772/50854
– volume: 25
  start-page: 1091
  year: 2007
  ident: 373_CR35
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2006.05.023
– ident: 373_CR29
– volume: 74
  start-page: 329
  year: 2017
  ident: 373_CR47
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2016.3990
– volume: 31
  start-page: 809
  year: 2010
  ident: 373_CR49
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2061
– ident: 373_CR6
  doi: 10.1109/ISBI.2016.7493197
– volume: 11
  start-page: 135
  year: 2008
  ident: 373_CR15
  publication-title: Dev Sci
  doi: 10.1111/j.1467-7687.2007.00634.x
– volume: 15
  start-page: 1
  year: 2002
  ident: 373_CR45
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.1058
– volume: 36
  start-page: 827
  year: 2006
  ident: 373_CR55
  publication-title: Psychol Med
  doi: 10.1017/S0033291706007215
– volume: 57
  start-page: 245
  year: 2001
  ident: 373_CR14
  publication-title: Neurology
  doi: 10.1212/WNL.57.2.245
– volume: 67
  start-page: 786
  year: 1979
  ident: 373_CR26
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1979.11328
– ident: 373_CR50
  doi: 10.1007/978-1-4939-3995-4_21
– volume: 2006
  start-page: 1276
  issue: 16
  year: 1991
  ident: 373_CR11
  publication-title: Cereb Cortex
– volume: 53
  start-page: 2145
  year: 1999
  ident: 373_CR18
  publication-title: Neurology
  doi: 10.1212/WNL.53.9.2145
– volume: 50
  start-page: 589
  year: 2010
  ident: 373_CR19
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.047
– volume: 124
  start-page: 1317
  year: 2001
  ident: 373_CR12
  publication-title: Brain J Neurol.
  doi: 10.1093/brain/124.7.1317
– ident: 373_CR39
  doi: 10.1109/ISBI.2015.7163822
– start-page: 935
  volume-title: Normalizing data. Encyclopedia of research design
  year: 2010
  ident: 373_CR40
– volume: 45
  start-page: 5
  year: 2001
  ident: 373_CR44
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 13
  start-page: 18
  year: 1998
  ident: 373_CR42
  publication-title: IEEE Intell Syst Appl
  doi: 10.1109/5254.708428
– volume: 26
  start-page: 25
  year: 2016
  ident: 373_CR57
  publication-title: Neuropsychol Rev
  doi: 10.1007/s11065-015-9300-2
– volume: 24
  start-page: 355
  year: 2000
  ident: 373_CR27
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/S0149-7634(00)00011-7
SSID ssj0017842
Score 2.4659636
Snippet Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical...
Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates...
Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical...
Abstract Background Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 52
SubjectTerms Adolescent
Age
Amygdala
Amygdala - physiopathology
Anatomy
Animal Models
Area Under Curve
Autism
Autism spectrum disorder
Autism Spectrum Disorder - diagnostic imaging
Autism Spectrum Disorder - physiopathology
Biological markers
Biomarkers
Biomarkers - analysis
Biomedical and Life Sciences
Biomedicine
Care and treatment
Child
Child, Preschool
Classification
Developmental disabilities
Diagnosis
Disease
Female
Hippocampus
Hippocampus (Brain)
Hippocampus - physiopathology
Humans
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Morphology
Neurobiology
Neuroengineering
Neurosciences
Pervasive developmental disorders
Principal components analysis
Psychiatry
Radiomics
Research Article
Sensitivity and Specificity
Studies
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlhz4Ope86SYsKhUKDiNaWZfmYloalkJ6akpsYy3K7sOs16ywl_74zstasW9pcel3JIM1D881q5hNjbw00pnRaicbIQqiiVqLyWgtwudO1M94F2sWLL3p-qT5f5Vd7T31RTdhADzwI7lQ1ulRUi4PAG3MRzA9cWs7K8Gemw_BKp6805S6ZivcHhVFpvMOcGX3a4ymsqWirEDIrMiEnUSiQ9f95JO_FpN_rJcdL0wfs3rbt4OYnLJd7cen8EXsYASU_GzbymN3x7RN29yJemT9l3-aLrsOAteq2PYe25rC6-V7DEvgG6gX1JHNqwacqnU3PEcJyhIQ8sM7ydcMBDbNf8dCQudmueB3ZOp-xy_NPXz_ORXxMQTgts2uhjAafQZU5FKjMqjoHhcoADZWqXK0xzygQGzQzlXtEFXkK2qWy0ZmXOaSmyZ6zg3bd-peMEykcwa48y7WS4ErQqfG-bIhbHtWTMLkTrnWRaZwevFjakHEYbQd9WNSHJX1YmbD34yfdQLPxr8kfSGPjRGLIDj-g3dhoN_Y2u0nYO9K3JT_GxTmI7Qi4RWLEsmeERA2KDmceT2ai_7np8M5ibPT_3iJuRmiKq0VhvBmH6UuqaWv9ektzcCkmRQSXsBeDgY1bSjHxoS7mhBUT05vseTrSLn4EdnCCoIjLEnayM9K9Zf1dpCejHd-ugMP_oYAjdj8NDlmI2eyYHaAR-1cI8K6r18GXfwEvUERf
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-6FPbxMPbVzVs3NBgMVkQdWZaVhzHa0RIGDWOso29CluUukDhe0jD63-_Okb14Y92rJRtJ96HfWXc_AbzRttQjpyQvdZxxmRWS514pbl3qVOG0dw3t4tlEjc_lp4v0YgcmbS0MpVW2PrFx1MXC0T_yQ0QiuNknWSI-1D843RpFp6vtFRo2XK1QvG8oxm7BriBmrAHsHp9MPn_pzhUyLUU42xxqdbhC76womSvjMX6ax73dqSHx_9tVb-1Vf-ZRdoep9-DOuqrt9U87m23tV6cP4H4AmuxooxkPYcdXj-D2WThKfwzfxtO6xo1sXq9XzFYFs_Pry8LOLFvaYkq1yoxK8yl7Z7liCG0ZQkXWsNGyRcksKuxqzppCzeV6zorA4vkEzk9Pvn4c83DJAncqTq641Mr6xOaJKzFQTvIitRKFZJXNZe4KhfFHhpihHMrUI9pIhVVOxKVKfJxaoctkDwbVovLPgBFZHMGxNEmVjK0bWSW096OSOOdHTkQQt4trXGAgp4swZqaJRLQyG3kYlIcheZg4gnfdK_WGfuOmzscksa4jMWc3DxbLSxMM0UicpqTcLgzkMLYVNLARjpt-jjuEaxG8JXkbsm8cnLOhTAGnSExZ5ogQqsalw577vZ5ol67f3GqMCX5hZX5rcQSvu2Z6k3LdKr9YUx8cihaI7CJ4ulGwbkoCAyKqbo4g66leb879lmr6vWENJ2iKeC2Cg1ZJt4b17yU96PT4_wJ4fvOUX8Bd0ZhaxofDfRigevqXCOmu8lfBTn8BkplFeA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA9ygh8P4udZPSWCIHgEu2mapo-reCzC-eTKvYVpmp4Lu91le4vcf-9MNi1bP_G1ScokM5P8ppn5lbHXBhpTOq1EY9JCqKJWovJaC3C507Uz3gXaxfPPejZXny7yi1jH3fXZ7v2VZNipg1sb_a7DnVRT4lUh0qzIBMbpN3Ni80IjnsvpcHVQGCXj9eVvh40OoMDT_-tufHAc_ZwqOdyX3mW3d-0Grr_DcnlwJJ3dZ_ciluTTvfIfsBu-fchuncfb8kfs62yx2eBZtdrsOg5tzWF1fVnDEvgW6gWVI3OqvqcEnW3HEb1yRIM8EM7ydcMBbbJb8VCLud2teB2JOh-z-dnHLx9mIv5HQTidZldCGQ0-gypzDcbCWVXnoFAPoKFSlas1hhgFwoJmonKPgCKXoJ1MG535NAdpmuwJO2rXrX_KOPHBEeLKs1yrFFwJWhrvy4Zo5UsnE5b2i2tdJBmnf10sbQg2jLZ7fVjUhyV92DRhb4chmz3Dxt86vyeNDR2JHDs8WG8vbfQ1q3CaitK3MFbD8FWSYCXKTd-_HSKyhL0hfVtyYRTOQaxEwCkSGZadEgg1uHTY82TUE13PjZt7i7HR9TuLJomoFKXFxXg1NNNISmdr_XpHfVAUIxG8Jex4b2DDlCTGPFTAnLBiZHqjOY9b2sW3QAxO6BMhWcJOeyM9EOvPS3o62PG_FfDsv979nN2RwfMKMZmcsCO0Vv8CQdxV9TI47Q8hPDuO
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9swEBYlCz0eeh9ut0WFQqGLso4sy8pjWrqEwi59aMr2SciyvJuu45gclO2v74wtm3h7UehbiEdEGs2MvolmPhPySplcja0ULFdhwkSSCZY6KZmxsZWZVc7WtIvHJ3I6Ex9O41NPKYS9MOnCtkSOw90G9KKO2vDBXhxWWd44u5KHa4ivEsuxEhZGScQge9-TMcDyAdmbnXycfKm7i5IR4zzk_lbzl-N651JN3_9zkN45pa5WUHbXqLfIjW1Zmctvpih2TqqjO-Rru8amQOViuN2kQ_v9Cv3jf1HCXXLb41k6aQzwHrnmyvvk-rG_sX9APk_nVQXn5aLarqkpM2oWl2eZKQxdmWyOLdEUfxuLhFZrCgiaAiKlNektXebUgF-sF7TuB11tFzTzZKEPyezo_ad3U-bf5cCsDKMNE0oaF5k0sjnk41GaxUaALRhpUpHaTEKakwA0yUcidgBqYm6k5WEuIxfGhqs8ekQG5bJ0TwhFTjpEfXEUSxEaOzaSK-fGOVLbjy0PSNjupLae6Bzft1HoOuFRUjf60qAvjfrSYUDedEOqhuXjT8Jv0Tw6QSTorr9Yrs6093ctYJkCS8ggX4QUmuPExjBv_A_eAioMyGs0Lo1hBDfU-G4IWCIScukJAmEFqgPJ_Z4kuL_tP27NU_vws9YA2wEZw2xBGS-7xzgSS-pKt9yiDExFcQCQAXncWHO3JA55FzZRByTp2Xlvzf0n5fy8JidHBAywMCAHrUfsTOv3Kj3onObvG_D0n6SfkZu89oyEjUb7ZADW6p4DkNykL3yI-AEhbmjr
  priority: 102
  providerName: Unpaywall
Title Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder
URI https://link.springer.com/article/10.1186/s12868-017-0373-0
https://www.ncbi.nlm.nih.gov/pubmed/28821235
https://www.proquest.com/docview/1925453732
https://www.proquest.com/docview/1930482431
https://pubmed.ncbi.nlm.nih.gov/PMC6389224
https://bmcneurosci.biomedcentral.com/track/pdf/10.1186/s12868-017-0373-0
https://doaj.org/article/4f6940889260409289c291952304c639
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: KQ8
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: M48
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (WRLC)
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017842
  issn: 1471-2202
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbGKnF5QNwJjMpISEhMgdRxHOcBoa7aVFVqNQFF5clyHGdUatPSroL-e85xk9DAuLy0VexUx-cSfye2v0PIC6lzmRjB_VwGsc_jjPupFcLXJjIiM9IaR7s4HIn-mA8m0eSAVOWtSgWur0ztsJ7UeDV7_f3r9h0E_FsX8FK8WcMzVuCWrNgPwjj0IYNvwUSVYCWHIf-5qBBLV0unA89jn7GAlYucV_5FY5pybP6_P7P3Jq1fN1TWq6q3yI1NsdTbb3o225u4zu6Q2yXipN2di9wlB7a4R64PyzX1--RTf7pcwow2X27WVBcZ1fPtRaZnmq50NsVDyxTP6OM2ntWaAsalgBmpo6Wli5xq8Nz1nLoTm6vNnGYlnecDMj47_djr-2W1Bd-IILz0uRTahjoNTQ4Zc5hmkeZgLS10ylOTCUhEYgAPeYdHFmBHxLQwLMhFaINIM5mHD8lhsSjsY0KRNQ5xWRRGggfaJFowaW2SI_l8YphHgkq5ypRU5FgRY6ZcSiKF2tlDgT0U2kMFHnlV37Lc8XD8rfMJWqzuiBTa7sJidaHKiFQchslxkxdkdOAsDAVLQG58S24At3nkJdpboeuBcEaX5xVgiEiZpboIVSWoDnoeNXpCgJpmc-UxqvJvBcAasCtIC8p4XjfjnbjprbCLDfYBUSQDiOeRRzsHq4fEIDPCY84eiRuu1xhzs6WYfnH04YhRAbh55Lhy0j2x_qzS49qP_22AJ_-tu6fkJnNRF_udzhE5BE-1zwDmXaZtci2exG3S6nYHHwbwfXI6On8PV3ui13avTtouvOFzzOB3azw6737-AW3ZUE8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjF4QHwTGGAkEBJTtNRxHOdhQhts6tg6IbShvRnHcUalNg3Nqqn_HH8bd6kTGhDjaa-NU935zne_i--DkNdS5zIxgvu5DGKfxxn3UyuEr01kRGakNXXbxcGx6J_yT2fR2Qr52dTCYFplYxNrQ51NDH4j3wIkAs4-jEP2vvzh49QovF1tRmhoN1oh265bjLnCjkM7v4QQrto--AjyfsPY_t7Jh77vpgz4RgThhc-l0DbUaWhyiBTDNIs0Byq10ClPTSYAgMfgNPMejyy424hpYViQi9AGkWYyD-F_b5A1HvIEgr-13b3jz1_ae4xYcubuUntSbFXgDQQmj8V-AKz4Qccb1kMD_nYNS77xz7zN9vL2NlmfFaWeX-rRaMk_7t8ldxywpTsLTbxHVmxxn9wcuKv7B-Rrf1iW4DjH5ayiusioHs_PMz3SdKqzIdZGU2wFgNlC04oClKYATWnd_ZZOcqrhgFRjWheGTmdjmrmuoQ_J6bVs9yOyWkwK-4RQbE6H8C8KI8EDbRItmLQ2ybHHfWKYR4Jmc5VxHc9x8MZI1ZGPFGohDwXyUCgPFXjkXftKuWj3cdXiXZRYuxA7ddc_TKbnyh18xYFNjrlkEDhCLM2QsAToxo_xBuChR96ivBXaEyDOaFcWASxiZy61g4hYwtbByo3OSrADpvu40Rjl7FClfp8aj7xqH-ObmFtX2MkM1wApkgGS9MjjhYK1LDEIwLCa2iNxR_U6PHefFMPvdZdyhMKADz2y2SjpEln_3tLNVo__L4CnV7P8kqz3TwZH6ujg-PAZuQVQl2HeR09ukFVQVfsc4ORF-sKdWUq-XbeZ-AXUmYJq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkAY8ID5HYICRkJCYoqWO4ziPo1CVj008MLQ36-I4o1KbRk0rtP-eu8SNGj7Fa21XZ9-d_bv47mfGXmoodWaVDEsdpaFMCxnmTqkQbGJVYbWzLe3i6ZmanssPF8mFf-e02Wa7b68ku5oGYmmq1sd1UXYurtVxg7uqoiSsNIziNA4xZr8u8XCjJwzGatxfI6RaCn-V-dthg8Oo5ez_dWfeOZp-Tpvs705vsRubqoar7zCf7xxPkzvstseV_KQzhLvsmqvusf1Tf3N-n32dzuoaz61FvWk4VAWHxdVlAXPgKyhmVJrMqRKfknVWDUckyxEZ8pZ8li9LDmifzYK3dZmrzYIXnrTzATufvPsynob-TYXQqiheh1IrcDHksS0xLo7zIgGJOgEFucxtoTDcSBEilCOZOAQXiQBlRVSq2EUJCF3GD9letazcI8aJG47QVxInSkZgM1BCO5eVRDGfWRGwaLu4xnrCcXr3Ym7awEMr0-nDoD4M6cNEAXvdD6k7to2_dX5DGus7ElF2-8NydWm83xmJ05SUyoVxG4ayggTLUG76Fm4RnQXsFenbkDujcBZ8VQJOkYixzAkBUo1Lhz0PBz3RDe2weWsxxm8DjUH4jAgVpcXFeNE300hKbavcckN9UBQtEMgF7KAzsH5KAuMfKmYOWDowvcGchy3V7FtLEk5IFOFZwI62Rroj1p-X9Ki3438r4PF__fdztv_57cR8en_28Qm7KVonTMPR6JDtoeG6p4jt1vmz1n9_AM2kQqA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9swEBYlCz0eeh9ut0WFQqGLso4sy8pjWrqEwi59aMr2SciyvJuu45gclO2v74wtm3h7UehbiEdEGs2MvolmPhPySplcja0ULFdhwkSSCZY6KZmxsZWZVc7WtIvHJ3I6Ex9O41NPKYS9MOnCtkSOw90G9KKO2vDBXhxWWd44u5KHa4ivEsuxEhZGScQge9-TMcDyAdmbnXycfKm7i5IR4zzk_lbzl-N651JN3_9zkN45pa5WUHbXqLfIjW1Zmctvpih2TqqjO-Rru8amQOViuN2kQ_v9Cv3jf1HCXXLb41k6aQzwHrnmyvvk-rG_sX9APk_nVQXn5aLarqkpM2oWl2eZKQxdmWyOLdEUfxuLhFZrCgiaAiKlNektXebUgF-sF7TuB11tFzTzZKEPyezo_ad3U-bf5cCsDKMNE0oaF5k0sjnk41GaxUaALRhpUpHaTEKakwA0yUcidgBqYm6k5WEuIxfGhqs8ekQG5bJ0TwhFTjpEfXEUSxEaOzaSK-fGOVLbjy0PSNjupLae6Bzft1HoOuFRUjf60qAvjfrSYUDedEOqhuXjT8Jv0Tw6QSTorr9Yrs6093ctYJkCS8ggX4QUmuPExjBv_A_eAioMyGs0Lo1hBDfU-G4IWCIScukJAmEFqgPJ_Z4kuL_tP27NU_vws9YA2wEZw2xBGS-7xzgSS-pKt9yiDExFcQCQAXncWHO3JA55FzZRByTp2Xlvzf0n5fy8JidHBAywMCAHrUfsTOv3Kj3onObvG_D0n6SfkZu89oyEjUb7ZADW6p4DkNykL3yI-AEhbmjr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hippocampus+and+amygdala+radiomic+biomarkers+for+the+study+of+autism+spectrum+disorder&rft.jtitle=BMC+neuroscience&rft.au=Chaddad%2C+Ahmad&rft.au=Desrosiers%2C+Christian&rft.au=Hassan%2C+Lama&rft.au=Tanougast%2C+Camel&rft.date=2017-07-11&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2202&rft.eissn=1471-2202&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12868-017-0373-0&rft.externalDocID=A511286039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2202&client=summon